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Abstract: In this work we initiate the study of position based quantum cryptography
(PBQC) from the perspective of geometric functional analysis and its connections with
quantum games. The main question we are interested in asks for the optimal amount of
entanglement that a coalition of attackers have to share in order to compromise the secu-
rity of any PBQC protocol. Known upper bounds for that quantity are exponential in the
size of the quantum systems manipulated in the honest implementation of the protocol.
However, known lower bounds are only linear. In order to deepen the understanding
of this question, here we propose a position verification (PV) protocol and find lower
bounds on the resources needed to break it. The main idea behind the proof of these
bounds is the understanding of cheating strategies as vector valued assignments on the
Boolean hypercube. Then, the bounds follow from the understanding of some geometric
properties of particular Banach spaces, their type constants. Under some regularity as-
sumptions on the former assignment, these bounds lead to exponential lower bounds on
the quantum resources employed, clarifying the question in this restricted case. Known
attacks indeed satisfy the assumption we make, although we do not know how universal
this feature is. Furthermore, we show that the understanding of the type properties of
some more involved Banach spaces would allow to drop out the assumptions and lead to
unconditional lower bounds on the resources used to attack our protocol. Unfortunately,
we were not able to estimate the relevant type constant. Despite that, we conjecture an
upper bound for this quantity and show some evidence supporting it. A positive solu-
tion of the conjecture would lead to stronger security guarantees for the proposed PV
protocol providing a better understanding of the question asked above.
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1. Introduction

In the field of position based cryptography (PBC) one aims to develop cryptographic
tasks using the geographical position of a third party as its only credential. Once the
party proves to the verifier that it is in fact located at the claimed position, they interact
considering the identity of the third party as granted. Basing cryptographic security on
the position of the communicating parties might be very appealing in practical contexts
such as the use of autonomous cars (see [1] for an interesting digression on this topic),
or the secure communication between public services or banks. Besides that, at a more
fundamental level, secure PBC could also serve as a way to circumvent insecurity under
man-in-the middle attacks, a security leak suffered by standard cryptographic primitives.
This vulnerability still prevails even in presence of information-theoretical security, as,
for example, in the celebrated case of Quantum Key Distribution. In these settings, the
security guarantees always come after the assumption that the identity of the trusted
agents is granted. In PBC this assumption can be, at least, relaxed. Moreover, PBC
proved to be a rich field of research emanating deep questions and connections from its
study. To mention a few, attacks for PBC has been related with quantum teleportation [2],
circuit complexity [3], classical complexity theory [4] and, very recently, with properties
of the boundary description of some processes in the context of the holographic duality
AdS/CFT [5,6]. In this work, we add to this list a connection with deep questions on the
geometry of Banach spaces.

The main task in PBC is the one of Position Verification (PV). In PV a prover has to
convince a verifier (usually composed by several agents spatially distributed) that it is
located at a claimed position. This setting has been studied since the 90’s in the context
of classical cryptography. Nonetheless, in purely classical scenarios, PV is easily proven
to be insecure against a team of colluding adversaries surrounding the honest location
[7]. This motivates the study of quantum PV protocols, in which the communication
between prover and verifier is in general quantum. This idea was initially developed by
Kent [8] and made rigorous only later on in [9]. In this last paper, the authors construct
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a generic attack for any quantum PV protocol. To construct the general attack of [9], the
authors built on the work of Vaidman [10], realizing that the cheating action in the setting
of PV consists in performing what they called instantaneous non-local computation. In
this last task, two (or more) distant agents have to implement a quantum operation on
a distributed input when subjected to non-signalling constraints—see [9] or Sect. 2.2
below for more details. At a first sight, the existence of general attacks to quantum PV
renders the development of secure PBQC a hopeless program. However, their attack did
not come for free for the adversaries, as in the case of classical PV. On the contrary,
in order to cheat, the dishonest agents have to use a huge amount of entanglement—a
delicate and expensive resource in quantum information processing. Even when in [2]
another generic attack to PV was proposed exponentially reducing the entanglement
consumption, the amount of entanglement required is still far from what is realizable in
any practical situation. This leads naturally to the following question, which is the one
motivating this work:

Question 1. How much entanglement is necessary to break any PV protocol?

Answering this question with a large enough lower bound would lead to the existence
of PV protocols which are secure for all practical purposes, term coined in [4]. More
concretely, we say that a PV protocol is secure for all practical purposes if the resources
needed to break it are significantly larger in order of magnitude than the resources ma-
nipulated by the honest parties. For us, the size of the resources in place is quantified by
the dimension of the systems that are manipulated in the execution of the protocol. In
a hypothetical future in which we have at our disposal large scale quantum computers,
there is no clear reason to distinguish between classical and quantum resources and solv-
ing Question 1 in this sceptical setting is the final goal in the study of PBC. However, as
an intermediate step towards this aim, we focus here in the study of quantum resources
disregarding classical communication and computation as free resources (for both, hon-
est and dishonest agents). We hope that the study of this scenario will contribute to the
ultimate understanding of Question 1. Indeed, some of the results presented here can
be translated to the sceptical framework described above. Although we will say a few
words about how this is achieved in Sect. 1.1, a full study of this more ambitious setting
is out of the scope of the present manuscript.

We comment now on the progress in the field that is already available. In [9], the
authors provide the first PV protocol secure against cheaters with no entanglement. This
was improved in [2] and later in [11] providing PV protocols requiring a linear amount
of entanglement (linear in the size of the system manipulated in the honest protocol). In
terms of this figure of merit, the entanglement consumption in the generic attack of [2] is
exponentially large, hence leaving an exponential gap between lower and upper bounds
for the amount of entanglement necessary to break PV protocols. After almost 10 years
since [9] this is still essentially all it is known about Question 1 in its original formulation.
Other works have studied attacks with some specific structure [4], have designed attacks
that are efficient at emulating the computation of unitaries with low complexity [3] or
have studied security under additional cryptographic assumptions [12].

After the completion of this manuscript we learnt about the concurrent work [13]
which studies a similar setting as the one considered in this work, focusing on the trade-
off between the quantum resources used by the honest party in comparison with the
quantum resources of the attackers. In that work, the authors show the existence of qubit
routing protocols in which the honest prover is required to manipulate a single qubit and
a 2n-bits classical string and are secure against adversaries sharing an entangled state of
dimension linear in the dimension of the classical message. In the intermediate setting
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commented on before, when the focus is put on the study of quantum resources, the results
reported in [13] are incomparably stronger than the results we obtain here. However,
in order to contrast both works, we mention that while in [13] the classical part of the
challenge is required to be distributed symmetrically from both sides of the prover—
considering PV in a one-dimensional line—, in our setting the classical information is
distributed asymmetrically only from one of the verifiers surrounding the honest location.
This can be understood as a further step in-between the intermediate setting in which
classical resources are completely disregarded and the final goal of finding secure for all
practical purposes PV protocols. Stressing this point, we emphasize that the techniques
and ideas we introduce here might serve as groundwork for a deeper study of the problem.
In fact, as we said before, it is possible to extend some of our results to protocols in
which the interaction between verifiers and prover is purely quantum and, in overall,
of much lower dimension(with no distinction between classical and quantum systems).
We leave for the future the study of such ramifications of our work. For completeness,
we also mention that another possibility to achieve the goal of security for all practical
purposes in PV would be improving the bounds obtained in [13]. Known attacks to the
protocols proposed there consume exponentially more resources than the lower bounds
of [13], a fact that invites to explore the pointed direction. Nevertheless, it seems that
new techniques have to come into play for pursuing that aim.

1.1. Summary of results. Here we aim to go back to Question 1 in its simplest form: the
one-dimensional case without any further assumptions. Unfortunately, we were not able
to find a definite answer to the question but we report here some progress that opens an
avenue for a deeper understanding of the problem.

From now on, we focus on the study of quantum resources required to attack PV,
considering classical communication as a free resource and unlimited computational
power for all the agents involved. In this work,

e we connect the study of Question 1 with powerful techniques coming from Banach
space theory,

e consequently providing new lower bounds on the amount of entanglement necessary
to break a specific PV protocol presented in Sect. 3. However, these bounds are
not completely general but depend on some properties of the strategies considered.
Intuitively, smooth strategies, i.e., strategies with a smooth dependence in the unitary
to be implemented, lead to exponential lower bounds.

e Finally, we consider the possibility of turning the previous bounds unconditional.
We relate the validity of this with a collection of open problems in local Banach space
theory. In particular, we relate the bounds on resources to break our PV protocol with
estimates for type constants of tensor norms of ¢ spaces. In this direction, we put
forward a conjecture that would imply the desired unconditional exponential lower
bounds and then provide some evidence supporting it.

The protocol Gg,q. To formalize this discussion, we propose a PV protocol that we

denote GRrayq. This makes reference to a family {Gl({;)d}neN rather than to a single task.
The index n represents a security parameter that determines the size of the quantum
systems manipulated in the honest implementation of the protocol. From now on, this
parameter will be implicitly referred to, allowing us to drop the superindex in G]({’;d and
refer to it simply as GRraq.

The general structure of a PV protocol in the studied setting—one-dimensional PV—
proceeds in four basic steps (see Fig. 1, left panel, for a graphical description):
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Fig. 1. Causal structure of one-dimensional PV protocols. Honest implementation (left) versus adversarial
scenario (right)

1. The verifier prepares a bipartite system and distributes it to two verifying agents that
surround the location to be verified, x. For the sake of concreteness, we locate these
agents at points x &£ & for some positive §.

2. Agents at x £ §, when synchronized, communicate the registers they hold to x.

3. An honest prover located at x, upon receiving both registers, immediately applies
a required computation resulting in another bipartite system. The latter has to be
returned to locations x £ §. One register should be sent to the agent at the left of x
(x — 8), and the other, to its right (x + §).

4. Finally, the verifiers check whether the prover’s answer arrives on time and whether
the computation was performed correctly. Based on this information they declare the
verification successful or not.

In the dishonest scenario, two cheaters surrounding the location x intercept the com-
munication with the honest prover and try to emulate the ideal action in the honest
protocol. In order to succeed, they have to prevent any delay in their response. This
restricts cheaters’ action to consist of two rounds of local operations mediated by a step
of simultaneous two-way communication—see Sect. 2.2 for a detailed discussion of this
model.

Once we have fixed this basic setting, let us describe the protocol Grag involved in
our main results. Roughly speaking, the challenge posed to the prover in our protocol is
solved by the implementation of the set of diagonal unitaries determined by sign vectors

ee{xl }”2 . The intuition behind the choice of this set of unitaries can be supported by the
fact that it contains instances with exponential circuit complexity, as a simple counting
argument shows. Furthermore, in [14] we noticed that this set of unitaries is almost as
hard as possible in terms of the memory required by a Programmable Quantum Processor
that implements it. Since Programmable Quantum Processors seem to be closely related
with the existing teleportation based attacks to PV [2,9], we found the previously noted
fact an indication that the referred set of unitaries might be a good choice for the study
of PV. More formally, the honest implementation of Gryq is as follows:

1. the verifiers start uniformly sampling & = (¢;;); j=1 € {:I:l}"2 and preparing the state
|y = % ZZ,‘:] liYa ® |j)B ® |ij)c in a tripartite Hilbert space Hy ® Hp ® Hc.



630 M. Junge, A. M. Kubicki, C. Palazuelos, D. Pérez-Garcia

The verifying agent at x — § receives registers H4 ® Hp while the one at x + § is
informed (classically) of the choice of ¢. Register H¢ is kept as private during the
execution of the protocol.

2. Then, registers H 4 ® H p are forwarded to the verifying location x from its left. From
the right, the classical information about the choice of ¢ is communicated.

3. Anhonest prover located at x, upon receiving both pieces of information, has to apply
the diagonal unitary on H 4 ® H p determined by e. Immediately, registers H 4 ® Hp
must be returned, but this time only H 4 should travel to the verifier at x — §. Register
‘H g should be sent to the verifier at x + 5.

4. After receiving those registers, the verifiers check the answer’s timing and, at some
later time, they perform the measurement {|v¢) (.|, Id — |¥¢) (¥¢|} on system H 4 ®
Hp ®Hc, where |) 1= % Zi’j &ijli)a®|j)B®lij)c. They accept the verification
only if the arriving time was correct and the outcome of the measurement was the
one associated to |, ) (V¥.]|.

Next, let us specify the implementation of GRrag in an adversarial scenario. In this
situation, we consider that two cheaters located between the honest location x and the
verifying agents at x &£ §, intercept the communication in the honest protocol. In this
work, we refer to these cheaters as Alice, at position x — §’, and Bob, at position x +§’,
for some 0 < 8’ < 8. Their general action proceeds as follows' (see again Fig. 1 for
clarification): in advance, the cheaters share a state |¢) in which Bob, after receiving
the information about &, applies an isometry W, and sends part of the resulting system
to Alice together with the classical information determining €. On her part, when Alice
receives registers H4 ® Hp of |), she applies another isometry V (independent of ¢)
on these registers and her part of the shared state |¢). Part of her resulting system is
communicated to Bob. After this step of simultaneous two-way communication Alice
and Bob are allowed to apply another pair of local isometries V. ® W, on the systems
they hold. Then, they have to forward an answer to agents at x = §.

Main results. The structure of Graq allows us to understand cheating strategies as

. . . 2
vector valued assignments on the n2-dimensional boolean hypercube, Q,» = {41}"".
In our main result, we find lower bounds for the resources consumed in such an attack
depending on the regularity of the former assignment. Very informally, we can state:

. . ; 2, .
Cheating strategies depending on the value of ¢ € {£1}" in a sufficiently regular
way require an amount of entanglement exponential in n in order to pass GRraq.

To quantify the regularity of a strategy we introduce a parameter o that can be
regarded as a measure of the fotal influence of the associated function on the Boolean
hypercube. We give a precise definition for this parameter in Sect. 4. Here, we restrict
ourselves to give an intuitive idea behind this definition presenting some approximate
expressions below. Based on two complementary ideas, given a strategy we construct two
different assignments leading to two parameters o’ and o’. Given a cheating strategy
S, characterized by a sequence of elements (Ve, We, V, W,, o)} seQ ,» We can bound,
up to logarithmic factors:

L simplicity, we state here the case in which Alice and Bob use what we call pure strategies. The most
general case can be reduced to this one by purification. See Sect. 3 for a detailed discussion.



Geometry of Banach Spaces 631

12
. 1, ~ ~ ~ ~ 2 1
o' Siog Ee ZE”Vs@We_VEU@WEV“ +O<,_l>’ (1)
i,J
1/2
- 1 2 1
o Siog Be | D[ (Ve W —Wa)lo), ] +0 (;) : 2)
iJ
where || - || and || - |l¢, are the operator and euclidean norms respectively. Here, gl
denotes the sign vector (€11, ..., —&;j,. . ., €xn). The first of these parameters is therefore

related with how strongly the second round of local operations in the strategy depends
on ¢. In the other hand, o’ is similarly concerned with the dependence on ¢ of the first
round of local operations. With this at hand, we can state—yet informally—our main
result. Denoting the success probability attained by a strategy S in Grag as @ (Grad; S),
we can say that:

Theorem 1.1 (Informal). Given a cheating strategy for Grad, S, in which the local
dimension of the quantum systems manipulated by the cheaters during its execution is
at most k,

L
. 1
@(Graa; S) < C1 +Ca 0" log"?(k) + O (m) ;
n

11

®(GRrad; S)

s

® ii 1 log3/2(nk
< Ci+C30" 0 log*2(nk) + 0 (W + Og—(”)>
n n

where Cq, CN‘l < 1, C,, C3 are positive constants.

What this theorem tells us is that cheating strategies for Grag for which ol oroll are
small enough necessarily need to make use of quantum resources of size exponential in
a power of n, (loosely) matching the exponential entanglement consumption of known
attacks”. We give a more concrete statement in the form of a corollary:

Corollary 1.2 (Informal). Consider a cheating strategy for Grad, S, attaining value
w(GRrad; S) = 1 — € for some 0 < € < % Denote by k the local dimension of the
quantum resources used in S.

If o' = O(polylog(n)/n®) or o' = O(polylog(n)/n3/4+°‘)for some o > 0, then:

k= Q(exp (n“/)) for some o' > 0.

2 The attack from [2] requires an entangled system of dimension O (exp(n4)), that is still much larger than
our bounds for smooth strategies. Nonetheless, we consider that any separation on resources that is exponential
in a power of n is enough to discriminate between the relative power among different agents. This is our main
motivation in this work.
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As we see, the regularity parameters o/ ?) play a key role in these results. We notice
that known attacks in [2,9] in fact fulfil the hypothesis of the previous corollary: the
second round of local operations in these attacks is e-independent, hence? o ~ log(n)/n
. However, we do not know how generic this behaviour is. More generally, it turns out that
from any Programmable Quantum Processor [ 15]—as the already considered protocol of
Port Based Teleportation, for example—with the capability of implementing the diagonal
unitaries required in Grad, we can construct an assignment & fulfilling Theorem 1.1 with
regularity parameter again of order o ~ log(n)/n. Therefore, Corollary 1.2 also applies
to this broader case allowing to recover some of the results obtained in [14]. This is not
a coincidence, our approach here builds on ideas introduced in this previous work.

Turning our attention towards o'?, a trivial example of a family of smooth attacks for
which o/ ~ log(n)/n is given by cheaters sharing no entanglement in advance — even
when entanglement can be created in the first round of local operations and distributed
for the second round. By contrast, we can also easily compute o'’ for the attack in [2]
obtaining o'/ = O(1). Therefore, our second item in Theorem 1.1 is not able to predict
good lower bounds for this case. Still, we think that this second item might be useful
for restricting the structure of possible attacks to PV, especially in conjunction with the
first part of the theorem.

More importantly, the second part of Theorem 1.1 leads us to put forward the possi-
bility of an unconditional lower bound for %, i.e., a bound in the spirit of Corollary 1.2
but dropping out the assumptions regarding o' /?). Even when we were not able to prove
such a bound, we relate its validity with a conjecture about the geometry of some Banach
spaces. More concretely, our conjecture has to do with estimates of type constants of
tensor norms on finite dimensional Hilbert spaces. Even when these properties for the
case of a single Hilbert space are very well understood—in fact, in this case the study of
type and cotype reduces to an elementary generalization of the parallelogram law—, the
situation changes dramatically when tensor products of several such spaces are consid-
ered. For the latter, long-standing questions remain open as, for example, whether the
simple space £2 @ £2 ® £> has finite cotype (see Sects. 2.3.1, 2.3.3 for the definition of
the objects mentioned here). This is a famous question asked by Pisier decades ago—see,
for instance, [16]—and about which still very little is known.

Once we formally state the conjecture in Sect. 5, we provide some computation sup-

porting it. We analyze the most direct approaches to disprove the conjectured statement
providing an estimate of the volume ratio of some relevant spaces. This might have
interesting ramifications on the still not completely understood relation between volume
ratio and cotype of Banach spaces.
Further extensions of this work. To conclude this introductory summary, we highlight
that there is a natural way to remove the classical part of the input in GRr,g, obtaining
protocols in which the overall dimension (classical and quantum) of the systems the
honest agents are required to manipulate is polynomial in n. Taking inspiration from the
definition of Grag, we now fix ¢ € Q,» as publicly known and define a PV protocol G,
that proceeds as follows:

n
in a tripartite Hilbert space Ha ® Hp ® Hc. The agent at x — § receives register
‘H 4 while the one at x + § receives H p. Register H¢ is kept as private during the

execution of the protocol.

1. the verifier starts uniformly preparing the state |i) = 1 2ilha®lj)e ®lij)c

3" Notice that in this case the first summand in the RHS of (1) vanishes. This leads to the estimate o' Slog
1/n. A look into the proof of the upper bound (1), Proposition A.1, i., reveals that the logarithmic term hidden
in Sjog is indeed proportional to log ().
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2. Then, registers H 4 ® Hp are forwarded to the verifying location x, H 4 from its left
and H p from its right.

3. Anhonest prover located at x, upon receiving both pieces of information, has to apply
the diagonal unitary on H 4 ® H p determined by ¢. Immediately, registers H 4 ® Hp
must be returned. H 4 should travel to the verifier at x — § and H g, to the verifier at
X +94.

4. The verification is now carried out in the same way as in Grag-

Considering the family of protocols {G.} ceQ2 As A whole, it is possible to recover a
notion of smooth strategies with some associated regularity parameter o. Such notion
of regularity allows us to obtain an equivalent result to Theorem 1.1—and, therefore, to
Corollary 1.2—for this case. A criticism that might be made at this point is that it is less
clear than before why one should expect any regularity among strategies that applies to
different games. A possible line of argumentation against this criticism could be stated
in terms of protocols for instantaneous non-local quantum computation: if one aims to
construct protocols that are universal, in the sense they are able to non-locally implement
any unitary, it seems rather difficult to come with something that depends on the unitary
to be implemented in a very non-regular way. The authors of [2] seem to go along with
that idea when stating the notion of “protocols which only make black-box use of the
unitary”.

Leaving aside the concerns triggered by the appearance of regularity assumptions,
one could also pursue unconditional bounds for {G,;}EGQ}12 following a similar route
as the one drawn in Sect. 5. This time the Banach spaces that appear are even more
convoluted and, at the moment of writing this manuscript, we do not have any serious
evidence to guess the behaviour of their type properties. The study of the issues arising
from the previous considerations is postponed for future research.

Finally, as a general comment, we note that the study of PV protocols can be phrased
in terms of quantum games, a framework that might provide the right level of abstraction
for further generalizations of the present work. The interested reader can find a detailed
account of such rephrasing in [17, Chapter 4].

1.2. Proof sketch. Here we sketch the main ideas behind the proof of Theorem 1.1.
These ideas are also at the bottom of the constructions that allow us to establish the more
general connection between Question 1 and type constants that leads to the conjecture
indicated above.

As we have already mentioned, the starting point of our study is the identification
of each cheating strategy, S, with a vector-valued function ® : Q,» — X, being

Q2 ={=£l }”2 and X, a well-suited Banach space. With an appropriate definition of ®—
which also includes the choice of X—we can obtain a bound on the success probability
®(GRad, S) in terms of the average norm of the image of that function. We obtain bounds
of the following kind:

©(Grag; S) < Ee [0(©)]

where ¢ is taken uniformly distributed in Q,>. Therefore, the key quantity we study is
precisely E; ||®(¢)|| x. For that, we bring together two main ingredients. On one hand,
a Sobolev-type inequality of Pisier for vector-valued function on the Boolean cube and,
on the other, the type-2 constant of the Banach space X, T>(X). The combination of
these two tools provides us with an inequality:

Ee||@(e)] 4 < [Ec® (o) + C 00 T2(X), (3)
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where C is an independent constant and o is a regularity measure for ®*. Specific
choices for ® and X leads to parameters o) appearing in Theorem 1.1.

Now, depending on how @ is constructed, [|E;®(¢) ” y can be upper bounded by a
quantity strictly smaller than 1- see, for instance, Proposition 4.6 . Once such a bound
is obtained, the focus can be put on the second term in the RHS of (3).

To obtain Theorem 1.1 we propose in Sect. 4 two possible choices for ® and study the
type constants of their image spaces. Furthermore, in order to remove the dependence
on o in the bounds obtained in that way, we propose in Sect. 5 yet another choice
for ®. This third function is regular enough by construction allowing to obtain bounds
depending only on the dimension of the system used by the cheaters. The downside of
this latter approach is that the space X in this last case becomes more involved and its
type properties cannot be estimated with the techniques at our disposal.

To finish this introduction we sum up the structure of the paper: we start introducing
in Sect. 2 preliminary material needed to develop this work. Then, in Sect. 3 we study
general aspects of cheating strategies for Grag paving the ground for our main results.
The analysis of strategies leading to Theorem 1.1 is presented in Sect. 4. In Sect. 5 we
discuss the possibility of pushing forward the techniques presented in this work to obtain
unconditional lower bounds on the resources required by the cheaters, only dependent
on the dimension of the quantum system they manipulate. We connect this question with
the problem in local Banach space theory of obtaining precise estimates for the type
constants of particular Banach spaces. After establishing that connection in a precise
and rigorous way, we provide some calculations supporting a positive resolution of a
conjecture that would lead us to strengthening the security of Graq. The paper ends
with a discussion of the results presented and possible directions for future work. This
corresponds to Sect. 6.

2. Preliminaries

2.1. Notation. In order to simplify the presentation, we use symbols ~ and < to de-
note equality and inequality up to multiplicative dimension independent constants and
~log and Sjog, equality and inequality up to multiplicative logarithmic factors on the
dimensions involved.

The quantum mechanical description of a system is based on an underlying complex
Hilbert space, that we denote H, H', Ha, Hp, K, .... When the dimension is known
to be a specific natural number, say n, we use the notation Eg. Given that, a density
matrix is a trace one, positive operator p : H — H. We denote the set of density
matrices as D(H). Quantum operations are completely positive trace preserving linear
maps D(H) — D(H'). The set of these maps is denoted here as CPTP(H, H') or simply
CPTP(H) when the input and output spaces are the same. The operation of discarding a
subsystem is implemented by the partial trace. We specify the subsystem discarded by
its underlying Hilbert space, e.g., in a composed system with underlying Hilbert space
H®H' the operation of discarding H’ is denoted Tryy € CPTP(HQ®H’, H). To describe
the evolution of a quantum system after a measurement, we make use of instruments, that
are collections of completely positive trace non-increasing maps summing up to a trace
preserving map. To denote a completely positive (maybe non trace-preserving) map we

4 See Sect. 2.3.4 for a detailed discussion. There, the more refined type-2 constant with m vectors is
considered, see Corollary 2.17. For the sake of simplicity, we consider the plain type-2 constant in this
introductory section.
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use the symbol CP instead of the previous CPTP. The set of instruments composed by
finite collections of maps in CP(H, H’) are denoted Ins(H, H').

To denote Banach spaces we usually use letters X, Y, ... and X*, Y*, ... for the
corresponding Banach duals. By denotes the unit ball of a Banach space X. B(X, Y) isthe
space of bounded linear operators between arbitrary Banach spaces X and Y, while £, (X)
and L ,(X), with p € (0, o], are the classical (vector valued) spaces of p—summable
sequences and p—integrable functions on the unit interval. More specifically, we also fix
now the notation for two Banach spaces that will appear repeatedly. Given two Hilbert
spaces H, H', we denote as B(H, H') and Sy (H, H’) the space of bounded and trace class
operators from H into H’, respectively. In the finite dimensional case, H = o, H = £3,
we simplify this notation to M, ,, and S{"" (M,,, S} when n = m). To denote elements
of the computational basis we use the quantum information oriented convention of using
the symbols i), (i], |j), .... When working with elements in the complex vector space
composed by n x m matrices—as is the case of elements in M, , or S{"", case we
consider repeatedly below—the usual basis of matrices with only one non-zero entry is
denoted here as {|i)(j|}i=1....n . Observing the range of each subindex, the convention

=1

.....

J
chosen here matches the standard agreement on regarding kets |i) as column vectors and
bras (i| as rows.

2.2. Position based cryptography in I1-D. The major aim of this work is to make progress
towards Question 1. For that, we restrict ourselves to the simplest scenario: position
verification in 1-D. In this situation, we restrict the world to a line in which we consider
a preferred location x—the position to be verified. The verifier, composed by two agents,
Vi, and Vg, is located around this honest position. Let us consider Vy, in position x — §
and Vg in position x + §. Then, V; and Vg perform an interactive protocol sending
(possibly quantum) messages in the direction of x. These messages arrive to x at the
same time, so that a honest prover located at x could receive them and, accordingly,
generate answers for V, and Vg. The verifier accept the verification if and only if:

e (correctness) the answers are correct with respect to verifier’s messages (according
to some public rule);

e (timeliness) the answers arrive on time to the locations of V; and Vg. Assuming
that the signals between verifiers and prover travel at some known velocity c, the
answers should arrive to V, and Vg at time 25 /¢ after the start of the protocol.

Before continuing, let us set a generic structure for such a protocol. To prepare the
messages Vy and Vg must forward, the verifier prepares a (publicly known) state in a
composite system with some underlying Hilbert space H; ® Hr ® Hc. That is, he
prepares a density matrix pp on that state space and sends the register Hy to Vy, and
‘Hpg to Vg. Hc is considered to take into account the possibility that the verifier keeps
some part of the initial system as private during the protocol. Then, V; and V¢ send their
systems in the direction of x. Now, the agent(s) interacting in the middle with Vy and
Vg apply some quantum operation on the communicated system H; ® Hg obtaining
as output another state pq,s € D(H) ® Hy). The subsystems H , H’, are forwarded
to Vi, Vg, respectively. To decide whether the verification is correct or not, the verifiers
first check the fimeliness condition is fulfilled and then perform a (publicly known)
dichotomic measurement on the system H;, ® H, ® Hc.
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Remark 2.1. Above, pg and p,,s are in general quantum states but they could perfectly
describe also classical messages as well as quantum-classical messages. This will be
indeed the case in the concrete scheme analized in this work.

Remark 2.2. Note that a honest prover, that is, an agent at position x, shouldn’t have
any problem to pass the test: at time §/c he would receive the whole system H; ® Hg
from the verifiers, having the capability to perform any global operation on it to prepare
his answer. This answer can still arrive on time to V; and Vg. The action described
in the previous lines is the most general operation that can be performed on verifier’s
messages, which are the only information transmitted in the protocol. Therefore, if the
chalslenge is well designed (it can be passed), the honest prover must be able to succeed
atit”.

Next, let us focus on how the general protocol described above can be cheated. In
order to impersonate the identity of a honest prover at position x, a couple of adversaries,
Alice and Bob, at positions x +68’,0 < §’ < 8, can intercept the message systems H; ,
‘Hr, interact between themselves to generate answers for the verifier and forward those
answers in correct timing. In order to respect the timeliness of the protocol, the most
general action of the cheaters proceeds as follows:

1. Before the start of the protocol, Alice and Bob prepare some shared entangled
state in a private register Hpg, ® Hp,;

2. Alice receives question register #; and applies a quantum channel A €
CPTP(Hr ® HEg,, Haop ® Ha-a). Similarly, Bob receives Hr and applies
B € CPTP(Hr ® HE,, Hp-a ® Hp-B);

3. the cheaters interchange registers H 4..p and Hp_ 4, keeping Ha- 4, Hp-B;

4. after this last step, Alice holds system Ha.4 ® Hp-4, on which she app}ies
another channel A € CPTP(Ha-a ® Hp-a, H}). Similarly, Bob applies B €
CPTP(Hp-B ® Ha-n, Hy);

. finally, Alice sends H, to Vi and Bob H, to Vg.

t

Fig. 2. Structure of adversarial action attacking 1-D PV protocols. In step 3, we model any kind of communi-
cation between Alice and Bob, classical or quantum. However, in the particular setting studied later on in Sect.
3, we will see that the dimension of H 4_, p and H p_, 4 is essentially determined by the quantum resources
the cheaters share, allowing us to disregard the classical communication that they might additionally use. See
Sect. 3, Lemma 3.1, for a precise statement

We call in this work simultaneous two-way communication scenario, s2w, the set of
actions—strategies from now on—with this structure. This scenario is central for us and
will appear repeatedly in the rest of this manuscript.

2.3. Banach spaces, operator ideals and type constants. At atechnical level, the results
of this work follow from the study of Banach spaces formed by tensor products of
Hilbert spaces. The spaces M, ,, and its dual, S{"", play a prominent role in the rest of

5 We don’t take into account here the computational limitations at which the agents might be subjected.
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the manuscript. Properties of these spaces in conjunction with a classical Sobolev-type
inequality of Pisier allow us to obtain our main result, Theorem 1.1.

The key property we study of these spaces are type constants, that we introduce in
Sect. 2.3.3. Before that, we need to introduce some objects we work with in the following
sections.

2.3.1. Operator ideals A deeper understanding of the constructions appearing in this
work is provided by the perspective of the theory of operator ideals. For the reader’s
convenience, we first sum up the contents of this section: given two finite-dimensional®
Banach spaces X and Y we consider the space of bounded linear operators from X into
Y, B(X,Y). An operator ideal is essentially an assignment of any pair of Banach spaces
X and Y with a subset of B(X, Y) that has the ideal property of being closed under
composition with bounded linear maps. We provide [18,19] as standard references on
this matter for the interested reader. In this section:

1. The first examples of operator ideals we introduce are tensor norms on pairs of
Banach spaces. This includes the space of bounded operators, B(X, Y), or X* ®, Y
in tensor norm notation, 2-summing operators 72 (X*, Y), or X ®y, Y, and the ideal
of nuclear operators, denoted as V'(X, Y), or X* ®, Y 7,

2. When X and Y are Hilbert spaces, another prominent family of operator ideals are the
well-known Schatten classes S, for p € [1, oo]. It turns out that these classes can be
generalized to operators between arbitrary Banach spaces, leading to the definition
of weak Schatten von-Neumman operators of type p € [1, oo], denoted here as
GZJ(X, Y)or X* ®6;’ Y

3. Finally, here we also define a variant of the space 6’[‘; (X, Y) that appears naturally in

our study and that seems to be new in the literature. We denote this space GW_Cb (X,Y)
or X*® Sy Y and call it the space of weak-cb Schatten von-Neumman operators of

type p € [1 oo]. The appellative cb is reminiscent of the fact that this new structure
makes use of constructions coming from operator space theory. Indeed, G~ b is an
operator ideal but in the operator space sense, therefore belonging more naturally to
that category than to the one of Banach spaces. In any case, we state this as a matter
of curiosity and completeness, and these fine-grained details are irrelevant for the
scope of the present work. Nonetheless, it is possible that a further exploration of
these structures could lead to the clarification of some of the problems we leave open.

After this brief summary, we provide now the details of the contents cited above. We
follow part of the exposition [18, Chapter 2] with suitable simplifications adapted to the
scope of this work.

For finite dimensional Banach spaces X and Y, the space of linear maps X — Y
can be identified in a simple way with the tensor product X* ® Y, as was implicitly
assumed above. The identification consists in associating to any element in X* ® Y,

f= Y i x’ @i, thelinearmap f : X 5 x = f(x) =), x(x)y; €Y. Conversely,
to any linear map f : X — Y we associate the tensor f = > ;X" ® f(x;), where

6 Even though in most cases the following material also applies in the infinite-dimensional case, for sim-
plicity, we restrict to finite dimension that is all we will use here. This allows us to use the equivalence between
operators and tensor products in a comfortable way ignoring the subtleties that appear at this point for infinite
dimension.

7 Recall that here we restrict X and Y to be finite dimensional.
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{xi}i, {x]};i are dual bases of X and X*, respectively. Based on that, we will tend to
present our results making explicit the tensor product structure but sometimes, especially
in this introductory part of the paper, it will be more natural to talk about mappings, so
we will use both conventions interchangeably.

The first operator ideal we encounter is the one of bounded operators from X into Y,
that we denote (X, Y') and that is the Banach space of linear operators f : X — Y en-
dowed with the operator norm, || f|| := sup,cpg, | f(x)[ly < 0o. Using the equivalence
stated before, understanding this space as a tensor product is precisely how the injective
tensor product is defined: X*®, Y >~ B(X, Y).If X and Y are finite dimensional spaces,
the dual of X*®, Y coincides with the projective tensor product, X ®, Y* >~ (B(X, Y))*.
It is enough for the scope of this manuscript to take this equivalence as the definition of
X ®, Y*. These norms satisfy the desirable metric mapping property: for any Banach
spaces Xg, X1, Yo, Y1, and any operators f € B(Xo, X1), g € B(Yp, Y1),

|f@g:Xo®@Yo—> X1@Yi|| < |[f:Xo— Xi] |g:Yo— 1. “)

Furthermore, we call tensor norm to any « that associates to any pair of Banach spaces
X,Y,anorm | - ||xg,y such that:

e « is in between of the tensor norms ¢ and 7. That is,

foranyx € X @y ¥, [xllxg.v < Ixllxg,v < *lIxe,v:
e ( satisfies the metric mapping property.

Later on, in Sect. 5 we will more generally refer as tensor norms to the fensorization
of different tensor norms. For example, if &, o’ are tensor norms, the assignment on any
three Banach spaces X, Y, Z of the norm (X ®, Y) ®, Z will also be referred as tensor
norm.

The last tensor norm that we need is the 2-summing norm: for an operator f €
B(X.,Y),

1f oy = |ld® f 1l ® X — £(Y)

, ®)

where the norm in ¢>(Y) is defined by [|(yi)ienllev) = Qjen ||y,'||%,)1/2 for any
sequence of elements y; € Y.

Next we introduce Schatten classes of compact operators between Hilbert spaces,
that are the model to define the generalizations in the theory of operator ideals that we
use later on. To define the p-th Schatten class S,(H), for 1 < p < oo, we associate
to any compact operator on a Hilbert space, f : ‘H — 'H, its sequence of singular
values (s; (f))ien, where s1(f) < s2(f) < .... With this sequence, we define the norm
||f||SP(H) = || (si(f)i ”ep’ which provides the normed structure on S, (H). We use
the simpler notation S, to denote the p-th Schatten class of operators on the separable
Hilbert space . In the finite dimensional case we use the notation S, to refer to the
pth Schatten class of operators from £5' into £3. Notice that the case p = oo coincides
with the operator ideal we denoted before as M, ,,,, while for p = 1 we obtain Sfm

Now, moving into operators between arbitrary Banach spaces we define:

Definition 2.3. Given an operator f : X — Y and 1 < p < oo we say that f is of weak
Schatten-von Neumann type £, if

lg:Y — L) <1
lh:ts— X||<1[ =%

I fllewx.y) = SUP{H (Si(g °of Oh))i ¢

P
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where (s;(g o f o h))l. is the sequence of singular values of the operator g o f o h :
by —> £o.

We denote by &) (X, Y) the space of operators f : X —> Y of weak Schatten-von
Neumann type £,. Alternatively, in the tensor product notation, we refer to this space
by X* ®61va Y.

To finish this section we introduce the space 6$_Cb (X, Y) announced at the beginning
of this section. Its definition is based on Definition 2.3 and it incorporates elements of
the theory of operators spaces. This forces us to endow X and Y with operator space
structures (0.s.s), that is, norms on the matrix levels of these spaces, M, (X) = M, @ X,
M, (Y) =M, ®Y forany n € N—see [20] or [21] for a detailed exposition on operator
spaces. With that, the natural notion for maps between operator spaces is the notion of
completely bounded operators, that is, linear operators f : X — Y such that

I+ X = Yllop = sup 1A ® £ : My(X) — M,y (¥)] < oc.
neN

The Banach space of completely bounded operators between X and Y is denoted by
CB(X,Y). Identifying again linear maps with elements of the tensor product X* ® Y,
in the finite dimensional case we denote CB(X,Y) =: X* Qmin Y.

A Banach space can be endowed in general with several o.s.s. In the case of the
space B(H, K), with H and /C, Hilbert spaces, there is a natural o.s.s. determined by
promoting the isomorphism M,, (B(H, K)) ~ B(H®", K®") to an isometry (fixing that
way the norm in the matrix levels of the space)®. For a Hilbert space H, we introduce
here the so-called row and column o.s.s., denoting the corresponding operator spaces R
and C, respectively. R is defined via the row embedding:

H~ B, C),

from which we define a norm on M,, () considering the following isomorphism to be
an isometry: M, (H) ~ M, (B(H, C)) ~ B(H®", £3).
Similarly, C is defined substituting the previous row embedding by it column version

H >~ B(C, £2).

These last two operator spaces turn out to be non-isomorphic, on the contrary to what
happens at the Banach level, where they are simply Hilbert spaces. They are still dual
between themselves, that is, C* ~ R and C ~ R* completely isometrically’. However,
to properly state those identifications we need a notion of duality for operator spaces.
This notion is induced by that of completely bounded maps introduced before. We say
that, for an operator space X, X* is its dual if

M, (X*) =CB(X,M,) foranyn € N,

Notice that for n = 1 the previous characterization of X* coincides with the dual as
Banach spaces!?. As a last comment on operator spaces, we note that this duality allows
to endow S1(H) with a natural o.s.s. as the dual of B(H). Now we finally have all the
ingredients to define:

8 Here we considered hilbertian tensor products in such a way that H®" and K®" are again Hilbert spaces.

9 Meaning that not only C* ~ R and C =~ R* stand isometrically but also M, (C*) ~ M, (R) and
M, (C) >~ My (R*) for any n € N.

10 For that it is necessary to consider the fact that CB(X, C) ~ B(X, C).
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Definition 2.4. Given an operator between operator spaces f : X — Yand1 < p < o0
we say that f is of weak-cb Schatten-von Neumann type £, if

Y —C <1
1/ g cx ) = SUp { [Gitgorom], - H k% ’\|\Z o } <,
where (sj(g o f o h))l. is the sequence of singular values of the operator g o f o h :
by —> {>.
We denote by 6;‘,’_”}’ (X, Y) the space of operators f : X —> Y of weak-cb Schatten-
von Neumann type £,. Alternatively, in the tensor product notation, we refer to this space
by X* ®61pu—fb Y.

Remark 2.5. Since Bepcx,yy € Bp(x,y) for any operator spaces X, Y, it follows that
”f”@%’*fb(X,Y) = ”f”G}‘;’(X,Y)v (6)

forany 1 < p <ocoandany f € GI’f_Cb(X, Y).

Before ending this section, we provide an alternative characterization of the norm
introduced above when X = M, ,, ¥ = S/ and p = 2. That is the case ap-
pearing in our study of cheating strategies for PV in Sect. 4. For that, we understand
sz—cb (Mp,;m, S;™™) as the tensor product Sy ®657—cb S;"™. Then,

Lemma 2.6. Given a tensor f € S @ S|, where S|"™ is endowed with its natural
o.s.s. (as the dual of My, ,), we have that:

2.
>
Z2

1/ lspmey psin = sup [ ® ()
2

reN
g’hEBMnr,m

Above, the action of h = Y i_, Z;-:l Yoisy hijilij) (Il € Myrm on a tensor t =
Yo Y talid(l| € ST is defined by

h(t) == Z (Zzhiﬂtil> 1j) € 6.

j=1 \i=1I=1
Proof. The claim follows from the following observations:

e a standard argument shows that the supremum in Definition 2.4 can be taken over
finite dimensional C, and R,, where r € N is arbitrarily large;

e for an operator between Hilbert spaces, as g o f o & in Definition 2.4, the £;-sum of
the singular values coincide with the Hilbert—Schmidt norm of the operator, which
is the same as the Euclidean norm of the tensor associated. In our case, with a slight
abuse of notation, the relevant tensor is (2 ® g)(f);

o finally, when we set X = M, ,,, ¥ = S;""" in Definition 2.4, the optimization is
carried over elements g € Bep S Cy) andh € By, . Butnow, itis again a standard

result that the following are complete isometries [20, Section 9.3]: CB(S?””, C,) ~
M,y =~ CB(R,, My ). The claim of the lemma is obtained acting with g, / viewed
as elements in By, as defined in the statement. 0O

nr,m?
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2.3.2. Interpolation of Banach spaces Properties of interpolation spaces allow us to
obtain estimates for the type constants of certain spaces that are useful for our purposes
in this work. Here we restrict ourselves to the study of the complex interpolation space
(X0, X1)g for 0 < 6 < 1 and finite dimensional Banach spaces X¢, X1. We decided
to avoid here a full treatment of the rather cumbersome definition of these spaces and
focus on stating some natural properties they display. That is enough for the scope of
our work. We redirect the interested reader to the classical references [22,23].

In our case, in which X, X are finite dimensional, the space (X, X1)g can always
be constructed. In the general case, for arbitrary Banach spaces, if we still can define
(X0, X1)p we say that the couple (Xg, X1) is compatible“, so we fix this terminology
from now on. For the sake of concreteness, here we will consider the case in which X,
X1 and (Xo, X1)p are algebraically the same space but endowed with different norms.
The complex interpolation method, that assigns to any compatible couple (X, X1) the
space (Xo, X1)g, is an exact interpolation functor of exponent 6. This means that it
satisfies the following:

Theorem 2.7 ([22], Thm. 4.1.2.). For any compatible couples (Xo, X1), (Yo, Y1), and
any linear map f : (Xo, X1)9 — (Yo, Y1)g-

| £ : (X0, X1)o — (Yo. Yo < || f: Xo — Yo

where || - || above denotes the usual operator norm.

0

)

|71 X1 =

Now we turn our attention to the classical sequence £, spaces. Interpolation in this
case becomes remarkably natural. We have the isometric identification £, = ({c0, £1)1,
for any 1 < p < oo. Indeed, such an identification follows in a much more general
setting. For a Banach space X and p € (0, 0o], let us denote L,(X) the space of p-
integrable X valued functions on the unit interval. That is, measurable functions f :
[0, 1] — X such that

1
1 v
IfllL,x) = (/0 IIf(t)Ilfng(t)> ;

for an (implicitly) given measure p. With that we can state:

Theorem 2.8 ([22], Thm. 5.6.1.). For any compatible couple (Xo, X1), po, p1 € [1, 00]
and 6 € (0, 1) the following follows with equal norms:

(Ln(X0). Ly (XD), = Lp((Xo. X10),
1 _1=6 .6
where =0 t o
Notice that £,(X) spaces can be regarded as particular instances of L,(X) where
the natural numbers are identified with a subset of the interval [0, 1] and u is fixed as

the discrete measure with unit weights on that subset. This allows us to translate the
previous statement also to this case:

(EPO(X()), ¢, (Xl))e - z,,((xo, xl)e), A

where L = =0 ¢
p J 22

Pleasantly, an analogue result for Schatten classes is also true.

u Technically, this condition is usually stated as the requirement that X and X| embed continuously in a
common Hausdorff topological vector space.
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Theorem 2.9 ([24], Cor. 1.4.). For a py, p1 € [1,00] and 0 € (0, 1) the following
follows with equal norms:

(Spo, Spl)ﬂ = Sp,

-0 , 0

+ o When it applies, Sso must be understood as the Banach space
(with the operator norm) of compact operators in a separable Hilbert space.

1
re — —=
wheeﬂ

These are all the basic results we need regarding complex interpolation. To finish
this section, we now relate some of the norms introduced in Sect. 2.3.1 with the space
(X* Q¢ Y, X* Qx Y)%

Proposition 2.10. Given finite dimensional Banach spaces X, Y, forany f € X ® Y),
[ 1xeywr = 1/ Ixegey = 1/ lxeg,rxomam),
2 2 2

Proof. Recalling that we have already established the first inequality in Remark 2.5.
Therefore we focus on the second inequality.
According to the definition of 6%’ (X, Y), Definition 2.3, we can directly write:

||f“6g'y(X,Y) = sup ”g o f Oh”Sg = sup ”g o f o h”(Soo,Sl)]/z,
8EBR(v,t5) 8EBRB(v,15)
hEBB(kz,X) hEBB((z,X)

where we have used Theorem 2.9 to state the last equality.

The map g o f o h : £, — £, can be interpreted, as a tensor, as the image of the
mapping h* ® g : X* ® Y — {r ® £, acting on f. With this, the previous expression
can be rewritten as:

[Mspoen = s 10" @Nllsws0,

8EBB(v.ty)
hGBB((Q_X)
< Ifllxreev.xr .7y, sup A" ®@g: (X" ®: Y, X* ®z Y1
2 8EBB(v.ty)
heBB(Zz,X)
= (Sar SO

Now, it only remains to show that for any contractions h* : X* — €5, g : Y — {»
11 ® g : (X" @ ¥, X* @7 ¥)y = (s SO < 1.
This follows from the interpolation property, Theorem 2.7:

Ih* @ g : (X* @ ¥, X* @ ¥)y > (Sows S0

1 1
SIF®g: X *® Y - Sxll2 [h*®g: X" ®: ¥ — Sill2,

together with the understanding of Sy, and S; as the tensor products ¢ ®, £» and
£r Q@ €7, respectively. This allows us to bound

17" ®g: X" ®c Y > Scll = I* : X* — Lol lg : ¥ — Lo < 1,

thanks to the metric mapping property displayed by the injective tensor norm, & (4).
Analogously

[h*®g: X" @z Y = Sill = |h*: X* > L]l llg: Y — L2fl < 1.

Hence, the claim in the statement follows. O
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Being more specific, when X* =Y = S|, Proposition 2.10 reads

||f||s;’~’”®62w,d,s;”m = ||f||syvm®65)s;l-’" < Ifllsrme.srm srme sty - (8)

[

2.3.3. Type/cotype of a Banach space The key properties of a Banach space we study are
its type and cotype. These are probabilistic notions in the local theory of Banach spaces
that build on Rademacher random variables'2. We call a random variable ¢ Rademacher
if it takes values —1 and 1 with probability 1/2 each. We refer by {g;}}_, to a family of
n i.i.d. such random variables. Then, [E; ¢ (¢) denotes the expected value of a function
¢ over any combination of signs {¢;}?_, with uniform weight 1/2".

Definition 2.11. Let X be a Banach space and 1 < p < 2. We say that X is of
(Rademacher) type p if there exists a positive constant T such that for every natural
number n and every sequence {x;}?_; C X we have

(EE[H ans,»xi ||§(]>1/25 T (Z ||x,~||§2)l/p,

i=1 i=1

Moreover, we define the Rademacher type p constant T,(X) as the infimum of the
constants T fulfilling the previous inequality.

The notion of type of a normed space finds a dual notion in the one of cotype:

For 2 < g < o0, the Rademacher cotype q constant of X, C4(X), is the infimum
over the constants C (in case they exist) such that the following inequality holds for every
natural number n and every sequence {x;}!_, C X,

i=

n 1/q n 5 1/2
(X hlg) " = (Es[H D _cix IIX]) -
i=l1 i=1

In parallel with the previous definition, we also say that X is of cotype q if C4(X) < o0.

Comment 2.12. The above definitions can be found elsewhere in an alternative form

12
in which the term (]Eg || Yo Eix ”i) above is replaced by E. || Y7, &ixi |, or, in

I«

1/p
other cases, by (EEH Z?:l &iX; Hp . Due to Kahane inequality [26] (see also [25,

)
Section 4] for the specific application of Kahane inequality to the present context) both
expressions are equivalent up to a universal constant and there is no essential difference

between definitions.

If the number of elements x; in the definitions above is restricted to be at most some
natural number m, we obtain the related notion of type/cotype constants of X with m
vectors, denoted here as Tg") (X) and C,(Im)(X ). This is the precise notion we will use
later on. Although it will be frequently enough to work with the notion of type constants,
sometimes we will need to make this distinction.

Coming back to the better studied context of type and cotype (without any restriction
on the number of elements), it is well known that X being of type p implies cotype ¢

12 There also exists in the literature a gaussian notion of type/cotype. See, e.g., [25]. Both notions are in
fact intimately related, but here we only consider the Rademacher version of the story.
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for the dual, X*, where ¢ is the conjugate exponent such that 1/p + 1/¢g = 1. This can
be summarized in the inequality—see, e.g., [27]:
1 1
Cy(X™) < Tp(X), forl<p<2,2<g<o0:—+-=1. 9)
P q

The reverse inequality fails in general—and, in fact, the pair of spaces considered in
this work, (M),, S}'), is an instance of that phenomenon. However, it turns out that the
reverse inequality can be made true up to logarithmic factors [27,28]:

1
T, (X) < log(dim(X)) Cy(X™), forl <p<2,2<g<o0:—+—=1.
P 4
(10)

Our interest now turns into the interaction between type and interpolation. In fact,
type constants behave well w.r.t. interpolation methods, a fact that will be extremely

useful in next section. We state the following general known result:
Proposition 2.13. Let X, X1 be an interpolation couple, where X; has type p; for some
1-6

1<p <2i=0, 1.Let0<9<landl<p<2suchthat%=w+%.Then,

T, ((Xo, X1)9) < (Tpo(X0))' (T, (X1)".

The proof follows easily from the interpolation properties of vector valued £, and L
spaces. We decided to include a simple proof next without any claim of originality.

Proof. An alternative characterization of the type-p constant of a Banach space X is
given by the norm of the mapping:

Rad : £,(X) — L(X)
(xi)i = Dieixi’

where {¢;}; are i.i.d. Rademacher random variables and'3

1
2
1Y i xillLacn = (Ea | > eixi Hi) :
i i

Then, we write
T, (X0, X1)o) = |Rad : £, (X0, X1)e) —> L2 ((Xo, X)) | -
Taking into account the equivalences (Theorem 2.8):
£y (X0, X1)0) = (£py(X0). £ (X1)), . L2 ((Xo, X1)g) = (L2(X0), L2(X1))g »
we can bound:
|Rad : £, (X0, X1)9) —> L2 ((Xo0. X1)o) ||
< [Rad : £,,(X0) — La(Xo)|' ™" |Rad : £,,(X1) — Lo(Xp)]”
= (Tpy (X)) ™" (Tp, (x1))".
o

13 Formally, to establish this identification we consider a realization of the random variables ¢; as real

valued functions on the interval [0, 1]. A standard choice is setting ¢; (1) = sign (sin(Zi nt)). In that way, for

a function ¢ of the random variable ¢, E¢¢ (¢) = /01 ¢ (e(1))dt, which makes the connection with L, spaces.
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2.3.4. Vector valued maps on the Boolean hypercube The main idea in this work is
based in the study of strategies to break a particular family of PV protocols—referred to
as Grag—as assignments on the boolean hypercube Q,,, = {—1, 1}"". We will associate
to any cheating strategy a vector valued mapping ® : Q,, — X, for some Banach space
X. Regular enough ®’s will lead to good lower bounds on resources required by the
cheaters, contributing to the understanding of Question 1. To quantify the regularity of
such maps we introduce the following parameter (depending also on the choice of the
space X):

Definition 2.14. To any Banach-space valued map ® : Q,, — X we associate the
parameter:

" 12
o = log(m) Eeco, <Z ”31'“1’5(8”@) :
i=1

where 9;®(g) = DlElwnbie 8”’)_;)(8‘""’_e"""’g’") is the discrete derivative on the
boolean hypercube in the i-th direction.

Intuitively, o is an average on both the point ¢ and the direction i (unnormalized in
this last case) of the magnitude of the derivative of the map ®. The prefactor log(m) is
of minor importance for our purposes and we added it to the definition of o to obtain
more compact expressions later on.

Example 2.15. In order to gain some familiarity, let us compute the parameter o of a
linear map

: 9, — X
e = D)= %stjxj’

where x; € By forj =1,...m
First, for any point ¢ € Q,,, and a direction i € [m]:

1 . 1
8,'@(8)=% ZSij—Sj(—l)s"-’xj' =a8,’x,‘.
J

Therefore,

1

1 7
o = 2 (Z ||xi||§(> < logm),

m2

This is the ideal case in which our results lead directly to powerful lower bounds on
the resources required to break our PV protocols.

Ultimately, the motivation for the definition of o¢ is the bound in Corollary 2.17 below.
This is a consequence of the following Sobolev-type inequality due to Pisier for vector-
valued functions on the hypercube:
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Lemma 2.16 ([29], Lemma 7.3). In a Banach space X, let p > 1, ® : Q,, — X and
&, & be independent random vectors uniformly distributed on Q,,. Then,

- p
E, o)
l

O(e) — B (e) Hi < (Clogm)? E, ;

where 3;®(¢) := P(ELseinens an)—2<l>(81 ,,,,, —Eisn)

It is now very easy to combine this result with the type properties of X in order to
obtain:

Corollary 2.17 (of Lemma 2.16). Consider a function ® : Q,, —> X, where X is a
Banach space. Then

E:|@ @), < By +C oo TS (X),

I x
where C is an independent constant.

This is the cornerstone of the building leading to Theorem 1.1.
Proof of Corollary 2.17. Fix p = 1 in Lemma 2.16. Therefore, we have that :

Zéiaicb(s)HX.

E,

D(e) — Ee“’(‘”Hx < (Clogm) E z

Additionally, we can trivially bound:

E,

() ~E ()| =E.

*@], -]

E£<D(8)HX.

On the other hand, according to the definition of the type-2 constant (with m vectors)
of X—recall also Comment 2.12—we can say:

1/2
Y anee| ST E. (Z ||ai®s<s>||§) .
i i

That’s enough to obtain the statement. O

Es,é

2.3.5. Some key estimates of type constants Corollary 2.17 provides us with a tool to
upper bound the expected norm of the image of a map ® : Q,, — X, provided that we
have some control over the RHS of the inequality in the statement. The only piece there

that is independent of the map ® is the type-2 constant (with m vectors) Tg")(X ), to
which the rest of this section is devoted.
Later on, the normed spaces M,, ,, and S?’m & gev-w Sf’m will play a prominent role.
2

The type and cotype properties of M, ,, as well as Sf’m are well known. In particular
the following estimates hold:
Co(M ) ~ min(n'/2, m'2), To(Mym) ~ log"?(min(n, m)),  (11)
CoSP™M ~ 1, Ta(S]™) ~ (min(n, m)'/2. (12)

For S;l’m & gev-w S?’m the situation is not that well understood at all. In fact, we
2
were not able to obtain any non-trivial estimate for its type properties so far. Then,
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instead of dealing directly with this space, we will consider the interpolation space
(S @ ST, S ®x S"™) 1. The norm in this latter space turns out to be an upper
2

bound to the normin S ® - 8", recall Proposition 2.10. From now on we use the
2

following notational short-cut: (S7"" ®, 8", S| @z S|")o = S e,y S
Thanks to the extra structure in S}"" ®.x),,, S| provided by interpolation, we are
able to obtain a bound for its type constants. To simplify the presentation, we consider
in the following that min(n, m) = n. We can state:

Proposition 2.18. Given 0 < 6 < 1, and natural numbers n < m:

1-6

T2 (3?”” Q(e,m)p Sfm) glog nz.

1+6
An immediate consequence of the previous proposition is a bound for the type-2
constant with n? vectors:
1+0
(ST @ SI™) Stogn 7

~

2
9 (S)" ®emyy 7)) <0’ T

2
T+
where the first inequality follows as an application of Holder inequality in the definition

2
of Tén )(X ) (recall Definition 2.11 and comments afterwards).
Particularizing for 6 = %:

2 3
T (S;’*’" e, 5;“") Zlog n1*. (13)

This is the key type-estimate to obtain part II. of the main Theorem 1.1.
For the sake of concreteness, we explicit here the logarithmic corrections in (13):

'2
TV (SP™ @y, SP™) < n¥/* log!2 (nm) log(n).
2

Proof of Proposition 2.18. The proof proceeds in two steps. First, using techniques from
[16,30], we obtain the estimate

T2(S" @¢ SI"™) Sjog 1'% (14)

With this at hand, Proposition 2.18 follows from how type constants interact with the
complex interpolation method, Proposition 2.13. In particular, it is enough to fix pg = 2,
p1 = 1 in that result and consider the trivial bound T (S7"" ®, S"") = 1.

Therefore, there remains to provide a proof for (14). To prove the stated estimate we
bound the cotype-2 constant of the dual, M, ,, ® M, ,». Therefore, from the duality
between type and cotype, Eq. (10), we obtain:

To(S]" @ SP'™) < log(nm) Co(Mym @z My m).

To estimate C2(M,, n @7 M,.n) we use the following bound on the cotype of the
projective tensor product, implicit in [16]'4

2
C2(Mn,m (g Mn,m) ,S C2 (Mn,m) UMD(Mn,m) T2 (Mn,m) s
14 The key result here is Theorem 5.1 in [16]. The bound we use is obtained keeping track of the constants

appearing in the isomorphic statement of that theorem. We are indebted to Jop Briét for kindly sharing with
us some very useful private notes on Pisier’s method.
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where UMD(X) is the analytic UMD (unconditional martingale difference) parameter
of the Banach space X. We now bound each of the quantities in the RHS of the last
inequality:
o recalling (11) we have that Co(M,, ;) < n'/? and To(M,, ) < log!/?(n);
e we estimate UMD(M,, ,,,) from known bounds for the UMD constant of the p-
Schatten class Sp, for 1 < p < oo. It is known that these spaces are UMD and the
following estimate for UMD(S),) is available [31]:

UMD(S,) < p.

This also translates to the same bound for the subspace S;L,’m. Now, we take into
account the following relation between the UMD constants of arbitrary spaces X and
Y at Banach-Mazur distance d (X, Y). This is a direct consequence of the geometric
characterization of the UMD property due to Burkholder [32]—see also [33]:

UMD(X) < d(X,Y)UMD(Y).
Finally, with this at hand, we obtain the bound
UMD My ) < d(My i, ™) UMD(Sp™) < n'/P p.
Adjusting the parameter p as p = log(n) we obtain
UMD (M) < log(n),
that is enough to conclude that

To(S]" ® S;™) < log(nm) log*(n)n'/?.

3. Cheating strategies for Grag

In this section we describe in detail the action of cheaters in our PV protocol Grag.

Recall that in 1-D PV, we consider a privileged point x and a couple of verifiers, Vr,

VR, at locations x &£ 8. See Sect. 1.1, page 7, for the definition of GRrag. In the dishonest

scenario two cheaters, Alice and Bob, hold locations x &+ §’ for some 0 < §’ < §. The

strategy of Alice and Bob is restricted to the s2w scenario already described in Fig. 2.
A strategy in this scenario is determined by—cf. Fig. 2:

e a shared entangled state ¢ € D(Hg, ® Hg,) that we assume here to be pure,]5 .
From now on we use interchangeably the notations ¢ or |¢)(¢| to refer to that state;
o a family of tuples of four “local” channels: for each ¢ € Q,2,

A € CPTP(Hs ® Hp ® HE,, Ha-a ® Ha—-B), Be € CPTP(HE,, Hp-p ® Hp-4),
A € CPTP(Hp~a ® Hp—a.M}). Be € CPTP(Hp_p ® Hap. Hp).

For verification, H/,, H% should be communicated to V7 and Vg respectively. There-
fore, according to the definition of the protocol, these registers should be isomorphic
to the originals H 4 and Hp.

15 1t can be easily checked that, by convexity, the success probability achieved in GRraq by strategies using
mixed states is always upper bounded by the success probability when using pure states. Since the quantity we
are interested in is the optimal cheating probability, restricting ourselves to strategies using pure states would
be enough.
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Understood as a family of quantum channels, the strategy defined by these elements
reads:

Se :D(HA®Hp) — DHA® Hfz) i
v > Se(¥) = (A: @ Be) o (AR Be) (¥ ® o), (15)

foreach e € Q,p».
The probability that the verifiers accept the output of such a strategy is given by:

w(GRad; {Sete) = Ee Tr[ [ve) (Y| (Idc @ S) (1) (YD 1. (16)
Optimizing over any strategy allowed in the s2w scenario leads to the value:
@521 (GRad) = sup  @(GRad; {Sele)s (17)
{Se)e€Gsouw

where S5, denotes the set of strategies in the s2w scenario.
In this language, the existence of general attacks for arbitrary PV protocols translates
into the coincidence of the value in the s2w scenario with the honest value:

52w (GRad) = 1. (18)

As we said in the introduction, the main question we are interested in is the amount of
entanglement necessary to establish this equality. It is natural then to define a restricted
version of wy2,,(GRrag) considering only strategies using a limited amount of resources.

Here, we restrict the local dimension at any time during the protocol. For k, k e N
we define the scenario &, , as the set of strategies in the form of (15) but with the
following restrictions:

dim(Hg,,) <k,  dim(Hap)-as) X dim(Hap)-pa)) < k.

I.e., we restrict,
¢ € D)
and, for each ¢ € 9,2,
AeCPTP(¢2%, ¢5), B. e CPTP(¢%, %),
A, e CPTP(EL, ¢1), B, e CPTP(, ¢b).
Given this model, we define:

wszw;]},k(GRad) = sup @ (GRad; {Sele)- (19)
{Se }SEGSZw;IE,k

Clearly,

lim w7 (GRad) = 0520 (GRad) = 1. (20)

k,k—o00
We want to study the rate of convergence of this limit. To the best of our knowledge,
it is not even known whether the limit is in general attained for finite k, k. We worry
about lower bounds in k, k when a given degree of approximation is achieved in (20).
More precisely, we upper bound Dk, «(GRad) in terms of k, k and properties of the
strategies considered. However, we postpone those results until Sect. 4. Before that, we
need to provide here two reductions to the kind of strategies we consider in order to
prepare the ground for next section.
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3.1. Use of classical communication in cheating strategies. First, we consider the role
of classical communication between Alice and Bob. In our model, we regard this re-
source as free and, in fact, we built into the structure of the considered strategies the
free communication of the classical information about ¢ (in the second round of local
operations this parameter was considered as public). This is justified by the fact that
our interest is in bounding the quantum resources used for attacking Graq, which are
assumed to be much more expensive than classical communication. However, there is a
potential problem with this approach. That is the possibility of the players using further
classical communication apart from that of e—extra classical communication from now
on. In our model, this extra classical communication would be included in the definition
of the channels A and B;. In the 6S2w’ ik scenario, this would affect the dimension k
being no longer a reliable witness for the quantum resources spent by a given strategy:
k would also include the dimension of the extra classical messages shared by Alice and
Bob. Nonetheless, we show that the amount of useful extra classical communication in
our setting is bounded by the initial dimension of the quantum system manipulated by
the players, that is, by k and n. The following lemma lets us control the contribution of
the classical part of players action to k.

Lemma 3.1. The optimization over § € &, ¢, in (19) can be restricted to strategies
using extra classical communication of local dimension ke < n*k>.
Proof. The result follows from convexity taking into account that the extreme points of
the set of instruments acting on a given Hilbert space of dimension d has at most d°
outcomes. See, for instance, [34, Rmk. 7.9., p.158] (also [17, Corollary 1.36]).
Consider an arbitrary strategy S = { A, B;, A, Be, ¢} € Sy2y:m.k Using extra clas-
sical communication of local dimension m2.;. The dimensions m, m; are free parameters
that will be fixed at the end of the proof. Therefore, we can further specify these classical
messages in the structure of the channels .4 and B, :

mel
AC) = D" A ® lealeal A% € CPELF, €57 ) for any c,.
cqa=1
mej
Be()= > BP()®lep)es| 1 BP e CP(S, €57™) for any cp.

cp=1

These expressions are nothing else than the description of some instruments in
2 . . .
Ins(¢X, Eg’/ ety (Ins(&5 k. 6;"/ "y in the first case) with m.; outcomes each. As we said

at the beginning of the proof, the extreme points of Ins(¢%, E?/ "'y consist of instruments

with at most k2 outcomes (n4k2 in the first case). Therefore, we can rewrite the channels
A, B, as a convex combination of such extreme points:

AC) =) A,
Be(:) =) BesBes(),

where, for each s, ¢:

e 0 <y, ﬁs,sfl:zsaszlzzsﬁs,s;
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o A € Ins(€g4k2, 2'2"/’""’), Be.s € Ins(£%, E'Z"/m"’) with at most n*k2 and k2 outcomes,
respectively. For simplicity we just fix k. bounded by the largest of these bounds,
ket < n*k>.

Denote S;  the strategy specified by elements (Ae, Be, A, Bey, ¢}e and Sg.g 5 ()
the corresponding channels, defined by the generic prescription (15). Notice that Sg (- ) =

Y s By Seis.5(+). Now, focus on the value achieved in Grag. It turns out that
@ (GRrad; S) is linear in S, fact that allows us to write:

Z oy K Z ﬂs,s @ (GRad; {Ss;s,s/}e)

@ (GRrad; S)

< mSaX {]Ea m?/lX {w(GRad§ {Ss;s,s’}s)}} .

Denoting s*, s.* the indexes at which the maxima above are attained, the strategy
{Ag, Be, Ag#, BE’ sp*s ¢}, that uses extra classical communication of local dimension at

most lgcl < n*k2, can be now regarded as an element in &, .z, with k= mlgcl/mcl.

This proves the claim. O

3.2. Pure strategies. The second reduction consists in purifying arbitrary strategies. We
start fixing some notation. We say that a strategy S = { A, B¢, A, Be, ¢} € G2y is
pure if the channels A, B,, A, B, can be written as:

A() =V()VT, Be(-) = We()W/], (21)
Ae(+) = Trane, Ve(HV], Be(+) = Trane, We ()W, (22)
for some contractive operators

V Ha®Hp Q®HE, —> Ha-a ® Ha-B, We . Hg, — Hp-p @ Hp-a4,
Ve i Haon ® Hpoa —> Ha ® Hanc,,  We : Hpop ® Hacp —> Hp ® Hanc,.,

where Hane,, Hane, are arbitrary ancillary Hilbert spaces. In the restricted scenario
S,5,.i k> these operators are of the form:

Veertk kWl kT W — e (23)

where r is some (arbitrary) natural number. For convenience, we identify pure strategies
with families of such pure objects, setting the notation SY = {(Ve, We, V, We, |@)}e.

We further denote G%’zw the subset of pure strategies in the s2w scenario and 6”2 ix

3 s2wsk,

the corresponding subset in the model with limited dimension. Due to Stinespring di-
lation theorem [35], it turns out that G%w = ;2. However, when we restrict the
dimension of the considered strategies, the situation is a bit subtler and the Stinespring
dilation of the channels involved affects the relevant dimensions defining the models
S,py:ix and 6?’210;];]{. This is taken care of by the following lemma:

Lemma 3.2. Any strategy S € &, i, can be regarded as a pure strategy SU ¢

u 7 2172 : ; ; U
. T < T , . C - C
2wk where k' < n“kk~. That is, the chain of containments 6S2w;k’k C 6S2w;k’k -
&Y holds.
s2w; k' k
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Proof. Set a strategy S = {Ag, B., A, B, @} in GSZw;,;,k.
We are going to consider Stinespring dilations to purify the corresponding channels

Se(+)=(A: ®B:) o (AR B) (- ® 9). (24)
We start with
A.. B; € CPTP(L, o).
These channels can be lifted (due to a Stinespring dilation) to be of the form:
Ae() = Trgwe Ve (V] Be() = Tram We (W,

where \75, We : Zg —> {5 ® Hge are Stinespring isometries and dim(Hg:) can be
upper bounded by nk. i i
Proceeding similarly with A € CPTP(egzk, ¢%) and B, € CPTP(¢5, ¢%) we obtain:

AC) = Trane, VOV, Be(2) = Trane, We (W],

for Stinespring dilations V : Zgzk — Zg ® Hancy» We : Ké — Eé ® Hane, such that
dim(Hane,) < nkk, dim(Hape,) < kk.

With all that, and denoting Hane, = Hane, @ Hawes Haney, = Hanes @ Hae, We
define the channels

AU () o= Trane, (Ve ® Wdane,) (+) (V) @ Idane,),

BY () == Trane, (We ® ldancy) (+) (W) ® Idane,),

ALy = VeV, BY() = We ()W
Then, we can rewrite (24) as:

Se(+) = (A4 @ BY) o (AY @ BY) (- @ |o) (9]).

But clearly the strategy SY := {fl{;’ , l’;’é’{ AU, B?, @}¢ 1s pure, finishing the proof
of the lemma. A careful look at the definition of the channels defining SY reveals that
Shec! _  withk' <n’kk®. O
s2w: k' k

With Lemmas 3.1 and 3.2 at hand we can focus now on the study of strategies in

Zs/{zw;l?,k' Given a general strategy S € S 2y k> Lemma 3.1 guarantees that S can be
taken such that the dimension of the classical resources used is upper bounded by

ke < n*k>. (25)

Then, Lemma 3.2 allows us to relate S with a pure strategy SY e s such that

s2w k' k
k' < n’ki?. (26)
Z/{ ~

. . s2w;k’,
the reader to (26) and (25) for the relation with the resources used by more general
strategies. However, notice that these correspondences are at most polynomial in n, k
and k and, in fact, will only introduce corrections by constant factors in the bounds we

Accordingly, in the rest of this manuscript we work in the model & . redirecting
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state later on. In this sense, the precise exponents in (26), (25) are irrelevant. This will
become clearer in the next section. In order to obtain a cleaner notation, from now on
we will use k to refer to the same as k’ above.

For convenience, we finish this section recalling the expression of w(GRad; Su),

Eq. (16), particularized for pure strategies SY = {\78, WS, V, We, ¢}:

©(Graas S*) = B, Tr [ 1) (Wl (e @ S9) (1)) ], )
where now:

SU(.) = Try (7 @ Wo (v @ W) (- @9 (V@ W) (7 @ W]

ancq®@ancy,

Notice that for strategies in the more specific model U , the operators Ve, W,

s2w:k k
V, W, are specified as in (23) and, therefore, H ., and Hanc,, in this case are identified
with ¢ for some r € N. Finally, we provide an alternative expression for (27) that

establishes a first connection with normed spaces:

Proposition 3.3. For any pure strategy S = {V,, W, V, Wy, ¢}:

2
(GRrag; SY) = E.

P Ve ® (jIWe) (VIij) @ W, H :
Z l](l| 3 .]| 8)( |l-]) 8) |€0> HanCa®Ham'[,

Before showing the easy proof of this proposition, let us clarify the notation used
above. By V|ij) we mean the operator V. € M, ., with its indices corresponding

to £5  contracted w1th the vector |ij). That is, if we expand V on its coordinates,

V= Zk, SRV i p) (kim], and then V{ij) = X ) S8 Vi, il p) (m] €
e - Similarly with (i |V, and (j | W.

Proof. The proof is completely elementary and follows the next lines:
In the first place, we notice that for any vectors |£) € H, |n) € H' and any operator
UeBH H®K)

Tr (160661 TrcU ) (o] U] = Tr [ (16) (61 @ 1) U Iy n U]
= (U (&) ® ld) (5] ® 1dic) U )
= | (€l ®1dx0) U n) [ 3--

Applying this elementary identity to [V;) € Ha ® HB ® He = H, |¥) Q |lp) €
HaRHp @ Hce ® He = H’ and the operator Id¢ ® (Ve@We) (VOW,) € BH,H®
Hanc, ® Hane,) we have that, for each e € Q,2:

Tr [ 1) (el (1de © S (1) () |

= E;

(V] @ Wane,0ne) (e ® (T ® W) V@ Wo)) (y @ o0,
ancg ancy,

The claim in the Proposition is obtained from the last line above just recalling the
definitions ) = L Y7 &;jlij)ap ® lij)c and [¥) = L0 |ij)ap ® lij)c. O
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4. Bounds for “smooth” strategies: Theorem 1.1

This section is devoted to the proof of Theorem 1.1, which provides lower bounds
on resources needed to break Gryq by strategies characterized by regularity measures
based on parameter o defined in Sect. 2.3.3. When we refer here to a cheating strategy
for GRrag, unless the opposite is explicitly specified, we mean a pure strategy SY =
{st W67 V, We, lp)}e € Gig 2wk

As explained in the introduction, the main idea leading to Theorem 1.1 is the un-
derstanding of cheating strategies for Graq as assignments on the hypercube Q,», i.e.,
vector-valued functions @ : Q,» — X where X is a suitable Banach space. Given a strat-
egy SY, the corresponding assignment & must be related with the value w (Grad; SY).
Ideally, we hope to bound w (GRragd; sU ) with the expected value of the norm of ®, quan-
tity for which we can use Corollary 2.17 to obtain upper bounds. Proposition 3.3 gives
us a first hint on how to construct ®. Given SY = {Vg, Wg, V, We, |@)}e, consider the
map:

P:09, — @52

; 1 . - .
g Do) = — Y & (iIVe ® (jIWe) (VIij) @ We)lo), (28)
n* 4
where r is determined by the strategy, recall (23).
Proposition 3.3 can be now read as:

(Grag: SY) = E [ @ (). (29)
2

so we are on a good track. It is easy to check that, by construction, || D (¢)|| ,z < 1 for

any ¢ € Q" and therefore the trivial bound E, ||d>(e9)||2 <E, ||d>(£)|| 2 holds With

this and Corollary 2.17, we can obtain—recall Deﬁmtlon 2.14 for 0¢:

@ (Grag; SY) < |E.

2
Furthermore, Té” )(652) = 1 since, more generally, T» (652) =1.

same order as w(GRrag; SY), making the previous bound trivial. In fact, for any given ®

there exists a rather trivial modification of it that does not affect any dimension involved

but provides a function @’ for which ||]E9 o = E. H P’ : SY).
2

This modified version of ® can be constructed as follows. For each ¢ € Q, 2, consider
a unitary R, that rotates the vector ®(e) into the direction of a reference unit vector
|0). @ is defined simply as ®'(¢) := R, ®(¢). Even when this adjustment is com-
pletely artificial—the unitaries R, do not correspond with anything implementable by
the cheaters—the approach presented so far is unable to detect such an artifact. In part,
this is due to the fact that the norm considered on the image of ® does not encode any
of the structure of the cheating action. We now look at alternative constructions for @
that amend this issue.

What we do next, is simplifying the image of the map ® considering more involved
choices for the output Banach space. This allows us to preserve an equivalence of the
kind of (29) while obtaining good upper bounds for H]ESCD(e) || x-
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Given a strategy SU = {Ve, We, V, W, |¢)}e we define the following two alterna-
tives to ®:

o QnZ — Mrk Qmin Mrk
e Dl(e) = Zl, eij (i1 Ve ® (JIWe) (VIij) ® 1d,p).

<I>”:Qz—>8 ®(87,>,25k"
e (o) =5 3 & (i ® (1 ® (VIij) ® We) lg).

These are the central objects we study to obtain Theorem 1.1. For @', recall Sect. 2.3.1
for the definition of the ®,,;, norm, which in this particular case can be also understood
as defined by the (completely) isometric equivalence M, ®minM, ; = M,> ;. In the

case of ®'/ the norm on the output space was defined at the end of Sect. 2.3.3 as the
interpolation space (S} ®, S, S|"" @ S|"")1)2.

Now we comment on the idea behind the definitions of these maps: recall that a
strategy SU =V, We, V, W,, |@)}e consists of two rounds of local operations with a
communication stage in between. Fixing the first round, that is related to V, W, and |¢),
and understanding the optimization over any V,, W, as computing a particular norm
leads us to define ®''. When we fix \78, WS and V—this last one is e-independent—,
optimizing then over any possible (Idzzé ® We)l|p), we obtain O'.

Next we describe how these maps are related to GRrag-

Lemma 4.1. For any strategy sS4,

o (GRraa; SY) < E, | @' ()] g
where we have denoted X' = M. ®min M .z and Xl = Sf’" ey Sf’"
Remark 4.2. For ®'!| the previous statement can be strengthened to

@ (Grag; SY) < E, | (o)

X’iia

where X/ = S{;’" O guw—cb S{;‘". Recall Definition 2.4 for this last norm.
2

Proof. The proof of both items in the lemma follows the same structure. We start with
the bound regarding ®*:

Recalling Proposition 3.3:

2
®(Graa; SY) = E Zsl,( Ve ® (jIWe) (VIi) @ We lg) |
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We bound this quantity as follows:

2
o (Grag; SY) = Ee ZZal,mvs (W) (VIij) @ 1d,0) (g © We) lg)
e
2
< E. sup Zal,(zm (IWe) (VIij) @ 1d ) |g)
|<P>€Blk1; 2 2
ZZ
2
=E sw ¢ @) . =E
|<peB 2
5, [wo] ]
'(e) Vs ®],

The inequality in the last line holds since || i (g) ” M, - = 1 for any ¢ € Q,2. This can
r= kk

be checked by direct calculation or, alternatively, as a consequence of Remark 4.7.
For &', we prove the stronger result stated in Remark 4.2. That is, considering the

map '/ taking values on the space X! Sk " ® e S , we show that:
o (GRraa; SY) < Eq | (&) 5. (30)

Since the norm in X’ is smaller than in X‘’, recall Proposition 2.10, the statement
of the lemma is also true. Following the proof of the first item, we start bounding:

2
1 . - .
©(Graa; ) = Be || — 3 i ({1Ve ® (jIWe) (VIi]) ® We) lg)
ij e
2
1 A .

< B sup |5 > eIV @ (IW) (VIij) ® We) |g)

. n

v, WEBMnr,IZ ij 252

2
- =1 . . .

=E; sup Vew) 7281';((”®(J|®V|1J)®We)l(/))

5 n

v WGBMnrk ij l’z

: 2

—E  sup H(v ® W) (@”(8))

‘7 W nr.k

(LemriaZ.G) del( )‘
— Skn ~w—cbsf'n
2
S P
= B (e) Si"”®6w—cb$f'" e (e) Fii
2
As before, the last inequality is true given that | @' (¢)| < 1 for any

IE,n Iz,n
S] ®6w—cbsl
2

2 . . . .
¢ € Q" . Again, this fact can be shown by direct computation (see Remark 4.7 for an
alternative proof). O
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The regularity of the maps ®'(?) can be characterized by parameters oéu = Ogi
and O’gu := ogi—recall Definition 2.14. More explicitly:
1/2
ogl =logm) Ee | D 118500 @) 200 | 31)
6]

In the case of an arbitrary (possibly non-pure) strategy S, we can assign parameters o é,
o g with the simple prescription:

oé(”) = inf o0,
SU
purifying S

From now on, we omit the subindex specifying the strategy, which is always determined
by the context, and refer to these parameters as ol, ol

The above expressions for o', o'/ can be bounded by the easier expressions appearing
in the introduction. See “Appendix A” for details. In Eq. (31) the analytic nature of these
parameters is clearer while the approximate expressions in Sect. 1 are closer to an
operational interpretation of them.

With definition (31) at hand and taking into account Corollary 2.17, we can obtain:

Lemma 4.3. For any strategy SY,
i
0(Grag: S) = [E @) o+ C o' T8 (X7).
ii.
©(Grad; SY) < |E 0 (2)] gus + C o T (x).
Comment 4.4. Notice the change of norms in the second item of the lemma. This re-

finement is needed later on in order to obtain Proposition 4.6 below.

Proof. The first item is a direct consequence of Corollary 2.17 applied to the bound in
Lemmad4.1, i.

The second item proceeds similarly but with a small detour. Using now Pisier’s
inequality, Lemma 2.16 (with p = 1 and a trivial triangle inequality, as in the proof of
Corollary 2.17), in the stronger inequality (30) we obtain

n
E. Hq>ti(8) H)'(ii =< HES@H(S)H}W + C log(n) E, z k;I &0y D (e) ~
T Xii

Now, according to Proposition 2.10, we can upper bound the last summand above
changing the norm X’/ by X*/. Considering that (recall again Comment 2.12)

Ee,é

n n
B - ) s wii N
klzlekzak1d>”<e)Hx,.,.5T2 (X' Eg(klzl||akzd>”(e>||xﬁ) ,
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we have:
L. 2 .. " .. 1/2
0(Graai ) = B0 @), +C logtn TEV(XT) Be | D2 10" @)1
k,l=1

We obtain Lemma 4.3, ii., identifying o'/ above. 0O

Lemma 4.3 allows us to somehow exchange the lack of control on the behaviour
of a general strategy by the control of some properties of the Banach spaces involved.
Bounding the quantities appearing there, we obtain our main result:

Theorem 4.5 (Formal statement of Theorem 1.1). Given an arbitrary (possibly non-
pure) strategy S € G, i 1

L
: ~ 1
o(G; S) < Cy +Cy o' log' (ki) + O (1—/2) ;
n
11
8 T 1 log(n)log!'/?(nkk)
w(G;S) < C1+C36" log/“(nkk) + O | —= + ,
nl/2 n
where we have denoted 6" = n3/* log(n) o'

Above, Cy, C~'1 < 1, C,, Cs are positive constants.

The following proposition precisely takes care of bounding part of the terms appearing
in Lemma 4.3, as a key step to prove the theorem.

Proposition 4.6. For any pure strategy St e w ik
i

: 3
[Eo' @] = 5+

B

ii.

12017
Ee @ (8)| g < £+ € ,ologmloe IO
u IS x

Bl

where C, C' are universal constants.

The sequence leading to Theorem 4.5 is the following: Proposition 4.6.i = Theorem
4.5.1 = Proposition 4.6.ii = Theorem 4.5.1I. To simplify the presentation, we will
first write the proof of both statements of Theorem 4.5, assuming the corresponding
statements of Proposition 4.6. Then we will prove Proposition 4.6, using Theorem 4.5.1
in the proof of statement (ii).

Proof of Theorem 4.5. To obtain the statement of the theorem, as we already said, we
start considering Lemma 4.3. Then, we need to bound:



Geometry of Banach Spaces 659

2 . 2 ..
1. the type constants ng ) (X") and T;" )(X ). These bounds are already provided in
Egs. (11) and (13), respectively. We recall these bounds here for reader’s convenience:

9O (X1) < Ta(x) S log 2Ry, T97(X1) < n¥*log(n) log /2 (nk):

2. theterms |E, @' (¢) | . and | E; D" () | 3. These quantities are controlled by Propo-
sition 4.6.

With this we obtain the stated bound in the case of pure strategies. Nonetheless, state-
ments about pure strategies can be transformed into statements about general strategies
taking into account the relation (26). As we said at the end of Sect. 3, this relation is
polynomial in the parameters involved and therefore, the change from pure to general
strategies only induces corrections by constant factors that we absorbed in the constants
C»>, C3 present in the statement. Similar considerations deal with the amount of classical

communication included in k, in this case one has to recall Eq. (25). See “Appendix B”
for further details. O

Proof of Proposition 4.6, i. The norm in the L.H.S. of Proposition 4.6, i., is attained at
unit vectors |¢) € Zék , &) € KSZ (independent of e)lo:

[Ee@' @), = [Ee 19 19)| < Ee |1 ') 10)].

Expanding this expression we have:

; 1 e g
IEe®' (e)llum,s ;< Ee | — ;sﬁm ((i1Ve ® (jIWe) (V 1ij) ®Idz§)|§0> |
=E. (€. |9)

)

where we have defined the unit vectors:
_ 1 .. e -
Eeli=— D eilijle ® €1 ({1Ve ® (W),
i,j

1
7)== lic ® (Vi) ®1d,p)lp).
i,J

Now, notice that there exists at least one £* such that |(§€* 1 9)| > |E. D (o) My

Consider this £* to rewrite |@) = |§€* Y+(lo)— |§8* )). An application of Cauchy—Schwarz
inequality gives us the following:

1/2

IE® (&)llm, ;< Be |(€l@)] < Ee |(€clEe) (32)

+ }@ - ge*|¢ - gs*)
Now we bound both summands in the R.H.S. of the previous expression separately:

16" Recall the isometric identity M, ;. Qpin M. =Mo i
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e For the second:

3 172
V< 20 = @) = (200 - 1B ©@)lus,))

(@ —Ecxlp — &)
7 4 ;
=5 3B @'l

where the lastinequality is based on an elementary linear approximation of v/2(1 — x)
(simply by the line tangent to the function in a suitably chosen point).
e For the first one, we will find that:

_ 1
E; |(6.1Ec)] = O(E)

In order to show this bound, we start observing that:

Ee [(€.1E:)| = Ee

1 -~ -~
— D eijely EL((i1Ve VI © (IWe WL 1)) |s>)
ij

1
*
<E sup — ) &ijg;i{&ile;)|.
n2 J
ISi),\tﬂj)EBléz ij
fori,j=I1,....n

An application of the Grothendieck inequality [36] allows us to restrict ¥ = 1 in the
last supremum at the cost of the complex Grothendieck constant K g. Furthermore,
Krivine’s result that the two dimensional Grothendieck constant is equal to V2 [37]
allows to further restrict the supremum to the choice of signs loosing another factor
of +/2 (see [38, Claim 4.7] for an explicit argument). In conclusion, we have the
following bound:

1 1
C
E, sup 5 E 8[j87j<§i|(pj>‘ <V2KSE:  sup - E €ij&;;tis]
I&).l0j)€B o 1TV T fsjefxly  NT
o ij = ij
for i,j=1,...n ford,j=1.....n

But the last quantity is of order O(1/4/n). One can understand this as a consequence
of Hoeffding’s inequality [39]: for each choice (s;,;);; € {£1}" x {£1}" the
probability that n—lz > ;i €i jelf‘jt,-s ; is larger than 2/./n is upper bounded by e 2,
Then, a union bound over the 22" possible sequences (s;, tj);,; € {£1}" x {£1}"
concludes the argument.

Joining everything in (32) we obtain the bound in Proposition 4.6,i. O

Proof Proposition 4.6, ii. Remember that we can already use Theorem 4.5.1 here. It
turns out that Proposition 4.6, ii. is a consequence of this first part of our main theorem.

The key idea is understanding the norm ||E8 it H i s the optimization over some
family of strategies with small enough parameter o*. Concretely, considering the char-
acterization of the norm X! given in Lemma 2.6, we can prove that

.. -~ 1/2
[Ec@ @)z = sup o (GRad; (V. W, V, W, |¢>}e) . (33)
reN

v WEBMnr,/E’
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The desired bound follows now from realizing that in the strategies on which this op-
timization is performed, the second round of local operations, V ® W, is e-independent.

Therefore, for these strategies, according to Example 2.15, ol ~ M, which, in con-
junction with Theorem 4.5, 1., leads to the desired statement. To obtain the precise state-
ment appearing there, we have considered the elementary inequality (1+x)/? < 1+x/2.
Then, to finish, let us prove the claim (33).
Recall that, according to Lemma 2.6 we can write:

B (e)] 3

2
_ reN &

sup | B (7 ® W Y ey (11® G (VI © We) o)
V.WeBy . b

IA

sup E,
. reN
V,WeBy .
nr.k

5.
.
4

1 . -
=2 e (1Y & (GIW) (VIi) @ We) lo)|
iJj

1
Furthermore, considering the elementary bound E.¢(g) < (qub(s)z) 2, valid for
any function ¢ : Q,» — R, we can finally write:

’ I . 2\
[Eeot @l = sp (B |z e @7 @ G Vi @ We gl )’
r .o
\7, WEBManZ b
- . 12
= sup w(GRad; Vv, w, v, W, |§0)}s) :
_ reN
%

N WEBM -
nr,k

as claimed. 0O

We make a final comment that, in some sense, connects with the next section where
we will discuss possible extensions of the approach presented up to this point.

Remark 4.7. The appearance of the norms X = Mr,k®minMr,];a Xi = S{(’" ®(e,7m)1

S{“" above might seem, at some point, arbitrary, in the sense that we have used these
norms merely to upper bound the value w (GRagd, Su). Part of the motivation to consider
these spaces is the fact that we are able to properly understand their type properties.
But we can wonder: is any norm upper bounding @ (GRrad, SY) a reasonable choice
provided that we can control the relevant type constants? Obviously, this is not the case.
Actually, in Sect. 5 we explore further this issue. By now, let us note that the chosen
norms also satisfy some basic normalization conditions. In particular, it can be shown
that the elements constituting ®!, & are well normalized when regarded as elements
in X! and X', respectively. Concretely, for each i, j € [n]

|1V ® (1) (VIig) © 14,0

o=t
xi

for any contractive operators Vg, Wg, V, W, and
i) @ 1)) ® (VIij) & We)lp)llxii <1,

for any unit vector |¢) and contractive V, W,.
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The first bound is straightforward. Since \75 ® Wg and V ® Id S0 are contractive
2

operators, (i| Ve ® ( jl W, and Vi Jj)y®Id /i are also contractive and the same applies to
2

their composition.
For the second bound, fixing i, j, we first notice that |¢) := (V]ij) ® Ide,;z)(Idlizc ®
2

We)|@) has norm |||@) || 2 < 1. Furthermore, considering the norm-one injections ¢; :
2 ~
s p) i) ®lp) € S{"", we have that |i) ® |j) ® |¢) = ; ® 1j(|@)). Therefore
. . ~ ~ Lk k.n k.n
19 @1y & Do, ., 5 = 11902 e @156~ ST @0cm 57 <1
It remains to justify that, in fact,
Ji ®ej: 05 — Sk’n e,y Sk’ﬂ“ =1

ThlS can be proved recallmg that 8 ®(e, 1) S is the interpolation space (S Qe
S , S ®rS k ")1 andE can be also regarded as the space <£ ®e Eg, Ek ®x Ek) )

2
The last assertion can be shown noticing that Zk Qe Eg = M and Ek (g Eg = Sk Given

that, the isometric equivalence (recall Theorem 2.9) (M, Sk)l 2= Sé‘ = Eg provides
the stated fact. Then,

Ji®e: 65— sk ey Sf’"||
<lu®i @ b > S @, 7 @1 b @y & > S @, SE

<l > S0 oy > SE < 1.

5. A Conjecture Towards Unconditional Lower Bounds

In the previous section, we have modified the naive choice (28) for @ in order to circum-
vent the problem that

bounds obtained through Corollary 2.17 to be trivial. The variations &, & allowed us
to obtain the bounds in Theorem 4.5. An unsatisfactory feature of this result is that, in
order to obtain concrete bounds on the quantum resources employed by a given strategy
for GRrad, we still need to make some additional assumption on that strategy. Recall that
in particular, the bounds in Theorem 4.5 depend on the regularity parameters o', o'
Ideally, we would like to obtain bounds only depending on the dimension of the quantum
systems Alice and Bob manipulate.

Following this line of thought, one could ask whether, given a strategy, is possible
to construct a corresponding assignment @ that additionally displays the property of
being regular enough, that is, with oo Sjog 1/7. The answer is affirmative, but the cost
of doing so is that the output Banach space of ® becomes more involved and its type
properties escape from the techniques used in this work. We define:

q)iii : an SN (Si(vn ®6§h—w Sll(’n> ®g Eé];
s> Dlil(e) = L Y 5 WeGle (vViij) ®1dg)

that relates with the value of the game GRryq as stated in the following
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Lemma 5.1. For any pure strategy SY € 6s2w;1€,k"
@ (Grag; S S Ee |07 (&) it
where X111 .= (S{;’n ®65b—w S{;’") Re 5151;
Proof. For each ¢ € Q,2, we have to interpret the tensor il (¢) as the mapping:

il (e) : F — SI" @ gw S
o) = B e)(19)) = 5 Y i (1@ (1 @ (VIij) @ 1d,p) o)

Then, the norm of this map is

1
”cbl”(s)“: Sup ”— 8(l|®(]|®(v|l.])®ld ~)|€0> k.n k.n

0B n? 121: ! E st ®6§b_wsf
2

1 R
= sp swp | > e i@ (1@ (Vi) @ Wlg)|
WeBu 19)€B i n
2

k, kit
. 51'n®6('b7w3| "
ij 2

Recalling once more Lemma 2.6, we can write explicitly the norm above as:

1 S - .
0@l = sup  sup |-x D e IV G (VI @ W)l ..
. meN WeBy, "N T2 12
V. WeBy. k 4

k.nm |(,0>EB[H;
2

Finally, squaring this last expression and taking the expectation over ¢ we conclude
that:

1 O L ..
E 0@ =E  sup  sup |2 > ey (Ve (I (VI @ W)lg)
_meN WeBy, "1 T

v, WEBM/;,mn ‘(ﬂ)eB[éE

2
e’

> E,

1 - -
—5 D & (iIVe ® (IWe) (VIif) @ We) o)
ij

2 u
[mz = ®(GRad; S ),
2

where we have considered that SY = {f/g, Wg, V, W, |@)}e. With that we are almost
done. This last expression is enough to obtain

U iii 2 iii 2

©(Graa: S) < B, |07 )12~ (B 07 @)1,

where the last equality (up to constants) can be obtained using Kahane inequality [26].
This is the claim of the lemma. O

Now, notice that ®*/ is by construction a linear map of the kind of Example 2.15, and,
consequently, ogii S log(n)/n. Furthermore, by symmetry, E, @gb = 0. Therefore,
Corollary 2.17 applied to the statement of Lemma 5.1 implies:

2 2
Tgn )(Xlll)>

n

@(Grad; SY) Siog ( (35)
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The problem now reduces to find a good estimate for the type-2 constant in the last
expression.

We note that the norm X' is the smallest one for which we were able to prove an
equivalent to Lemma 5.1. However, the whole argument from this lemma until here
would be valid for any norm larger than X/’ fulfilling a normalization condition with
respect to the elements that sum up to &%/ (¢). We will be more explicit later on. An

example of such a norm is X' ®, 2’5’2 where X1 = S{"" Oe.m) S{(’". Motivated by the
result obtained previously about the type of X/, Eq. (13), we are led to conjecture that:

Conjecture 1 (strongest form). For any natural numbers n, m, p:

2 2
T3 (ST ®erys SI™) @ €5) Siog T3 (87" ®ermye ST) Siog n¥/%.
(36)

A weaker conjecture which would also imply the desired bounds in the setting of
PBCis:

Conjecture 1 (weaker form).

2
Tgn ) ((8;"’" (e ST’”) R Zf) Slog nf for some B < 1. (37)

According to what we explained above, there is a plethora of norms for which the pos-
itive resolution of the corresponding conjecture would imply unconditional exponential
lower bounds for the resources in attacks for PBC. Next, we formalize this discussion
characterizing those norms and then we rewrite the Conjecture in a unified form.

First, we characterize what we need from a norm X to follow the previous argument
substituting X'/’ by this X. In this section we refer to X as a valid norm if it satisfies:

Pi. X is anorm on the algebraic tensor product S7"" ® S7"" ® €5
Pii. ||x|lx 2 x| xiu for any x € X;
Piii. [li) ®1/) ® (VIij) ® 1)

| x = 1 for any contraction V.

Notice that P.ii. guarantees a relation with the value of Gr,q in analogy with Lemma 5.1

and Piii. guarantees that '/ : Q,, — X still falls in the setting of Example 2.15, i.e.,

we still have ogiii S log(n)/n. These two properties therefore translate in the fact that

the bound (35) is still true with the type-2 constant of any valid norm X instead of X/’
We can state

Conjecture 1 (even weaker form). For some valid norm, i.e. a norm X satisfying prop-
erties P.i., P.ii. and Piii. above, and some dimension independent constant § < 1 :

2
5" (X) Stog 1. (38)
Now, to state our conjecture in its weakest form we need to introduce the notion of

type constant of an operator F' : X — Y. Thetype-2 constantofalinearmap F : X — Y
is the infimum of the constants 7" such that

1/2 1/2
(EE[HZS,'F(M)”?,]) ST(ZH)QH%() :
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for any finite sequence {x;}; C X. In analogy with the case of the type constant of a
Banach space, when the cardinal of this sequence is restricted, we refer to the type-2
constant with m vectors of F : X — Y and denote Tém) (F: X —=7Y).

We are interested here in the type of the identity map Id : X — X'/ being X a valid
norm. In fact, the final statement of our conjecture is as follows:

Conjecture 1 (weakest form). For some valid norm, i.e. a norm X satisfying properties
Pi., Pii. and Piii. above, and some dimension independent constant 8 < 1 :

T;"2> (Id X - x””') Stog nP. (39)

2 s 2
Remark 5.2. Notice that in particular, TS (Id : X — X%1) < TS () for any valid
norm Y such that ||x||yii < ||x|ly S [lx]lx. Therefore, the last statement for our con-

~

jecture, Eq. (39), is indeed weaker than the previous ones.

Within the family of valid norms characterized by properties P.i., Pii., P.iii. we
obviously find the spaces X" and (S}"" ®e,x),, S|'") @ £5. But also, the space
(S;"’" ey S;"”) ®e Eg, see Sect. 2.3.1 for the definition. An obstruction for the tech-
niques used in this work to obtain upper bounds for the type constants of these spaces
is the pathological behaviour of the injective tensor product with respect to interpola-
tion methods [40]. In order to support the validity of the stated conjecture, we explore
next the most direct approaches to disprove it, lower bounding the type-2 constant of
the spaces involved. We find that these approaches do not lead to bounds stronger than
T2 (X) Zlog n3/* for at least some valid norm X.

In first place, one can obtain lower bounds for the type constants of a space X by
estimating the type constant of its subspaces, since T (X) > T, (S) for any subspace
S C X.Restricting to the case of valid norms, the type constants of the simplest subspaces
are not large enough to disprove our conjecture (see [17, Section 4.7.1 ] for details). As
we explain in the next section, another, less trivial, way to obtain lower bounds for the
type 2-constant of a normed space X is by studying its volume ratio.

5.1. Volume ratio. Although the Banach spaces that appear in this work are prominently
complex, for the sake of simplicity we will restrict ourselves to real spaces in this
section. There exist standard tools [41-44] to transfer results in this case to the complex
domain, albeit some technicalities might appear in that process [45]. Since our aim here
is restricted to showing some evidence in favour of our conjecture, we do not think that
these intricacies add anything of essential importance to the following discussion.

A standard approach to understand the type/cotype properties of a space X consists in
the computation of its volume ratio, vr(X), a notion originated in [46,47]. The reason is
that this parameter provides a lower bound for the cotype-2 constant. This is the content
of the following result due to Milman and Bourgain:

Theorem 5.3. ([48]) For a Banach space X,
C2(X) log (2C2(X)) 2 vr(X).

Taking into account the duality between type and cotype constants, Eq. (9), the last result
translates into a lower bound for the type-2 constant of the dual space:

T2(X) = Co(X™) Ziog vr(X™),
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giving as another technique to try to disprove (38). In this section we upper bound the
volume ratio of various valid norms obtaining results that are again compatible with a
positive resolution of the conjecture of the previous section.

We start defining the volume ratio of a normed space X, vr(X). Given a d-dimensional
Banach space X,

1/d
VOld(BX)> ’ (40)

v = <V01d(5X)
where Ey is the ellipsoid of maximal volume contained in By and voly( -) denotes the
d-dimensional Lebesgue measure. Before stating the main result of this section, we make
now a tiny digression about the relation between volume ratio and cotype. In few words,
this relation is still far from being well understood. The question about the existence of
some direct relation between the volume ratio of a space and its cotype—in the opposite
direction to Theorem 5.3—was already asked in the seminal work [47] and also in the
more recent [49]. While it is known that volume ratio and cotype cannot be equivalent in
general!” | it is not known whether a converse to Theorem 5.3 might hold (maybe up to
factors that are logarithmic in the dimension) for spaces with additional structure such
as tensor norms on tensor products of £, spaces, for instance. Studying further these
questions is an extremely interesting avenue to tackle the problems we are concerned
with in this work, at the same time as shedding light on the relation between two very
fundamental notions in local Banach space theory.

We focus on spaces of the form (S]"" ®q S|"" ) ®, ¢4, where S must be understood
as £5' @ £, and the £, spaces that appear from now on, as real Hilbert spaces unless
the opposite is indicated. We prove:

m,n

Theorem 5.4. Let o be a tensor norm such that, for any x € 8" ®q S|
1/2 1/2

L xllgprgusmn < 15l g g ¥l grng, snn

2. ||x||£32m2 < lxllsmng,smn-

Then, considering X = (S;nn Qu S;n’n) ®; €5,
vr(X*) < n¥/4,

The proof uses several standard tools from geometric Banach space theory, mainly
following the approach of [49]. But before going into the proof, we note that some of
our valid norms indeed fulfill the conditions of the theorem. For illustrative purposes,
we briefly comment on the case of the (complex) spaces (S| ®sy Si"") ®: ¢5 and
(87" @(e,7)1,, S1"") ®¢ £5 that have appeared before in our work. Both fulfil conditions
1 and 2 in the statement above. Let’s see that:

From Proposition 2.10 we know that

I¥llspragysys < ISy, s (“41)

17 1t can be seen that the volume ratio of the space egg @©oo 5 is bounded by a universal constant for any

n € Nand any 0 < o < 1. However, the cotype-2 constant of this space is of order n®/2. We are indebted to
Elisabeth Werner for kindly communicating us this counterexample.
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Standard properties of interpolation (Theorem 2.7) guarantee that (¢, 7)1, is a tensor
norm'8 fulfilling

Nl vo, vy < ||x||;,éz||x||%2 , for any finite dimensional Banach spaces Y, Y.

(42)

In order to see this last inequality, just apply, for a given x € Yy ® Y7, Theorem 2.7 with
Xo= X1 =Rand f(A) = Ax.

Finally, using the fact that &% coincides with the Euclidean (or Hilbert—Schmidt)
norm in the tensor product of Hilbert spaces (fact that follows directly from the definition
of the &% norm), together with the facts that it is a tensor norm and the identity map
S"" — 83" has norm < 1, one gets

Il yne < I lspng gy s 43)

The desired claim follows putting together Eqs. (41), (42) and (43). An important
point to stress here is that, in order to apply Theorem 5.4, real versions of these spaces
must be considered. In the first case, one obtains a real version of &Y just restricting
the underlying field to R in Definition 2.3. The second case is a bit more subtle since
the complex interpolation method is inherently defined over complex normed spaces. A
way to formalize the discussion at this point is considering the real interpolation method
[22, Chapter 3]. Following the standpoint fixed at the beginning of this section, we leave
aside these technicalities that we think do not add much to our discussion.

An important feature of spaces of the form (S}"" ®q S|"") ®, €5 is the fact that, by
construction, they have enough symmetries. This will be exploited in the following proof
with no further mention. The reader can find some additional information in Appendix
C.

Proof. We start noticing that « being a tensor norm translates into the fact that X has
enough symmetries. This means that the only operator on that space that commutes with
every isometry is the identity (or a multiple of it). The same happens with the dual X*.
Next we give an alternative way to compute the volume ratio using this property. To
simplify notation, denote d = dim(X) = n?m? p. Then, we can bound (40) as follows:

1/d
] lg(Bx+
vr(X™) @ <M> HId : ég — X*

VOld(B(czl)
i [volg(B,a)\ /¢
R P’ 4 1a:ed — x*
volg(Bx)
i) [1d: €5 — x*| ( 1 >1/d
- Jd voly(By)
(v) |1d: € — X*|
< —E|Glx, (44)

- Vd

where G = Zi,j,k,l,h 8ijkinli) (j1®k)(l|®(h|is atensorin X* withi.i.d. gaussian entries
8ijkin- The expectation is over these random variables. With respect to the chain of claims

18 Atleast in the category of all finite dimensional normed spaces, which is the relevant setup for this work.
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implicit in the previous manipulation: (i.) follows from the fact that the maximal volume
ellipsoid Ex+ coincides with ”Id : Z‘g — X* ||_1 B,a when X* has enough symmetries
[25, Section 16], in (ii.) we have used the famous Blaschke—Santalé inequality [21,
Section 7], in (iii.), the standard volume estimate for the Euclidean ball vol, (ball(ﬂg)) R
d=/2 and (iv.) follows from Lemma 3.4. in [49].

As a consequence, to obtain the stated bound we have to estimate the quantities
I1d: ¢4 — X*| and E ||G||x.

e Upper bounding ||Id : Kg — X* ||

We show two complementary bounds for this quantity. The first one uses the second
condition in the statement of the theorem, that can be equivalently stated as: ||Id :

S ®q S — ggzmz | < 1. This allows us to bound:

Hld od X

= [1d: x - ]

= [1d: (S o ST @0 8 — 2’2’2’"2””
< e g — |

<Jp

The mentioned hypothesis was used in the first inequality above.

Our second bound comes from the observation that the operator norm we want to bound
m,n

is indeed upper bounded by the 2-summing norm of the identity between S| ® S{”’"

2,2 . .
and £5 ™. We can alternatively understand the studied norm as:

a: e > x*

= [1a:x - ¢4

[1d: €8 @ (87" @0 S7) — eLes™)

IA

sup [1d+ ¢4 @ (S} o S™") — €55
peN

=1 (Id (S ®y ST — egz’"z) ,

where the last equality is simply the definition of the 2-summing norm of the indicated
map—recall (5). While now we don’t need the hypothesis used before, we need to invoke
the tensor norm properties of . Hopefully, thanks to this property'®, Lemma 5.2. of [50]
provides us a satisfactory way to compute the above norm. Under the consideration that

S ®q ST as well as (;2”’2 have enough symmetries in the orthogonal group—see
Appendix C—, the cited lemma allows to write the following identity:
nm
i) (Id (S Qe ST — £§2m2> = — .
[1d: e — sy @, Sy

Taking into account the two bounds above, we can state that, under the conditions in the
theorem:

nm

’1(1 Lt S g, ST

1d: ¢ > x| < min | 7. (45)

19 See again Appendix C for clarification.
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e Upper bounding E |G| x:
The upper estimate of this quantity follows from Chevet’s inequality [51], see also [25,
Section 43]. According to that:

ElGllx =ElGl(srg,sm")0.e0

1/2
2
= sup > lewiiewan|
WGB(Sm,n® Sm,n)* ijkl
/2
sup (Zw( h|>|2> E| Y aumtdl® W | g
WEB(KI)) i,j,k,l 1 Qu 1

Here we note the coincidence of the 2-sums above with the norm of the following identity
maps (in both equations below, the LHS is merely the explicit expression of the norms
in the RHS):

1/2
sup (Z o (1)l ® |k>(l|)|2) s (ST g STV — e

@EB(S?I,II@(XS?LH)* i,j,k,l

1/2
sup <Z|¢(h|)|2> =|1d:ef — &b

WEB([P)

Furthermore, to simplify the presentation we also introduce the notation g =
> ikl &ijki1){Jj| ® |k)({l|. With these comments, we can write

E|G|x < Hld Smn Ru Smn En m?

+ [1d: 65 — €] E lgllsrrg,smr
~1d: (SP" @ ST — 7| P+ E lgllspg,sr

Now, it just left to bound E || g|| SIS For that, we make use of hypothesis 1 in the
statement, that is:

1/2 1/2
Eligllspro.spe < E (18l grng, gnnl8lgnng, snr)

1/2 1/2
= (Elglspa,spr)  (Elglspaspr)

The first term can be bounded as follows: we use the isometric equivalence S}"" ~
05 ®x 4 and the fact that the projective tensor norm is commutative to obtain that
8;"’" R S{" M~ 5 @ U5 ®y Sy isometrically. Furthermore, considering that ||Id :

6’112 > U} ®n b - €5 Q7 5] < 1and |Id : S — S"|| < /m, itis also true that:

E ||g||€g®”(g®n5m = vim E ”g”[)l Sm
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Similarly, using now that |[1d : £2° — €| < n,
Vgl 2 o) < nV/mE gl gp) = VM E gl
The estimate E || g]| 2,2 < nm allows us to conclude:

eg m
2. 3/2
E ||g||$i"’"®n$i"’" < n/mnm = n*m>?.
For the other term, we use again Chevet’s inequality:

E| Y suuliiil® k| <o i (M)

ijk,l SireST
— " E| Y el 1]
ij !
=2V E| Y elidtil | g
ij !
< Vnnym = 3P/,
With the previous bounds, we obtain:
2,2
ElGllx S [ld: 5™ — S @ S| /p +1n"*m. (46)
To finish, we introduce in (44) the information given by (45) and (46):
J1a - ed — x*
vr(X*)< E|G
Nz I1Gllx
min | nm
_ (\/ﬁ ’Id:lg%nz_)sin,n@a‘g;n.n >
~ nm./p
2.2
(Iha: 5™ — 7" @u 1| /b + n7/m)
nm 2.2
= . pn?m? m,n m,n HId : @g "= 'S;nﬂ QBa 31”’”“ vp
/P 1 e — S @ S|
+ in7/4m =1+n/%
nm./p

that is enough to conclude the proof of the statement of the theorem. 0O

6. Discussion

In this work we have proposed a protocol for PV, referred as Grag throughout the text,
and proved lower bounds on the quantum resources necessary to break it. Our bounds,
appearing in Theorem 4.5, do not answer in a definite way Question 1 and, in particular,
are not enough for providing security guarantees for Gr,q in full generality. The reason
is that the bounds presented in Theorem 4.5 depend on some additional properties of
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the strategy under consideration: the parameters o, o'’ related with the regularity of
the strategy when regarded as a vector-valued assignment on the Boolean hypercube,
cf. Sect. 4. However, our Theorem 4.5 is strong enough to encapsulate some previous
results. As mentioned in Sect. 1, the hypotheses of Corollary 1.2 are satisfied by the
teleportation based attacks of [9] and [2] and also by Universal Programmable Quantum
Processors, rederiving in that way some results in [2,9, 14]. Furthermore, we have related
our Question 1 with the type/cotype properties of specific Banach spaces and, in fact, the
obtained results led us to put forward a conjecture about these mathematical objects. The
positive solution of this conjecture would imply a major progress in the understanding
of Grag—see Sect. 5 for a formal statement of the conjecture and details about the
connection with the security of Grag. In this last section we have also provided some
estimates supporting the conjecture. We have proven bounds for the volume ratio of the
spaces involved there relating, as a byproduct, our conjecture, and therefore the problem
about the security of Graq With open problems in Banach space theory concerning the
relation between cotype and volume ratio.

The future direction for this work is clear: trying to resolve the status of the security
of GRrag. Starting with the setting we introduced in Sect. 5, the most direct approach
consists in developing new techniques to estimate type/cotype constants of tensor norm
spaces. This is in fact an interesting avenue also in the context of local Banach space
theory and we hope that this work could serve as motivation to pursue it. Extending the
family of spaces whose type/cotype constants can be accurately estimated might shed
new light on several poorly understood questions in this context, as it is the relation
between volume ratio and cotype or the prevalence of type/cotype in tensor norms.

Coming back to our o—dependent bounds, Theorem 4.5, it would be also a desirable
development to achieve a better understanding of the regularity parameters introduced
there, o’ and o’/ . For example, it would be very clarifying to understand how the structure
of strategies is restricted under the assumption of these parameters being small (in the
sense of Corollary 1.2) or whether general strategies can be made more regular in order to
have a better behaviour in terms of these parameters. Another interesting question in this
direction is understanding whether o/, o'’ can be related with some physical properties
of the strategies involved, such as their robustness against noise or the complexity of the
operations performed.

Beyond the specific setting studied here, we have introduced a whole toolbox of
constructions and connections that can be of interest in other related contexts. Firstly,
most of the ideas we have used to study Graq can be explored in other quantum games.
More specifically, we can consider a modified version of Graq in which the verifiers
only have to communicate an n?-dimensional quantum system to the prover—without
the assistance of any further classical communication. A more detailed account of this
tentative line of research was given in Sect. 1.1. Even when some of the results achieved
in the present work carry over this modified setting, some new challenges appear whose
exploration we leave for the future.

Being more speculative, the recent connection between PBC and AdS/CFT [5,6]
seems to indicate that the tools we use here might have potential application to the un-
derstanding of holographic duality. Along this line, we can ask, for example, whether
the notions of regularity studied here can be related with properties of the mapping be-
tween bulk and boundary theories in this context. In [6] it was claimed that properties
of the AdS/CFT holographic correspondence allow to find cheating strategies that break
PBC with polynomial resources. According to that, the exponential lower bounds in
Corollary 1.2 opens the possibility to impose restrictions on the regularity of such holo-
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graphic correspondence. This would be in consonance with a recent result of Kliesch
and Koenig [52], based on previous work of Jones [53]. In [52], the continuum limit of
discrete tensor-network toy models for holography was studied finding that, generically,
this limit is extremely discontinuous.
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A. Handier expressions for ¢*, 0"’

In this appendix we provide some expressions upper bounding o and o'’/ . The advantage
of these expressions is that they are easier to compute and can be expressed directly in
terms of the elements of a given strategy. However, we stress that in general these bounds
might be inaccurate.

Proposition A.1. Given a pure strategy SU = {Vg, We, V, W, ) }e € Gsou,s

i

12
: 1~ ~ - ~ 2 1
o' <iog Ee ZE“VS®W€—V§ij®W§ij . +0(;>;
ij re kk’/
ii.
172
i < 1 2 1
0 Jlog E. Z E ” (Idz’g’ ® (We — Wg".i)) le) oK +0 ;l .
— 2
LJ

Proof. We provide simple, likely far from tight, bounds for the quantity

1/2

i(ii) 2
> loealy,,
¥
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appearing in (31) (recall that X’ = M2 jos Xi = S{c,’” O(e.m), S]f/’"). Recall also

[ yeeesEijreensnn)—D sy =&y
that 0;j®(e) = (E11seensEij s Enn) > (Gl Eij -
notation denoting (€11, ..., —&j, ..., &) aS €Y.
In the case of @',

=m) 1n the rest of the proof we shorten

19: @ (€)1,

/27/(,2/
1|1 - - - -
=5l D e (((prs ® (qIWe) — (pI Vs ® <4|ng/)) Vipg) ®1d 1)
P.q#i,j

1 - - -~ ~
+ ey (Ve ® (G1We) + (1 Vs ® (G1We) (VIif) ©1d,0)

Mrz.ki’
1)1 ~ ~ . -
< 5‘ =2 e (P17 @ (1) = (01 Ve ® (@1 We) (VIpg) ©1d o)
P.q Mrz,kl;’
L2
n2
1 . - . - 1
=S| Wel [((T@ W) = (T @ W) (V@) @ldwc | 19)|  +0 (=
2 € € i n2
Mrz,kl:’
1 - - - ~ 1
= 5| (Ve ® We) = (Vaii ® Wiis) +0| = ).
Mrz,kfc’ "
For &',
i ll A/ il
”8!] Q> (8)”Sll'c,n@(&ﬂ)‘/2 Sic n

1)1
‘rTz > e lP)®la) @ (Vipg) ®1d ) (1dy ® (We = Wen))lg)
Pq#Lj

Lo ,
+—z e 1) @ 1)) @ (VIij) @ 1d ) (Id g @ (Wet Wein)) )

i
[2

i

@, K/,
S "8, S "

o 1 1
Z E niz 2 : 8[)6] |p) ® |q> ® (V|pq) ®Ide§/z)(ldzé ® (Wg - ng/))ko) i Pn
P S178¢m,, St
N 2
n2
1
<53 2 |1 ®10)® (Vipg) ®1d,2) (1 @ (W, = We)lg)| ‘
n 2 2 Sk s
P-4 1 (e.m)1), 91
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1
+0\|—
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1
+0|—= ).
R <n2>

The previous two bounds lead automatically to the claimed statement.

In (*) we have applied a simple triangle inequality and used the fact that the elements in
the sum are well normalized in the considered norm, recall Remark 4.7. For (**), if we
denote |¢,q) == (V|pg) ® Idzg/z)(ld%/ ® (W, — Wij))|g), we have to notice that, for

each p,q,|p)®1q) ®10pq) = tp @ty (|@pg)), Where 1, 1, are the injections considered
in Remark 4.7. In that remark, we have proven that ¢, ® t, is a contractive map from

1
<1 H (s ® (We — Wa)l)

S " Q. i, S " into Ek Inequality (**) follows from this observation. O

B. Non-pure strategies in Theorem 4.5

We give here some further details towards the proof of Theorem 4.5. We first explicit
the statement we obtain in the case of pure strategies and then, how to obtain the general
statement appearing in 4.5.

U U .
Claim B.1. For " € & 2w

L
1
(G; 8Y) < C; + Cy o' log! (kK" + O ( 1/2)
1.
Uy _ iy 120 7 1 log(n)log'/?(kk)
w(G; 8" < C1+C56" log/~(nkk'y + O Tmt————— |-
n n
where we have denoted 6" = n3/* log(n) o'

Above, Cy, Cy < 1, C}, C} are positive constants.

Proof. Lemma 4.3 provides the following bounds:

0 (Grag; SH) < |Ec® (&) i + C o TV (X7), (47)
0 (Grad; SH) < @ (&) gus + C o TS (7). (48)

Taking into account the estimates
TPV (X)) < To(Xh) Slog2(E), T (X S n¥/* log(n) log > (nk),
and Proposition 4.6, Eqs. (47), (48) transform in:

3
@ (Graa; SY) < 2t 0 ( ) +C o' log!?(kk',

/2
V3 1 log(n)log'/?(kk'
w(GRad;Su)ST*‘O ﬁ+ g(n) 5 )

+C o' n3/*log(n) log!/? (nk).
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Now, we use Lemma 3.2 to translate the previous bound to the case of a general strategy
S, obtaining that way the statement appearing in the main text.

Claim B.2. The previous claim implies, for any S € &, .t ,» the bounds:

L

. - 1
®(G; S) < Cy +Cy 0" log'*(nkk) + O (W) ;
n

11

- y . 1 log(n) log!/?(nkk
0(G: ) < €1 +C3 5" log2(nkk) + 0 (W 4 loglos 7n )> ,
n n

_ 3/4

where we have denoted &'t log(n) o'

Above, Cy, 61 < 1, Ca, C3 are positive constants.

u ~

~ s2w; k',
estimate, also provided in that lemma, is that k¥’ can be taken to be lower or equal than
n’ki*.1e., S satisfies Claim B.1 with k¢’ < n?kk*. Furthermore, we can roughly bound

Proof. Lemma 3.2 allows us to consider S as a pure strategy in & e The relevant

kk' < nkk' < (nkk')®,

for some positive constant «. Since those factors appear in Claim B.1 only inside a
logarithm, the exponent « only changes the constants Cj, C5 appearing there. O

&
- kel ’
where k.; was the dimension of the classical messages used in the strategy, it is possible
to argue similarly as above using this time Lemma 3.1. The result is exactly the same,
only the constants C», C3 are affected.

If one wants to state Theorem 4.5 in terms of the raw quantum dimension l;q =

C. Tensor norms and enough symmetries

In this appendix we give some additional information about spaces with enough sym-
metries and spaces with enough symmetries in the orthogonal group, properties used in
our Theorem 5.4. Given a Banach space X, we refer to the group of isometries on that
space as the symmetry group of X.

Definition C.1. A Banach space X has enough symmetries if the only operators on X
that commutes with the symmetry group of the space are A Idy for some scalar A.

It easy to see that if X has enough symmetries the same happens with X*. Furthermore,
itis a piece of folklore that tensor norms also respect this property. That is, for any tensor
norm o, X ®, Y has enough symmetries when X and Y have enough symmetries. This
fact follows from noticing that for any isometries f, g in X and Y, respectively, f ® g
is also an isometry in X ®, Y. This is guaranteed by the metric mapping property (4).
Finally, in [50] the notion of enough symmetries in the orthogonal group appears in the
statement of [50, Lemma 5.2], result used in our proof of Theorem 5.4.
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Definition C.2. An n-dimensional Banach space X has enough symmetries in the or-
thogonal group if the symmetry group of X includes a subgroup of GL(n) verifying the
property that the only operators on X that commutes with that subgroup are A Idy for
some scalar A.

We finally comment that tensor norms also preserves the property of having enough
symmetries in the orthogonal group. The reason is the same as in the previous case of
simply having enough symmetries. Furthermore, it is obvious from the definition that

¢35 has enough symmetries in the orthogonal group and, therefore, £7 ® Eg/, (05 ®q

Eg/) Ry Kg//, ...are also spaces with enough symmetries in the orthogonal group when
a,a’, ... are tensor norms. In particular, the spaces considered in Theorem 5.4 have this

property.
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