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We discuss strategies for thermalization of the ground-state meta-generalized gradient approxi­
mation (meta-GGA) exchange-correlation (XC) functionals. A simple but accurate scheme is imple­
mented via universal additive thermal correction to XC using a perturbative-like self-consistent ap­
proach. The additive correction with explicit temperature dependence is applied to the ground-state 
deorbitalized, strongly constrained and appropriately normed (SCAN-L) meta-GGA XC leading to 
thermal XC functional denoted here as T-SCAN-L. Thermal T-SCAN-L meta-GGA functional shows 
significant improvement in density functional theory calculation accuracy for warm dense matter by 
a factor of 3 to 10, achieving unprecedented accuracy of total pressure between a few tenths and 
~1% when compared to traditional XC functionals, as demonstrated by the comparison to path- 
integral Monte Carlo simulations for helium equation of state. The T-SCAN-L calculations of dc 
conductivity of warm dense aluminum also give better agreement with experiments over other XC 
functionals such as PBE and SCAN-L.

PACS numbers:

Introduction. - High-energy density physics (HEDP) in­
cludes a complicated warm-dense matter (WDM) domain 
of state conditions which is characterized by elevated 
temperatures (from few to hundreds of eV) and pres­
sures to 1 Mbar or greater. Accurate knowledge of equa­
tion of state, transport and optical properties describing 
possible phase transitions (eg. insulator-to-metal transi­
tion) across warm-dense regime plays an important role 
in planetary science, astrophysics and inertial confine­
ment fusion1-6. The two relevant expansion parameters, 
the Coulomb coupling parameter and the electron de­
generacy parameter are of order unity in WDM regime. 
This is very distinct from the typical parameter space of 
plasma physics and ordinary condensed matter physics 
such that the classical plasma physics methods become 
inaccurate when extended into the WDM domain, and 
the standard condensed-matter physics methods might 
have poor transferability when extended well beyond 
near-ambient conditions. Ab initio molecular dynamics 
(AIMD)7-10 simulations based on the free-energy den­
sity functional theory (DFT)11-13, in combination with 
the Kubo-Greenwood (KG) formulation for transport 
and optical properties14,15, has proven to be a successful 
and key tool to understanding WDM and HED plasmas 
across different temperature regimes16-32.

DFT requires approximations for the exchange- 
correlation (XC) energy density functional, which effec­
tively takes into account many-body interaction effects. 
It offers a self-consistent way to predict material proper­
ties with the possibility of systematic improvement of its 
accuracy through advancing XC functionals. Currently, 
the vast majority of DFT simulations of WDM and 
HED plasmas use the zero-temperature (ground-state) 
XC functionals without explicit temperature dependence, 
which were developed by the condensed-matter physics

and quantum chemistry communities, leading to ne- 
glection of thermal XC effects and degraded accuracy 
of predictions. The use of a ground-state XC func­
tional is justified only at low electronic temperatures 
not exceeding a few tenths of the Fermi temperature 
or in the high-temperature limit when the XC contribu­
tion to the total free energy is negligible33-36. Recent 
development of the temperature-dependent Karasiev- 
Sjostrom-Dufty-Trickey (KSDT)37 local-density approx­
imation (LDA) (see Ref.38 for the corrected set of pa­
rameters corrKSDT), the generalized gradient approxi­
mation (GGA)-type XC functional “KDT16”38, and the 
thermal hybrid KDT039 have shown that thermal XC ef­
fects lower the dc electrical conductivity of low-density 
Al, yielding improved agreement with experiment33, and 
can give up to a 20% difference in pressure38 as com­
pared to the zero-temperature Perdew-Burke-Ernzerhof 
(PBE)40 calculations. Inclusion of thermal XC effects 
accounts for the softening of the deuterium Hugoniot at 
pressures above 300 GPa in agreement with recent exper­
imental measurements41,42. Thermal hybrid KDT0 pro­
vides a significant improvements for the electronic band 
gap at a wide range of temperatures as compared to the 
LDA and GGA rung functionals and to the ground-state 
PBE0 hybrid.

Inaccuracies of used XC functionals may affect not only 
the static properties related to equation of state; phase 
boundaries and DFT calculations of transport and opti­
cal properties of HED plasmas may suffer to a greater 
extent43-45, which elucidates the need for developing ad­
vanced XC functionals that can better describe the dis­
sociation process and the band-gap closing dynamics. It 
must be noted that the temperature-dependent KDT16 
GGA will not resolve these problems because it inherits 
the inaccuracy of PBE for the dissociation/melting and
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band-gap predictions39. Thermal hybrid KDT0 provides 
more realistic band gap predictions39. However, elec­
tronic and optical properties in Kubo-Greenwood calcu­
lations to a large extent depend on ionic arrangement 
of snapshots generated along a particular MD trajec­
tory. Therefore a fully consistent approach requires em­
ployment of the same XC functional in both the MD 
simulations and Kubo-Greenwood calculations making 
such simulations with hybrid functionals computationally 
impracticable3. For this reason, in present work all the 
comparisons are performed only between semi-local func­
tionals, and performance of semi-local functionals with 
respect to hybrids at warm-dense conditions may need 
to be addressed in the future.

It would be not practical to develop a thermal XC func­
tional applicable only at warm dense conditions. The 
approach taken by developers of the first nonempirical 
LDA, GGA, and hybrid XC free energy37-39 was to con­
struct thermal functionals that at T = 0 K reduce to 
a known ground-state functional, such that the thermal 
XC functional is applicable across the entire range of tem­
peratures without need to switch between XC functionals 
depending on state conditions. KDT16 GGA, for exam­
ple, reduces to the ground-state PBE, such that KDT16 
at low T inherits all advantages and drawbacks of its 
ground-state counterpart. The way to improve overall 
accuracy of the thermal GGA XC functional is to use 
the next rung approximation at zero T and construct 
thermally extended meta-GGA XC.

In this Letter we address this problem by developing 
a thermalization framework for XC functionals at the 
meta-GGA level of refinement and realization of a simple 
scheme via universal thermal XC additive correction at 
the GGA level of theory, which is applied to an accurate, 
at low T, ground-state meta-GGA XC. This thermal cor­
rection reduces to zero in the low-T limit; therefore, it 
could be used virtually with any ground-state XC func­
tional without distorting its low-T performance.

Thermal correction is applied to the ground-state 
deorbitalized, strongly constrained, and appropriately 
normed semilocal density functional (SCAN-L)46-49, to 
date one of the most-accurate meta-GGA XC functional, 
which, for example, is capable of accurately describing 
the liquid-liquid insulator-to-metal transition of warm 
dense hydrogen3. The resulting thermal meta-GGA XC 
functional, referred to here as T-SCAN-L, inherits the 
precision of the ground-state meta-GGA SCAN-L at low 
T, and most of the thermal XC effects are captured at 
the GGA level of theory, providing overall a much higher 
accuracy across the temperature regimes spanned by the 
WDM domain.

Construction of nonempirical thermal meta-GGA XC 
functionals.- Our strategy for thermalization of the 
ground-state functionals is based on extending of the 
constraints formulated in Ref.38 to meta-GGA’s. Ta-

TABLE I: List of the ground-state and finite-temperature 
variables used in the GGA-level XC functionals. Ground 
state: “LDA exchange energy per particle; 6LDA correlation 
energy per particle; “reduced density gradient; 4 dimensionless 
density gradient defined in Ref.40 as variable t.

T = 0 K T > 0 K Definition of T > 0 K variable

/LDA(",T) Eq. (3) in Ref.38
eLDA(n)6 fcLDA(n,T) Eq. (21) in Ref.37
s(n, Vn)c S2x(n, Vn,T) Eq. (?) in Ref.38 
q(n, Vn)d qc(n, Vn,T) Eq. (ll) in Ref.38

ble I provides a list of ground-state variables and their 
finite-temperature counterparts used in the GGA frame­
work. The temperature dependence of the XC gradi­
ents listed in Table I, as derived in Ref.38, is consistent 
with the XC finite-T gradient expansion. Ground-state 
meta-GGA XC additionally depends on the noninteract­
ing kinetic-energy-density variables. In the case of the 
deorbitalized SCAN-L functional, these variables are the 
Thomas-Fermi50,51, von Weizsacker52, and an orbital- 
free Laplacian-dependent kinetic-energy densities, used 
to define the chemical region detector a(n, Vn, V2n) (see 
Ref.48 for details). Proper T dependence of these kinetic- 
energy-related quantities is defined via kinetic and en- 
tropic GGA reduced density gradients sT (n, Vn,T) and 
sa(n, Vn,T) derived in Ref.53 and a set of T-dependent 
fourth order variables derived in Ref.54 for the Laplacian- 
dependent orbital-free quantities. Such a full thermal- 
ization requires, however, a preliminary development 
of meta-GGA (Laplacian-dependent) noninteracting free 
energy framework and corresponding orbital-free nonin­
teracting free-energy density functional (work currently 
in progress) to be used together with Thomas-Fermi and 
von Weizsacker free-energy density terms to construct the 
T-dependent chemical energy detector a(n, Vn, V2n,T). 
A simpler (not necessarily worse) GGA-level thermal- 
ization scheme includes only the usage of T-dependent 
variables listed in Table I instead of the ground-state 
ones in the ground-state SCAN-L functional eLDA(n) ^ 
fXfDA(n,T) and s(n, Vn) ^ s2x (n, Vn,T) in the ex­
change; and ^LDA(n) ^ f^DA(n,T) and q(n, Vn) ^ 
qc(n, Vn, T) in the correlation terms.

With increasing temperature, the electron density ap­
proaches the slowly-varying regime. This makes the 
finite-temperature second-order gradient expansion56-59 
taking into account the leading corrections to the XC 
free-energy beyond the LDA. The KDT16 GGA func­
tional, by construction, recovers the finite-T gradient ex­
pansion, therefore it is reasonable to expect that the 
leading contributions to thermal XC effects are taken 
into account by the T-dependent LDA and GGA XC 
terms. Thereby thermal XC corrections beyond the GGA 
level are expected to be small; therefore in the following
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we propose a simple perturbative-like self-consistent ap­
proach via a universal thermal additive correction treated 
self-consistently, similar to the idea used in Ref.55 to con­
struct GGA XC with additive thermal LDA correction. 
The KDT16 XC free energy in the zero-T limit reduces 
to the ground-state PBE by construction

(1)

a choice driven by popularity of the PBE functional, 
and by availability of pseudo-potentials and projector 
augmented wave (PAW) data sets generated by using 
the PBE XC. Given the quality of SCAN-L functional 
at zero temperature, we propose a simple temperature- 
dependent meta-GGA

^meta-GGA = ^eta-GGA^] + AT^GA[n,T] , (g)

with the additive thermal correction defined as follows:

== (3)

and meta-GGA=SCAN-L. Definition Eqs. (2) and (3) 
can also be rearranged to the form of thermal GGA plus 
a zero-temperature meta-GGA correction

^meta-GGA ^ = j«DT16[n>^ + ^meta-GGA ,

(4)
where the AE™eta"GGA[n] := £™eta"GGA[n] - £PBE[n] 
term accounts for the zero-temperature meta-GGA cor­
rections above the GGA level of theory. Explicit func­
tional form defined by Eqs. (2), (3) is used in stan­
dard fully self-consistent DFT calculations with local 
XC potential calculated as a functional derivative of 
^roeta-GGA jrj w^h. respect to electron density n. 
Each term in the above equations is evaluated at self- 
consistent minimizing density corresponding to given 
thermodynamic conditions of material density and tem­
perature. The full set of equations for each term in 
Eqs. (2)-(3) including definitions of the finite-T LDA 
XC is given in the Supplemental Material60 (see also 
Re6.Gi-G3).

It follows from Eq. (1) that in the zero-T limit, the 
thermal additive correction [Eq. (3)] reduces to zero, 
lim-r^o A.T^,GA [n, T] « 0; therefore the thermal meta- 
GGA reduces to their zero-temperature counterpart

Um J^eta-GGA [n, T] % ^™ta_GGA ^ , (5)

preserving the meta-GGA accuracy at low T. In the 
high-T limit, the minimizing electron density becomes 
slowly varying and approaches the homogeneous elec­
tron gas limit. Reduced density gradients and reduced 
Laplacian employed in construction of the ground-state 
GGA and meta-GGA vanish. The ground-state PBE 
GGA and SCAN-L meta-GGA by construction reduce

-- PBE
— SCAN-L
- - kdti6
---- T-SCAN-L

200 -
O------ O SCAN-L
□------□ KDT16
C------ O T-SCAN-L

TC15735J1

FIG. 1: (a) Electronic pressure as a function of temperature 
for sc-H at p = 0.60 g/cm3 calculated with the PBE and 
KDT16 GGA, and with the SCAN-L and T-SCAN-L meta- 
GGA XC functionals, (b) Corresponding relative difference 
with respect to the PBE values, (P — _PPBB)/_PPBB, as a func­
tion of electronic temperature.

to the ground-state LDA XC in the homogeneous density 
limit. In this way the ground-state GGA and meta-GGA 
functionals, if evaluated at implicitly T-dependent min­
imizing density, approach the temperature-independent 
LDA limit, lim-T-^ E™ta-GGA[n] « EBcDA[n] and 
limbec = E%PA[n] (i.e., E%°t*-GGAM =
i£BE[n] at high T). Therefore, at high temperatures, 
the thermal meta-GGA Eq. (4), evaluated at the mini­
mizing density, reduces to the KDT16 (which in turn, by 
construction, reduces to the finite-T LDA):

Pmeta-GGA n,T] Pi>KDT16
T»1

[n,T] = .F^A[n,T]

(6)
Other constraints and exact conditions satisfied by the 
T-SCAN-L XC are listed in Sec. IV of Supplemental 
Material.

Thermal meta-GGA Eq. (2) accounts for thermal XC 
correction via temperature-dependent LDA and reduced 
density-gradient terms used in the construction of the 
KDT16 at the GGA level of theory. Reduced-density 
Laplacian and orbital-free kinetic energy density used in 
deorbitalized SCAN-L remain without explicit tempera­
ture dependence. Use of T-dependent reduced Laplacian 
may account for additional fourth order thermal XC ef­
fects that, in general, are expected to be small.

Demonstrative WDM applications.- To investigate the 
performance of the new T-SCAN-L meta-GGA func­
tional with respect to the existing PBE, SCAN-L, and 
KDT16 approximations and to estimate XC ground-state 
meta-GGA inhomogeneity effects (defined as the differ­
ence between the SCAN-L and PBE pressures), ther­
mal XC effects at the GGA level (difference between the 
KDT16 and PBE), and combined XC thermal and inho­
mogeneity effects at the meta-GGA level (difference be­
tween the T-SCAN-L and PBE pressures), we performed 
a set of static and AIMD simulations using these four XC 
functionals.
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Figure 1(a) shows electronic pressure as a function of 
temperature for a model system of hydrogen in simple cu­
bic lattice (sc-H) at 0.60 g/cm3. At low T, in agreement 
with Eqs. (1) and (5), pressure from calculations with 
thermal KDT16 and T-SCAN-L XC functionals (dashed 
and solid red curves, respectively) is identical to results 
obtained with ground-state PBE and SCAN-L function­
als (dashed and solid blue curves, respectively). Thermal 
functional pressures (red curves) start to deviate from 
their ground-state counterparts as temperature increases.

The relative magnitude of XC ground-state meta-GGA 
inhomogeneity effects referenced to the PBE ground- 
state GGA values [(PSCANL - Ppbe)/PPBE], XC ther­
mal effects at the GGA level [(pKDT16 - ppbe)/pPBE], 
and XC thermal and inhomogeneity effects at the meta- 
GGA level [(pTSCANL - pPBE)/pPBE] are shown in Fig. 
1(b). The relative difference between the ground-state 
SCAN-L and PBE pressures reaches the large value of 
« 30% at low T and decays below 5% at temperatures 
above 5 eV, meaning that the zero-T meta-GGA correc­
tion APmceta-GGA defined in the in-line equation below 
Eq. (4) vanishes at high T (the discussion below Eq. 
(5)explains the reason). Thermal XC effects at the GGA 
level (KDT16, dashed red curve) reach the maximum 
magnitude (~10%) at T near 6.5 eV (reduced temper­
ature t is about 0.4) and remain at the level above 5% 
up to 20 eV (t « 1). As expected, the thermal T-SCAN- 
L meta-GGA preserves the accuracy of the ground-state 
SCAN-L at low T (the accurate description of hydrogen 
in this dense regime by the the ground-state SCAN-L 
XC at low T, when XC thermal effects are negligible, 
was recenty demonstrated in Ref.3) and converges to the 
thermal KDT16 at high T, providing a smooth interpo­
lation at intermediate temperatures. Figure 1(b) clearly 
demonstrates that the sum of the SCAN-L (solid blue) 
and KDT16 (dashed red) curves agrees very well with 
the T-SCAN-L (solid red) one, meaning that the com­
bined XC thermal and inhomogeneity meta-GGA effects 
correspond to the sum AP'G,GA + AP£Ceta-GGA as ex­
pected. Given that the T-SCAN-L smoothly interpo­
lates between the ground-state meta-GGA and finite-T 
KDT16, we expect that the T-SCAN-L results are most 
accurate across the entire temperature range. (Remark: 
at very high temperatures the differences between cal­
culations with thermal and ground-state XC functionals 
vanish due to the fact that XC contribution to the total 
free energy becomes negligible compared to the dominat­
ing non-interacting free-energy term38.) Very recently 
the T-SCAN-L XC in combination with the long-range 
van der Waals rVV10 functional64 was used to establish 
a first-principle equation of state table of deuterium and 
demonstrated an improvement of accuracy as compared 
to the treatment with the groun-state PBE treatment.

AIMD simulations that demonstrate the superior accu­
racy of the new T-SCAN-L meta-GGA functional are for

dense helium. Figure 2 compares relative errors for total 
pressures obtained from DFT simulations with four XC 
functionals and high-quality path-integral Monte Carlo 
(PIMC) reference data65 for T = 10.77 eV and 21.54 
eV (PIMC data are not available for T below 10.77 eV, 
and Kohn-Sham DFT simulations for this range of ma­
terial densities and temperatures above 21.54 eV are too 
expensive computationally). PIMC is an efficient first- 
principles simulation technique for quantum systems at 
finite temperature that accurately takes into account the 
Coulomb interaction between electrons using pair-density 
matrices and therefore can be used to benchmark approx­
imate XC density functionals at elevated temperature33. 
Both ground-state functionals (PBE and SCAN-L) sys­
tematically overestimate the total pressure: the relative 
error with respect to the reference PIMC data is between 
4.2% and 5.8% at T = 10.77 eV. In contrast, the T- 
SCAN-L total pressures are in excellent agreement with 
the PIMC values, demonstrating unprecedented accu­
racy between 0.05% and 0.35% for this range of densi­
ties. Relative differences between the KDT16 and PIMC 
values are larger as compared to the T-SCAN-L values 
and range from 0.4% to 1.4%. These comparisons show 
that T-SCAN-L calculations can improve the DFT simu­
lation accuracy for He at these warm dense conditions by 
a factor of ~3 to 10 over the widely used XC functionals 
(PBE, SCANL, and KDT16). This clearly demonstrates 
that the T-SCAN-L meta-GGA functional can accurately 
capture combined XC thermal and nonhomogeneity ef­
fects. When temperature increases to 21.54 eV, the rela­
tive error of the ground-state functionals reduces to the 
range between 1.3% and 3.6% (because the XC contribu­
tion becomes less important as compared to the nonin­
teracting free-energy term at high T), while the relative 
difference between T-SCAN-L and PIMC values is still 
less than ~ 1%. Kohn-Sham calculations for this system 
at temperatures much higher than 20 eV are not feasible. 
However, in accordance with discussion of high-T results 
shown in Fig. 1(b), we expect that eventually, with in­
crease of temperature, all calculations with the thermal 
and ground state functionals will converge to the same 
values, making the PBE XC an accurate reference in the 
high-T limit.

Figure 3 shows the relative differences between the 
SCAN-L, KDT16, T-SCAN-L, and PBE pressures as a 
function of temperature at two different densities: pHe = 
0.5028 g/cm3 and 0.9990 g/cm3. The overall picture is 
similar to that observed in Fig. 1 for the model system: 
at low T, thermal KDT16 and T-SCAN-L reduce to their 
ground-state counterparts, PBE and SCAN-L, respec­
tively. The zero-T meta-GGA correction AP£Ceta-GGA 
becomes small at T > 1 eV; XC thermal effects, as de­
scribed by the KDT16 GGA XC, grow to values almost 
10% at T near few eV and start to decrease at T above 10 
eV. The new T-SCAN-L smoothly interpolates between
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FIG. 2: The relative error of total pressure from AIMD sim­
ulations of warm dense He using PBE, SCAL-L, KDT16, and 
T-SCAN-L XC functionals calculated with respect to the ref­
erence PIMC results and shown as a function of material den­
sity for two temperatures.

o--- o PBE
□ □ SCAN-L
C---- 0 T-SCAN-L

A Experiment100 r

TC15738J1

FIG. 4: Aluminum dc conductivity as a function of density 
from calculations with T-dependent T-SCAN-L, and ground- 
state PBE and SCAN-L (at p = 0.10 g/cm3 only) XC func­
tionals along the T = 10-kK isotherm. The standard devi­
ations shown as error bars correspond to averaging over the 
snapshots.

C-----0 SCAN-L A---- A T-SCAN-L
□ — DKDT16 O----O PIMC

He, 0.9990 g/cm3He, 0.5028 g/cm3

TC15737J1

FIG. 3: Relative difference between the total pressure from 
the DFT calculations with SCAN-L, KDT16, T-SCAN-L, and 
PBE XC. The PIMC relative pressure difference with respect 
to the same PBE XC values is shown for comparison.

the ground-state SCAN-L, preserving its accuracy at low 
T, and the thermal KDT16 at high temperature, provid­
ing a description of combined XC thermal and nonhomo­
geneity effects at the entire temperature range. These 
combined effects remain at relatively large values above 
5% for temperatures up to « 10 eV and slowly drop for 
higher T.

Finally, we examine how T-SCAN-L may affect the 
DFT prediction of transport properties of warm dense 
matters. Results of simulations that probe the accuracy 
of thermal T-SCAN-L functional for electrical conduc­
tivity of warm dense A1 are shown in Fig. 4. The di­
rect current (dc) conductivity from AIMD and Kubo- 
Greenwood14,15 calculations with the ground-state PBE 
and thermal T-SCAN-L functionals is compared to the 
experimental data66 at T = 10 kK in the density range 
between 0.05 and 0.30 g/cm3. Ground-state PBE overes­
timates conductivity for densities < 0.20 g/cm3. Previ­
ously it was shown that the explicitly T-dependent KSDT 
functional lowers the dc conductivity33 as compared to

the ground-state LDA. Thermal T-SCAN-L behaves sim­
ilarly, by lowering the dc conductivity (as compared to 
the ground-state PBE) toward the experimental data. At 
Pai = 0.30 g/cm3, results from both functionals converge 
and agree with experiment. SCAN-L dc conductivity, 
calculated for one density only, 0.10 g/cm3, is roughly in 
between the PBE and T-SCAN-L values, demonstrating 
that combined thermal and nonhomogeneity XC effects 
contribute to transport properties.

Summary.- The full thermalization framework and a 
simpler one using thermal LDA- and GCA-level vari­
ables to construct thermally extended meta-GCA XC 
functionals have been discussed. The fully thermalized 
scheme involves thermalization of the kinetic energy re­
lated terms and requires a preliminary development of 
non-interacting free energy density functionals at the 
meta-GCA level of refinement. These functionals, be­
sides the standard constraints related to the zero-T and 
high-T limits and the scaling related constraints dis­
cussed in53 should recover the 4th order slow-varying 
density gradient expansion for the noninteracting free 
energy69-71 to guarantee the correct treatment of the 
Laplacian-dependent (4th-order) terms in meta-GCA XC 
functional. However, a reasonable expectation is that the 
full thermalization will provide only a minor correction 
to predicted properties in WDM regime.

The simplest scheme, which uses a universal additive 
thermal correction and a perturbative-like self-consistent 
approach, has been implemented, leading to thermal T- 
SCAN-L functional. The nonempirical T-SCAN-L meta- 
GCA density functional takes into account combined 
thermal and nonhomogeneity effects at the meta-GCA 
level providing a significantly higher accuracy for DFT to 
better predict material properties in the WDM regime, 
as compared to the thermal KDT16, and to the ground- 
state PBE and SCAN-L XC functionals. In the zero- 
temperature limit, T-SCAN-L reduces to its ground-state 
counterpart, therefore preserving the SCAN-L meta-
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GGA level of accuracy at low T. Virtually any ground- 
state meta-GGA XC functional can be thermally ex­
tended into an XC free-energy functional via our pro­
posed scheme. The thermalization scheme carries over di­
rectly to the regularized-restored r2SCAN-L67,68, which 
mostly eliminates numerical instabilities and related con­
vergence issues of SCAN-L, to yield thermal T-r2SCAN- 
L [Eq. (4) with meta-GGA=r2SCAN-L]. Although T- 
r2 SCAN-L has not yet been tested and all results of 
present work have been obtained with T-SCAN-L, we ex­
pect that T-r2SCAN-L will provide a virtually identical 
level of accuracy as T-SCAN-L.
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I. PBE EXCHANGE AND CORRELATION

The PBE ground-state spin-unpolarized exchange- 
correlation energy density functional is a sum of exchange 
and correlation

ET[n] = EPBE[n] + E^BE[n], (S1)

where exchange functional is given in terms of local den­
sity approximation (LDA) exchange energy per parti­
cle, eL°A, and the generalized gradient approximation 
(GGA) enhancement factor1

where ks = 2(3n/n)1/6. In notation of Ref.2, the PBE H 
function is

H (eLDA,Z,") =

0c 2x lnV+ l"2 1.1 + AW +APbe94

ApBE = [exp{-eLDA/(Y^3)}- 1] ^

^(Z) = 1 [(1 + Z)2/3 + (1 - Z)2/3]

with y = (1 - ln2)/n2.

(S9)

(510)

(511)

EPBE[n]^ n(r)eLDA(n)FPBE(s)dr, (S2) II. KDT16 EXCHANGE-CORRELATION 
FREE-ENERGY

eLDA
ex (n)

3 ( 3 x1/3
4 V n

n1/3 (S3)

FpBE(s) 1 + K —
K

(S4)

with k = 0.804 and p = 0.21951, which is a function of 
ground-state (temperature independent) reduced density 
gradient,

Structure of the KDT16 exchange-correlation free- 
energy is similar to the PBE density functional, except 
that the KDT16 depends on variables and functions with 
explicit temperature dependence (via reduced tempera­
ture t = T/Tf = 2kBT/[3n2n]2/3)

F^KCDT16[n, T] = F^KDT16 [n, T] + F,KDT16[n, T]. (S12)

A. Exchange free-energy

s(n, Vn) =
|Vn

2(3n2)1/3n4/3

The correlation energy density functional is

EpBE[n] = f n(r)epBE(n, Vn)dr ,

(S5)

(S6)

The KDT16 exchange free-energy density functional

F™T16[n,T] = y nfLDA(n,T)FKDT16(s2x)dr , (S13)

depends on the LDA free-energy per particle which has 
the factorized form

where the PBE ground-state correlation energy per par­
ticle in notations of Ref.2 is given by a function of density 
and density gradient

ePBE(n, Vn) = ^DA(n) + H(^DA, Z = 0,") , (S7)

eLDA [n] is the LDA correlation energy per particle (PBE 
uses the Perdew-Wang parametrization3), Z is the spin- 
polarization fraction, and " is a dimensionless density 
gradient

"(n, Vn) |Vn|
2ksn ,

(S8)

fLDA(n,T )= eLDA(n)Y!x(t), (S14)

with the t-dependent function Ax(t) given by the explicit 
analytic fit4 in terms of variable y = 2/3t3/2 (with u =
y2/3, and v = y4/3)

^4x(y) =
«!ny4 ln(y) + «2.5U5/2 8

1 + E 4 =1 biv'
(S15)

and coefficient values tabulated in Table S1. The KDT16 
exchange enhancement factor is a simple function

FX(s2x) 1+ vxs2x 
1 + «|s2x1

(S16)
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TABLE S1: Coefficients in fit to Ax(y) Eq. (S15).

coefficient value
aln -0.0475410604245741
a2.5 -0.1065378473507800
a i 0.5823869764908659
&2 -0.0068339509356661
as 11.5469239288490009
a4 -0.8465428870889800
a5 -0.1212525366470300
ag 1.9902818786101000
ay 0.0000000000000000
ag 0.0744389046707120
bi 19.9256144707979992
&2 5.1663994545590004
bs 2.0463164858237000
b4 0.0744389046707120

TABLE S3: Parameters for the Bc(rs,t) fit, Eq. (S22).

i at bt Ci
1 0.30047773E+03 -0.11166044E+03 0.32175261E+02
2 -0.38706401E+03 -0.45327975E+02 0.61853048E+02
3 0.25112237E+04 -0.14507109E+04 0.33585054E+03
4 0.52243427E+03 -0.30665095E+02 0.12874241E+03

ei ft
1 0.11077393E+03 0.12854960E+01 0.41006057E-02
2 0.32355494E+03 0.13482659E+02 0.18933118E-01
3 0.45509212E+03 0.23416018E+02 0.24295413E-04
4 0.10884352E+04 0.24480831E+02 0.18369776E-07
5 0.36112605E+00 0.32161372E-08 0.69274681E-10

B. Correlation free-energy

The KDT16 correlation free-energy density functional 
is defined in terms of the correlation free-energy per par- 

TABLE S2: Coefficients in fit to Bx(y). ticle

coefficient value
a2 -3.4341427276599950
as -0.9066069544311700
a4 2.2386316137237001
a5 2.4232553178542000
ag -0.1339278564306200
ay 0.4392739633708200
ag -0.0497109675177910
ag 0.0000000000000000
a 10 0.0028609701106953
bi 0.7098198258073800
b2 4.6311326377185997
bs -2.9243190977647000
b4 6.1688157841895004
b5 -1.3435764191535999
bg 0.1576046383295400
by 0.4365792821186800
bg -0.0620444574606262
bg 0.0000000000000000
bi0 0.0028609701106953

of the exchange free-energy reduced density gradient

S2x (n, Vn, T) = s2 (n, Vn) B!x^) , (S17)
Ax(t)

and two parameters consistent with the PBE ground- 
state exchange, vx = p = 0.21951 and a _ p/k = 
0.27302. The accurate fit for Bx(t) as an explicit function 
of y (or a function of t after a variable change) is given 
in Ref. 4 as following

Bx(y)
E,=2 aiU

1^: 1=1 biu'

and coefficient values tabulated in Table S2.

(S18)

FKDT16[n,T]^ n/KDT16(n, Vn,T )dr, (S19)

which takes the PBE form with explicit T-dependence 
introduced via reduced density gradient for correlation 
defined on the base of the finite-T gradient expansion for 
correlation

"c (n, Vn, T) = "(n, Vn) V B?c (n, t), (S20)

fKDT16(n, Vn, T) = /LDA(n, T) + H/LDA, Z = 0, "c) ,

(S21)
where /CLDA is the LDA correlation free-energy per 
particle given by the corrected Karasiev-Sjostrom- 
Dufty-Trickey (corrKSDT) parameterization2-5 (/CLDA = 
/ccorrKSDT,z=0), Z is the spin polarization fraction, and H 
is as defined by in Eq. (S9). Density and temperature 
dependent function Bc in Eq. (S20) is given by a Pade 
approximant of order [4,5] with respect to the variable 
u = t13/4 and with density dependent coefficients (via 
rs = (3/4nn)1/3 variable

Bc(W)
1+ Ei=1(ai + bir^ + cirs)ui

1 5=1(di + eir3/2 + /ir3)ui
(S22)

The final set of parameters is given in Table S3.
The corrKSDT LDA functional (see2-5) provides an 

analytical expression for the XC free-energy per parti­
cle /XOrrKSDT. The corresponding correlation free-energy 
per particle /corrKSDT is calculated as

/corrKSDT (n T)   /corrKSDT (n,T) - /LDA(n,T), (S23)

where /XDA _ eLDAAX (t) is the LDA exchange free- 
energy per particle, Eq. (S14).
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TABLE S4: Parameters for the corrected KSDT XC free- 
energy functional (corrKSDT), defined by Eqs. (9)-(14) in 
Ref.5 for the unpolarized (Z = 0) case. A = (4/9n)1/3.

bi 0.342554
&2 9.141315
b3 0.448483
b4 18.553096
b5 ^3/2 A-1b3 = 1.054151
Ci 0.875130
C2 -0.256320
C4 0.953988
di 0.725917
d2 2.237347
d3 0.280748
d4 4.185911
d5 0.692183
ei 0.255415
62 0.931933
e3 0.115398
e4 17.234117
e5 0.451437

The spin-unpolarized fcorrKSDT is given by the follow­
ing Fade approximant with (-dependent coefficients

fXc °(rs,() = -
1 a(t) + b( (t)rs1/2 + cc (t)r.

1 + (t)rs/2 + e( (t)rs
(S24)

The functions a(t), b( (t) - (t), in turn, are Fade ap-
proximants in t

a(()

6(()

c(()

=0.610887tan^ ( 1

0.75 + 3.04363f - 0.09227(3 + 1.7035(4
1 + 8.31051t2 +5.1105t4 

, , f 1 X bs + b2t2 + bgt4
1 + b4(2 + b5(4

cS + c2 exp ( — — e(t)

d't»=*^( V()t+ST!I
e(t) =tanh ( -

1 + d412 + d5t4 
es + egt2 + egt4 
1 + e4t2 + e5t4

(525)

(526)

(527)

(528)

(529)

Table S4 provides parameters in Eqs. (S26)-(S29) for the 
corrected functional, corrKSDT.

III. STRONGLY CONSTRAINED AND 
APPROPRIATELY NORMED WITH 

LAPLACIAN DEPENDENCE

The full set of equations for the strongly con­
strained and appropriately normed with Laplacian de­
pendence (SCAN-L) ground-state exchange-correlation 
energy density functional is given below. The SCAN-L

exchange-correlation is a sum of exchange and correlation 

^SCAN-L [n] = ESCAN-L [n] + [n], (S30)

Exchange has a meta-GGA semi-local form6

ESCAN-L[n] n(r)eLDA (n)FSCAN-L (s,a)dr, (S31)

The SCAN-L exchange enhancement factor is given by

F SCAN—L Fx (s,a) hX(s, a)+fx(a){1.174—hX(s, a)} gx(s),
(S32)

where 0(y) is a step function of y, a is the Laplacian- 
dependent kinetic-energy-based region detector defined 
below in Eq. (S47) and

gx(s) = 1 — e-ai/^ (S33)

fx(a) = e-cixa/(s-a)g(1 — a) — dx „C2x/(S-a)g(a — 1)

hS(s, a) = 1 + ksx 
ks + x

MGEs 1+ -64S2/^QE

+ [bss2 + 62(1 — a)e

b4s2-----(
Mge

_ a)e-b3(s-a)212

(534)

(535)

(536)

x

The constants in Eqs. (S33)-(S36) take the following val­
ues

as = 4. 9479 (S37)
10

(S38)Mge = 81
/ 5913

(S39)62 = V 405000
511 1

(S40)bs 13500 262
63 = 0. 5 (S41)

b4
= Mge 1606 b 2

ks 18225 s (S42)

csx = 0.667 (S43)
c2x = 0.8 (S44)
dsx = 1.24 (S45)
ks = 0.065. (S46)

The Laplacian-dependent kinetic-energy-based region de­
tector is

a(n, Vn, V2n) = (tpCopt — tw)/<TF , (S47)

where the orbital-free Thomas-Fermi (TF) 
Weizsacker (VW) are

and von

tTF(n) = ctfn5/3(r), (S48)

cTF = 10(3n2)2/3 , (S49)
5

tw(n, Vn) = 3(tf s2 . (S50)
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The re-optimized Perdew-Constantin PCopt kinetic en­
ergy density, tpCopt, is defined by the following set of 
equations

F(2) = 5 2 20
27S + "9^ (S51)

F(4) = 8 2 1 2 8 4
81P - 9SP +243S , (S52)

FW = 3 s- (S53)

F MGE4 _ 1 + Ft(2) + Ft(4)
(S54)

y! + [F,(4)/(1 + FW)]2 '

zPC = FMGE4 FW , (S55)
FPCopt _ FW + zPCdpC(zPC), (S56)
^PCopt _ (TFFtPCopt. (S57)

The PCopt interpolation function in Eq. (S56) is

#pc(z)

0, z < 0,
~ 1+e°/(a-z)
ea/z+e*/(*-z)

i,

, 0 < z < a, 

z > a.

(S58)

with the re-optimized parameter values a = 0.5389 and 
b = 3.

The SCAN-L correlation has the form

ESCAN L[n]= / n(r) le;1 + fc(a)(e° - dr, (S59)

with

fc(a) = e-cica/(1-a)d(1-a)-dcec2c/(1-a)^(a-1), (S60)

where c1c = 0.64, dc = 0.7, and c2c = 1.5. Two revised 
PBE correlation energies per particle, e0 and e0, valid for 
a = 0 and a = 1 have definitions similar to Eqs. (S7)

e0/0(n, Vn) = eLDA'0/1(n) + Ho/i(eLDA'0/1, q), (S61)

with revised forms of e0DA'0/1 and H0/1 functions Eq. 
(S9) (more details can be found in Ref.7-10, see also the 
explicit Eqs. (S24)-(S42) in Supporting Information for
Ref.10).

IV. FINITE-T CONSTRAINTS SATISFIED BY 
THE T-SCAN-L EXCHANGE AND 

CORRELATION

In this Section we list some of constrains satisfied by 
the T-SCAN-L exchange and correlation at finite-T in­
herited correctly from the KDT16 XC free-energy density 
functional2.

(i) Ground-state SCAN-L and PBE XC functionals, in 
the constant density limit, recover the zero-temperature 
homogeneous electron gas (HEG) XC limit; the finite-T 
KDT16 recovers correctly the finite-T HEG limit, such 
that eventually the SCAN-L and PBE zero-T HEG terms 
in Eqs. (2)-(3) cancel out, and the T-SCAN-L recovers 
correctly the HEG limit at all T.

(ii) The T-SCAN-L XC functional in the small-s limit 
recovers the T dependence of the finite-T second-order 
gradient expansion (for both exchange and correlation 
terms), i.e. it reproduces the slowly varying regime cor­
rectly up to second-order terms for all T.

(iii) The T-SCAN-L XC reduces to the finite-T LDA 
XC free-energy in the high-T asymptotic limit for any 
density with finite reduced reduced density gradient 
value. This constraint is a consequence of the finite-T 
gradient expansion and is satisfied approximately up to 
the remainder of the cancellation between the ground- 
state SCAN-L and PBE gradient expansion terms.

(iv) The T-SCAN-L exchange satisfies one of the 
known exact scaling relation8-9 f.J-SCAN-L [n*, T] = 
AF.J-SCAN-L[n, T/A2], with n*(r) = A3n(Ar), due to the 
T-SCAN-L temperature dependences are defined on the 
base of the physically motivated finite-T gradient expan­
sion.
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