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We discuss strategies for thermalization of the ground-state meta-generalized gradient approxi-
mation (meta-GGA) exchange-correlation (XC) functionals. A simple but accurate scheme is imple-
mented via universal additive thermal correction to XC using a perturbative-like self-consistent ap-
proach. The additive correction with explicit temperature dependence is applied to the ground-state
deorbitalized, strongly constrained and appropriately normed (SCAN-L) meta-GGA XC leading to
thermal XC functional denoted here as T-SCAN-L. Thermal T-SCAN-L meta-GGA functional shows
significant improvement in density functional theory calculation accuracy for warm dense matter by
a factor of 3 to 10, achieving unprecedented accuracy of total pressure between a few tenths and
~1% when compared to traditional XC functionals, as demonstrated by the comparison to path-
integral Monte Carlo simulations for helium equation of state. The T-SCAN-L calculations of dc
conductivity of warm dense aluminum also give better agreement with experiments over other XC

functionals such as PBE and SCAN-L.

PACS numbers:

Introduction.- High-energy density physics (HEDP) in-
cludes a complicated warm-dense matter (WDM) domain
of state conditions which is characterized by elevated
temperatures (from few to hundreds of eV) and pres-
sures to 1 Mbar or greater. Accurate knowledge of equa-
tion of state, transport and optical properties describing
possible phase transitions (eg. insulator-to-metal transi-
tion) across warm-dense regime plays an important role
in planetary science, astrophysics and inertial confine-
ment fusion'®. The two relevant expansion parameters,
the Coulomb coupling parameter and the electron de-
generacy parameter are of order unity in WDM regime.
This is very distinct from the typical parameter space of
plasma physics and ordinary condensed matter physics
such that the classical plasma physics methods become
inaccurate when extended into the WDM domain, and
the standard condensed-matter physics methods might
have poor transferability when extended well beyond
near-ambient conditions. Ab initio molecular dynamics
(AIMD)7 ' simulations based on the free-energy den-
sity functional theory (DFT) '3, in combination with
the Kubo—Greenwood (KG) formulation for transport
and optical properties’®'®, has proven to be a successful
and key tool to understanding WDM and HED plasmas
across different temperature regimes'6-32,

DFT requires approximations for the exchange-
correlation (XC) energy density functional, which effec-
tively takes into account many-body interaction effects.
It offers a self-consistent way to predict material proper-
ties with the possibility of systematic improvement of its
accuracy through advancing XC functionals. Currently,
the vast majority of DFT simulations of WDM and
HED plasmas use the zero-temperature (ground-state)
XC functionals without explicit temperature dependence,
which were developed by the condensed-matter physics

and quantum chemistry communities, leading to ne-
glection of thermal XC effects and degraded accuracy
of predictions. The use of a ground-state XC func-
tional is justified only at low electronic temperatures
not exceeding a few tenths of the Fermi temperature
or in the high-temperature limit when the XC contribu-
tion to the total free energy is negligible3336. Recent
development of the temperature-dependent Karasiev—
Sjostrom-Dufty—Trickey (KSDT)37 local-density approx-
imation (LDA) (see Ref.3® for the corrected set of pa-
rameters cortKSDT), the generalized gradient approxi-
mation (GGA)-type XC functional “KDT16”3%, and the
thermal hybrid KDT03® have shown that thermal XC ef-
fects lower the dc electrical conductivity of low-density
Al, yielding improved agreement with experiment3?, and
can give up to a 20% difference in pressure3® as com-
pared to the zero-temperature Perdew—Burke—Ernzerhof
(PBE)*® calculations. Inclusion of thermal XC effects
accounts for the softening of the deuterium Hugoniot at
pressures above 300 GPa in agreement with recent exper-
imental measurements*\42, Thermal hybrid KDTO pro-
vides a significant improvements for the electronic band
gap at a wide range of temperatures as compared to the
LDA and GGA rung functionals and to the ground-state
PBEO hybrid.

Inaccuracies of used XC functionals may affect not only
the static properties related to equation of state; phase
boundaries and DFT calculations of transport and opti-
cal properties of HED plasmas may suffer to a greater
extent*3~4% which elucidates the need for developing ad-
vanced XC functionals that can better describe the dis-
sociation process and the band-gap closing dynamics. It
must be noted that the temperature-dependent KDT'16
GGA will not resolve these problems because it inherits
the inaccuracy of PBE for the dissociation/melting and



band-gap predictions3®. Thermal hybrid KDT0 provides
more realistic band gap predictions®®. However, elec-
tronic and optical properties in Kubo—Greenwood calcu-
lations to a large extent depend on ionic arrangement
of snapshots generated along a particular MD trajec-
tory. Therefore a fully consistent approach requires em-
ployment of the same XC functional in both the MD
simulations and Kubo-Greenwood calculations making
such simulations with hybrid functionals computationally
impracticable®. For this reason, in present work all the
comparisons are performed only between semi-local func-
tionals, and performance of semi-local functionals with
respect to hybrids at warm-dense conditions may need
to be addressed in the future.

It would be not practical to develop a thermal XC func-
tional applicable only at warm dense conditions. The
approach taken by developers of the first nonempirical
LDA, GGA, and hybrid XC free energy®™3? was to con-
struct thermal functionals that at T = 0 K reduce to
a known ground-state functional, such that the thermal
XC functional is applicable across the entire range of tem-
peratures without need to switch between XC functionals
depending on state conditions. KDT16 GGA, for exam-
ple, reduces to the ground-state PBE, such that KDT16
at low T inherits all advantages and drawbacks of its
ground-state counterpart. The way to improve overall
accuracy of the thermal GGA XC functional is to use
the next rung approximation at zero T and construct
thermally extended meta-GGA XC.

In this Letter we address this problem by developing
a thermalization framework for XC functionals at the
meta-GGA level of refinement and realization of a simple
scheme via universal thermal XC additive correction at
the GGA level of theory, which is applied to an accurate,
at low T, ground-state meta-GGA XC. This thermal cor-
rection reduces to zero in the low-T' limit; therefore, it
could be used virtually with any ground-state XC func-
tional without distorting its low-T" performance.

Thermal correction is applied to the ground-state
deorbitalized, strongly constrained, and appropriately
normed semilocal density functional (SCAN-L)#6-49 to
date one of the most-accurate meta-GGA XC functional,
which, for example, is capable of accurately describing
the liquid-liquid insulator-to-metal transition of warm
dense hydrogen®. The resulting thermal meta-GGA XC
functional, referred to here as T-SCAN-L, inherits the
precision of the ground-state meta-GGA SCAN-L at low
T, and most of the thermal XC effects are captured at
the GGA level of theory, providing overall a much higher
accuracy across the temperature regimes spanned by the
WDM domain.

Construction of nonempirical thermal meta-GGA XC
functionals.- Our strategy for thermalization of the
ground-state functionals is based on extending of the
constraints formulated in Ref.3® to meta-GGA’s. Ta-

TABLE I: List of the ground-state and finite-temperature
variables used in the GGA-level XC functionals. Ground
state: “LDA exchange energy per particle; "LDA correlation
energy per particle; ‘reduced density gradient; “dimensionless
density gradient defined in Ref.?° as variable ¢.

T=0K T>0K Definition of T > 0 K variable

glPA(p)e fLPA(n T) Eq. (3) in Ref38
glPA ()b fLPA(n T) Eq. (21) in Ref.3”
5(n,Vn)® sox(n,Vn,T) Eq. (7) in Ref.3®
q(n,Vn)? q.(n,Vn,T) Eq. (11) in Ref.3®

ble I provides a list of ground-state variables and their
finite-temperature counterparts used in the GGA frame-
work. The temperature dependence of the XC gradi-
ents listed in Table I, as derived in Ref.3, is consistent
with the XC finite-T' gradient expansion. Ground-state
meta-GGA XC additionally depends on the noninteract-
ing kinetic-energy-density variables. In the case of the
deorbitalized SCAN-L functional, these variables are the
Thomas-Fermi®®%!, von Weizssicker®?, and an orbital-
free Laplacian-dependent kinetic-energy densities, used
to define the chemical region detector a(n, Vn, V2n) (see
Ref.*® for details). Proper T dependence of these kinetic-
energy-related quantities is defined via kinetic and en-
tropic GGA reduced density gradients s,(n, Vn,T) and
30(n,Vn,T) derived in Ref.>® and a set of T-dependent
fourth order variables derived in Ref.>* for the Laplacian-
dependent orbital-free quantities. Such a full thermal-
ization requires, however, a preliminary development
of meta-GGA (Laplacian-dependent) noninteracting free
energy framework and corresponding orbital-free nonin-
teracting free-energy density functional (work currently
in progress) to be used together with Thomas—Fermi and
von Weizsicker free-energy density terms to construct the
T-dependent chemical energy detector a(n, Vn, Vn,T).
A simpler (not necessarily worse) GGA-level thermal-
ization scheme includes only the usage of T-dependent
variables listed in Table I instead of the ground-state
ones in the ground-state SCAN-L functional /P (n) —
fIPA(n,T) and s(n,Vn) — s2(n,Vn,T) in the ex-
change; and e'PA(n) — fLPA(n,T) and ¢(n,Vn) —
¢c(n, Vn,T) in the correlation terms.

With increasing temperature, the electron density ap-
proaches the slowly-varying regime. This makes the
finite-temperature second-order gradient expansion6-5°
taking into account the leading corrections to the XC
free-energy beyond the LDA. The KDT16 GGA func-
tional, by construction, recovers the finite-T' gradient ex-
pansion, therefore it is reasonable to expect that the
leading contributions to thermal XC effects are taken
into account by the T-dependent LDA and GGA XC
terms. Thereby thermal XC corrections beyond the GGA
level are expected to be small; therefore in the following



we propose a simple perturbative-like self-consistent ap-
proach via a universal thermal additive correction treated
self-consistently, similar to the idea used in Ref.55 to con-
struct GGA XC with additive thermal LDA correction.
The KDT16 XC free energy in the zero-7 limit reduces
to the ground-state PBE by construction

1)

a choice driven by popularity of the PBE functional,
and by availability of pseudo-potentials and projector
augmented wave (PAW) data sets generated by using
the PBE XC. Given the quality of SCAN-L functional
at zero temperature, we propose a simple temperature-
dependent meta-GGA

~meta-GGA = reta-GGAN] + ATMGA[n,T], (g)

with the additive thermal correction defined as follows:

- ()

and meta-GGA=SCAN-L. Definition Eqs. (2) and (3)
can also be rearranged to the form of thermal GGA plus
a zero-temperature meta-GGA correction

“meta-GGA — — = F«DT16[n>" + "meta-GGA

(4)
where the AE™eta" GGA[n] := £™eta""GGA[n] — £PBE[n]
term accounts for the zero-temperature meta-GGA cor-
rections above the GGA level of theory. Explicit func-
tional form defined by Egs. (2), (3) is used in stan-
dard fully self-consistent DFT calculations with local
XC potential calculated as a functional derivative of
“roeta-GGA  jrj w”h. respect to electron density n.
Each term in the above equations is evaluated at self-
consistent minimizing density corresponding to given
thermodynamic conditions of material density and tem-
perature. The full set of equations for each term in
Egs. (2)-(3) including definitions of the finite-T LDA
XC is given in the Supplemental Material60 (see also
Re6.Gi-G3).

It follows from Eq. (1) that in the zero-T limit, the
thermal additive correction [Eq. (3)] reduces to zero,
lim-r*o A.T",GA[n, 7] « 0; therefore the thermal meta-
GGA reduces to their zero-temperature counterpart

Um Jreta-GGA [n, T] % ~"™ta GGA 7™, )

preserving the meta-GGA accuracy at low 7. In the
high-T limit, the minimizing electron density becomes
slowly varying and approaches the homogeneous elec-
tron gas limit. Reduced density gradients and reduced
Laplacian employed in construction of the ground-state
GGA and meta-GGA vanish. The ground-state PBE
GGA and SCAN-L meta-GGA by construction reduce
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FIG. 1: (a) Electronic pressure as a function of temperature
for sc-H at p = 0.60 g/cm3 calculated with the PBE and
KDT16 GGA, and with the SCAN-L and T-SCAN-L meta-

GGA XC functionals, (b) Corresponding relative difference
with respect to the PBE values, (P— PPBB)/ PPBB, as a func-

tion of electronic temperature.

to the ground-state LDA XC in the homogeneous density
limit. In this way the ground-state GGA and meta-GGA
functionals, if evaluated at implicitly T-dependent min-
imizing density, approach the temperature-independent
LDA limit, lim-T-* E™u—GGA[n] <« EBDA[n] and
limbec = E%PA[n] (ie., E%°t*-GGAM =
1£BE[n] at high 7). Therefore, at high temperatures,
the thermal meta-GGA Eq. (4), evaluated at the mini-
mizing density, reduces to the KDT16 (which in turn, by
construction, reduces to the finite-T LDA):

Pneta-GGA n,T] Pl>KDT16 [l’l,T] = .F/\A[n,T]

©)
Other constraints and exact conditions satisfied by the
T-SCAN-L XC are listed in Sec. IV of Supplemental
Material.

Thermal meta-GGA Eq. (2) accounts for thermal XC
correction via temperature-dependent LDA and reduced
density-gradient terms used in the construction of the
KDT16 at the GGA level of theory. Reduced-density
Laplacian and orbital-free kinetic energy density used in
deorbitalized SCAN-L remain without explicit tempera-
ture dependence. Use of T-dependent reduced Laplacian
may account for additional fourth order thermal XC ef-
fects that, in general, are expected to be small.

Demonstrative WDM applications.- To investigate the
performance of the new T-SCAN-L meta-GGA func-
tional with respect to the existing PBE, SCAN-L, and
KDT16 approximations and to estimate XC ground-state
meta-GGA inhomogeneity effects (defined as the differ-
ence between the SCAN-L and PBE pressures), ther-
mal XC effects at the GGA level (difference between the
KDT16 and PBE), and combined XC thermal and inho-
mogeneity effects at the meta-GGA level (difference be-
tween the T-SCAN-L and PBE pressures), we performed
a set of static and AIMD simulations using these four XC
functionals.

T»1



Figure 1(a) shows electronic pressure as a function of
temperature for a model system of hydrogen in simple cu-
bic lattice (sc-H) at 0.60 g/cm3. At low T, in agreement
with Egs. (1) and (5), pressure from calculations with
thermal KDT16 and T-SCAN-L XC functionals (dashed
and solid red curves, respectively) is identical to results
obtained with ground-state PBE and SCAN-L function-
als (dashed and solid blue curves, respectively). Thermal
functional pressures (red curves) start to deviate from
their ground-state counterparts as temperature increases.

The relative magnitude of XC ground-state meta-GGA
inhomogeneity effects referenced to the PBE ground-
state GGA values [(PSCANL — pPEE)/pPBE] X ther-
mal effects at the GGA level [(PKPT16 — pPBE)/pPBE]
and XC thermal and inhomogeneity effects at the meta-
GGA level [( PTSCANL _ pPBE) / DPBE] 516 shown in Fig.
1(b). The relative difference between the ground-state
SCAN-L and PBE pressures reaches the large value of
=~ 30% at low T and decays below 5% at temperatures
above 5 eV, meaning that the zero-T' meta-GGA correc-
tion AEMeta—GGA defined in the in-line equation below
Eq. (4) vanishes at high T (the discussion below Eq.
(5)explains the reason). Thermal XC effects at the GGA
level (KDT16, dashed red curve) reach the maximum
magnitude (~10%) at T near 6.5 eV (reduced temper-
ature t is about 0.4) and remain at the level above 5%
up to 20 eV (£ = 1). As expected, the thermal T-SCAN-
L meta-GGA preserves the accuracy of the ground-state
SCAN-L at low T (the accurate description of hydrogen
in this dense regime by the the ground-state SCAN-L
XC at low T, when XC thermal effects are negligible,
was recenty demonstrated in Ref.3) and converges to the
thermal KDT16 at high T, providing a smooth interpo-
lation at intermediate temperatures. Figure 1(b) clearly
demonstrates that the sum of the SCAN-L (solid blue)
and KDT16 (dashed red) curves agrees very well with
the T-SCAN-L (solid red) one, meaning that the com-
bined XC thermal and inhomogeneity meta-GGA effects
correspond to the sum AFGCGA + AEmeta—GGA 59 ox.
pected. Given that the T-SCAN-L smoothly interpo-
lates between the ground-state meta-GGA and finite-T'
KDT16, we expect that the T-SCAN-L results are most
accurate across the entire temperature range. (Remark:
at very high temperatures the differences between cal-
culations with thermal and ground-state XC functionals
vanish due to the fact that XC contribution to the total
free energy becomes negligible compared to the dominat-
ing non-interacting free-energy term3%.) Very recently
the T-SCAN-L XC in combination with the long-range
van der Waals rVV10 functional®* was used to establish
a first-principle equation of state table of deuterium and
demonstrated an improvement of accuracy as compared
to the treatment with the groun-state PBE treatment.

AIMD simulations that demonstrate the superior accu-
racy of the new T-SCAN-L meta-GGA functional are for

dense helium. Figure 2 compares relative errors for total
pressures obtained from DFT simulations with four XC
functionals and high-quality path-integral Monte Carlo
(PIMC) reference data% for T = 10.77 eV and 21.54
eV (PIMC data are not available for T' below 10.77 eV,
and Kohn—-Sham DFT simulations for this range of ma-
terial densities and temperatures above 21.54 eV are too
expensive computationally). PIMC is an efficient firsi-
principles simulation technique for quantum systems at
finite temperature that accurately takes into account the
Coulomb interaction between electrons using pair-density
matrices and therefore can be used to benchmark approx-
imate XC density functionals at elevated temperature33.
Both ground-state functionals (PBE and SCAN-L) sys-
tematically overestimate the total pressure: the relative
error with respect to the reference PIMC data is between
4.2% and 5.8% at T = 10.77 eV. In contrast, the T-
SCAN-L total pressures are in excellent agreement with
the PIMC values, demonstrating unprecedented accu-
racy between 0.05% and 0.35% for this range of densi-
ties. Relative differences between the KDT16 and PIMC
values are larger as compared to the T-SCAN-L values
and range from 0.4% to 1.4%. These comparisons show
that T-SCAN-L calculations can improve the DFT simu-
lation accuracy for He at these warm dense conditions by
a factor of ~3 to 10 over the widely used XC functionals
(PBE, SCANL, and KDT16). This clearly demonstrates
that the T-SCAN-L meta-GGA functional can accurately
capture combined XC thermal and nonhomogeneity ef-
fects. When temperature increases to 21.54 eV, the rela-
tive error of the ground-state functionals reduces to the
range between 1.3% and 3.6% (because the XC contribu-
tion becomes less important as compared to the nonin-
teracting free-energy term at high T'), while the relative
difference between T-SCAN-L and PIMC values is still
less than ~ 1%. Kohn-Sham calculations for this system
at temperatures much higher than 20 eV are not feasible.
However, in accordance with discussion of high-T" results
shown in Fig. 1(b), we expect that eventually, with in-
crease of temperature, all calculations with the thermal
and ground state functionals will converge to the same
values, making the PBE XC an accurate reference in the
high-T limit.

Figure 3 shows the relative differences between the
SCAN-L, KDT16, T-SCAN-L, and PBE pressures as a
function of temperature at two different densities: pge =
0.5028 g/cm? and 0.9990 g/cm®. The overall picture is
similar to that observed in Fig. 1 for the model system:
at low T, thermal KDT16 and T-SCAN-L reduce to their
ground-state counterparts, PBE and SCAN-L, respec-
tively. The zero-T meta-GGA correction AETeta—GGA
becomes small at T' > 1 eV; XC thermal effects, as de-
scribed by the KDT16 GGA XC, grow to values almost
10% at T near few eV and start to decrease at T above 10
eV. The new T-SCAN-L smoothly interpolates between
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FIG. 2: The relative error of total pressure from AIMD sim-
ulations of warm dense He using PBE, SCAL-L, KDT16, and
T-SCAN-L XC functionals calculated with respect to the ref-
erence PIMC results and shown as a function of material den-
sity for two temperatures.
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FIG. 3: Relative difference between the total pressure from
the DFT calculations with SCAN-L, KDT16, T-SCAN-L, and
PBE XC. The PIMC relative pressure difference with respect
to the same PBE XC values is shown for comparison.

the ground-state SCAN-L, preserving its accuracy at low
7, and the thermal KDT16 at high temperature, provid-
ing a description of combined XC thermal and nonhomo-
geneity effects at the entire temperature range. These
combined effects remain at relatively large values above
5% for temperatures up to « 10 eV and slowly drop for
higher T.

Finally, we examine how T-SCAN-L may affect the
DFT prediction of transport properties of warm dense
matters. Results of simulations that probe the accuracy
of thermal T-SCAN-L functional for electrical conduc-
tivity of warm dense Al are shown in Fig. 4. The di-
rect current (dc) conductivity from AIMD and Kubo-
Greenwoodl4,15 calculations with the ground-state PBE
and thermal T-SCAN-L functionals is compared to the
experimental data6t at 77= 10 kK in the density range
between 0.05 and 0.30 g/cm3. Ground-state PBE overes-
timates conductivity for densities < 0.20 g/cm3. Previ-
ously it was shown that the explicitly T-dependent KSDT
functional lowers the dc conductivity33 as compared to

0— 0 PBE
o o SCAN-L
C--——0T-SCAN-L

100 r A Experiment
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FIG. 4 Aluminum dc conductivity as a function of density
from calculations with T-dependent T-SCAN-L, and ground-
state PBE and SCAN-L (at p = 0.10 g/cm3 only) XC func-
tionals along the 7" = 10-kK isotherm. The standard devi-
ations shown as error bars correspond to averaging over the
snapshots.

the ground-state LDA. Thermal T-SCAN-L behaves sim-
ilarly, by lowering the dc conductivity (as compared to
the ground-state PBE) toward the experimental data. At
Pa1r = 0.30 g/cm3, results from both functionals converge
and agree with experiment. SCAN-L dc conductivity,
calculated for one density only, 0.10 g/cm3, is roughly in
between the PBE and T-SCAN-L values, demonstrating
that combined thermal and nonhomogeneity XC effects
contribute to transport properties.

Summary.- The full thermalization framework and a
simpler one using thermal LDA- and GCA-level vari-
ables to construct thermally extended meta-GCA XC
functionals have been discussed. The fully thermalized
scheme involves thermalization of the kinetic energy re-
lated terms and requires a preliminary development of
non-interacting free energy density functionals at the
meta-GCA level of refinement. These functionals, be-
sides the standard constraints related to the zero-7 and
high-T limits and the scaling related constraints dis-
cussed in33 should recover the 4th order slow-varying
density gradient expansion for the noninteracting free
energy69-71 to guarantee the correct treatment of the
Laplacian-dependent (4th-order) terms in meta-GCA XC
functional. However, a reasonable expectation is that the
full thermalization will provide only a minor correction
to predicted properties in WDM regime.

The simplest scheme, which uses a universal additive
thermal correction and a perturbative-like self-consistent
approach, has been implemented, leading to thermal T-
SCAN-L functional. The nonempirical T-SCAN-L meta-
GCA density functional takes into account combined
thermal and nonhomogeneity effects at the meta-GCA
level providing a significantly higher accuracy for DFT to
better predict material properties in the WDM regime,
as compared to the thermal KDT16, and to the ground-
state PBE and SCAN-L XC functionals. In the zero-
temperature limit, T-SCAN-L reduces to its ground-state
counterpart, therefore preserving the SCAN-L meta-



GGA level of accuracy at low T'. Virtually any ground-
state meta-GGA XC functional can be thermally ex-
tended into an XC free-energy functional via our pro-
posed scheme. The thermalization scheme carries over di-
rectly to the regularized-restored r?SCAN-L57%8  which
mostly eliminates numerical instabilities and related con-
vergence issues of SCAN-L, to yield thermal T-r?SCAN-
L [Eq. (4) with meta-GGA=r2SCAN-L]. Although T-
r?’SCAN-L has not yet been tested and all results of
present work have been obtained with T-SCAN-L, we ex-
pect that T-r2SCAN-L will provide a virtually identical
level of accuracy as T-SCAN-L.
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I. PBE EXCHANGE AND CORRELATION

The PBE ground-state spin-unpolarized exchange-
correlation energy density functional is a sum of exchange
and correlation

ExPPIn] = EXPE[n] + BEPPn] (S1)

where exchange functional is given in terms of local den-
sity approximation (LDA) exchange energy per parti-
cle, sLPA and the generalized gradient approximation
(GGA) enhancement factor?

EFBE|] — / n(r)eEPA () EPBB(s)dr . (S2)

FPBE() =14k — (S4)

14 ws?
with k = 0.804 and p = 0.21951, which is a function of
ground-state (temperature independent) reduced density
gradient,

B |Vn|
The correlation energy density functional is
BE o] = [ nfw)=E P, oy, (50)

where the PBE ground-state correlation energy per par-
ticle in notations of Ref.? is given by a function of density
and density gradient

SPPE(n, Vi) = sEPA(n) + H (sEPAC = 0,q), (ST)

C

cLDA[n] is the LDA correlation energy per particle (PBE
uses the Perdew-Wang parametrization®), ¢ is the spin-
polarization fraction, and ¢ is a dimensionless density
gradient

qln, Vi) = 0 (58)

where ks = 2(3n/7)"/%. In notation of Ref.?, the PBE H
function is

H(=EPA L q) = ~v¢°

Be o 1+ Appgpd? }}

xIn {1 + y 4 L + Aperq® + Adgrqt (59)
Apgp — %[exp{—sim/wg)}—l]* (S10)
P() = A+ OY*+ (1 -0Y (S11)

with v = (1 —In2)/x2.

II. KDT16 EXCHANGE-CORRELATION
FREE-ENERGY

Structure of the KDT16 exchange-correlation free-
energy is similar to the PBE density functional, except
that the KDT16 depends on variables and functions with
explicit temperature dependence (via reduced tempera-
ture t = T/Tp = 2kpT/[37%n]*/3)

FRDTEY, 7] = FROTS [, 7] FROTO, 7] (S12)

A. Exchange free-energy
The KDT16 exchange free-energy density functional
FEPT6 T = /anLDA(m TYFEPTI6 (5 )dr , (S13)

depends on the LDA free-energy per particle which has
the factorized form

FEPA 0, T) = ePA () Ax(t), (S14)

with the t-dependent function Zx(t) given by the explicit
analytic fit? in terms of variable y = 2/3t%? (with u =
y*3, and v = y*/?3)

Aoly) = amy* n(y) + ag su®? + Zle agu’
i L Yo bt

and coefficient values tabulated in Table S1. The KDT16
exchange enhancement factor is a simple function

VxSoax

FXSX:]‘+77
(52x) 1+ afsox|

(S16)



TABLE S1: Coefficients in fit to Ay (y) Eq. (S15).

TABLE S3: Parameters for the Be(re, ) fit, Eq. (522).

coefficient value 7 a; b; Ci

Al -0.0475410604245741 1 0.30047773E403 -0.11166044E+03 0.32175261E+02
as.s -0.1065378473507800 2 -0.38706401E+03 -0.45327975E+402 0.61853048E+02
ai 0.5823869764908659 3 0.25112237E+04  -0.14507109E+404 0.33585054E+03
as -0.0068339509356661 4 0.52243427E+03 -0.30665095E+02 0.12874241E+4-03
as 11.5469239288490009 d; e; fi

aq -0.8465428870889800 1 0.11077393E403  0.12854960E+01  0.41006057E-02
as -0.1212525366470300 2 0.32355494E+03  0.13482659E-+02  0.18933118E-01
ag 1.9902818786101000 3 0.45509212E+03  0.23416018E+02  0.24295413E-04
ar 0.0000000000000000 4 0.10884352E+04  0.24480831E+4+02  0.18369776E-07
as 0.0744389046707120 5 0.36112605E400 0.32161372E-08 0.69274681E-10
b1 19.9256144707979992

bo 5.1663994545590004

bs 2.0463164858237000

by 0.0744389046707120 B. Correlation free-energy

TABLE 82: Coefficients in fit to By (y).

coefficient value

as -3.4341427276599950
as -0.9066069544311700
aq 2.2386316137237001
as 2.4232553178542000
as -0.1339278564306200
ar 0.4392739633708200
as -0.0497109675177910
ag 0.0000000000000000
aio 0.0028609701106953
by 0.7098198258073800
bo 4.6311326377185997
bs -2.9243190977647000
by 6.1688157841895004
bs -1.3435764191535999
bs 0.1576046383295400
br 0.4365792821186800
bs -0.0620444574606262
b 0.0000000000000000
b1io 0.0028609701106953

of the exchange free-energy reduced density gradient

By(t
$9x (1, Vn, T) = s%(n, Vn) =2 | S17
2% ( )=s7( )Ax(t (517)

~

~

and two parameters consistent with the PBE ground-
state exchange, v, = p = 021951 and o = p/xk =

0.27302. The accurate fit for By (t) as an explicit function
of y (or a function of ¢ after a variable change) is given
in Ref.* as following

10 i
Buly) = =g (s18)
1 —+ Zi:l biul

and coefficient values tabulated in Table S2.

The KDT16 correlation free-energy density functional
is defined in terms of the correlation free-energy per par-
ticle

J—,_—CKDT16[n7 T = /nfCKDT16(n7 Vn, T)dr, (S19)

which takes the PBE form with explicit T-dependence
introduced via reduced density gradient for correlation
defined on the base of the finite-T" gradient expansion for
correlation

4e(n, Vn,T) = q(n, Vn)y/ Be(n,t), (S20)

chDT16(n7 Vn, T) - chDA(n7 T) + H(chDA7 ¢ =0, qc) )

(S21)
where is the LDA correlation free-energy per
particle given by the corrected Karasiev-Sjostrom-
Dufty-Trickey (corrKSDT) parameterization®® (fFPA =
JeortRSDT.6=0) " ig the spin polarization fraction, and H
is as defined by in Eq. (89). Density and temperature
dependent function B. in Eq. (S20) is given by a Padé
approximant of order [4,5] with respect to the variable
u = t*3/% and with density dependent coefficients (via
rs = (3/47n)1/3 variable

fLDA
C

3 1Y (et brd!? 4 ciro

Be(rs,t) = . (822)
14 Zle(di + 61‘7”3/2 + fird)ut

The final set of parameters is given in Table S3.

The corrKSDT LDA functional (see®®) provides an
analytical expression for the XC free-energy per parti-
cle feortBSDT The corresponding correlation free-energy
per particle foorrKSPT g calculated as

feorKSDT () 7y — peorrKSDT 7y _ fLDA(, ) (523)

where fLDA — :LDAZ (1) is the LDA exchange free-
energy per particle, Eq. (S14).



TABLE S4: Parameters for the corrected KSDT XC free-
energy functional (corrKSDT), defined by Egs. (9)-(14) in
Ref.® for the unpolarized (¢ = 0) case. A = (4/97)%/3.

b1 0.342554
bo 9.141315
bs 0.448483
ba 18.553096
bs V372 A7tbsy = 1.054151
c1 0.875130
2 -0.256320
ca 0.953988
di 0.725917
ds 2.237347
ds 0.280748
ds 4.185911
ds 0.692183
e 0.255415
e 0.931933
es 0.115398
ea 17.234117
es 0.451437

The spin-unpolarized fSo7™8SPT is given by the follow-

ing Padé approximant with ¢-dependent coefficients

1 aft) +be(t)rs”? + ec(thrs
s 14 de(t)rd? + ec(t)rs

The functions a(t), be(t) — ec(t), in turn, are Padé ap-
proximants in ¢

f:gczo(rwt) =

(S24)

1
a(t) =0.610887 tanh <¥> x
0.75 + 3.04363t% — 0.09227¢3 + 1.7035t4

S25
1+ 8.31051¢2 4 5.1105¢4 (525)
1 b1+ bgtz —+ bgt4
b(t)=tanh | — | ———F—+——— S26
( ) an (ﬁ) 1+b4t2+b5t4 ( )
o(t) = [cl Fepexp (_Ct_g)} e(t) (S27)
1 di + d2t2 —+ d3t4
dit)=tanh | — | ———%—+—— S28
() = tan <\/Z> 1+ dyt? + dst? (S28)
1\ey + 62t2 —+ 63t4
ty=tanh | - | ————— . S29
e(t) = tan (t) 1+ eqt? 1 estd (S29)

Table S4 provides parameters in Eqs. (S26)-(S29) for the
corrected functional, corrKSDT.

III. STRONGLY CONSTRAINED AND
APPROPRIATELY NORMED WITH
LAPLACIAN DEPENDENCE

The full set of equations for the strongly con-
strained and appropriately normed with Laplacian de-
pendence (SCAN-L) ground-state exchange-correlation
energy density functional is given below. The SCAN-L

exchange-correlation is a sum of exchange and correlation
BSOANL (] = FECAN V(o) 4 BSCAN L[ (530)

Exchange has a meta-GGA semi-local form®
BN o) — [ n(n)eEPA ) FEOAN s, ), (331)

The SCAN-L exchange enhancement factor is given by

FEOMNL (s, ) = [ (s, @) fi(@){1174=hk(s,0)} | ox(s)
(S32)
where 6(y) is a step function of y, « is the Laplacian-

dependent kinetic-energy-based region detector defined
below in Eq. (S47) and

gu(s) =1 —e @/Ve ($33)

fula) = emoxe/U=0g(1 — o) — dye>/ =)0 — 1)

(S34)
hi(s ) — 14 12 (S35)
ki+x
T = peps’| 1+ ﬁefb”Q/“GE
HGE
T [bys? 4 bo(1 — a)e B2 (S36)

The constants in Eqs. (S33)-(S36) take the following val-
ues

a; = 4.9479 (S37)
10
_ Y S38
HGE 31 ( )
5913
b2 =\ Z05000 (839)
511 1
by = —— S40
1 13500 2b, (540)
by = 0.5 (S41)
2
Hae 1606 2
b, — HeB _ 7 S42
4 k18225 1 (542)
ey = 0.667 (S43)
oy — 0.8 (S44)
dix = 1.24 (S45)
k, — 0.065. (S46)

The Laplacian-dependent kinetic-energy-based region de-

tector is
a(m VTL7 Vzn) = (tECOpt — tw)/tTp s (847)

where the orbital-free Thomas-Fermi (TF) and von
Weizsécker (VW) are

trp(n) = cppn®3(r), (S48)
_ 3 2y2/3

CTF — 10(37‘( ) 5 (849)

tw(n, Vin) = gtTp 5. (S50)



The re-optimized Perdew-Constantin PCopt kinetic en-
ergy density, tL°°P' is defined by the following set of

equations
@ 55 20
8 1 8
A 22 T2 © 4 S52
' si? TP T aEt (S52)
5
Y = 5327 (S53)
2 4
puoss LRI (554)
t - ’
VUHIED 0 B2
SO — pMGEL _ pw (S55)
FtPCopt _ FtVV+ZPC09pc(ZPC)7 (856)
tECOpt _ tTFFtPCOpt~ (857)
The PCopt interpolation function in Eq. (S56) is
0, 2z <0,
a a—z b
Opc(z) = Eal/tie/% .0 <z <a, (S58)
1 z > a.

?

with the re-optimized parameter values a = 0.5389 and
b=3.
The SCAN-L correlation has the form

BN o) — [ o) [ed 4 Sl - eD)dr, (350)

with
fc(a) _ 67clca/(1foz)0(1_a)_dcec20/(1foz)€(oz71) 7 (SGO)

where c¢i. = 0.64, d. = 0.7, and co. = 1.5. Two revised
PBE correlation energies per particle, €2 and £}, valid for
a =0 and o = 1 have definitions similar to Eqgs. (S7)

e/ (n, Vn) = efPAY ()  Hopy (egPA1,q), (S61)

with revised forms of EI;DA’O/ ' and Hy;y functions Eq.

(S9) (more details can be found in Ref.”10, see also the
explicit Egs. (S24)-(S42) in Supporting Information for
Ref.19).

IV. FINITE-T CONSTRAINTS SATISFIED BY
THE T-SCAN-L EXCHANGE AND
CORRELATION

In this Section we list some of constrains satisfied by
the T-SCAN-L exchange and correlation at finite-T" in-
herited correctly from the KDT16 XC free-energy density
functional®.

(i) Ground-state SCAN-L and PBE XC functionals, in
the constant density limit, recover the zero-temperature
homogeneous electron gas (HEG) XC limit; the finite-T
KDT16 recovers correctly the finite-T" HEG limit, such
that eventually the SCAN-L and PBE zero-T' HEG terms
in Egs. (2)-(3) cancel out, and the T-SCAN-L recovers
correctly the HEG limit at all 7.

(ii) The T-SCAN-L XC functional in the small-s limit
recovers the T dependence of the finite-T' second-order
gradient expansion (for both exchange and correlation
terms), i.e. it reproduces the slowly varying regime cor-
rectly up to second-order terms for all 7.

(iii) The T-SCAN-L XC reduces to the finite-7" LDA
XC free-energy in the high-T asymptotic limit for any
density with finite reduced reduced density gradient
value. This constraint is a consequence of the finite-T
gradient expansion and is satisfied approximately up to
the remainder of the cancellation between the ground-
state SCAN-L and PBE gradient expansion terms.

(iv) The T-SCAN-L exchange satisfies one of the
known exact scaling relation®? FI-SCAN=L[p, T| =
AFI=SCAN=L[n T/N2], with ny(r) = A3n(Ar), due to the
T-SCAN-L temperature dependences are defined on the
base of the physically motivated finite-T' gradient expan-
sion.
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