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Abstract— Medical steerable needles can follow 3D curvi-
linear trajectories inside body tissue, enabling them to move
around critical anatomical structures and precisely reach clini-
cally significant targets in a minimally invasive way. Automating
needle steering, with motion planning as a key component, has
the potential to maximize the accuracy, precision, speed, and
safety of steerable needle procedures. In this paper, we intro-
duce the first resolution-optimal motion planner for steerable
needles that offers excellent practical performance in terms of
runtime while simultaneously providing strong theoretical guar-
antees on completeness and the global optimality of the motion
plan in finite time. Compared to state-of-the-art steerable needle
motion planners, simulation experiments on realistic scenarios
of lung biopsy demonstrate that our proposed planner is faster
in generating higher-quality plans while incorporating clinically
relevant cost functions. This indicates that the theoretical
guarantees of the proposed planner have a practical impact
on the motion plan quality, which is valuable for computing
motion plans that minimize patient trauma.

I. INTRODUCTION

Medical steerable needles have the potential to improve
patient care in diagnostic and therapeutic procedures in-
cluding biopsy, localized drug delivery, and radioactive seed
implantation for cancer treatment [2]. Steerable needles have
a small diameter and are made of a highly flexible material,
which allows them to follow 3D curvilinear trajectories
inside the tissue. These properties enable steerable needles
to move around critical anatomical structures to reduce
patient trauma and reach sites previously unreachable with
traditional straight needles [3-6].

Automating needle steering can improve the accuracy,
precision, speed, and safety of steerable needle procedures.
Automating these procedures can also facilitate their broad
use, since manual control of a steerable needle is challenging
due to the nonholonomic constraints on the needle’s motion
and the high level of precision required to operate it. A
key component of automating steerable needle procedures
is motion planning: computing feasible, obstacle-avoiding
trajectories through the tissue to reach a target. The tra-
jectory of the needle through tissue should also maximize
patient safety, which can be quantified using metrics such
as minimizing trajectory length [7], maximizing clearance
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Fig. 1: Left: Overview of two different steerable-needle motion plans, both
reaching a nodule (green) in the lung parenchyma for biopsy or cancer
treatment while avoiding critical anatomical structures such as the bronchial
tubes (brown) and major blood vessels (red). Top right: A zoomed-in view
of two different plans where small blood vessels are rendered in grayscale.
We use the method in [12] to reconstruct a cost map that represents the
risk of puncturing small blood vessels. Different colors along the plans
show different costs on the cost map. The top plan is computed with our
proposed planner, RCS*. The bottom plan is computed with our previous
RCS algorithm [30] and has a higher cost. Bottom right: A 2D illustration
of the tree grown using our resolution-optimal motion planner towards a
goal region (green) while avoiding obstacles (red). The best (shortest) plan
found is shown in light green, and another valid but worse (longer) plan is
shown in yellow. With generic and domain-specific optimizations, we can
greatly shrink the search space (i.e., discard the light gray edges).

from obstacles [8—11], and minimizing damage to sensitive
tissue [12]. An example is shown in Fig. 1.

A motion planner for steerable needles should ideally offer
guarantees on both finite-time completeness (i.e., compute in
finite time a motion plan or indicate that none exists) and
optimality (i.e., return a globally optimal motion plan with
respect to a chosen cost metric). Most prior motion planners
for steerable needles lack one or both of these criteria. For
instance, some methods for steerable needle motion planning
lack completeness guarantees [7, 13—18], and so may fail to
find a motion plan when one exists. Some methods do aim
to optimize motion plan cost but they lack global optimality
guarantees [7, 18, 19].

Some sampling-based planners are known to be both
complete and optimal, albeit those properties are usually
proven only for an asymptotic regime where the number of
samples tends to infinity [20-27]. Thus, it is unclear what
should be the number of samples necessary to achieve those
guarantees in practice. Recent work has developed optimality
guarantees for finite sampling, although those results cannot
be currently applied to steerable needles as they deal with
holonomic systems [28,29].

In this paper, we introduce the first motion planner for
steerable needles that offers excellent practical performance
in terms of runtime while providing strong theoretical guar-
antees on completeness and the cost of the motion plan
in finite time. In particular, we consider a specific type of
optimality in relation to the motion plan cost—resolution



optimality. Generally speaking, a resolution characterizes the
discretization of some space (e.g., state space, configuration
space, action space, and time). An algorithm is resolution
complete if there exists a fine-enough resolution with which
the algorithm finds a motion plan in finite time when a
qualified motion plan exists, and otherwise correctly returns
that no such plan exists [30]. An algorithm is resolution
optimal if it is resolution complete and if, when it does return
a motion plan, the plan’s cost is guaranteed to be within a
desired approximation factor of the cost of a globally optimal
qualified motion plan.

Our new motion planner builds on Resolution-Complete
Search (RCS) [30], which is a resolution-complete but not
resolution-optimal motion planner for steerable needles. If a
motion plan exists, RCS would find a motion plan in finite
time assuming that the parameter resolution is fine enough,
but it provides no guarantees on the motion plan cost. To
achieve resolution optimality, we enhance RCS with cost-
aware duplicate pruning while incorporating motion plan cost
tracking and a heuristic function to improve efficiency. We
provide a proof sketch to show the resolution optimality of
our method with a careful discussion of assumptions and
required conditions. We also demonstrate experimentally on
a realistic lung biopsy scenario that our new method, RCS*,
outperforms the state-of-the-art in terms of runtime and plan
quality.

II. RELATED WORK

A. Motion planning for steerable needles

A variety of approaches have been proposed for the motion
planning of steerable needles. Duindam et al. [13] proposed
a planner based on inverse kinematics but provided no
theoretical guarantees. Liu et al. [18] developed the Adaptive
Fractal Tree (AFT) for needle steering. Their method itera-
tively refines the lowest-cost plan from the previous iteration,
but refining the best plan of a coarse resolution does not
necessarily lead to the best plan in a finer resolution. Pinzi et
al. [19] extended it to account for goal orientation constraints.

Some planners adapt sampling-based methods such as
Rapidly-exploring Random Tree (RRT) [20] for steerable
needles. Xu et al. [31] used an RRT variant for needle
steering but showed low time efficiency. Patil et al. [15]
developed an RRT-based needle planner that samples in the
3D workspace rather than the configuration space. Sampling
in a lower-dimension space and their customized distance
function made the planner work efficiently in many practical
cases, but this also invalidates the probabilistic-completeness
guarantee of RRT [20, 23]. To avoid dealing with curvature
constraints directly, Favaro et al. [7] proposed a hybrid
method to combine sampling and smoothing. First, a tree
embedded in the 3D workspace is built with RRT* [24],
then candidate plans found by the tree are smoothed to
further account for the curvature constraint. However, such
a decoupling invalidates the asymptotic optimality guaran-
tee [24,25]. Sun et al. [27] proposed a needle planner by
building multiple RRTs, which is asymptotically optimal
when the number of trees tends to infinity. Other methods fo-
cus on accounting for the uncertainty during needle insertion
without providing formal guarantees [14, 16, 17].

B. Resolution-optimal motion planners

Although resolution completeness has been frequently
mentioned [32-36], resolution optimality earned little atten-
tion, possibly due to being rather complex to analyze math-
ematically, particularly for nonholonomic systems. Conse-
quently, many planners developed for nonholonomic systems
focus on asymptotic optimality instead [22, 26, 37, 38].

Barraquand et al. [33] proposed a resolution-complete
planner for single or multiple robots with nonholonomic
constraints. Their method is also optimal with respect to
the number of reverse maneuvers in the plan. Pivtoraiko
et al. [39] proposed the idea of motion planning using
state lattices for field robots. Their state lattices planner is
resolution optimal since the search is optimal for a graph
of some resolution and the discrete state grid approximates
the continuous space as resolution increases. Ljungqvist et
al. [40] later extended [39] for a general two-trailer system
in 2D. However, these methods are designed for large-scale
workspaces, making them unsuitable for tasks where a high
level of precision is required, such as for steerable needles.

III. PROBLEM DEFINITION

We consider bevel-tip flexible steerable needles [3-6]
controlled by insertion and rotation at their base. A bevel-
tip steerable needle is made of a highly flexible mate-
rial such that, when being inserted through tissue, asym-
metric forces applied by the bevel cause the needle to
take a curved trajectory. The maximum curvature of the
needle’s path in the tissue, Kpax, is influenced by the
mechanical design of the needle and the tissue that the
needle moves through. Additionally, axially rotating the
needle at its base changes the direction the bevel is
facing, enabling us to
control the steering direc-
tion. The figure to the
right illustrates the nee-
dle’s kinematics, where
the needle can be inserted
by length ¢ and axially
rotated at its base by 6.

We make the common assumption that the steerable needle
is sufficiently flexible so the needle shaft moves along the
trajectory created by its tip while the lateral motions are
negligible. Thus, the configuration space of the steerable
needle is defined by the pose of its tip, X C SE&(3),
where a given configuration x = (p,q) € X, specifies the
position and orientation components p € R? and ¢ € SO(3),
respectively. We assume that X’ is compact. We denote the
3D workspace by W € R3, a subset of which is occupied by
obstacles Wops C W. A configuration x = (p, q) is collision
free if and only if p &€ Wyps. We define X as the union
of all collision-free configurations.

A motion plan of the needle is a trajectory o : [0,¢] — X,
where ¢ is the length of the trajectory. We also use the
notation ¢, to denote the length of o. A motion plan (or
trajectory) o is collision free if Vs € [0,¢],0(s) € Xiree.
To evaluate the quality of a motion plan, we consider a
configuration-based cost function ¢ : X — R. We require c to
be well behaved (formally defined in Sec V), which includes
being Lipshitz continuous and bounded within [¢pin, Cmax)-




We define the cost of a motion plan as the integral of
the configuration-based cost along a given trajectory o, i.e.,
C(o) = f(fc(a(s))ds. This definition captures a variety of
cost functions, including trajectory length and integrating
over a cost map derived from medical images.

A motion plan is (kinematically) feasible if the curvatures
along the trajectory never exceed Kmax. A motion plan is
valid if it is collision free and feasible. We are now ready to
state the steerable needle motion planning problem.

Problem 1. An optimal steerable needle motion
planning problem is defined as the tuple A =
(Xa Wob57 Xstarty pgoala T, gmaxa Rmax, C)’ where Wobs is the
obstacle set, Xqart iS the start configuration, pgo € W
is the goal point, 7 > 0 is the goal tolerance, ¢,,.x is the
maximum insertion length, x,,x is the maximum curvature,
and C is a cost function. The problem calls for computing
an optimal valid motion plan ¢* = argmin_ C (o) subject to:

o is valid,

J(O) = Xstart»

ZO' S gma)u

HPI"Oj(O’(EU)) - pgoalHQ <,
where Proj(x) = p for x = (p, q).

As we show in Sec. V, for any given instance of Prob-
lem 1, under some mild assumptions, there exists a fine-
enough cutoff resolution Ruyin = {0fmin,00min} (corre-
sponding to the needle’s insertion and axial rotation, re-
spectively) for which our planner is guaranteed to return a
motion plan with a cost to be within a desired approximation
factor of a globally optimal qualified motion plan in finite
time (if any qualified motion plan exists), or indicate that no
qualified motion plan exists. Similar to [30], we assume there
exist minimal motions that are precisely achievable by the
hardware system in tissues, informing the cuttoff resolution.
In our specific case, the minimal motions are the minimal
insertion and minimal rotation the needle tip can precisely
perform, determined by a lower-level needle controller.

IV. THE RCS* ALGORITHM

We describe our RCS* algorithm for resolution-optimal
motion planning. We also highlight the differences between
our new algorithm and our previous method RCS [30]. After
presenting RCS*, we discuss an additional procedure to
further improve its performance.

A. Algorithm description

The core idea of RCS* (and RCS) is to build a search tree
with predefined motions of multiple resolutions. Specifically,
RCS™ constructs a search tree 7 = (V,£) embedded in the
configuration space, where each node v € V is associated
with a configuration x,, € A" and each edge e = (u,v) € £
represents a transition from x, to x,. The search tree is
rooted at the given start configuration Xgi,t and explores
valid motion plans when expanded in the configuration space.
See the pseudocode of RCS* in Alg. 1.

To generate new nodes, RCS* expands existing nodes with
predefined (kinematically) feasible motion primitives [41]. In
RCS*, a motion primitive defines a local circular trajectory
with some constant curvature x < Kmpax, some length

Algorithm 1 RCS*
Input: Wops, Xstart, DPgoal; Ty Kmax; Lmax, lmax, Rmin

100+ {0,Z,m 32}, K < {0, Amax}

2: 10Ot <— (Xstart; 0, O) > The root has rank 0 and cost 0
3: OPEN < {root}, CLOSED < (), bestPlan +— NULL

4: while not OPEN.empty() do

5: v < OPEN.extract()

6 if Valid(v, Wobmpgoab émax) then

7: if not CLOSED..existDuplicate(v) then

8

9

if GoalReached(v, pgoal, 7) then
bestPlan.update(v)

10: for M € Primitives(K, 6/ ax, ©) do

11: OPEN.insert(v & M)
12: CLOSED.insert(v)

13:  if v != root then

14: for M € RefinedPrimitives(M,,) do
15: if ValidResolution(M, R,;») then
16: OPEN.insert(v.parent & M)

17: return bestPlan

d¢ > 0, and some curving direction §6 € [0, 27). That is,
a motion primitive is defined as a tuple M = (k, ¢, 50).
We denote the operation of applying a motion primitive
M to configuration x, as x, = x, ® M, where x,
is the resultant configuration. RCS* uses a fixed set of
curvatures {0, Kmayx } and defines the resolution of a motion
primitive as a function of §¢ and 6, since any curvature
k € [0,Kkmax] can be well approximated by interleaving
curvature 0 and kmax [30]. Generally speaking, the finer a
resolution is, the finer the intervals [0, §¢,ax] and [0, §6ax]
are discretized. We mention that the coarsest resolution is
set with a user-defined §¢,,x and 00,,x = 7/2 (4 initial
steering orientations as shown in line 1).

In each iteration of RCS*, an expansion of existing nodes
is performed in an A* fashion. In particular, nodes are
iteratively extracted from the OPEN list (line 5), wherein
nodes are ordered according to their rank and a secondary
metric f(-). We define the rank of a node as a function
of the node’s depth in the tree and the resolution of the
motion primitives leading to the node. The deeper a node
is in the tree and the finer resolution the motion primitives
are, the higher rank a node has (see formal definition of
rank in [30]). The secondary metric f(v) = C(v) + h(v)
has C(v) denoting the cost of the trajectory from the root
of 7 to v with respect to C and h(v) being a heuristic
function estimating the cost of the trajectory from the node
v to the goal point. For example, in the case where C is
trajectory length, we have h(v) be the length of the Dubins
curve [42] on the plane spanned by x, and pgoa1. Unlike
in RCS, where nodes with lower rank are always extracted
first, RCS* relaxes this ordering by introducing a look-ahead
parameter denoted as nj, € N (similar to the idea in [35]).
At any time during the search, we denote the minimum rank
of nodes in the OPEN list as rpen. Then we order all nodes
with rank 7 < 7gpen + 11a according to a secondary metric
f (). This is done to prioritize searching nodes from a coarser
resolution, which speeds up finding an initial motion plan.

Given an extracted node v, we first check if it is valid
(line 6) using the conditions described for RCS, which



Proj(x,)
Fig. 2: A 2D illustration of the approximated reachable workspace. The
kinematically forward-reachable workspace is shaded in red. The feasible
workspace is shaded in blue. The diameter of the circular arcs is d =
max(2/Kmax, T+||/Proj(xv) —pgoal ||2). The final approximated reachable
workspace is shaded in purple.

ensure that (i) the insertion length would not exceed iy,
(ii) the goal region is still reachable after getting to v, (iii) the
trajectory from the root to v is not identical to another node
that only needs coarser motion primitives to get to, and (iv)
that the edge leading to v is collision free [30]. In addition,
RCS™ checks that the cost C(v) is smaller than the cost of
the best plan reaching the goal region found so far. If the
heuristic function h(-) is admissible, we use f(v) instead of
C(v) in the last condition, as f provides a better estimate of
the node cost and hence allows to prune more vertices.

To further boost efficiency, the algorithm avoids expanding
nodes that are overly similar to existing nodes in terms of
the induced configuration and cost by performing duplicate
detection (line 7). A node v is determined as a duplicate
if there exists a node u in the CLOSED list that satisfies
(") p(Xu,Xy) < dsim and (ii") C(u) < C(v), where p is
a distance function defined on X and dg,, is a similarity
parameter. We use p(Xu, XU) = ”pu —Dv ||2+0¢'di3t<1(qua QU)’
where o > 0 is a weighting parameter and dist<() is the
angular distance between two orientations. Sec. V specifies
the value of dgy,. Condition (i’) is shared between RCS and
RCS*, while condition (ii”) is important for keeping RCS*
resolution optimal as it prevents nodes with lower cost from
being pruned away by nodes with higher cost.

RCS* uses a set of motion primitives of different resolu-
tions, but instead of applying all motion primitives together,
only the coarsest motion primitives are used when a node
is initially expanded (line 10). The resolution of a motion
primitive (with respect to d¢ and §6) is refined when a
node with a coarser motion primitive is processed (line 14).
More specifically, a finer motion primitive is obtained by
changing §¢ or §0 by a small value that corresponds to a finer
resolution (see [30] for mathematical expressions). Note that
resolution refinement is done even if a node is invalid since
finer resolutions might be valid.

Resolution refinement will be cut off when reaching a
finer resolution, with respect to §¢ or 66, than the predefined
cutoff resolution R,.;, (line 15). Here the cutoff resolution
is determined by the minimal motions of the needle tip that
are precisely achievable with the hardware system.

The algorithm terminates when the OPEN list is ex-
hausted(line 4), and the best plan is returned (if any is found).
RCS* is guaranteed to terminate in finite time due to the
cutoff resolution.

B. Domain-specific optimization

We describe an additional procedure to further improve
RCS*’s performance. We incorporate the concept of in-
evitable collisions [42] to eliminate potential nodes that
would lead to collisions as they are expanded. In particular,

for a given vertex v and the goal point, region growing
is performed from x, within an approximated reachable
workspace, considering the existence of obstacles. This
region is defined as the intersection of the kinematically
forward-reachable workspace and the olive-shaped feasible
workspace defined by x,,, Pgoal, and tolerance 7 (see Fig. 2).
We mention that due to (i) maximum curvature constraint,
(i) maximum turning angle constraint (the needle would
shear or buckle when turning over 7/2), and (iii) maxi-
mum insertion length constraint, the kinematically forward-
reachable workspace for a given needle configuration is a
trumpet-shaped volume (see Fig. 2 left). In the case that the
goal is not reached by the grown region, v is discarded. For
additional optimizations applicable to RCS*, see [43].

V. RESOLUTION OPTIMALITY OF RCS*

We study the theoretical properties of RCS* and provide
a proof sketch for the algorithm being resolution optimal.
Informally, resolution optimality implies that RCS* is guar-
anteed to find a plan whose cost is as close as desired to
the cost of the globally optimal qualified motion plan o*,
assuming that the cutoff resolution Ruin = {04min, 00min } 18
fine enough. Thm. 1 given below, states our main theoretical
contribution relating to the resolution optimality of RCS™.

Before reaching Thm. 1, we introduce the notions of
well-behaved cost, as well as robust and decomposable
trajectories, which will be used as assumptions on C and ¢*
to prove our result. It may not be possible to approximate C
or o* using motion plans with a finite number of transitions
without additional constraints on the cost function C or if the
plan o* has no clearance from obstacles.

The following definition states that close-by configurations
have similar costs and that there are bounds on the values
that the cost can attain.

Definition 1 (Well-behaved cost). A configuration-based cost
function c¢ is well-behaved if (i) it is Lipschitz continuous,
ie., Vx1,X2 € Xpeo, [c(X1) — ¢(x2)| < L. - p(x1,%2) for
L. € R, and (ii) Vx € Xpee, ¢(X) € [Cmin, Cmax)» Where
Cmins Cmax € R and cpin > 0. In such a case, we also say
that the trajectory-based cost function C(o) = foe c(o(s))ds
is well-behaved.

We assume cax 1S not infinitely large since such config-
urations can be removed from Af.. We also require a well-
behaved cost to satisfy ¢, > 0 since in the case of needle
steering, there is always a cost associated with puncturing
tissue, so it makes no sense to allow cost-free regions.

Next, we provide two definitions that are used to char-
acterize motion plans that RCS* can approximate. The first
definition (borrowed from [30]) is concerned with trajectories
that are induced by a finite set of motion primitives (not
necessarily the ones used by RCS*). The second definition
is concerned with trajectories that are robust with respect to
clearance. A motion plan is considered qualified if it satisfies
both definitions.

Definition 2 (Decomposable trajectory). A trajectory o :
[0,{] — X is decomposable if it can be decomposed into a
finite set of motion primitives. Namely, there exist primitives
M, = {My,...,.M,} C A such that 0 = o(0) & M,,



where x @ M denotes the resultant trajectory obtained by
sequentially applying elements in M to x.

Definition 3 (Robust trajectory). A trajectory o : [0,{] = X
is d-robust, for some § > 0, if it has § clearance from (i)
obstacles mingepo ) xex,,. P(0(s),x) > 0, and (ii) the goal
region boundary, |Proj(c(l)) — pgoatll2 < 7 — 6.

We are ready to state our main theoretical result concern-
ing the resolution optimality of RCS*.

Theorem 1 (Resolution optimality). Let A =
(X7 WObS7 Xstarts Pgoals Ts Ema)ﬁ Rmax C) be an OPlimal
steerable needle motion-planning problem, € € (0, 00) be an
approximation factor, and ¢* be a trajectory. Also, suppose

that the following conditions are satisfied:

(C1) The steerable-needle system is Lipschitz continuous;

(C2) The cost function C is well-behaved and characterized
with L, Coin, Comax. Denote k = %

(C3) o* is decomposable and 0-robust with § = min{ £, 5 }.

(C4) The radius dgiy, used to reject similar nodes satisfies

, §(Ls —1)
dsim )
< mln{ 2(L£I 1

KIY]&X

,where H = .
} ’V(Semin —‘

Then RCS™ is resolution optimal, i.e., for fine-enough cutoff
resolution Ruyin = {04min, 00min }, RCS* will find a motion
plan that satisfies C(c) < (14 ¢) - C(c™).

A. Proof sketch for Thm. 1

We provide a sketch of the proof for Thm. 1, which
consists of two main steps. We first show that the plan o*
can be approximated by another plan ¢ that is composed
solely of the motion primitives used by RCS*. Then, we
show that even though RCS* might not be able to exactly
find oj; due to pruning, it will be able to recover another
plan 5?; whose cost is similar to that of 0;; (and o*). The
full proof is in the extended version of our paper [43].

We assume that the conditions in Thm. 1 are met for a
plan ¢* and approximation factor ¢ > 0. As a first step,
we show that there exists a resolution R,,;, and a trajectory
oj; that approximates o* and is constructed solely from the
motion primitives of RCS™. In particular, o7; is a piecewise
B-approximation of o* which is defined as follows: the two
trajectories o and o5 can be partitioned into a sequence of
trajectories o1, . .., 0, and o7, . .., o}, respectively, for some
positive and finite integer n, such that for any 1 < ¢ < n (i)
the Hausdorff distance between o; and o/ is at most some
value S > 0, and (ii) the cost of the two trajectories satisfies
C(o}) < (14 B)C(o;) (see formal definition in [43]). This
step follows from refining our previous proof that showed
the existence of such an approximation, albeit only for the
length cost [30, Lemma 2], and relies on the assumptions
C1 and C2, which characterize the system and cost function,
and assumption C3, which states that ¢* is decomposable.

The value j3 is chosen to guarantee that C(oj) < (1 +
€)C(o*). Moreover, the choice of 3, and the fact that o7
is a (-approximation of o* also ensure that o is collision
free and satisfies the goal tolerance according to assumption
C3. Note that the above properties would still hold even if
we replace the constant § with a slightly larger value 3’ >
(5. However, we use the more conservative value S > 0
to compensate for the fact that RCS* prunes the tree. In

Kmaxfmin

Kmax 2

particular, due to pruning, RCS™ might eliminate some of the
vertices induced by the trajectory o, and thus, we cannot
guarantee that o; would be returned as a solution. However,
we can show that even in the presence of pruning RCS* will
compute a valid plan ¢7; that tightly bounds the cost of o7
(and thus tightly bounds the cost of ¢*).

We now elaborate on this. Denote the sequence of motion
primitives that define o as M"E ={Mj,..., M, }. When
the motions in MUE are sequentially applied to Xgtars, We
obtain a sequence of configurations {xg, X1, ...,X, }, where
X0 = Xstart,X; = Xi—1 ® My, i € [1,n], some of which
may be pruned. By carefully bounding dg;,, (according to
C4), we guarantee that in the worst case the trajectory
obtained by applying the same sequence of motion primitives
to pruned nodes stays within a collision-free tunnel around
O'E, ensuring that it remains valid. The choice of dg, also
takes care of goal tolerance, guaranteeing that the trajectory
still satisfies 7 goal tolerance. Finally, because (i) pruning is
allowed only when there exists a node with equal or smaller
cost, and (ii) the subtrajectories obtained from applying the
same motion primitive to close-by configurations are strict
approximations, the plan ¢ tightly bounds the cost of o7j.

VI. RESULTS

We focus on the medical procedure of lung biopsy for eval-
uation. Lung and bronchus cancer has the highest death rate
among all types of cancer, killing over 130,000 Americans
each year [44]. Lung biopsy enables definitive diagnosis of
suspicious lung nodules at an early stage, which is important
to increase the survival rate. One potential approach to safely
and accurately access lung nodules for biopsy and localized
treatment is deploying a steerable needle trans-orally through
a bronchoscope to avoid transthoracic access which could
cause severe side effects [45—48]. In this approach, a physi-
cian deploys a bronchoscope through a patient’s bronchial
tubes and then the steerable needle is deployed through the
bronchoscope, exits out of the bronchial tube, and steers in
the lung parenchyma to reach the nodule. Our motion planner
focuses on the final stage of automatically steering the needle
through the lung parenchyma to the nodule, while avoiding
anatomical obstacles including large blood vessels, bronchial
tubes, and the lung boundary.

We used the method developed in [12] to reconstruct the
anatomical workspace from a chest CT scan with the above-
mentioned obstacles. We created 100 test cases. For each
test case, we randomly sampled a start pose close to the
bronchial tubes and a target in the lung parenchyma. We
finished creating test cases when the number of test cases
reached 100 after rejecting (i) impossible scenarios where
the start pose has inevitable collision and (ii) trivial scenarios
where the start pose can be connected directly to the goal
point with a collision-free arc. The simulated needle has
Kmax = (50mm)~! /. = 100mm, and a diameter of
2mm. We set the goal tolerance 7 = 1.0mm.

We compared RCS* in simulation with several planners:

(i) RRT: The RRT-based needle planner [10, 15] with 5%
goal biasing and 100% goal connecting ratio.

(i)) AO-RRT: AO-RRT [22,23] adapted for steerable nee-
dles, with maximum rotation control 27 and a maximum
insertion control 20mm. We follow the guidelines in
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Fig. 3: Left and middle: Performance comparison of different methods with two different cost functions. Time axes are logarithmic. The shaded regions
show standard deviations. Right: A detailed comparison of RCS and RCS* for the cost-map setting, shown as a cumulative distribution function (CDF).

[23] for cost sampling and distance weighting between
the configuration space and cost space. For a fair
comparison, we use the same goal connecting as RRT.
(iii) AFT: The AFT-based needle planner [18,19], with
setup following [19]. AFT internally uses a hybrid cost
function; we use Chybrid(0) = w - C(0) + |lo(¢s) —
Pgoal||l2/7, where w is a weighting parameter depending
on the scale of C. Note that Cpy1,iq is only used inter-
nally in AFT while C is always used for performance
comparison across different planners.
(iv) RCS: The RCS needle planner [30] with cutoff reso-
lution Ryin = {0.125mm, 0.157rad}, §4max = 20mm.
RCS* used the same basic setup as RCS and n;, = 3.
Additionally, for all cost functions, we set ¢ = 0.1. Since we
used a CPU implementation of AFT, we did not compare its
performance over time, and only reported the final cost after
three iterations, as suggested in [18]. For each method, except
for AFT, the timeout was set to 100 seconds. All methods
except for AFT achieved 100% success rate when timed out
while AFT achieved 87% success rate. When reporting the
relative cost of AFT, we only consider the test cases that are
successfully solved by AFT. As RRT and RCS are designed
to find a plan instead of optimizing a plan, we modified them
to keep running after the first plan is found, and always return
the best plan found when timed out. All experiments were
run on a dual 2.1GHz 16-core Intel Xeon Silver 4216 CPU
and 100GB of RAM. All parallelizations were implemented
with Motion Planning Templates (MPT) [49].

We used two well-behaved cost functions for which RCS*
is resolution optimal: (i) trajectory length, and (ii) a cost
function informed by a cost map derived from medical
images [12], where each voxel in the 3D cost map is
associated with a cost value that represents tissue damage.
We used trilinear interpolation to smooth out the voxelized
cost map and forced ¢y = 0.01.

Fig. 3 shows results for the different planners for the
cost map and trajectory length cost functions. For both cost
functions, the cost of a plan may vary significantly between
test cases. For example, trajectory length is affected by how
far away the target lies relative to the start pose and cost
map values are much higher when the needle is steering in
a vessel-cluttered region. To account for the large variation
between test cases, we first computed relative cost within
one test case. Specifically, we took the first-found plan (no
matter which method returns it as long as it is returned the
fastest), and computed relative cost to this plan for all other
plans found for the same test case. We did this for all the
test cases, and then averaged over the 100 test cases (see the
first two plots in Fig. 3). Such relative cost decreased as the
result plans are gradually optimized. AFT, which is omitted

from those plots, achieved a final cost of 0.574 and 0.991
for cost map and trajectory length, respectively.

For both cost functions, RCS* achieved the best final
costs. For the cost map, which is more clinically relevant,
RCS* outperformed other methods after 1.5 seconds with a
final cost of 0.277, which is 50% lower than AFT (0.574),
35% lower than RRT (0.423) and AO-RRT (0.427), and
7% lower than RCS (0.299). This indicates that the final
plan produced by RCS* successfully avoids more small
blood vessels than the other methods. It is worth mentioning
that unlike trajectory length, small perturbations may lead
to very different costs when we use the cost map. As for
trajectory length, all methods generated trajectories with
roughly similar lengths, although RCS* computed shorter
trajectories than all other methods.

In Fig. 3, we report the cumulative distribution function
across the 100 test cases of the relative final cost of RCS
with respect to RCS™ for the cost-map setting. Although
RCS achieved comparable costs with RCS™ in most cases,
for about 20% of the test cases RCS achieved a motion plan
that is at least 10% more costly than RCS*. In the extreme
case, the final cost of RCS was 3.67 times that of RCS*.

Finally, we mention that the number of nodes RCS*
explored is only 53% (for cost map) and 30% (for trajectory
length) of that RCS explored. This indicates that although
RCS* spent more time choosing the right node to explore,
it explores much fewer nodes than RCS to get a plan with
even higher quality. The experimental results demonstrate
that RCS™ is faster than competing methods and that the
theoretical guarantees of RCS* have a practical impact on
the quality of result plans, which can reduce patient trauma.

VII. CONCLUSION

In this paper, we introduce the first resolution-optimal mo-
tion planner for steerable needles. In particular, our method
returns in finite time a motion plan whose cost can be as
close as desired to the globally optimal qualified motion
plan, assuming the given resolution is fine enough. We also
provide a proof sketch to show the resolution optimality of
our method with a careful discussion of assumptions and
required conditions. We evaluate our proposed planner with
simulation experiments and show it can efficiently compute
high-quality motion plans considering clinically relevant cost
functions. In the future, we plan to investigate speedup
techniques for vertex validation and pruning to reduce vertex
expansion time. In addition, we plan to develop explicit
expressions for the resolution R.,;, necessary to achieve the
desired level of approximation quality for a given problem
instance. We will also experimentally evaluate the planner
with steerable needles in ex-vivo tissues.
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