
The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

State-specific solvation for restricted active
space spin–flip (RAS-SF) wave functions based
on the polarizable continuum formalism

Cite as: J. Chem. Phys. 156, 194110 (2022); doi: 10.1063/5.0091636
Submitted: 16 March 2022 • Accepted: 28 April 2022 •
Published Online: 20 May 2022

Bushra Alam,1 Hanjie Jiang,2 Paul M. Zimmerman,2 and John M. Herbert1,a)

AFFILIATIONS
1Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
2Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA

aAuthor to whom correspondence should be addressed: herbert@chemistry.ohio-state.edu

ABSTRACT
The restricted active space spin–flip (RAS-SF) formalism is a particular form of single-reference configuration interaction that can describe
some forms of strong correlation at a relatively low cost and which has recently been formulated for the description of charge-transfer excited
states. Here, we introduce both equilibrium and nonequilibrium versions of a state-specific solvation correction for vertical transition energies
computed using RAS-SF wave functions, based on the framework of a polarizable continuum model (PCM). Ground-state polarization is
described using the solvent’s static dielectric constant and in the nonequilibrium solvation approach that polarization ismodified upon vertical
excitation using the solvent’s optical dielectric constant. Benchmark calculations are reported for well-studiedmodels of photo-induced charge
transfer, including naphthalene dimer, C2H4 ⋅ ⋅ ⋅C2F4, pentacene dimer, and perylene diimide (PDI) dimer, several of which are important in
organic photovoltaic applications. For the PDI dimer, we demonstrate that the charge-transfer character of the excited states is enhanced
in the presence of a low-dielectric medium (static dielectric constant ε0 = 3) as compared to a gas-phase calculation (ε0 = 1). This stabilizes
mechanistic traps for singlet fission and helps to explain experimental singlet fission rates. We also examine the effects of nonequilibrium
solvation on charge-separated states in an intramolecular singlet fission chromophore, where we demonstrate that the energetic ordering of
the states changes as a function of solvent polarity. The RAS-SF + PCM methodology that is reported here provides a framework to study
charge-separated states in solution and in photovoltaic materials.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0091636

I. INTRODUCTION

Multireference wave function methods1–3 are important tools
in the quantum chemist’s arsenal, for the description of static cor-
relation in systems with stretched bonds or other types of (near-)
degeneracies, as well as open-shell systems including radicals and
excited states.2 However, the exponential scaling of computa-
tional cost with respect to active space size, for methods such
as the complete active-space self-consistent field (CASSCF) the-
ory, limits the size and scope of problems that can be addressed
in this way. To reduce the cost of multireference approaches,
alternative Ansätze have been developed, notably spin–flip (SF)
methods.4–9 Among the SF family of approaches, one of the most
important variants is the restricted active space (RAS-)SF method.
Configuration interaction (CI) wave functions within the RAS

family include all possible configurations within an active space
and (at a minimum) single excitations into and out of the active
space.10 As such, RAS-SF provides a low-cost, balanced treat-
ment of ground and excited states with multi-radical character.5,6

Unlike CASSCF, the RAS-SF technique does not require orbital
optimization, which significantly reduces both complexity and
cost.5–7

A recently developed variant of RAS-SF allows analysis of
charge-transfer (CT) states,11 which were previously inaccessible to
the theory. The new method can compute not just CT states but also
electronic couplings, using a diabatic framework that may facilitate
a more in-depth understanding of photophysical processes such as
artificial or biological light-harvesting. The position of CT states in
the excitation manifold is often sensitive to polarization effects,12–15

even in low-dielectric environments such as organic photovoltaic
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materials.15 Therefore, some treatment of the surrounding medium
is likely necessary in order to make contact with experiments.

In the present work, we augment the RAS-SF methodology
to include solvent polarization based on dielectric continuum the-
ory,16 within the framework of the polarizable continuum model
(PCM).16–18 Specifically, we introduce both equilibrium (state-
relaxed) and nonequilibrium versions of the RAS-SF + PCM for-
malism, in order to account for differential polarization upon
electronic excitation of the solute. The nonequilibrium continuum
approach16,19–24 separates the medium’s polarization response into
fast (electronic) and slow (vibrational and orientational) compo-
nents, then uses the solvent’s optical dielectric constant (ε∞) to
describe the fast processes while the static dielectric constant (ε0)
describes the total polarization response, including both nuclear
and electronic contributions. In this way, nonequilibrium PCMs
describe the change in electronic polarization following a sudden
change in the charge distribution of the solute, corresponding to
vertical electronic excitation20–22 or vertical ionization.21,23,24 In con-
trast, the state-relaxed algorithm is targeted at equilibrium solvation
where all polarization mechanisms are fully relaxed in the excited
state, as appropriate for the description of emission.

II. THEORY
The method introduced in this work builds upon the RAS-SF

approach for CT states,11 introducing a PCM framework for solva-
tion effects. The RAS-SF formalism is briefly reviewed in Sec. II A,
following which we introduce the state-specific equilibrium and
nonequilibrium solvation theories in Secs. II B and II C, respectively.
The nonequilibrium version is built upon a perturbative framework
introduced previously.20–24 Section II D describes how the PCM the-
ory is integrated with the RAS-SF approach to computing the wave
function.

A. RAS-SF wave function
A RAS-SF calculation starts from high-spin, restricted open-

shell Hartree–Fock (ROHF) reference orbitals, from which target
states of interest are computed via SF excitations. The RAS scheme
divides the orbitals into three subspaces labeled RAS1, RAS2, and
RAS3 and the wave function Ansatz for RAS-SF is

∣Ψ⟩ = ∑
m∈RAS2

cm∣ϕm⟩ + ∑
h∈RAS1
m∈RAS2

chm∣ϕ
h
m⟩ + ∑

p∈RAS3
m∈RAS2

cpm∣ϕ
p
m⟩. (1)

The RAS2 space is the active space and should include the most
important orbitals needed to describe the electronic states of inter-
est;m ∈ RAS2 in Eq. (1) includes all configurations within the active
space, meaning that RAS-SF resembles a CAS-CI method within the
RAS2 space. The RAS1 space contains all doubly occupied orbitals
and RAS3 contains virtual orbitals, and we allow single excitations
between these two subspaces and RAS2, corresponding to holes
h ∈ RAS1 and particles p ∈ RAS3. This particular Ansatz has been
called RAS(h,p)-SF.10,11

To describe CT states,11 the high-spin reference orbitals are first
localized onto molecular fragments, where they are then categorized

FIG. 1. Schematic representation of the states that emerge in RAS-SF from a high-
spin quintet reference configuration. Note that each state (including the ground
state) emerges from the diagonalization of a CI Hamiltonian, indicated by the gray
box.

by subspace (RAS1, RAS2, or RAS3) and fragment. The RAS Hamil-
tonian is then partitioned into CT and non-CT blocks, where the
latter will also be called the “locally excited” (LE) block. Diagonaliza-
tion of these blocks provides either the LE states or the CT states, and
the latter are further grouped into left–right vs right–left character,
or equivalently A→ B vs B→ A (Fig. 1).

B. Equilibrium state-specific solvation
Electrostatic interactions between the electronic ground state

of the solute and the continuum solvent are described by a reaction-
field operator, R̂0. The total electronic energy in the ground state
is

E0 = ⟨Ψ0∣Ĥvac + R̂0∣Ψ0⟩, (2)

in which Ĥvac is the vacuum (gas-phase) Hamiltonian. The subscript
“0” in R̂0 indicates that the ground-state wave function is used to
polarize the medium. In a ground-state self-consistent reaction-field
(SCRF) calculation, the energy that is variationally minimized is not
actually E0 but rather the free energy G0 = E0 −W0, where

W0 =
1
2
⟨Ψ0∣R̂0∣Ψ0⟩ (3)

is the work required to polarize the continuum. A ground-state
SCRF calculation therefore corresponds to minimization of a
functional G0[Ψ] that is given by16,25

G0 = ⟨Ψ0∣Ĥvac +
1
2
R̂0∣Ψ0⟩. (4)

We will now extend this idea to state-specific solvation of
an excited-state wave function ∣Ψk⟩, starting with an equilibrium
approach in which the polarization of the medium is fully relaxed
with respect to the excited-state charge distribution, using the
solvent’s static dielectric constant (ε0) to represent all possible polar-
ization mechanisms for the medium. This approach should be valid
in the long-time limit after excitation, whereas the case of a sudden
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(vertical) excitation requires a nonequilibrium approach, as devel-
oped in Sec. II C. For equilibrium solvation on excited state k, one
must solve the state-specific Schrödinger equation

(Ĥvac + R̂k)∣Ψk⟩ = Ek∣Ψk⟩. (5)

(Our notation for excited-state PCM calculations follows that used
in a recent review.16) The quantity R̂k is the reaction-field operator
for state k, meaning that the charge distribution corresponding to
wave function ∣Ψk⟩ is used to polarize the medium. Since R̂k depends
on ∣Ψk⟩, Eq. (5) must be solved iteratively and this constitutes the
excited-state SCRF problem.

In analogy to Eq. (2), the electronic energy for state k in this
fully relaxed approach is

Eeq
k = ⟨Ψk∣Ĥvac + R̂k∣Ψk⟩, (6)

using a superscript “eq” to indicate equilibrium solvation. The
corresponding free energy is

Geq
k = E

eq
k −Wk, (7)

where

Wk =
1
2
⟨Ψk∣R̂k∣Ψk⟩ (8)

represents the work required to polarize the continuum using R̂k.
The fully relaxed (equilibrium) excitation energy is

Geq
k −G0 = ΔEeq

k −Wk +W0, (9)

where

ΔEeq
k = E

eq
k − E0 (10)

is the state-specific eigenvalue difference. The quantity Wk −W0
in Eq. (9) represents the differential polarization work between the
excited state and the ground state.

The iterative procedure required to solve the state-specific
eigenvalue problem in Eq. (5) is relatively straightforward if there are
no quasi-degeneracies, although this equation must be solved sep-
arately for each electronic state of interest. However, the presence
of near-degeneracies may lead to convergence problems associated
with root-flipping, and properties other than the energy (includ-
ing oscillator strengths) are not entirely well-defined because the
excited states are not eigenfunctions of a common Hamiltonian
and are therefore not orthogonal to one another.26 To circum-
vent these difficulties, we next describe a perturbative approach to
state-specific solvation,20–22 which furthermore allows for all of the
solvent-corrected excitation energies to be obtained from a single
calculation, including nonequilibrium corrections.

C. Perturbative state-specific solvation
We next describe a nonequilibrium approach to state-specific

solvation that is appropriate for modeling vertical excitation ener-
gies.16 The nonequilibrium formalism recognizes that nuclear
(vibrational and orientational) degrees of freedom within the
(implicit) solvent do not respond quickly enough to remain in equi-
librium with a vertical electronic transition, and indeed this is the

sense in which the excitation is “vertical.” There is also an electronic
component to the solvent’s polarization response, however, and it
ought to remain in equilibrium with the solute. The total polariza-
tion in the ground state is thus partitioned into “slow” (nuclear) and
“fast” (electronic) components,

R̂0 = R̂s
0 + R̂

f
0. (11)

Operationally this means that the ground-state polarization charge
σ0 (generated by R̂0) is partitioned as σ0 = σs0 + σ

f
0, where16

σs0 = (
ε0 − ε∞
ε0 − 1

)σ0, (12a)

σf0 = (
ε∞ − 1
ε0 − 1

)σ0. (12b)

The solvent’s optical dielectric constant (ε∞), which has been
called the “dielectric constant for induced polarization,”27 is used to
describe electronic polarization.

Considering the equilibrium expression for Ek in Eq. (6),
where R̂k = R̂s

k + R̂
f
k, a corresponding nonequilibrium expression is

obtained by instead using R̂s
0 + R̂

f
k as the reaction-field operator for

excited state k, corresponding to a state-specific polarization charge
density σk = σs0 + σ

f
k. This substitution affords

Enoneq
k = ⟨Ψk∣Ĥ

noneq
k ∣Ψk⟩, (13)

where

Ĥnoneq
k = Ĥvac + R̂s

0 + R̂
f
k (14)

is a state-specific Hamiltonian for nonequilibrium solvation.
As discussed in the context of the equilibrium case, the state-

specific nature of the Hamiltonian may lead to convergence prob-
lems and other formal complexities arising from the nonorthogo-
nality of the excited-state wave functions.16,26 As a result of root-
flipping problems, it is probably only realistic to imagine a fully
self-consistent solution to the state-specific Schrödinger equation in
cases where the state k of interest is spectrally isolated, unless special-
ized convergence algorithms are employed.26 (One such algorithm
is described in Ref. 26.) Even if convergence is not problematic,
a separate calculation is required for each excited state. For rea-
sons of simplicity, we desire an approach that can generate the
entire spectrum in a single calculation. A perturbative approach to
incorporating the solvation correction solves both of these problems.

To obtain such an approach, we start from the unperturbed
Hamiltonian

Ĥ0 = Ĥvac + R̂s
0 + R̂

f
0 (15)

that is simply a rewriting of the ground-state Hamiltonian in
Eq. (2), but in a form that suggests a partition of the state-specific
Hamiltonian in Eq. (14), namely,

Ĥnoneq
k = Ĥ0 + R̂f

k − R̂
f
0. (16)

Introducing a perturbation parameter λ, this partition can be used
to develop a perturbation theory expression for the energy of state k,
including nonequilibrium corrections:

Enoneq
k = ⟨Ψk∣Ĥ0 + λ(R̂f

k − R̂
f
0)∣Ψk⟩. (17)
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This has been called the perturbation theory state-specific (ptSS)
approach.20–22 Unperturbed states ∣Ψ(0)k ⟩ are eigenfunctions of Ĥ0,
and the zeroth-order energy for state k is

EptSS(0)
k = ⟨Ψ(0)k ∣Ĥvac + R̂0∣Ψ(0)k ⟩ (18)

within the nonequilibrium formalism. The corresponding free
energy expression is16

GptSS(0)
k = EptSS(0)

k −Ws
0 −W

f
0, (19)

whereWs
0 andWf

0 are defined analogously toW0 in Eq. (3) but with
R̂s
0 or R̂

f
0 replacing R̂0.

Equation (18) for Ek is a natural generalization of Eq. (2) for E0
and corresponds to solving the Schrödinger equation in the fixed
reaction field of the equilibrated ground state. A nonequilibrium
correction arises in first-order perturbation theory and is given by

EptSS(1)
k = ⟨Ψ(0)k ∣R̂

f
k(0) − R̂

f
0∣Ψ
(0)
k ⟩, (20)

where the notation R̂f
k(0) indicates that this reaction-field opera-

tor is constructed using the charge density corresponding to wave
function ∣Ψ(0)k ⟩. The corresponding free energy correction is

GptSS(1)
k = EptSS(1)

k −Wf
k(0) +W

f
0 +W0,k(0), (21)

where

Wf
k(0) =

1
2
⟨Ψ(0)k ∣R̂

f
k∣Ψ
(0)
k ⟩ (22)

in analogy to Eq. (8). The quantity W0,k(0) in Eq. (21) is a charge-
separation penalty arising from the Coulomb interaction of the
initial- and final-state surface charges,16,21

W0,k(0) =
1
2 ∫

[σfk(0)(r) − σ
f
0(r)]φ

σs0(r) dr. (23)

Here, φσs0(r) is the electrostatic potential generated by the ground-
state polarization charge, σs0(r). As discussed in Refs. 16 and 21,
the W0,k(0) term has sometimes been omitted from nonequilib-
rium polarization treatments, but is necessary when the “Marcus
partition” into fast and slow components is used, corresponding to
Eq. (12).

Taking the free energy for state k to be the zeroth-order result
plus the first-order correction,

Gk = G
ptSS(0)
k +GptSS(1)

k , (24)

the ptSS approximation to the excitation energy is

ΔGptSS(1)
k = Gk −G0

= ΔEptSS(1)
k −Wf

k(0) +W
f
0 +W0,k(0), (25)

where

ΔEptSS(1)
k = EptSS(0)

k + EptSS(1)
k − E0. (26)

The formula in Eq. (25) has a straightforward interpretation.16 The
leading term, which is given by Eq. (26), is the difference between
eigenvalues Ek and E0 of the state-specific Schrödinger equation,
where Ek is correct through first order in perturbation theory.
This eigenvalue difference becomes a free energy upon subtract-
ing Wf

k(0) −W
f
0, which is the difference between the work required

to polarize the fast charge on the excited state relative to that
required on the ground state. Finally, W0,k(0) is the aforementioned
charge-separation penalty.

For future reference, we define

ΔEptSS(0)
k = EptSS(0)

k − E0, (27)

which is the zeroth-order approximation to Ek − E0. Equivalently,
this is the excitation energy obtained by solving the Schrödinger
equation in the fixed reaction field of the ground state, and there-
fore this approximation does not contain nonequilibrium effects.
Equation (25) can then be rewritten as

ΔGptSS(1)
k = ΔEptSS(0)

k +GptSS(1)
k . (28)

The ptSS approximation for the free energy of excitation (ΔGptSS(1)
k )

is thus obtained by adding the zeroth-order eigenvalue difference
(ΔEptSS(0)k ) to the first-order free energy correction (GptSS(1)

k ), with
all nonequilibrium effects contained in the latter.

D. Implementation
A flow chart for the RAS-SF + PCM algorithm is illustrated

in Fig. 2, including both the nonequilibrium ptSS and the state-
relaxed equilibrium procedure. The algorithm begins by comput-
ing the RAS-SF ground state wave function in the gas phase.
Next, one-electron integrals are modified to incorporate R̂0 and the
ground-state total energy is iterated to convergence, as in any SCRF
calculation except that the lowest eigenstate of a CI Hamiltonian
must be computed at each SCRF iteration. A damping scheme was
implemented for the PCM surface charges,24 such that the charges
at each iteration are a convex linear combination of the charges
obtained from the current reaction field operator and the previous
one. However, the use of this algorithm proves to be unnecessary.
Convergence of the ground-state SCRF problem is typically accom-
plished in 3–4 iterations if the convergence criterion is set to 10−8

hartree on the change in G0. This completes step 1 in Fig. 2.
Once the ground-state eigenfunction has been equilibrated

with respect to the medium, excited states (including LE and/or
CT states, as desired) are obtained by computing additional eigen-
states in the presence of a fixed reaction-field operator R̂0. These
are the zeroth-order states ∣Ψ(0)k ⟩, with energies EptSS(0)

k [Eq. (18)].
From there, the corrected free energies for each state can be com-
puting using Eq. (19) or excitation free energies using Eq. (25). Note
that ptSS corrections can be computed for all excited states at once,
without any additional SCRF iterations in step 2 of Fig. 2.

The equilibrium state-relaxed procedure starts from a gas-
phase RAS-SF calculation to obtain an initial wave function ∣Ψk⟩ for
the excited state of interest, from which R̂k can be constructed. This
procedure bypasses the ground-state SCRF procedure (although
the ground-state SCRF problem needs to be solved in advance,
to obtain E0), instead proceeding directly to the state-specific
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FIG. 2. Flowchart for the RAS-SF + PCM procedure, illustrating the ptSS proce-
dure (purple arrows) vs the equilibrium state-relaxed procedure (green arrows).
Step 1 of the ptSS approach involves an SCRF calculation using the ground-state
eigenvector of the CI Hamiltonian (illustrated with a gray box, as in Fig. 1). In
step 2, excited-state eigenvectors are computed from the CI Hamiltonian using a
frozen reaction field for the ground state (R̂0), then corrected using the pertur-
bation R̂f

k − R̂f
0. In this approach, all of the CI eigenvectors can be corrected at

once and only a single CI calculation is required in step 2. Alternatively, the fully
relaxed equilibrium procedure corresponds to a SCRF calculation in the presence
of reaction-field R̂k , solving the state-specific Schrödinger equation [Eq. (5)] one
state at a time to obtain fully relaxed energies Ek .

eigenvalue problem for Ek [Eq. (5)]. The solution of this equation
requires SCRF iterations in the excited state because each time the
RAS-SF Hamiltonian is diagonalized to obtain ∣Ψk⟩, the operator R̂k
must be modified to reflect how the new excited-state charge den-
sity polarizes the medium. This process is iterated to convergence,
which typically requires 7–10 iterations with a convergence crite-
rion of 10−6 hartree. Upon convergence, Eeq

k is obtained from Eq. (6).
The proper state energy, however, is Geq

k [Eq. (7)], and the excitation
energy for state k is given in Eq. (9). The SCRF procedure must be
repeated for every state of interest.

The equilibrium state-relaxed approach has some similarities to
the state-specific implementation of time-dependent density func-
tional theory (TD-DFT) with PCM,28,29 especially if TD-DFT is
viewed as a CI method with single excitations (CIS), where excited
states are obtained iteratively as roots of an eigenvalue problem. Our
procedure also bears some similarities to the most complete version
of the SCRF approach for correlated wave functions, which is usually
called “perturbation to energy and density,”16,22,30–33 meaning that
all correlation effects are included in the charge density that is used
to equilibrate the reaction field. Some differences exist with respect
to the present procedure, as RAS-SF is not a post-Hartree–Fock
procedure where correlation is added to a single-determinant
reference, but rather it is a method in which the ground-state
wave function emerges as the lowest eigenfunction of a CI
Hamiltonian.

The ptSS-PCM procedure described in Sec. II C has previously
been implemented for CIS and TD-DFT wave functions,20,21 which
is technically simpler because in that case the reference state is the
physical ground state. The TD-DFT + ptSS-PCMmethod20,21 is very
similar to the “corrected linear response theory” of Caricato et al.34

III. RESULTS AND DISCUSSION
The RAS-SF + PCM procedure has been implemented in a

locally modified version of Q-Chem 5.3.35

A. Computational details
All RAS calculations use a (4,4) active space and the hole-

particle (h,p) algorithm that was outlined in Sec. II A, starting
from a quintet ROHF reference state. In order to use the CT
version of RAS-SF, the ROHF orbitals were localized using the
Pipek–Mezey procedure.36 Core orbitals are not correlated (i.e.,
frozen core approximation). The basis set is 6-31G∗, cc-pVDZ, or
cc-pVTZ, as indicated in the discussion that follows. Q-Chem’s RAS
algorithm uses a resolution-of-identity (RI) approximation for the
integrals.5 For the auxiliary (density fitting) basis set, we use either
the ones designed for use with cc-pVXZ37 or else those designed for
use with the Ahlrichs SVP basis set.38 In Q-Chem, these two basis
sets are called RIMP2-cc-pVDZ and RIMP2-VDZ, respectively.

For the solvent model, we use the “conductor-like”
(C-)PCM.16,39 The alternative “integral equation formalism”
(IEF)-PCM40–43 is a formally more complete treatment of dielectric
boundary conditions,16 and therefore in principle might be a better
model for low-dielectric environments since C-PCM introduces
errors of O(1/ε) in the dielectric boundary conditions.18,44 In prac-
tice, however, this difference is usually numerically unimportant
and the two models afford similar solvation energies even in non-
polar solvents.16,43,45,46 The more important consideration is that
both models contain an implicit correction for outlying charge,47
i.e., for penetration of the wave function beyond the cavity. From
a technical standpoint, IEF-PCM is somewhat more challenging to
work with, and in particular its integral operators are more sensitive
to discretization as compared to the surface potential operator in
C-PCM.16,48 For these reasons, we have opted for the simpler
C-PCM approach.

A van der Waals cavity is used to define the interface with
the continuum.16,49 That cavity is constructed using Bondi’s atomic
radii (as modified in Ref. 50), scaled by a factor of 1.2. Atomic
spheres were discretized using 194 Lebedev grid points per sphere.
The switching/Gaussian (SwiG)method is used for the cavity surface
discretization.25,51

For intermolecular CT states, we report some test calcula-
tions using constrained density functional theory (cDFT)52 to move
an electron from one monomer to the other using a ground-
state formalism. In these calculations, which were performed at the
B3LYP/cc-pVTZ level, the charge constraint is implemented using
Becke populations with atomic size corrections.53,54

B. State-relaxed equilibrium procedure
All calculations in this section use the state-specific equilibrium

procedure that is described in Sec. II B. The convergence criterion
for the ground-state SCRF iterations (used to determine R̂0) is set
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to 10−8 hartree and that for the excited-state SCRF iterations (to
determine R̂k) is set to 10−6 hartree.

1. Distance dependence for CT excitation
To test the equilibrium version of the theory for a CT

excitation, we consider intermolecular CT in the well studied
model system,21,55–57 C2H4 ⋅ ⋅ ⋅C2F4, and in the somewhat larger
(naphthalene)2, whose CT states have also received attention.58–61

Both dimers are arranged in a parallel face-to-face orientation. Sol-
vation corrections for singlet CT from C2H4 to C2F4, and from one
naphthalene monomer to the other, are shown in Fig. 3 as a function
of reciprocal intermolecular separation, 1/R. The quantity plotted is
the difference between excitation energies computed using ε0 = 78.4
vs ε0 = 1.0, i.e., the solvent shift in water. RAS-SF calculations on
C2H4 ⋅ ⋅ ⋅C2F4 use the cc-pVTZ basis set and RIMP2-cc-pVTZ auxil-
iary basis set while those on (naphthalene)2 use the 6-31G∗ basis set
and RIMP2-cc-pVDZ basis set.

For a point of comparison, we also computed the CT energies
using a ΔSCF approach in conjunction with cDFT, a comparison
that was also used in Ref. 11 to test the gas-phase RAS-SF CT pro-
cedure. With cDFT, both of the energies required for the ΔSCF
calculation can be computed as ground-state DFT + PCM calcu-
lations, and comparison to an equilibrium model of the solvent
response is therefore appropriate.

For both systems, the behavior of the solvent shift is very
similar in both the RAS-SF and the cDFT calculations, despite signif-
icant differences in methodology: RAS is a correlated wave function
approach that uses excited-state SCRF iterations to compute the
state-specific solvation energy, while the cDFT-based ΔSCF proce-
dure uses two ground-state calculations, one of them with a charge
constraint that forces the monomers to integrate to ±1 charge.
Despite these differences, the solvent shift is found to be a linear
function of 1/R, in accordance with the Born model of two well-
separated charges in a dielectric medium.16 For C2H4 ⋅ ⋅ ⋅C2F4, the
shift varies by about 0.6 eV (14 kcal/mol) over a 1.5 Å change in R,

FIG. 3. Equilibrium PCM corrections ΔE, equal to the difference between aqueous
(ε0 = 78) and vacuum (ε0 = 1) values for the excitation energy, for naphtha-
lene dimer (filled symbols) and C2H4 ⋅ ⋅ ⋅C2F4 (open symbols). Calculations are
reported using either RAS(h,p)-SF or ground-state cDFT, with C-PCM solvation
in either case. Lines represent linear fits to the data with correlation coefficients
R2
> 0.999.

at both levels of electronic structure theory, despite the fact that the
absolute shifts are offset by about 0.1 eV. The slope (solvent shift
vs 1/R) that is obtained from RAS-SF + PCM is within 10% of that
obtained using cDFT + PCM for both dimers. These tests suggest
that the combination of a PCMwith the RAS-SFAnsatz for CT states
provides a meaningful description of solvation for a photo-excited
ion pair.

2. Perylene diimide dimer
Perylene diimide (PDI) and its derivatives have often been

used as chromophores for singlet fission.62–65 The overall kinetics of
the singlet fission process are solvent-dependent,65–67 and while CT
states in PDI materials appear rapidly in polar solvents, high-yield
singlet fission occurs equally rapidly in nonpolar solvents.65,68,69

Here, we use RAS-SF + PCM to explore the impact of solvent
polarity on the singlet fission process.

Previous work has suggested that CT contributions are mixed
into the keymulti-exciton (ME) state of interest in singlet fission.70,71

The ME state is nominally a singlet-coupled pair of triplet
excitations,15,72,73

∣
1ME⟩ =

1
√
3
(∣

3A+1
3B−1⟩ + ∣

3A−1
3B+1⟩ − ∣

3A0
3B0⟩). (29)

However, it may also contain small contributions from charge-
separated determinants ∣A+B−⟩ and ∣A−B+⟩. These sometimes
appear in the form of charge-resonance (CR) states,15,59

∣CR⟩ = c1∣A+B−⟩ + c2∣A−B+⟩. (30)

Despite its charge-separated character, the CR state may have a small
or vanishing dipole moment if c1 ≈ −c2, which is often the case for
high-symmetry (or even near-symmetry) dimers.15 Gas-phase calcu-
lations suggest that the charge-separated states in (PDI)2 are indeed
of CR form.71

Here, we consider two geometries of (PDI)2 that are taken from
Ref. 70 and which afford the fastest and slowest singlet fission rates
of the eight (PDI)2 geometries that were examined in Ref. 71. The
geometries of these two dimer models are illustrated on the left
side of Fig. 4, and their frontier molecular orbitals are illustrated
in the middle part of Fig. 4. The two dimers have somewhat differ-
ent offset-stacking arrangements for the cofacial PDImonomers and
also different face-to-face distances. We will examine the S1 (1ππ∗)
state of these dimers and also two different ME states that will
be designated 1ME (lower state) and 1ME′ (upper state), following
Ref. 71.

Figure 5 reports the percentage of CT character for these three
states, as quantified using the RAS-SF CT method,11 as a function
of solvent polarity. We consider the values ε0 = 1 (corresponding to
vacuum boundary conditions), ε0 = 3 [characteristic of typical thin
films, such as poly(methyl methacrylate), PMMA], and ε0 = 37.5
(representing acetonitrile). For model 1 of the dimer, the CT charac-
ter varies only slightly as a function of these very significant changes
in ε0, but for model 2 we observe significant changes in CT charac-
ter in polar vs nonpolar environments. In particular, the S1 state of
model 2 exceeds 50% CT character in acetonitrile as compared to
30% CT character in the gas phase.

Themolecular orbitals that are primarily responsible for the CT
character are illustrated in the middle part of Fig. 4, with arrows
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FIG. 4. RAS-SF/cc-pVDZ + PCM results for two geometries of (PDI)2 that have been called (a) “MO” and (b) “C8.”70,71 Structures are shown on the left and correspond to
slightly different offsets in the lateral plane as well as different stacking distances, 3.46 Å for model 1 and 3.28 Å for model 2.71 Both models give rise to a pair of 1ME states,
and the middle panel illustrates the orbitals involved in the two largest CT configurations for both states. The tables on the right quantify the percentage CT character in
each of these two configurations, along with the corresponding dipole moment, as a function of the solvent’s dielectric constant. The state labeled 1ME′ is the higher-energy
state.

that represent the two dominant configurations in the wave func-
tion. The right side of Fig. 4 quantifies the CT contribution in these
two configurations, as a function of ε0. In the gas phase, the two
CT configurations appear in essentially equal percentages, in both

FIG. 5. Percentage CT character for the S1, 1ME, and 1ME′ states in two different
geometries of (PDI)2, called models 1 and 2 (or “MO” and “C8”) in Fig. 4. The 1ME′
state is defined to be a higher-energy state of pair of ME states that emerge from
the calculation.

structures of (PDI)2, leading in both cases to a CR state with a van-
ishing dipole moment. For model 2, however, a dielectric constant
of ε0 = 3 is sufficient to break the symmetry, resulting in a net dipole
moment. In contrast, symmetry-breaking is not observed in model
1 even in acetonitrile. This observation has potential ramifications
for singlet fission. The CR character in model 2 facilitates the overall
singlet fission process by increasing the electronic coupling between
the S1 and 1ME states.71,73–75 Model 2, which transfers electrons in
only one direction when ε0 ≳ 3, might act as an energetic trap in a
dielectric medium. This trap (an excimer state) would then compete
with singlet fission and would lower the yield of the latter process.
This suggests that one possible route to improving the efficiency of
singlet fission in PDI dimers is to exploit geometries in which single-
directional CT is inhibited. This difference highlights the fact that
calculations carried out using vacuum boundary conditions are ill-
positioned to address whether CT character plays a role in the singlet
fission mechanism.

C. State-specific perturbation theory
In this section, we consider the ptSS approach for vertical exci-

tation energies. We first examine the model systems C2H4 ⋅ ⋅ ⋅C2F4
and (naphthalene)2 that were considered above, but we also inves-
tigate some pentacene dimers of interest in organic photovoltaic
applications. These include a model system extracted from an
intramolecular singlet fission chromophore,75 and we note that
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the role of CT states in the singlet fission mechanism has been
much debated.15,62,72,73,76–78 For these calculations, the convergence
criterion on the SCRF iterations was set to 10−10 hartree, with
convergence achieved in 12–16 cycles.

1. Distance and solvent dependence of CT energies
We first consider the distance dependence of CT excitation

energies in C2H4 ⋅ ⋅ ⋅C2F4 and in (naphthalene)2, similar to the tests
reported in Sec. III B 1 using the equilibrium solvation approach.
Comparison to cDFT calculations is not appropriate in the present
case, however, because we use a nonequilibrium formulation of the
solvation correction in order to describe vertical excitation ener-
gies, and there is no analogous ΔSCF calculation. RAS-SF excitation
energies in vacuo and in water are shown in Fig. 6 as a function of
1/R. These calculations use the 6-31G∗ basis set and RIMP2-VDZ
auxiliary basis set.

As expected, the excitation energies vary linearly with 1/R
and the solvent shifts are quite large, e.g., ΔE = −1.33 eV for
C2H4 ⋅ ⋅ ⋅C2F4 at R = 5 Å (RAS-SF/cc-pVDZ level). This is compa-
rable to the shift of ΔE = −1.15 eV that was reported previously for
this system using TD-DFT + ptSS-PCM.21

Table I lists the lowest CT excitation energy that is obtained for
C2H4 ⋅ ⋅ ⋅C2F4 in six different solvents including cyclohexane (cHex),
toluene, tetrahydrofuran (THF), chlorobenzene (ClBz), benzoni-
trile (BzCN), and water. Because we consider only the electrostatic
part of the solvation energy, each solvent is fully characterized by
the pair of values ε0 and ε∞. Although nonelectrostatic solvation
models are reasonably well established for ground-state solvation16
(e.g., using the SMx models),79 there has been much less work on
nonelectrostatic effects for excited states and we do not consider that
topic here. (For a brief overview of this topic, see Ref. 16.) Changes

FIG. 6. Excitation energies in vacuum and in aqueous solution (ε0 = 78.4 and
ε∞ = 1.78), as a function of inverse monomer separation, for (a) C2H4 ⋅ ⋅ ⋅C2F4
and (b) naphthalene dimer. Excitation energies were computed at the RAS-SF/6-
31G∗ level with the ptSS-PCM approach to correct the excitation energies for
solvent effects.

TABLE I. Lowest CT excitation energies and solvent corrections (both in eV)
for C2H4 ⋅ ⋅ ⋅C2F4 at R = 4.5 Å in various solvents using the RAS-SF/6-31G∗
+ ptSS-PCM approach.

Exc. energy

Solvent ε0 ε∞ ptSS(0)a ptSS(1)b GptSS(1)
k

c

cHex 2.02 2.03 13.233 11.873 −1.360
Toluene 2.38 2.23 13.232 11.754 −1.478
THF 5.66 1.98 13.210 11.882 −1.327
ClBz 5.69 2.32 13.209 11.684 −1.525
BzCN 25.9 2.34 13.199 11.664 −1.535
Water 78.4 1.78 13.197 12.024 −1.173

aΔEptSS(0)
k [Eq. (27)].

bΔGptSS(1)
k [Eq. (25)].

cEquation (21).

in nonelectrostatic interactions upon electronic excitation, includ-
ing dispersion and Pauli repulsion, are expected to be much smaller
than changes in the electrostatic solvation energy.

Listed in Table I is the first-order solvation correction to the
excitation energy, GptSS(1)

k [Eq. (21)], along with the zeroth-order
approximation to the excitation energy itself, ΔEptSS(0)

k [Eq. (27)],
and the first-order approximation to the same excitation energy,
ΔGptSS(1)

k [Eq. (25)]. These three quantities are related according to
Eq. (28). The zeroth-order quantity ΔEptSS(0)

k is the excitation energy
computed in the frozen reaction field of the ground state and does
not contain nonequilibrium corrections, i.e., it depends on ε0 but
not ε∞.

We note that the nonequilibrium correction GptSS(1)
k exceeds

1 eV for the CT state that is considered in Table I, even in non-
polar solvents. Perhaps counterintuitively, this correction is smaller
in water than it is in less polar solvents. This is ultimately a con-
sequence of the partition between “slow” and “fast” (or “inertial”
and “noninertial”) contributions to the solvent response,16,80 with
the consequence that for a solvent like water where ε0 ≫ ε∞, a much
greater proportion of the solvent response is frozen upon vertical
excitation. This can be understood in terms of the “Pekar factor,”
ε−1∞ − ε−10 , which replaces the familiar factor of 1 − ε−10 in the Born (or
generalized Born) solvation energy expression, in cases where verti-
cal excitation energies are involved.80 For example, ε−1∞ − ε−10 appears
in the Marcus theory expression for the outer-sphere reorganization
energy, which is the earliest version of a nonequilibrium dielectric
continuum theory.16

2. Pentacene dimer models
In thinking about CT states that might be relevant in organic

photovoltaic applications,15,72 it is interesting to note that even non-
polar solvents (with ε0 ≲ 5) afford a large nonequilibrium correction
to a CT excitation energy. This can be seen for C2H4 ⋅ ⋅ ⋅C2F4 in
Table I, for example. The nonequilibrium correction comes from the
optical dielectric constant, which is related to the electronic polariz-
ability of the solvent molecules and has values ε∞ = 1.7–2.3 for most
common solvents,16 even while the static dielectric constant varies
from ε0 = 2–4 for nonpolar hydrocarbons up to ε0 = 78 for water.
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FIG. 7. Structural models for an intramolecular singlet fission chromophore based
on pentacene dimer: (a) the original chromophore from Ref. 75, which includes a
1,4-diethynylbicyclo[2.2.2]octane spacer and tri-isobutyl silyl side chains, vs (b) a
truncated and unlinked dimer model, in which the side chains are replaced by SiH3
and the spacer has been replaced by ethynyl side chains. Positions of the atoms
that constitute the pentacene dimer core are the same in both systems.

With this in mind, we next consider an example relevant
to organic photovoltaics, namely, a pentacene dimer model of
a chromophore that undergoes intramolecular singlet fission,75
which is depicted in Fig. 7(a). Calculations are reported here using
the unlinked dimer model that is shown in Fig. 7(b). We have

confirmed, via CIS calculations, that the model system and the full
chromophore afford excitation energies within about 0.3 eV of one
another, which is sufficient for our purposes. The same is true for
two other truncated models (not shown) in which the side chains
or the spacer group were removed, but not both, indicating that the
tri-isobutyl silyl side chains in the full chromophore [Fig. 7(a)] func-
tion mainly for solubility while the spacer moiety functions mostly
to position the pentacene chromophores relative to one another.
The singlet fission dynamics can be quite sensitive to the relative
position and orientation of the pentacene moieties,81 so the atomic
positions of the pentacene dimer core are the same in the model
system as they are in the full chromophore. Calculations on the
model are reported below in six different solvents, and in each case
we compute six RAS-SF states: the ground state, the first LE state
(which is T1), two left CT states (LCT1 and LCT2), and two right CT
states (RCT1 and RCT2). These calculations use the 6-31G∗ basis
set and RIMP2-VDZ auxiliary basis set. Selected results are shown
in Table II, focusing on the LCT1 state but also including LE1 for
comparison.

We observe that stabilization of the ground state increases with
solvent polarity, and at the level of the zeroth-order eigenvalues E(0)k ,
which are computed in the reaction field of the ground state, approx-
imately the same stabilization is obtained for the LCT1 state as for
the ground state itself, to within a few millihartree. The first-order
corrected excitation energies show a different trend, however. Here,
both the static and optical dielectric constants are in play, and the
value of the first-order correction GptSS(1)

k is smaller in water than
it is in nonpolar solvents. As explained in Sec. III C 1, this behav-
ior results from the fact that water has a much larger fraction of
its total polarization response frozen upon vertical excitation since

TABLE II. RAS-SF/6-31G∗ + ptSS-PCM energies for the pentacene dimer model in Fig. 7(b), computed in various solvents. Values in parenthesis are shifts relative to the
corresponding calculation in vacuum.

E(0)k (hartree) LCT1 exc. energy (eV) ΔGptSS(1)
k (eV)a

Solvent ε0 ε∞ E0 LCT1 ΔEptSS(0)
k

b GptSS(1)
k

c LCT1d LE1(T1)

Vacuum 1.00 1.00 −2564.965 −2564.778 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 5.074 1.136

cHex 2.02 2.03 −2564.993 −2564.807 5.069 −1.166 3.904 1.131
(−0.028) (−0.029) (−1.171) (−0.005)

Toluene 2.38 2.23 −2564.998 −2564.812 5.068 −1.267 3.801 1.130
(−0.033) (−0.034) (−1.273) (−0.006)

THF 5.66 1.98 −2565.015 −2564.829 5.064 −1.137 3.928 1.128
(−0.050) (−0.050) (−1.147) (−0.008)

ClBz 5.69 2.32 −2565.015 −2564.829 5.064 −1.307 3.758 1.128
(−0.050) (−0.050) (−1.317) (−0.008)

BzCN 25.9 2.34 −2565.025 −2564.839 5.061 −1.315 3.746 1.126
(−0.060) (−0.061) (−1.328) (−0.010)

Water 78.4 1.78 −2565.027 −2564.841 5.061 −1.005 4.056 1.126
(−0.070) (−0.063) (−1.018) (−0.010)

aCorrected nonequilibrium excitation energy [Eq. (25)].
bZeroth-order excitation energy [Eq. (27)].
cFirst-order nonequilibrium correction [Eq. (21)].
dNote that ΔGptSS(1)

k = ΔEptSS(0)
k + GptSS(1)

k [Eq. (28)].

J. Chem. Phys. 156, 194110 (2022); doi: 10.1063/5.0091636 156, 194110-9

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

ε0 ≫ ε∞. This is a feature of the Marcus partition of the polarization
into fast and slow components.16,21,80 In nonpolar or weakly polar
solvents, where ε0 is much closer to ε∞, the nonequilibrium correc-
tion amounts to a greater fraction of the total solvation energy of the
excited state, and the trend in first-order corrections GptSS(1)

k is gov-
erned primarily by the value of ε∞. As noted elsewhere,16,21,82 the
partition between inertial and noninertial solvent response need not
be done in this way, and the total solvation correction is essentially
the same in Pekar’s alternative partition scheme but is apportioned
differently into zeroth-order and corrective terms.16,82 For the LE1
state, we also observe a reduction in the excitation energy as sol-
vent polarity increases, but the effect is smaller as compared to
the LCT1 state because LE1 does not involve significant charge
separation.

We next compare RAS-SF + ptSS-PCM results to the corre-
sponding calculation at the CIS level, which will illustrate the ease
of reaching target states with the RAS-SF procedure. Table III shows
results for the pentacene dimer model in Fig. 7(b), in two differ-
ent solvents. In cyclohexane, we observe a correspondence between
the RAS-SF states LCT1 (triplet) and LCT2 (singlet) and the 37th
and 38th excited states obtained from the CIS calculation. Compar-
ing excitation energies, the RAS-SF and the CIS results agree within
0.04 eV and the dipole moments agree within 0.5 D. A similar corre-
spondence is observed between the RAS-SF states RCT1 and RCT2,
and the 39th and 40th excited states obtained from the CIS cal-
culation. The principle pair of natural transition orbitals (NTOs)
for states 37 and 39 are plotted in Fig. 8, from the CIS calcula-
tion, which confirms the CT character of the states in question. (The
RAS-SF states have CT character by construction.) While the excita-
tion energies are similar, indicative of the lack of significant dynam-
ical correlation in the RAS-SF wave function,7 the CIS approach

FIG. 8. Principle NTO pair for each of CIS states 37 and 39, depicting a CT
excitation between pentacene fragments.

necessitates the calculation of a large number of excited states, which
must then be analyzed in terms of orbitals and amplitudes in order
to deduce which states possess CT character. With RAS-SF, on the
other hand, one may target the CT states directly (essentially by fiat),
so that these emerge as the lowest eigenvalues of the CT block of the
Hamiltonian.11

Steady state absorption measurements performed on the
intramolecular singlet fission chromophore in Fig. 7(a) indicate a red
shift in the absorption maxima as solvent polarity increases, which
was taken as evidence that the excited state is more polar than the
ground state.75 We observe a similar pattern for the unlinked dimer

TABLE III. RAS-SF/ and CIS/6-31G∗ excitation energies and excited-state dipole moments for the pentacene dimer model
in Fig. 7(b), computed in various solvents using the nonequilibrium ptSS-PCM approach.

Exc. energy (eV)

State Multip. Solvent ptSS(0) ptSS(1) Dipole mom. (D)a

CIS state 37 Triplet Cyclohexane 5.038 3.863 65.47
CIS state 38 Singlet Cyclohexane 5.038 3.863 65.47
RAS LCT 1 Triplet Cyclohexane 5.069 3.904 64.99
RAS LCT 2 Singlet Cyclohexane 5.069 3.904 64.99
CIS state 39 Triplet Cyclohexane 5.038 3.864 65.47
CIS state 40 Singlet Cyclohexane 5.038 3.864 65.47
RAS RCT 1 Triplet Cyclohexane 5.070 3.906 64.83
RAS RCT 2 Singlet Cyclohexane 5.070 3.906 64.83
CIS state 37 Triplet Benzonitrile 5.030 3.705 65.46
CIS state 38 Singlet Benzonitrile 5.030 3.705 65.46
RAS LCT 1 Triplet Benzonitrile 5.061 3.746 64.99
RAS LCT 2 Singlet Benzonitrile 5.061 3.746 64.99
CIS state 39 Triplet Benzonitrile 5.031 3.706 65.46
CIS state 40 Singlet Benzonitrile 5.031 3.706 65.46
RAS RCT 1 Triplet Benzonitrile 5.062 3.748 64.83
RAS RCT 2 Singlet Benzonitrile 5.062 3.748 64.83
aCIS excited-state dipole moments are unrelaxed.
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TABLE IV. Excitation energies (ΔE) and excited-state dipole moments (μ) for the
full chromophore in Fig. 7(a) vs the unlinked dimer model in Fig. 7(b). All calculations
are performed in vacuum.

System State ΔE (eV) μ (D)

Fulla S0 0.00 0.22
Fulla T1 0.89 0.38
Fulla T8 3.39 63.40
Fulla S6 3.40 64.46
Fulla T9 3.41 64.78
Fulla S7 3.42 64.68
Modelb S0 0.000 0.03
Modelb LE1 (triplet) 1.136 0.04
Modelb LCT1 (triplet) 5.074 64.99
Modelb LCT2 (singlet) 5.074 64.99
Modelb RCT1 (triplet) 5.076 64.82
Modelb RCT2 (singlet) 5.076 64.82
aSA15-XMCQDPT(8,8)/DZV level, from Ref. 75.
bRAS-SF/6-31∗G level.

model, as discussed above, with a decrease in the excitation energy
as a function of increasing solvent polarity, although such a shift is
observed in both the LE and the CT states.

Table IV compares RAS-SF results for the unlinked dimer
model to multireference perturbation theory calculations on the full
chromophore, from Ref. 75. The latter calculations were performed
in vacuo so the same is true for the RAS-SF calculations in Table IV.
Both sets of calculations reveal four closely spaced excited states
of alternating multiplicity (singlet and triplet), with significant CT
character as indicated by excited-state dipole moments μ ≈ 65 D.
This comparison suggests at least a qualitative correspondence
between the two levels of theory, even if the gas-phase excitation
energies are rather different.

TABLE V. Excitation energies (ΔE) and excited-state dipole moments (μ), com-
puted in benzonitrile solution, for the full chromophore in Fig. 7(a) vs the unlinked
dimer model in Fig. 7(b).

Exc. energy (eV)

System State ΔE Shifta μ (D)

Fullb T1 0.61 −0.01 0.04
Fullb S5 2.63 −1.73 62.06
Fullb T11 2.62 −1.73 61.57
Fullb S6 2.92 −1.43 56.46
Fullb T18 2.97 −1.39 55.03
Modelc LE1 1.13 −0.01 0.06
Modelc LCT1 3.75 −1.33 64.99
Modelc LCT2 3.75 −1.33 64.99
Modelc RCT1 3.75 −1.33 64.83
Modelc RCT2 3.75 −1.33 64.83
aSolvent shift relative to vacuum value.
bCISD calculations using the AM1 Hamiltonian and a SCRF solvation model, from
Ref. 75.
cRAS-SF/6-31∗G with ptSS-PCM solvation.

In Ref. 75, the effects of solvent polarity were investigated
by comparing excitation energies in vacuum to those computed
in benzonitrile, using a SCRF model in conjunction with a semi-
empirical Hamiltonian. These results are reproduced in Table V
alongside the corresponding RAS-SF + ptSS-PCM results. Semi-
empirical calculations in Ref. 75 afford four closely spaced singlet
excited states (in vacuum), in the range ΔE = 2.63–2.97 eV, with
dipole moments ranging from μ = 55.0–62.1 D and which are sta-
bilized by 1.4–1.7 eV in benzonitrile whereas other nonpolar states
are stabilized by ≤0.01 eV. With RAS-SF and nonequilibrium ptSS-
PCM solvation, we obtain four closely spaced states ranging from
ΔE = 3.75–3.91 eV with dipole moments μ = 64.8–65.0 D, which
are stabilized by 1.33 eV in benzonitrile. By contrast, the LE1 (T1)
state hardly shifts at all in benzonitrile solvent, consistent with T1
results from Ref. 75. The present calculations therefore corroborate
the results in Ref. 75, indicating that “polar” states (meaning those
with CT character) are considerably shifted whereas “nonpolar”
(LE) states are not. Note that the nonpolar S1 bright state should
have essentially the same charge density as T1 and thus will not be
significantly shifted by the solvent model.

IV. CONCLUSIONS
We have formulated, implemented, and tested a state-specific

approach to solvation for RAS-SF wave functions. Both equilibrium
(self-consistent and fully relaxed) and nonequilibrium (vertical exci-
tation) versions are reported, the latter within a perturbative “ptSS”
approximation introduced in earlier work.20,21 This new method-
ology opens the possibility to describe dielectric continuum effects
on CT states within a cost-effective and easy-to-use wave func-
tion model for strong correlation, which can describe multi-exciton
states and other types of excitations that are beyond the reach of
(or poorly described by) single-excitation methods such as CIS
and TD-DFT. Benchmark tests indicate good agreement with other
methods for well-separated CT excitations (ion-pair states), in sys-
tems such as C2H4 ⋅ ⋅ ⋅C2F4 and (naphthalene)2. The ptSS approach
to vertical excitation energies agrees with literature results for stabi-
lization of CT states vs LE states, in a model of a covalently linked
pentacene dimer that undergoes intramolecular singlet fission.

Calculations on (PDI)2 in two different geometries provide a
rationale to understand the very different singlet fission rates that
have previously been calculated for these systems. These calculations
suggest that dielectric stabilization creates excitonic trap states in
one geometry but not the other, by breaking symmetry and localiz-
ing charge. This observation has potentially important implications
for the design of materials with good singlet fission rates, as the exci-
tation spectra of model chromophores can now be easily tested as
a function of solvent polarity. It also suggests that gas-phase cal-
culations, even with highly correlated wave function models, may
not offer a realistic description of singlet fission in solution, where
polarization-induced charge localization is observed in solvents with
dielectric constants as small as ε0 = 3, but not in vacuum (ε0 = 1).

SUPPLEMENTARY MATERIAL

See the supplementary material for coordinates for all struc-
tures considered.
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