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Abstract

We shall establish the core of singular integral theory and pseudodifferential
calculus over the archetypal algebras of noncommutative geometry: quantum forms
of Euclidean spaces and tori. Our results go beyond Connes’ pseudodifferential
calculus for rotation algebras, thanks to a new form of Calderén-Zygmund theory
over these spaces which crucially incorporates nonconvolution kernels. We deduce
L,-boundedness and Sobolev p-estimates for regular, exotic and forbidden symbols
in the expected ranks. In the Ly level both Calderén-Vaillancourt and Bourdaud
theorems for exotic and forbidden symbols are also generalized to the quantum
setting. As a basic application of our methods, we prove L,-regularity of solutions
for elliptic PDEs.
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Introduction

Harmonic analysis and PDEs over Riemannian manifolds are paramount for the
solution of many important problems in differential geometry, fluid mechanics or
theoretical physics. In this paper, we establish the core of singular integral theory
and pseudodifferential calculus over the archetypal algebras of noncommutative
geometry. This includes the Heisenberg-Weyl algebra, quantum tori and other
noncommutative deformations of Euclidean spaces of great interest in quantum
field theory and quantum probability. Our approach crucially relies on a quantum
form of the fruitful interplay

KERNELS

SYMBOLS — OPERATORS

at the interface of analysis and geometry. Strong reasons to develop such a program
over matrix algebras and other noncommutative manifolds are also in connection
to string theory, where several PDEs arise naturally over quantum spaces. We
obtain optimal smoothness conditions for L,-boundedness of singular integrals and
corresponding Sobolev p-estimates for pseudodifferential operators. This is crucial
for applications to PDEs, which we shall briefly discuss. In the line of the harmonic
analysis school, a key point has been a profound analysis of the associated kernels
which is specially challenging for noncommutative algebras.

Let © be an anti-symmetric real n x n matrix. Roughly speaking, the quantum
Euclidean space Rg is the von Neumann algebra generated by certain family of
unitaries {u;(s) : 1 < j <n, s € R} satisfying

uj(s)u;(t) = u;(s +1),
w;(s)ug(t) = €O g (t)u; (s).

Set Ao (§) = u1(&1)uz(§2) - un(&n) for £ € R™ and

Ao :Ce(R") 3 fr— - f(€)re(§) dS € Re.

Consider the trace determined by 7g(Ae(f)) = f(0) and the corresponding L,
spaces L,(Re, 7o) [64]. Of course, © = 0 yields the Euclidean L,-space in R™ with
the Lebesgue measure and (Re, 7o) should be understood as a noncommutative
deformation of it. Chapter [[l includes a careful presentation of (Re, Te) for those
potential readers not familiar with them. Our approach also contains a key Poincaré
type inequality and a few more crucial results, maybe some known to experts. The
lack of appropriate literature justifies a self-contained presentation.

The algebraic structure of these operator (type I) algebras is quite simple, but
the connection to Euclidean spaces make them indispensable in a great variety of

vii
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viii INTRODUCTION

scenarios. If /i stands for Planck’s constant, the choice

© =2nhidy, ® (_(1) (1) )

yields the Heisenberg-Weyl algebra in quantum mechanics. Another description
arises from the unbounded generators xeo ; of u; —a quantum analogue of the
Euclidean variables— which satisfy 27ri[x@,j,x@,k] = O, and provide additional
insight in our kernel manipulations below. Considering a Fock space representation
Reo becomes the CCR algebra associated to the symplectic form ©, thoroughly
studied in quantum probability and quantum field theory. In this setting, it is
simple to find a (nontracial) gaussian state with respect to which these zg ; admit
a gaussian distribution. In the physics literature, higher dimensional deformations
are usually referred to as Moyal deformations of R™. An important instance in
string theory is given by the noncommutative deformation of R* associated to an
invertible symbol ©, which leads to instantons on a noncommutative space in the
influential papers [21][56L[69]. In view of so many names for the same object, we
have decided to rebaptize these algebras as quantum FEuclidean spaces, in conso-
nance with quantum tori Ag —also known in the literature as noncommutative
tori or rotation algebras— which appear in turn as the subalgebra generated by
Ao (§) with € running along Z™ or any other lattice of R™. Our main results in this
paper about pseudodifferential operators hold for Ag and Re.

Calderon-Zygmund extrapolation

In harmonic analysis, integral kernel representations play a central role to study
the most relevant operators. In this particular form, pseudodifferential operators
become well-behaved singular integrals, which admit a fruitful L,-theory [68]. A
singular integral operator in a Riemannian manifold (X,d, ) admits the kernel
representation

Ty f(x) = /X k(e ) f() duly) for = ¢ supp f.

Namely, T}, is only assumed a priori to send test functions into distributions, so that
it admits a distributional kernel in X x X which coincides in turn with a locally
integrable function k£ away from the diagonal x = y, where the kernel presents
certain singularity. This already justifies the assumption x ¢ supp f in the kernel
representation. The paradigm of singular integral theory is the Hilbert transform
in R, paramount to study the convergence of Fourier series and integrals. The
challenge in higher dimensions required new real variable methods which culminated
in the celebrated theorem of Calderén and Zygmund [10], who established sufficient
conditions on a singular integral operator in R™ for its L,-boundedness:

i) Cancellation
| Tk : Lo(R™) — La(R™)|| < Ay

ii) Kernel smoothness

A
|Va k(@) + |Vy k(z,y)| < m

The same holds in Riemannian manifolds with nonnegative Ricci curvature [3].
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INTRODUCTION ix

Noncommutative L, methods in harmonic analysis have gained a considerable
momentum in recent years. The fast development of Fourier L, multiplier theory on
group von Neumann algebras [11132][42]/43/47][48|58] has been possible in part due
to a deeper comprehension of the involved kernels. In spite of this, the validity of
Calderon-Zygmund extrapolation principle over noncommutative manifolds is still
widely open. Noncommutative martingale methods were used in [57] to establish
endpoint estimates for singular integrals over tensor product von Neumann algebras
with an Euclidean factor, which have been the key for the recent solution in [12] of
the Nazarov-Peller conjecture. Other results in this direction include a CZ theory
for group algebras over orthogonal crossed products R™ x G, operator-valued kernels
acting by left/right or Schur multiplication, other BMO spaces in a new approach
towards nondoubling CZ theory, Littlewood-Paley estimates, Hérmander-Mihlin
multipliers or directional Hilbert transforms [15][16137.42l55].

The Calderén-Zygmund theory presented below is the first form over a “fully
noncommutative” von Neumann algebra. In other words, the singular integral acts
on the whole algebra M, not just over copies of R™ as tensor or crossed product
factors in M. A major challenge for such a von Neumann algebra (M,7) is to
understand what it means to be a singular kernel. One has to identify the diagonal
where the kernel singularity should be located, the quantum metric which measures
the distance to it and its relation to the trace. A crucial point, undistinguishable
in abelian algebras or the work cited so far, is to define kernels over M®M,,, with
the op-structure (reversed product law) in the second copy, see also [44]. In the
case of Reg, this is justified from the important map

7o : Loo(R") = Re®RY,

exp(27i(§, ) — Ao (&) ® Aea(§)",

which extends to a normal *-homomorphism, for which the op-structure is strictly
necessary. Note that mo(f)(z,y) = f(x —y) for © = 0. In particular, if | - | stands
for the Euclidean distance to 0, the operator

de = me(|-1)

is affiliated to the algebra Re®@R¢ and implements the distance to the diagonal
as an unbounded operator. Similarly, the diagonal bands be(R) = me(x|.|<r) or
smoothings of them will be indispensable to produce kernel truncations. An integral
representation in Rg is formally given by

Ti(No(f)) = (id® 7o) (k(1 ® Ao (f)))

for some kernel k affiliated to Re®R ¢’ . We shall work with more general singular
kernels which lead to T} € L(Se,Sg), a map which sends the quantum Schwartz
class Sg = Ao(S(R™)) in Re into its tempered distribution class Sg. We shall also
use the “free gradient”

Ve = ZSj ® 8]9
j=1

associated to the partial derivatives 8%;) (Me(§)) = 2migj e(§) and a free family
S1, 82, . . ., Sy, of semicircular random variables living in the free group algebra L(F,,).

THEOREM A. Let Ty, € L(Se,Sg) and assume:
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X INTRODUCTION

i) Cancellation
| Tk : L2(Re) — La(Re)| < As.

i1) Kernel smoothness

d% e (Vo @id)(k) e dg\ +

for (a, ) = (n+1,0), (@, 8) = (0,n +1) and (o, B) = ("+, *34).
Then, Ty, : L,(Re) — Ly(Re) is completely bounded for every 1 < p < oo.

2 e (id ® Ve)(k) e dg] < Ay,

A more general statement is proved in Theorem 218 Our argument establishes
L., — BMO endpoint estimates for a suitable noncommutative BMO. Interpolation
with L, spaces is deduced in [41] from the theory of noncommutative martingales
with continuous index set and a theory of Markov dilations. The convolution kernel
case —in other words, quantum Fourier multipliers— is much easier to prove by
transference methods [131[65]. In the classical terminology of pseudodifferential
operators, Fourier multipliers correspond to differential operators with constant
coefficients. Of course, we aim to include nonconstant coefficients which leads to
the analysis of the harder nonconvolution quantum kernels. Our statement above is
very satisfactory and crucial for applications to pseudodifferential operator theory
below. We shall also use other methods to justify that every CZ operator differs
from its principal value by a left/right pointwise multiplier. This is fundamental in
classical CZ theory and therefore of independent interest.

The L, pseudodifferential calculus

The theory of pseudodifferential operators goes back to the mid 1960s with the
work of Kohn, Nirenberg and Hormander. The basic idea is to exploit properties of
the Fourier transform to produce a suitable representation Wy, of partial differential
operators L = 7, ., @a(z)07 which can be inverted up to a controllable error
term. This representation looks like

Vo) = [ ale,F(©em ag
]R’n
for a smooth symbol a : R™ x R™ — C satisfying
(5m5) 10802 a(x,€)| < Cap(1+16)" "1V for all 0,8 €21,

some m € R and some 0 < § < p < 1. The realization of ¥, as singular integral is
given by partial Fourier inversion k(z,y) = (id ® F~1)(a)(x,z — y), which opens a
door to CZ theory for Sobolev p-estimates of parametrices and error terms.

In the noncommutative setting, this line took off in 1980 with Connes’ work on
pseudodifferential calculus for C*-dynamical systems [19], originally conceived to
extend the Atiyah-Singer index theorem for Lie group actions on C*-algebras, see
also [1L[2L[50] for related results. Other applications in the context of quantum tori
include a well-established elliptic operator theory [17], the Gauss-Bonnet theorem
for 2D quantum tori [231[28] and recent results on the local differential geometry
of non-flat noncommutative tori [6,22]. Unfortunately, the work of Connes and
his collaborators does not include L, estimates for parametrices and error terms,
which are paramount in harmonic analysis and partial differential equations. On
the other hand, the only approach [I3L65[78] to harmonic L,-analysis in quantum
tori does not include pseudodifferential calculus, which requires Calderén-Zygmund
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INTRODUCTION xi

estimates in Rg. In comparison with Connes’ work —which focuses on the smallest
Hérmander class 75 with (p,d) = (1,0)— our main contributions in this direction
include all classes of symbols and L,-estimates:

i) An Lo-theory for exotic and forbidden symbols 0 < d = p < 1.
ii) An L,-theory for arbitrary Hérmander classes and 1 < p < oc.

We refer to [68L[7TL[72] for applications of these results in the Euclidean context.

Pseudodifferential operators over quantum Euclidean spaces are easier to define
than Calderén-Zygmund operators. The symbol a(x,§) is now understood as an
smooth function a : R™ — Rg since £ is still (dual) Euclidean, while  becomes its
©-deformed analog o = (zo.1,%0.2,-..,Te,,) as introduced above. We shall deal
in this paper with two quantum forms of the Hormander classes:

e We say that a € 57';(Re) when

m— +4|8
0608 a(©)] < Can(1 +Je)™ "L
This is probably the most natural definition that comes to mind.

e We say that a € ¥7'5(Re) when

10505082 a(€)] < Cayanp (1 + [¢])™ P11 T2l

Here Og ¢ is a ©-deformation of O¢ by Og’s. More precisely, we have

9 ca(€) = dla(€)+2milre . al€)]
= 82(1(5)4-%2@;'1@35@(5)
k=1

= le(©) ol{Ne(&a(§)re(§) }re(€)

We clearly have ¥7';(Re) C S)'s(Re). It is very important to recall that both
classes collapse into Hérmander classical set of symbols S,Té when © = 0, so that
both definitions above are a priori valid to generalize the Euclidean theory. It turns
out that the Lo-theory holds for S)'s(Re), while the more involved class X5 (Re)
makes the L,-theory valid. The reason has to do with the link to CZ theory
and the two- 81ded nature of our Calderén-Zygmund conditions. Indeed, in all our
past experiences with noncommutative Calderén-Zygmund theory certain amount
of modularity is required. In this case, the bilateral form of our kernel conditions
in Theorem A ultimately imposes the mixed quantum-classical derivatives Jg .
The pseudodifferential operator associated to a : R™ — Re has the form

V06 = [ a©fEe(©de
— (sra)[( [ (@@ @06 ®role))d¢ ) (1er0(1) |

The kernel k

The algebra of pseudodifferential operators is formally generated by the derivatives
9%, and the left multiplication maps Ae (f) = zo jre(f). The kernels affiliated to
To(Loo(R™)) C Re®RY implement Fourier multipliers Ag (§) — m(&)Ae(§) in this
setting, which correspond to the closure of pseudodifferential operators 3 o0
with constant coefficients a,. A very subtle transference method —which avoids
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xii INTRODUCTION

properly supported symbols— is required to obtain adjoint and product formulae
in Section Bl Our main L, results are collected in the following statement.

THEOREM B. Leta:R” - Rg and 1 < p < 00:
i) Ifa € Sfj’p(R@) with0 < p <1, ¥, : Ly(Re) = L2(Re).
i) Ifae S (Re)N Sy (Re)*, then U, : Ly(Re) = La(Re).
i) If a € E‘f’l(R@) N E‘f’l(R@)*, then ¥, : L,(Re) — Ly(Ro).

Using S)'5(Re) C S§%5(Re)N S, (Re) for 0 < 6 < p < 1 -—same inclusions for
Y-classes— we get L,-estimates for regular exotic and forbidden symbols in the
expected ranks and Theorem B opens the core of the pseudodifferential L,-calculus
[68I[7T] to the context of quantum Euclidean spaces:

e Theorem B i). Calderén-Vaillancourt theorem [9] on Lo-boundedness for
exotic symbols quickly obtained a spectacular application [4] for p = 1/2.
Our proof of its quantum form for p = 0 requires a careful approach due
to the presence of a ©-phase. The case p > 0 also imposes an unexpected
dilation argument among different deformed algebras Re.

e Theorem B ii). Bourdaud’s theorem [7] yields a form of the T'(1)-theorem
for pseudodifferential operators when p = § = 1: ¥, is Ly-bounded iff
the symbol af of ¥ remains in the same Hormander class. Our proof
follows the classical one by showing that ¥, is bounded in the Sobolev
space W3 (Re) under a minimal amount of regularity s > 0.

e Theorem B iii). Our L,-results follow by showing that any such symbol is
a Calderén-Zygmund operator which fulfills all the hypotheses of Theorem
A, the La-boundedness being assured by Theorem B ii). It is our CZ kernel
condition what imposes the mixed quantum-classical derivatives dg ¢ and
the corresponding “forbidden” Hérmander symbol classes 22?5 (Ro).

o Related estimates. Our L,-inequalities give rise to Sobolev p-estimates for
symbols of arbitrary order m, we shall recollect these estimates in the body
of the paper. On the other hand, the L,-theory for symbols with p < 1
requires a negative degree to compensate lack of regularity. Fefferman
proved in [29] the L,-bounds for the critical index m = —(1 — p)5. We
shall obtain nonoptimal L,-estimates of this kind in Re. Interpolatlon
yields even finer results for intermediate values of m.

The analogue of Theorem B for quantum tori Ag is proved by transference
in Appendix A. The Hérmander classes S7';(Ae) and X7';(Ae) involve discrete
derivations over Z™ in the dual variable. In the line of Connes definition, we could
also proceed by restriction to Z™ of symbols R” — Ag C Re in the corresponding
Hormander classes. As in T™ both definitions turn out to be equivalent and this
will be the source of our transference approach. The discrete form of difference
operators has the advantage of being easier to be calculated with computers.

An illustration for elliptic PDFEs

Pseudodifferential operators are a very powerful tool for linear and nonlinear
partial differential equations [7IL[72]. The existence, uniqueness and qualitative
behavior of solutions for many PDEs are frequently understood by application of
these methods. After the announced results so far, the potential applications for
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INTRODUCTION xiii

PDEs over quantum Euclidean spaces and tori are vast and beyond the scope of
this paper. As a small but basic illustration, we prove in Theorem the L,
regularity for solutions of elliptic PDEs over quantum Euclidean spaces. We do
not include this statement in the Introduction to avoid more terminology at this
point. A profound analysis of partial differential equations over quantum spaces
—Ag, Re or even more general noncommutative manifolds— constitutes a long
term program with conceivable implications for the geometry of such objects.
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CHAPTER 1

Quantum Euclidean spaces

Given an integer n > 1, fix an anti-symmetric R-valued n x n matrix ©. We
shall write A, (R) for this class of matrices. Intuitively, quantum Euclidean spaces
can be thought as (the von Neumann algebra generated by) the universal C*-algebra
generated by a family wuy(s), u2(s),. .., un(s) of strongly continuous one-parameter
unitary groups in s € R satisfying the ©-commutation relations

uj(s)up(t) = Oy (t)uy(s).

More precisely, consider any pair (H,n) formed by a Hilbert space H, together
with a family ©# = (my,ma,...,m,) of strongly continuous one-parameter unitary
groups m; : R — B(H,) satisfying the ©-commutation relations above. Call 7
cyclic when span{my(s1)m2(s2) ... 7 (sn)v : s; € R} is dense in H, for some vector
v € H,. Notice that if H, is separable when 7 is cyclic. We define the universal

unitaries u; as
u;(s) = @ m(s) € B( P M) = BH.),

where the direct sum runs over all cyclic 7 satisfying the ©-commutation relations.
Given £ = (&1,&9,...&,) € R™, we shall extensively use the unitaries A\g (&) given
by u1(§1)uz(€2) - - - un(§n) and we set

ro(f) = [ [f(&)Hre(§)de for [fe Li(R").

R7l

Define Eg as the norm-closure of Ag(L1(R™)). It is not a unital C*-algebra. If
needed, we shall denote its multiplier algebra [49] Chapter 2] by Ag. When © =0
and by Stone’s theorem we may take u;(s) = exp(2mis(e;, -)) and therefore Eg is the
space Co(R™) of continuous functions R™ — C that tend to 0 at infinity. Ag is the
multiplier algebra of Co(R"™), which coincides with the space of bounded continuous
functions over R™. Moreover, since R™ is amenable Ag may be described as an
spatial crossed product C xg R™ C B(Lo(R"™)) twisted by the 2-cocycle determined
by ©, as introduced by Zeller-Meier [79]. Given any O, we easily see that

i) Ao(§)" = ™2 08 ag (—g),

ii) Ao (§)Ne(n) = 2 EOM g () Ao (£),
iii) Ao (&)Ne(n) = €™ Zu=k ORE NG (£ + 1),
iv) do(f1)re(f2) = Ae(f1 *e f2) with ©-convolution given by

freo f2&) = | (€ = mfaln)e?™ >0 OonlSmme dy.

Note that >, ©;k&nk = (§,©,n) for the lower triangular truncation ©, of ©.

It is also interesting to note that |(i)| and imply that Ag(L1(R™)) is a Banach
x-algebra for the Li-norm.

1

Licensed to Univ of Ill at Urbana-Champaign. Prepared on Wed Sep 14 07:37:29 EDT 2022for download from IP 130.126.162.126.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



2 1. QUANTUM EUCLIDEAN SPACES

1.1. Crossed product form

In this section we are going to see that the natural integral in R™ remains as a
well-defined faithful tracial weight over Eg that we shall denote by 7g. Indeed, let
us define

ro(e (1) =70 [ FEDe(e)de) = £0)

for f : R™ — C smooth and integrable. As we shall see, 7g extends uniquely to the
positive cone of Eg. We shall also construct Rg = Ag = Ef as the von Neumann
algebra generated by Eg in the GNS representation associated to 7¢ and we will
prove that 7¢ extends to a normal, semifinite and faithful trace over Rg. When
© = 0 we get Re = Loo(R™) and 7¢ coincides with the Lebesgue integral. In
general, we call the ©-deformation Re a quantum Euclidean space.

1.1.1. Crossed products and trace. A C*-dynamical system is a triple
formed by a C*-algebra A, a locally compact group G and a continuous action
B : G — Aut(A) by *-automorphisms. The reduced crossed product A X g eq G is
the norm closure in AQB(L2(G)) of the x-algebra generated by the representations
p:A— Loo(G;A) and A : G — U(L2(G)), given by

pla)(g) = Bg-1(a),
M) f)(h) = flg~ h).
The full crossed product A g G is the C*-algebra generated by all covariant

representations v : A — B(H) and v : G — U(H) over some Hilbert space H:
u(g)v(a)u(g)* = v(Bg(a)). Given f: G — A continuous and integrable

H/Gfg >4gdu(g)HANWIG = swp H/Gv(fg)U(g) du(g)HB(H)~

covariant

It is a very well-known result [8] that A xg G = A Xgrea G when G is amenable.

Given a pair (M, ) formed by a von Neumann algebra M equipped with a
normal faithful semifinite trace 7 —noncommutative measure space— and a locally
compact unimodular group G acting on (M, 7) by trace preserving automorphisms
B : G — Aut(M,7), the crossed product von Neumann algebra M xz G is the
von Neumann subalgebra of M®B(Lz(G)) generated by p(M) and A(G), defined
as above. In other words, M xg G is the weak-x closure of M X3 req G.

Given f : G — M continuous and integrable, set

([t M) i) = 7050

where 1 and e stand for the Haar measure and the identity in the unimodular group
G. This determines a normal faithful semifinite trace which extends to the crossed
product von Neumann algebra M x 3G, see Takesaki [70]. In the following result, we
provide an iterated crossed product characterization of quantum FEuclidean spaces
and construct a normal faithful semifinite trace on them.

PROPOSITION 1.1. The following results hold:
i) If n =2 and © # 0, we have
Eo ~ Co(R) x R.

In this case, the crossed product action is given by R-translations.
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1.1. CROSSED PRODUCT FORM 3
it) If n > 2, let us define

roQe(f)) =7e( | f©)e()ds) = f(0)

for f : R™ — C smooth and integrable. Then, Tg extends to a mormal
faithful semifinite trace on Eg. Moreover, let Z denote the (n—1) x (n—1)
upper left corner of © € A,(R). Then there exists a continuous group
action Bn—1: R — Aut(Ezg) satisfying
E@ ~ E= XB, 1 R.

iii) Let Re = E{ be the von Neumann algebra generated by Eg in the GNS
representation determined by 7g. We have Rg ~ Loo(R) X R ~ B(L2(R))
when n =2 and © # 0, with x-action given by R-translations. Moreover

To extends to a n.f.s. trace on Reg, and the action 5,1 is trace preserving
on (Rz,7=). Induction on n and iteration give

R@ ~ RE X, _q R,
Ro = ((Loo(R) %3, R) -+ 24, , R).

Proof. Given © € A,(R) and a Hilbert space H,, every set of one-parameter
unitary groups {m;(s) : 1 < j <n,s € R} in B(H,) satisfying the ©-relations yields
a x-representation 7w : Eg — B(#H,). Consider again the universal representation
u in ‘H, as the direct sum of all the cyclic representations. We shall use in what
follows —with no further reference— that Co(R) is the closure of F(L1(R)), which
can also be understood replacing the characters exp, = exp(27(s, -)) in the Fourier
transform F by wu;(s) for any fixed 1 < j < n, since {u;(s) : s € R} forms a
non-trivial one-parameter group of unitaries.

i) If n = 2 and © # 0, there must exist § # 0 with © = §(e12 — e21). We may
rescale u1(s), ug(t) and assume without loss of generality that 6 = 1. Now, consider
the map

Eeo3z= / z(s,t)ur(s)usa(t) dsdt — / fixtdt=feC(R) xR
R? R
with f; € Co(R) given by
fi = / 2(s,1)e*™ ds ~ / z(s,t)u1(s) ds.
R R
If we set Hy = ®rHr, define v : R — U(H,,) and v : Co(R) — B(H.) by
v(t) =ug(t) and 7(/8(8)627”5' ds) = /6(s)u1(s) ds.
R R
The pair (v, v) forms a covariant representation since we have
v(t)y(a)v(t)* = /Zi(s)uz(t)ul(s)uQ(—t) ds
R
= / a(s)e 2 u (s)ds = +( / a(s)e* 0 ds) = (By(a))
R R
where S;(a) = A(t)[a] is the left regular representation at ¢ acting on a. This gives

llesarn > || [ storae], =] [ st dsat], =1zl

Licensed to Univ of Ill at Urbana-Champaign. Prepared on Wed Sep 14 07:37:29 EDT 2022for download from IP 130.126.162.126.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



4 1. QUANTUM EUCLIDEAN SPACES

The reverse inequality is proved similarly. Indeed, let us consider the following map

COR)xR> f= / fr X tdt— z(s,t)u1(8)ug(t) dsdt = z € Eg
R R2

with z(s,t) = ft(s) Fix a Hilbert space K, and a covariant representation (v, v)
of the pair (Co(R),R) in B(K, ). Define w1 (s) = v(e*™*") and wa(t) = v(t). This
shows that covariant representations of (Co(R), R) with action given by translations
are in one-to-one correspondence with x-representations of Eg for the deformation
O = e12 — e91. Indeed, w1 (s) and wsy(t) are one-parameter groups of unitaries since
7 is a x-representation and v a unitary representation. Moreover, the commutation
relations hold as a consequence of the covariant property

wi(s)wa(t) = v(exp,)v(t) = v(t)y(B-¢(exp,)) = € wa(t)wi(s)

for exp(s) = exp(2wis-). In particular

> | [ oyl = oo,

Taking the supremum over (v, v) covariant, we see that [|z||ge > || fllc,®)xr-

ii) When n > 2 we proceed by induction. To prove ii) for n = 2, it suffices
from i) to justify that 7o extends to a faithful and semifinite tracial weight on
Ee. Note that Co(R) x R is generated by exp, xA(¢) for (n,¢) € R x R where
exp,, (z) = exp(2mizn) and A(C)f(x) = f(z — (). According to i), this gives

solh) = [ 1@ de= [ [ [ rn0exp, dn] 5 ac

vov)

®¢
This means that the crossed product trace

([ eexn0a) = [ev@rdo= [ [ [ 1.0 exp, @) dn]dz = 100)

coincides with 7¢ in Eg. Since Cp(R) xR embeds faithfully in L. (R) xR and 7 is
n.s.f. it turns out that 7 is a faithful and semifinite trace over Eg and extends to
a n.s.f. trace over Rg. That completes the argument in the case n = 2. Once this
is settled, consider © € A, (R) whose upper left (n — 1) x (n — 1) corner is denoted
by =. Assume ii) holds for any dimension smaller than n, and set

Bur()( [ elome)dz) = [ o)t R St e

Then, 8,1 trivially yields a T=-preserving action on (Ez, 7). Moreover, the map
Ao(€) = A=(&1,&2,...,&n—1) X A(&,) also gives rise to Eg ~ Ez xg,_, R and
Te = Tx|Ee by arguing as above for n = 2, details are left to the reader.

iii) Now, for n = 2 and © # 0 we get

Ro = E4 = (Co(R) x R)" = Co(R)” ¥ R = Loo(R) x R,

To = Tx on Reg and Eg sits faithfully in Rg. Moreover, Lo (R) x R C B(L2(R))
acts on Ly(R) by modulation and translation, which implies Rg ~ B(L2(R)) since
only constant multiples of the identity map commute with all modulations and
translations. When n > 2 we proceed by induction one more time to conclude that
Bn—1 is T=-preserving, Re ~ Rz x5, _, R, 70 = 74 and Eg C Re faithfully. The
last assertion follows trivially by iteration. This completes the proof. (|
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1.1. CROSSED PRODUCT FORM 5

REMARK 1.2. The map
/\@ : LQ(R") — LQ(R@, T@)

is an isometric isomorphism, extending Plancherel theorem for ©® = 0. Indeed, once
we know 7g is a trace, it follows from the density of the quantum Schwartz class
So = do (S(Rn)) in LQ(R@) and the identity /\@(fl)/\@(fQ) = )\@(fl *Q f2)

REMARK 1.3. When n = 1, Rg = Lo (R) generated by u(s) = exp(2wis-).
In the 2D case, we find one more time Rg = Loo(R?) for © = 0. Otherwise,
there exists 0 # 0 such that ® = 0(ej2 — e21). Rescaling § = 1 and arguing as in
Proposition [[T]iii) gives

o=(_1 §) = Re~B(Ls(R) ~ Loo(R) x E
generated by modulations exp, x1 and translations 1 x A(¢) for n,¢ € R. These
are the standard time/frequency unitaries in Fourier analysis. If we set Z to be the
n X n matrix with all its entries equal to 1, then the analogous space in dimension
2n is given by © = Z2® (e12 — e21) with Ro =~ B(La(R™)) ~ Lo (R™) x R™. The 3D
case admits other models. By Proposition [[1]iii)

o IfO =0, then Ro = Loo(R?) ~ Lo (R)®Loo (R)RL oo (R),

0 0 0
e IfO=( 0 0 a | = Ro~Lu(R)®(La(R) xR),
0—a 0
0 0 8
o I[fO= 0 0 « = Ro ~ (Lo(R)®Ls(R)) x R,
—B—a 0
0 v B
e IfO=|—-—1 0 « = Ro ~ (Lx(R) X R) xR,
—B—a 0

for «, B, # 0. Higher dimensions are treated similarly. When a # 0 = 3 = ~, the
x-action is t - f(s) = f(s — at). In the second case «, 8 # 0 = ~, the x-action in
Loo(R?)is t- f(z,y) = f(z — Bt,y — at). In the third case a, 3,v # 0, both actions
vield ¢ exe ((5ine £)(r)) = ((s — at) g f)(r — Bt) = f(r — s+ (ay — B)t). In
the particular case « = 8 = v = 1, we have full symmetry under the action of the
permutation group. In this case, the time/frequency dichotomy described above
for n = 2 is replaced by three indistinguishable sets of unitaries. In Section [[L3.3]
we will analyze how the structure of Reg depends on © using a diagonalization of ©
and extending the linear change of variable to Re by a Baker-Campbell-Hausdorff
type formula.

1.1.2. The corepresentation map. We now recall a useful consequence of
the crossed product characterization of Re, the normality (weak-* continuity) of
the corepresentation map og : Ae(§) — exp, ®Ae(§), where exp, stands for the
character x — exp(2mi(z,£)) in Lo (R™). This will be the source of several metric
and differentiability considerations over quantum Euclidean spaces.

COROLLARY 1.4. The above defined linear map og uniquely extends to a normal
injective x-homomorphism 0o :Re — Lo (R")®Re for every deformation © € A, (R)
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6 1. QUANTUM EUCLIDEAN SPACES

Proof. The assertion is a simple exercise in the C*-algebra level, so that we shall
only justify normality. We proceed by induction on n, the case n = 1 is nothing
but comultiplication in L., (R™). In higher dimensions, og factorizes as follows

Re = Rz x5, , R
la’@ lgg—a’gxidm
LOO(R")@)R@ LOO(R"*)@)RE Mg R

\ lg’

Loo(R)&((Loo(R*1)&Rz=) x5 | R)
where Bn_l = idgn-1 ® Bp—1 and the map € is given by
MxgR > / fs @ A(s)ds LN / exp, @(fs ¥ A(s)) ds € Loo(R)®R(M x5 R).
R R

By such factorization, it suffices to justify the normality of oz and :
e The map oz is equivariant
0z(Bn-1(s)(a)) = Bn-1(s)(o=(a)).

Let j = pxA: Rz xR = R=®B(L2(R)) be the natural injection. By the
above equivariance, j intertwines oz X id and o= ® id

o= =0z Xid = (idLoc(]R"—l) ®j)71 o(0z® idB(LQ(R))) 0 j.

Since o= ® id is normal by induction hypothesis, the same holds for o=.

e The fundamental unitary on R?

Wf(z,y) = f(z+y,y)

satisfies W*(1 ® A(s))W = A(s) ® A(s). Using the isometric isomorphism
A L(R) 5 A(s) = exp, € Loo(R), we get

Q(f) /RGXPS ®(fs X )\(s)) ds

= (A @idar)(1 % W*)(/Rl ® (fs % A(s)) ds)(l x W).

Thus Q(f) = (A ®@ idpmxr) (1 x W*)(1® f)(1 x W) and  is normal. O

1.2. Metrics and derivations

In this paragraph, we exploit the corepresentation g to introduce some other
auxiliary operators which will help us to equip Rg with an induced metric, a natural
BMO space and a differential structure.
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1.2. METRICS AND DERIVATIONS 7

1.2.1. A metric in Rg and BMO. Given a von Neumann algebra M, its
opposite algebra M, is obtained by preserving linear and adjoint structures but
reversing the product aq - as = agay. Several reasons justify why noncommutative
singular integral operators require to understand the singular kernels as operators
affiliated to M®&M,p, see [44] and Section 211 below. We shall use from now on -
for the Myp-product, as well as o for the product in M&®&M,p, so that

(a1 ® az) @ (a) ® a3) = (a1a}) @ (a2 - a3) = (a1a}) ® (a5az).
Let us consider the linear map mg, determined by

expe = Xo(€) ® Ao (§)*

where, as usual, we write exp for the Fourier characters exp(2mi(¢,-)) in R". As
an illustration, recall that for © = 0 we may expect to get the following identity
for any (say) Schwartz function f:R" — C

mo(f)(a.y) = mo /R Fleyexpe de ) (z.y) = /R @) expe(w —y)d = f(z — ).

Of course, this requires to justify the continuity properties of the map mg which we
shall do in Lemma below. The quantum analogue of this map is particularly
useful to identify the diagonal in Re®@Rg , where the kernel singularities of our
operators are expected to live. Of particular relevance is the induced metric which
we define by
de =me(] )

for the Euclidean norm | - | or the bands around the diagonal be(R) = 7e(X|.|<r)-

It is worth recalling that both oo and mg take La(R™) into Lo (R™; Lo(R™))
when © = 0. The quantum analogue for © # 0 requires noncommutative forms of
mixed-norm L., (Lg)-spaces, whose construction we briefly recall. Given a Hilbert
space H and z = Zj m; @ h; € M ®ag H, we define

lzllmen- = H<$7$>r|‘i,t = Hzmjm;;<hjuhk>7-[i/l

J,k .

. 1

2l mene = |[(z,2)e2, = Hzmimﬂhmhkm /2\/1
ik

Given t € {r,c}, the space M@H' —also denoted by HT@M or Lo, (M;HT)— is
defined as the closure of M ®a1; H with respect to the weak topology generated by
the functionals )
Po(x) = w((x,m}f) for every w € M,

Alternatively, M®H' is the weak-* closed tensor product of the dual operator
spaces M and H', the latter space representing the row or column operator space
structure on H. Indeed, if X and Y are dual operator spaces, there are completely
isometric and weak-* continuous injections wx : X — B(Hx), 7y : Y — B(Hy) and
we define XQY as

ﬂx[X] Ralg ﬂy[Y]W* C B(HX ®2 Hx)
It is well-known that such construction is representation-independent and when one
of the tensor components is a von Neumann algebra, the predual is given by the
projective tensor product X, Y, see [261[62] for further details. Noncommutative
mixed-norm spaces have also been studied in [451[61].
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8 1. QUANTUM EUCLIDEAN SPACES

LEMMA 1.5. 7o extends to a normal *x-homomorphism
To : Loo(R") = Re®@Ry  satisfying (06 ®idger) o e = (idrn @ Te) 0 Agn

where Agn (expg) = expg @exp; s the comultiplication map in R™. This shows in
particular that de = me(] - |) is a well-defined operator affiliated to Re®@R¢ as an
increasing limit of the bounded operators de(R) = me(x|.|<rl| - |). Moreover, the
map Te also extends to a complete isometry we : LS(R™) — L5(Re)®RE -

Proof. That g : exps — e (§)®@Ao(&)* extends to a x-homomorphism is a simple
consequence of the product in Re®Rg, details are left to the reader. Let us then
prove that mg is weak-* continuous. It is tedious but straightforward to check that

Ao :h— . h(§1,62) e (1) Ao (E2) @ Ao (&1)" d&1ds
nxRP
yields an isometry Lo(R™) ®9 Lo(R™) = Lo(Re) ®2 La(R{). Indeed, by density
it suffices to expand 7¢ ® To(Ao(h)*Ae(h)) for h smooth, then calculate the trace
applying twice the simple identity 7o (Ao (f)Ae(£)*) = f(§) for a smooth integrable
function f in R™. Moreover, given any z = Ag(h) € L2(Re) ®2 L2(R{) it turns
out that

ra(exp)(x) = [ H(E&) e(OMolE)Ne(€) ® o6 No(6r)" derdey

/Rn o h(&1,€2) Ao (&1 + §)Ae(&2) ® Ao(&1 + &)™ dErdEe
- /R &= 66) o) de (&) @ Ao(61)" drde

= (Moo (Arn() ®idrn) 0 Ag')(2),

where Mg~ denotes the left regular representation on R™. This shows that mg is
weak-+ continuous and satisfies the identity 7o (f) = Ae o (f ® idgn) o Ag' for
all f € Lo(R™), after identifying exp, with Agn(§). Once we have justified the
weak-+ continuity, the relation (e ® idger) 0 e = (idpn ® Te) © Ag~ follows since
it trivially holds when acting on exp; for any § € R™. Also, it implies that de is
affiliated to Re®R¢ and arises as an increasing limit of bounded operators dg(R)
for R > 0. It remains to show that mg : L§(R™) — L5(Re)@Rg . Recall that the
norm in L§(M)®&M,p is given by

1
2

a— H(T@idMop)(a*a) i

When M = Rg and f € Ly(R") is smooth we find
(Te ®idger)(me(f)) = (10 © idngp)(/w F(€) X (&) ® Xo(6)* df) = J(0)1er.

Therefore, taking f =", fir ® e € Myp(L§(R™)) smooth, we obtain

I (Tr@(fjk))jk:HM,L(Lg(R(_))(i)R@) - H ((T@) ® idR%p) (We(f*f)))

1
2

]k Mn ®minR((:)p

|([ e df)”in ST T

By density, we see that mg : L§(R™) = L§(Re)®Rg is a complete isometry. O
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1.2. METRICS AND DERIVATIONS 9

Let
Sif(x)= [ F&)e tele2mi@e) ge
Rn

denote the heat semigroup acting on f : R™ — C. Consider the induced semigroup
Se = (Se.,t)t>0 on Re determined by og o Se; = (S; ® idry) © 0g. This yields a
Markov semigroup which formally acts as

Se(Me(f) = [ F(E)e I N(€) de.

R

Consider the corresponding column BMO norm

1
2

lallonio.re) = sup||(Se.s(a'a) =~ Se.r(a)"Ses(a)) ||
1
2 2
~ s (£ lro@) - votaraf dn) [ = loo(@laro.cao)

where Q denotes the set of all Euclidean balls in R™, u stands for the Lebesgue
measure and og(a)q is the average of og(a) over the ball Q. The norm equivalence
above —which holds up to constants depending on the dimension n— is a simple
consequence of the intertwining identity oo 0 So: = (S; ® idr,) 0 0o and the
equivalence between the BMO norms respectively associated to the heat semigroup
and the Euclidean metric in R™, see [42], Section 1.2] for further details. The space
BMO,.(Qe) is an illustration of the operator-valued spaces BMO.(R™; B(H)) which
were extensively studied by Tao Mei in his PhD Thesis [52].

We may use these latter spaces to properly define the column space BMO.(Reg).
Indeed, we know from Corollary [[4l that oo (Re) is a subalgebra of L (R")&Re,
which in turn is included in BMO.(Qg). Since we know from [52] that BMO.(Qe)
admits a predual H§(Qg), we may define

BMO.(Re) = co(Re)""

where the weak-* closure is taken with respect to the pair (H{(Qg), BMO.(Qo)).
This kind of BMO spaces over Markov semigroups have been deeply investigated
in [41] for finite von Neumann algebras. The semifinite case is more subtle and we
shall give in Appendix B a self-contained argument for Re.

1.2.2. A Poincaré type inequality. Let
So = {)\@(f) . f € S(R") = R"-Schwartz class}.

Define 3% as the linear extension of the map

96 (Mo (§)) = 2mig; Ao (§)

over the quantum Schwartz class Sg for 1 < j < n. Recall that Sg is an x-algebra
since Ao (f1)Ae(f2) = Ae(f1 *e f2) and Ae(f)* = Ae(f&) are stable in Se. In
what follows, we shall be working with this and other natural differential operators
in Re. The following one is a free analogue of the gradient operator associated to
the partial derivatives considered above. Let L(F,,) denote the group von Neumann
algebra associated to the free group over n generators F,. It is well-known from
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10 1. QUANTUM EUCLIDEAN SPACES

(say) [75] that L(IF,) is generated by n semicircular random variables s1, sa, . . ., Sy.
Let us consider the map s : R" — L(TF,) given by

=Y (&es)sley) =Y &sje
j=1 j=1

Then we introduce the ©-deformed free gradient

Ve = Z Sk ® 8@ :Sg — E(Fn)@R@.
k=1

If V denotes the free gradient for © = 0, is easily checked that

n

(idg(]lr") ®oe)oVe = Zsk@)(ago@@ Zsk@) (Okooe) = (V®idr,)o0e.
k=1 k=1

Moreover, let us recall that Vg (Ae(§)) = Zk sk ® 2migp Ao (&) = 2mis(§) ® Ae(§).

PROPOSITION 1.6. Let Br and qr stand for any ball of radius R in R™ and
the characteristic function of it. Given a noncommutative measure space (M, T)
and ¢ : B — M smooth with Br-average denoted by ¢g,, the following inequality
holds for the free gradient V in R™

2

1
2
H]{ng—@BR} du||

Proof. Consider the derivation map §(f) = f®1 -1 ® f. We shall use the
following straightforward algebraic identity, which is valid for any normal state ¢
on any von Neumann algebra

< 2vaR[|1 (V@ ida) ()| '
< \/_ ( ®qR® )( X1 M)(@) L(Fp)®Loo (RM)SM

B((f = SN (f = 6(1) = 560 6(5()"8(1),

Applying it for ¢ = >, f; ® y; we obtain

) . 2 1 . ) 2
(0 @idu)(Jo = (0@ idum)(@)]*) = 5(6© ¢ @ida) (|6 @ idae) (0)]°)-
If cr denotes the center of Bg, we observe that

(6 ®@idam)(p) = (¢ — p(cr)) @ Ign — 1gn ® (¢ — @(cR))-

Then, letting ¢ be the average over Bg we deduce the following inequality

I1.

1

2

(@ o@idu) (|6 @idv)))|

1
2

IA

S 6l sl sl

(6 @ idsn @ ide) (|~ plen) @ 12 )

[N

(idpn @ ¢ @ idpq) (|1R" ® (p— SO(CR))|2>

M
1

2

(¢®idM)(|</> - @(CR)\Q) N
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1.2. METRICS AND DERIVATIONS 11

In order to estimate the latter term, we use integration by parts to obtain

o(x) —p(cr) = /0 > Oke(tx — cr) + er) (z — cr, ex) dt
k=1
- / (re(ey ® idg) (ar (2)Vo(t(z — cr) + cr) qn(@)s(z — cx) ) di

Egn A(t) B

for 2 € Br. By the operator-convexity of | - |2, we find the inequality below

1

H]Z];R ‘90 - ‘pBRPduHi < ﬂ(Al H(¢®idM)(lERn(A(t)B”Q)HMdt)i

1 1
2
< \/5(/0 HA(t)”%(Fn)@Lm(R")@)Mdt) Bl £(¥,)& Loo (R7) -

Now we observe that [|A(t)]] < ||A(1)] for all 0 < ¢ <1, so we conclude that

1
2 2
H]{SR | — ©Bg| duHM <

Finally, Voiculescu’s inequality [75] claims

ls(P)llece.) = 2llhllen,
so that ||B||z(r,) <2 sup |l — cr| = 2R and the proof is complete. O
z€EBR

10qr®1)(Void H .
(1®ame L) MO 51 e

REMARK 1.7. Recall that

lallBmo.(re) ~ lloe(a)llBmo. (06)

1
= supH(][ ‘a@ —oola BR‘ dﬂ>2
R>0

According to Proposition for M = Rg, we deduce

Re .

a < su RH1® ®1 V®id_o_aH
lallemo.(Re) = sup (1®gr®1)( Reo) © 0o(a) B (B)5Re

= supRH 1®qr ®1)(ider,) ® 0e) o Ve(a)
R>0

L(Fp)®Loo(RM)®Re

REMARK 1.8. Given 2 < p < 0o, we have

1
va(a)HLp(ﬁ(]Fn)@Re) H( 89“ (96a)* )2

LP(R('))

%
H( 8@(1 8(9@)) ‘ L,(Re)
from the operator-valued form of V01culescu s inequality [46L[74]. Let us recall
in passing that this norm equivalence holds in the category of operator spaces and
moreover, the constants do not depend on the dimension n. This justifies our choice
of free generators in the definition of Vg. An alternative choice would have been
to work with Rademacher variables or matrix units, but the former does not lead
to the same norm equivalences for p = co. If © = 0 we get

n 1
HV ||L L(Fp)® Lo (RT ))NH(Z|8§f|2)2

k=1

Ly(Rn)
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12 1. QUANTUM EUCLIDEAN SPACES

1.3. Quantum Euclidean variables

Now we consider other characterizations of Rg in terms of the infinitesimal
generators of u;(s). These (unbounded) operators play the same role in Rg as the
Euclidean variables z; do in R". We will use them to study the quantum analogue
of the Schwartz class, to give an intrinsic characterization of the quantum distance
de and to deduce the algebraic structure of Reg.

1.3.1. Another approach towards Rg. Define

1 d

977 ds s:O(uj(s)) for 1<j<n,

roe,; =
with u;(s) the generating unitaries of the quantum Euclidean space Rg. These are
the (self-adjoint) infinitesimal generators of the one-parameter groups of unitaries
(u;j(s))scr given by Stone’s theorem and may be regarded as quantum forms of the
Euclidean variables. Namely, when © = 0 the one-parameter unitary group u;(s)
is composed of multiplication operators by the Fourier characters  — exp(2misz;)
and

2mizy = O(e*™579)| .

The operators xg ; enjoy some fundamental properties of the Euclidean variables.

PROPOSITION 1.9. The following results hold:

i) The generators xe ; satisfy

1
-0 for 1<j5,k<n.

[ze,j:T0,k] = 2

it) Recall the definition of the quantum Schwartz class
So = {Xo(f): f € S®RM}.
The infinitesimal generators xeo ; are densely defined unbounded operators

affiliated to Re. Moreover, in the GNS representation on La(Reg) we find
Se C dom(ze ;) and ze ;Se,Seze; C Se. More precisely

_ L
l’e,j)\@(f) = )‘@(Dé,jf) where Dg),j = Z@jkMgk - %327

No(f)we,; = Ae(Dp ;f) where Dg ;= Z ©ij M, — 6]
1=5+1
for f € S(R™) and Mg, f(&) = &k f(§). In addition, [Dej, ] = 0.

iii) Let (zej); and (yo,;); be the infinitesimal generators associated to Re®1
and 1 @ R respectively. Then, we may relate the quantum distance de
with these quantum variables as follows

n 1

2 2

de:(z e, — Yoj) ) :
Jj=1
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1.3. QUANTUM EUCLIDEAN VARIABLES 13

Proof. All the assertions are quite standard. Indeed

1 d?
[r6.5; To k] T4 ddt ) et (uj (s)ur(t) — up(t)u;(s))
1 d? 270 5 st 211 S
S 7Okt _ 1\ (Dus(s) = — @, — 2k
—472 dsdt | s=t=0 (5 Jus(t)us (5) —4m2 I* 27
Regarding the second assertion ii), the first identity can be justified as follows
Molf) = | (uy(s)Ae(s)
10,770 ~ 2midsls=o uits)jne
1 d
= Smidsleo - f(&)u;(s)Ae(§)dE
1 d T . O.rs
= Sridsluo fo 1O ks OikS N\ (€ + se;)dE
1 d ; .
T 2midsls=o0 Jgn F(€ — se)e2™ Xn<y Oirstn \g (£)dE

= i[/R (2Wi;®jk§k)f(§)/\®(§)d§—/Rn ALF(€)Ne(€)de|.

21

The second identity is proved similarly. This shows that Sg is a common core of
the 2o ; for 1 < j < n. Thus, it just remains to show that [Dg ;, Dg ] = 0 to
complete the proof of ii). This is clear for j < k, as for j > k
¢ r @jk J k
[DG,ijG,k] = T omi [857M€j]+[Mfk78§] = 0.

Finally, since dg = mg(| - |) and 7 is a *-homomorphism, assertion iii) reduces to
show that mo(z;) = ze,; —ye,; for 1 < j < n. This can be proved again with a
differentiation argument as follows

1 d 2mis{-,e;
mo(r;) = omids s:OTF@(e z$<’eJ>)
= LA (glse) @ Aolse)")
T 2rmidsls=0""? 56 o15¢;
1 d 1 d
B (%E s:ouj(s)> wlvle (ﬁd_s SZO“J(_S)) = e, —Ye,j;

according to our definition of zg ; and ye j in Re ®1 and 1® R respectively. O

REMARK 1.10. A few comments are in order:

e Assume that v;(s) are one-parameter unitary groups for 1 < j < n. By
Stones’s theorem, v;(s) = exp(2misz;), for some unbounded self-adjoint
operators z;. The point ) above can be generalized by stating that the
following two conditions are equivalent

1 0
[ 28] = 5~ Ogn & vi()vk(t) = O oy (B (s).

® Re is generated by the spectral projections of the quantum variables zg ;.

e The Euclidean Schwartz S(R™) class is the space of infinitely differentiable
functions f : R™ — C which satisfy that f and its derivatives decay at
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14 1. QUANTUM EUCLIDEAN SPACES

infinity faster than polynomials. In Rg, we find

Il ze.4, )06 (e () II Tou )

1<r<my 1<s<m,

— —
= do[( II P6,)( TI Dbi)Mamerf] € So.

1<r<mg 1<s<m,

which admits other representations since Dé ;. and Dg . commute. It
shows that the quantum Schwartz class is also closed under differentiation
and left /right multiplication by quantum polynomials.

e Proposition iii) establishes a canonical Pythagorean formula for the
quantum Euclidean distance de in terms of quantum variables. This
shows that the metric dg that we shall be using along the rest of the paper
is not induced but somehow intrinsic to Reg. This gives some evidence
that our main results in this paper are formulated in their most natural
way.

e We also note in passing that the quantum variables zg ; = 2o ; — Yo.;
from Proposition iii) are pairwise commuting for different values of
1 < 7 < n since

[20.5:20.k] = 2o, 20k — 2020,
= [re,,%0,klRe ®1+1® [ye,;,Ye,klrr = 0.
1.3.2. On the quantum Schwartz class. Using quantum variables, we are
ready to prove some fundamental properties of the quantum Schwartz class. The

analogues in the commutative case © = 0 are rather easy to prove. Let us consider
the map jo : S(R") — Se given by

jo( | Feem 9 dg) = [ f(e)re(€)ds,
R" R"

o~

so that jo(f) = de(f). By Remark and Plancherel theorem, jo extends to
an isometric isomorphism Ly(R™) — Lao(Re). We shall also need the space S
of continuous linear functionals on Sg, tempered quantum distributions. Finally
recalling that the quantum variables xg ; are affiliated to Re, we set for 1 < j <n

"
Re,j = <spectral projections of x97j> C Reo.
We write R; for Rg ; with © = 0. We begin with an elementary auxiliary result.

LEMMA 1.11. We have:
i) jo(xh) = x’é’j in the sense of distributions.

it) jo : Rj = Re,;j s a normal x-homomorphism.

Proof. Every element in Sg may be represented in the form jg(f) for some f in
the Schwartz class of R™. On the other hand, since jg : La(R™) — L2(Re) is an
isometric isomorphism, we define j@(xé?) € S5 by

<j®($§),j@(f)> = / x;“f(m) dzx.
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1.3. QUANTUM EUCLIDEAN VARIABLES 15

Thus, it suffices to see that this quantity coincides with
o (26 5d0(f)) = 10 (26 ;A0 (f)) = To (A@((Dé,j)kf )) = (Dg,;)"f (0)

for Déj = Es<j ©jsMe, — ﬁ@?, by Proposition A simple computation
shows that this is indeed the case. Next, assertion ii) follows from the fact that
Reo,j ~ Lo(R) for 1 < j < n no matter which is the deformation ©. Indeed,
in order to use the same terminology as in the proof of Proposition [ILI] we shall
assume for convenience that j = n. Then, we may identify Re ,, with the subalgebra
1 xg,_, R of the von Neumann algebra Rz xg, , R, which in turn is isomorphic to

Reo. Then, it is a well-known fact that we have 1 x5, R~ L (R). O

PROPOSITION 1.12. If © € A,(R) and v > %, we find

—

[T (1+lzes) " € La(Ro).

1<j<n
In particular, the quantum Schwartz class Se C L,(Re) for all p > 0.

Proof. According to Lemma [[.1]]
-1 1
oo ) =)
( + |ze 4 ) Jo 1+ |z;]
Let us proceed by induction on n, the case n = 1 being trivial. According to

Proposition [T, 7¢ coincides with the crossed product trace 7 in Rz x R which
in turn factorizes for operators with separated variables. This means that

T@(‘ ﬁ (1+|$(—),j|7)71’2>

1<j<n

- = 1I (1+|x@,j|7)1\2)/<1f|%

1<j<n—1 R

and we conclude by induction. To prove the last assertion, since Sg C Rg it clearly
suffices to show that Se¢ C L,(Re) for p small. Assume p = 1/m for m € Z; and
let

—

Q=] TI (t+lees)|”

1<j<n
According to Holder’s inequality, we find for f € S(R™)

Pel, = lle7"[,[@re (1l
= of| TI (1+1wosl) | ] INe(@IDS 10

1<j<n

IN

where Q[Déyj] is the differential operator associated to @) according to the second
point of Remark [Tl Since Q[Dé) ;1f € S(R™), the finiteness of the quantity in
the right hand side is guaranteed by the first assertion in the statement. |
ProrosITION 1.13. We have:
i) So is weak-x dense in Re.
it) S is dense in L,(Re) for all p > 0.
In particular, the same density results hold for Ao (L1(R™)) C Re.
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16 1. QUANTUM EUCLIDEAN SPACES

Proof. Since finite sums of the elementary frequencies Ag(§) are weak-+ dense
in Re by construction, it suffices to approximate Ag (&) by elements of Sg in the
weak-* topology. In other words, we need to find a family of functions ¢¢ . € S(R")
so that

gg%T@(()\@(Q%,s) —Xo(€)a) =0 forall ae€ Li(Re).

If B.(€) denotes the Euclidean ball around ¢ of radius ¢, let ¢¢ . be a smoothing
of the function [B.(&)| ™' xn. (), so that Lebesgue differentiation theorem holds for
the family {¢¢. : ¢ > 0}. Now, since Sg is dense in Ly(Re), the same holds
for SoSe C L2(Re)L2(Re) = L1(Re) and we may approximate a by a sequence
Xe(f;) € Se. Recall that

Ao (6ec) = Ao (@) ln, <1+ [ dec(c =2
Given § > 0, there exists j, > 1 so that [|a — Ae(f;,)|l < 6/2. Thus
lim 7o (Mo (Pe.c) — /\e(f))a)‘ <4+ |lim 7o ((Ne(de.c) — e (£)Ne(f)s)) ’
On the other hand, since Ag(&)* = 278018 \g (—£) we find
7o ((Aa(de.c) — Ao (§))Xe(f)5))
= fee o [5;(0) — e PTHEOE £ ()
= [ B gy (< — 00 (),

where © is the lower triangular part of ©. The expression above converges to 0
as € — 0. Letting § — 0 we conclude that Sg is weak-* dense in Rg. Let us now
prove that Sg is norm dense in L,(Re) for all p > 0. Since SeSe C Se, it suffices
from Hélder inequality to prove norm density in the case p > 2. Given a € L,(Rg)
for some p > 2, we may approximate it in the Ly-norm by another element in Re
which is left /right supported by a finite projection. In other words, we may assume
that a itself belongs to Re and a = qaq for some projection ¢ satisfying 7¢(q) < oc.
Pick two sequences f;, gr € S(R™) satisfying that

w'-limAe(f;) =a and w*-limAg(gr) = g¢.
Jj—o0 k—o0
By Kaplanski density theorem, we may also assume that

sup (IPe(fi)llre + e(ar)lre) <1+ llallrg < o0
k>
and both convergences hold strongly. Therefore, since a € La(Rg), given § > 0
there must exists ks satisfying [|a(g — e (gk;))||l2 < . Moreover, once the index
ks is fixed and since Ao (gx,) € L2(Re) there must exists an index js satisfying the
inequality ||(a — Ae(fj;))Ae(gk,)|l2 < 3. Combining these estimates

|a = Ao (fis)re(grs) ||, < llala — Ao (gr,))||, + || (@ — Ao (fi5)) Ao (gk,)|], < &

On the other hand, by the three lines lemma
_z2
la=ro(FiNelg)]l, < lla=Ae(fi)relgr) *lla = Xo(fis) e (gk,

1__
5% |ja = e (fis)Ae(gr)||ls” < (2lallzs)
Taking § — 0 we see that Se is norm dense in L,(Re) for p > 2.

B N

[ ~—r

IN

or.

O
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1.3. QUANTUM EUCLIDEAN VARIABLES 17

1.3.3. Structure of Rg. We start by showing the very simple algebraic
structure of quantum Euclidean spaces Rg. Indeed, given © € A, (R) and ac-
cording to the spectral theorem, there exist dy,ds € Z; with d; + 2dy = n and
K1, K2, ... k4, € R\ {0} satisfying the following relation for some orthogonal matrix
B € SO(n) and for ® the dy x dy 0-matrix

Do (0 1] .
:B[@@j@l@(_l o )|B=BaB.

A

Arguing as in Proposition [[1]iii) for n = 2, we find that

Ra

12

(R (@g Lo(R))) = Loo(R": B(Ly(R™))

12

o(RT)® (®L ) ~ Lo (R Lo (R%) x R%)

is a type I von Neumann algebra. Since the commutation relations are determined
by Ae(€)e(n) = exp(2mi (€, On) Ae(n)Ae (€) it is tempting to set A (€) = Ao (BE)
to conclude that Re ~ Ra is also a type I von Neumann algebra. This choice of
unitaries do not arise however from a family of one-parameter groups of unitaries
as expected. The right change of variables is zg¢ — Bxzg, where xzg stands for
(zo0.1,T0.2, s Ton), at the level of infinitesimal generators. If we want to take
exponentials to generate one-parameter groups of unitaries s — exp(2mis(Bzeg);)
new extra terms appear due to nonvanishing commutators.

PROPOSITION 1.14. The unitaries
Aa() = exp (70 (&6 A5 — (BE);(BEKO ) ) Ao (BE)
i<k
generate Ra. In particular, Re ~ Ra so that quantum Fuclidean spaces Reg
are always type 1 von Neumann algebras which are invariant under conjugation

by SO(n). Moreover, the traces coincide To = Ta and the one-parameter unitary
groups w;(s) = exp(2misza ;) = Aa(se;) have the form

wj(s) = exp ( — Tis? Z B;a@a[gBﬁj))\@(SBGj).
a<f

Proof. Consider the self-adjoint operators

n n
ra; =Y Biirer =Y BrTox
k=1 k=1

It follows from Proposition [[9] that the quantum Schwartz class Sg is a common
core for the family xa ; with 1 < j < n. In particular, these operators are densely
defined in the Hilbert space La(Rg) =~ La(R™) ~ L2(Ra). On the other hand, the

commutators are

* 1 * 1
EINEIVIED Bjalre,a, ve,8]Bsr = 5 > Bja®asBer = 5~ A

1<a,B<n 1<a,B8<n
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18 1. QUANTUM EUCLIDEAN SPACES

Therefore, Proposition [L9 implies that R is the weak- closure of the C*-algebra
generated by the one-parameter unitary groups w;(s) = exp(2misza ;) for j < n
or equivalently by the products

w1 (§1)w2(&2) - wn(8n) = H exp(2mi§;Ta ;).

1<j<n
Consequently, if we can justify the equality
—
[T exp@rigsen,) = exp (70 (&A% — (BE);(BEKO ) Ao (BE)
1<j<n j<k

it will follow automatically that Re >~ Ra as expected. The identity 7¢ = 7a and
the expression given for w;(s) also follow easily from the above equality. This is
proved from the Baker-Campbell-Hausdorff formula. Namely, since we know that
[TAj,TAk] = ﬁA]—k we may use the simple identity below for operators X,Y with
vanishing iterated brackets

1
log (eprepr) =X+Y+ 5[X,Y}.

Taking X; = 27mi§;xa ; we have [X;, Xy] = 27i€;£,Aji, so that

— —
H exp(2mi&;za ;) = H exp X;

1<j<n 1<j<n

— exp (% Z[Xj,Xk]) exp (in)

i<k

= exp (m' Z fjkajk) exp (27” z": fjﬂ?A,j)
j=1

j<k
n
= exp (m' > fjgkAjk) exp (27”' Z(Bé)kxe,k)-
i<k k=1
Using the same formula for the family Z; = 27i(B¢),;ze,; we may conclude. O

It is important to recall that, although the technique that we have used here is
somewhat similar to the discussion in Remark [[.3] here we care strictly about the
isomorphism class of Rg. On the contrary the discussion around Remark gave
information on the presentation of Rg as a crossed product.

1.3.4. A O-deformation of 0.. We finish this section with another local
operator acting on a given symbol a : R® — Rg. It plays a crucial role in the
Hormander classes X7 (Ro) from the Introduction. The mized classical-quantized
derivative is given by

0 ca(€) = Xo(€)* A Mo (©)al&)Na(€) I Ao (€).
LEMMA 1.15. We have
0 ca(€) = dla(€) + 2mi[ze 4, a(€)].
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1.3. QUANTUM EUCLIDEAN VARIABLES 19

Proof. Note that

d d —2mis €;

Tl pelerse) = Re©)(| e O e (sey)
d * d TS e; "
Tol _Je(EFse)” = <£ 52062 €0, Ju@(—sej))xg(g) ,

A simple calculation then yields that

0% c0(6) = 2ol (15 _ (e +seale + seshale + 505 ) e ©)

= (2mize,; — 2mi(€, O e;))alf) + aga(g) + a(€)(2mi(€, O, e;) — 2mize ;).

Eliminating vanishing terms and rearranging gives the desired identity. ]

The commutator vanishes in the Euclidean setting ©® = 0. Therefore, we should
understand Jg ¢ as a ©-deformation of the classical derivative J¢ which —as it is
indicated by the result below— is also very much related to the quantum derivatives
Oo. Thus, we get a ©-deformation of ¢ by Je.

LEMMA 1.16. Giwen ¢ € S¢ C Re we have
1 « i
6.5, ¢] = 5— ; Ok Io¢-
In particular, we obtain the following estimate

RN B
I[ze.5:¢]llz, < g(; 05u1?)

Proof. Observe that
[re.e] = [ PO[ose@]de= [ F€5=a|  [olses) No(€)] ds.

n 2mids|,_,

Using [Me(sej), Ao (€)] = e(se;)do(£)(1 — e2™#46:0¢)) and applying the Leibniz
rule, we easily deduce the first assertion. The second one is straightforward. ]

Re

(X obek)*
k=1

The last estimate above provides a uniform and linear bound that explicitly
gives the convergence (’%75 — ag' in the point-operator norm when © — 0. We
also recall that the assumption ¢ € Sg is just needed a priori and can be extended
to any ¢ in the weak-* closed domain of Vg.

REMARK 1.17. As indicated in the Introduction, quantum Euclidean spaces
can also be regarded as CCR algebras by means of a Fock space representation. We
shall not explain this connection in further detail. The interested reader may find
more information in [51159/[73].
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CHAPTER 2

Calderén-Zygmund L, theory

We now introduce kernel representations of linear operators acting on a von
Neumann algebra and develop a very satisfactory Calderén-Zygmund theory over
quantum Euclidean spaces. We shall prove L,-boundedness from Lj-boundedness
and Calderén-Zygmund conditions for the kernel. Li-boundedness will be analyzed
below in this paper for pseudodifferential operators. Our kernel conditions are given
in terms of the intrinsic metric and gradient introduced above and resemble very
neatly the classical conditions. This is the first form of Calderén-Zygmund theory
over a fully noncommutative von Neumann algebra. We refer to [421[57] for related
results over tensor product and crossed product algebras containing an abelian
factor. An algebraic/probabilistic approach —lacking the geometric aspects of the
present one— will be presented in [44] for more general von Neumann algebras.

2.1. Kernels and symbols

Given a measure space (€2, 1) and a linear map T acting on certain function
space X over (2, a kernel representation has the following form for functions f living
in some dense domain in X

Tyf(x) = /Q k(. 9) f(y) du(y),

where the kernel £ : Q x Q@ — C is only assumed a priori to be defined almost
everywhere and measurable. Now, given a noncommutative measure space (M, 1)
composed by a semifinite von Neumann algebra M and normal faithful semifinite
trace 7, the kernel representation takes the analogous form

Trp = (id@ 1) (k(1© ) = (idT) (1 ® 9)k)

with the only difference that k is now an operator affiliated to M®&M,,,, instead
of M®M as one could have expected. This novelty —undistinguishable in the
abelian case, where M = M,,— is crucial to develop a consistent theory. Let us
begin by showing the fundamental properties of these kernel representations. This
will simplify the task of justifying our choice of M®&M,,. Recall the products -
and e in M,, and M®&M,,, respectively from Section [[2.1] above.

REMARK 2.1. Rigorously speaking, the map T} so defined should send opera-
tors ¢ affiliated to Mo, to another operator Ty affiliated to M. Of course, this
is not an obstruction since the set of affiliated operators coincides for M and M,y
and Ty = Tum,,- We will regard ¢ as affiliated to M, so that Ty becomes a linear
map over the noncommutative measure space (M, 7).

LEMMA 2.2. The following properties hold:

21
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22 2. CALDERON-ZYGMUND L, THEORY

i) Adjoints and composition
Ty = Tipry- with flipla®b) = b® a,
Ty 0Ty, =Ty with k= (id@7®id)((ln@1)(10k)).
ii) Schur lemma and factorization
Tinekne = (id®7)(ka(1® ¢)ks),
| Thonoks : L2(M) = Loy(M)|
| Thnoks © Loo(M) = Loo(M)]|

IN

1 1

[(id @ 7) (ka k) || 3]l (7 @ id) (kek) ||,
1 1

[(id @ 7)(kak) |3 (i @ 7) (ki) 13,

IA

iii) Ty, s completely positive if and only if k is positive as affiliated to MR Mp.
Proof. We have
(Trpr,02) = T((id ®7)(k(1® 501))*502)
= 7'((7' ®id) ((1® ©})k* (g2 ® 1)))
= r(giliden) (D) (Lo e)) = (o1, Tie2),
which proves the kernel formula for the adjoint. Regarding the composition
Ty, (Ti,p) = (id®T) (k;l (1@ (ideT) (k1 @)))
- ([d®7T® T)((k:1 D1)(1ok) (1916 cp))
— (id® T)([(id ®7@id)(k ®1)(1® k)] (1@ @)).

In both cases —adjoints and compositions— we have regarded one more time the
involved operators as affiliated to M or M,,, according to the context, as we explain
in Remark 2] Next, the factorization identity in ii) uses in a fundamental way the
product e in MM,

Tiperpe = ([d@7) (ka0 kg(1®¢)) = (id®7) (ka (1 ® ¢)kg).
Namely, in the last identity above the first coordinate remains unchanged since
1 ® ¢ does not affect the product in M ® 1, whereas the second coordinate in
1 ® M,y is explained using its product - as follows

T(a-B-¢) =7(a-9f) = T(apf).
Let us now prove the announced inequalities. By the Cauchy-Schwarz inequality
for the operator-valued inner product (x,y) = (id®7)(2*y) over the von Neumann
algebra M®M,, we note that
. £ 1|2 , X . X
(id@ 7)(a"y)|” < [[(id@ 1) (z )| (id® T)(y"y),

see for instance [49, Proposition 1.1]. In particular

2 ‘ 2

|TkAokBSO| = ‘(’Ld@’l’)(/ﬂA 1®§0 kB)’

[(id © 7) (kak) | o (id © 7) (kgu ® <p*<p)k:B).

IN
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2.1. KERNELS AND SYMBOLS 23

The Loo-estimate announced for Ty, o ¢ follows immediately from the inequality
above. In order to prove the Lo-estimate, pick a unit vector ¢ € Lo(M). We just
need to take the trace and apply Fubini

(I Teaekael’) < [[Gd@ ) 0ak) ||y (70 7) (ki 0 kn(1 @ 6"0))
= [Gd@ ) (kaki)|| 7 (7 @ id) (ks o k) ")
i (7 ® i) kol )" )

[(id © 7) (kaki) ||\l (7 © id) (Rp k) | oy

It remains to prove the last assertion iii). As an operator affiliated to M®&M,,,, the
kernel k is positive iff there exists x also affiliated to M®&M,, so that k = k* e K
and the factorization identity above gives in that case

Tif = (id®7) (k" (1 ® ¢)k)
which is clearly a completely positive map. Reciprocally, let T be completely
positive. Assume for simplicity that 7T} is well-defined over projections in M.

Then, given any pair of projections p,q € M we know from positivity of T} that
7(Tr(q)p) > 0. However

r(Tulgp) = 7((do ) (kLo q)p)
T((Z'd ®T) (k‘ e (1® q))p)

T((id®7)(k’° (P®Q))) = r7@7(ke(p®q)).

The positivity of the last term for arbitrary projections implies the assertion. [J

)
= ||(id ® 7)(kak})

IN

REMARK 2.3. Lemma[22]i) also holds for kernels affiliated to M&M, contrary
to points ii) and iii). On the other hand, recall that the norm of a completely
positive map is determined by its value at 1. The Ly-estimate in Lemma 2.2 ii)
rephrases it in terms of kernels when k£ > 0 and kp = kg = \/E, so this estimate
provides a generalization for nonpositive maps. Also, the Lo-estimate generalizes a
classical result for integral kernels known as Schur lemma [68] Lemma in page 284].
Finally, the use of kernels k affiliated to M®M,, —essential for the properties in
Lemma [2:2]ii) and iii) above— is consistent with the duality

Li(M)* = Mqp
via the pairing (x,y) = 7(zy), we refer to Pisier’s book [62] for further details.
REMARK 2.4. Ignoring for the moment more general kernels which will arise

as tempered distributions, let us assume that k is affiliated to Re®R¢ and admits
an expression

b — / E(E,m)Ao (&) @ No (1) du(€, n)
R’IL XR‘VL

for some measure p on R”xR™. Noticing that 7¢ (Ao (f)Ae(£)*) = f(§) for f smooth
we may interpret the kernel k as a bilinear form where —regardless Ao (), Ao (n)
are not in La(Re)— we put Ag(&) @ Aa(n)* ~ [Aa(§)){(Na(n)] following the bra-ket
notation. This is easily checked for Dirac measures u = d¢, n,

(T (Mo (f1)), Ao (f2)) = o (Tr(he (f1))* Ao (f2)) = k(&o,m0) f1(10) f2(&)-
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24 2. CALDERON-ZYGMUND L, THEORY

We will approximate general measures as limits of finite sums of Dirac measures.

This paper is devoted to investigate singular integral operators over quantum
Euclidean spaces, both in terms of Calderén-Zygmund conditions for the kernel and
Hormander smoothness for the associated symbol. Let us therefore briefly describe
the kernels and symbols we will be working with. There exists a very well-known
relation between kernels and symbols of classical pseudodifferential operators, the
reader can look for instance in [68L[71] or almost any textbook on pseudodifferential
operators. Indeed, given

V@)= [ awg)

it turns out that ¥, f = T} f for

o~

()e*m e de,

k= (id® F Y (a)(z,2 —y) = / oz, €)2TT—vE) g

Given n > 2, let us know consider a n X n deformation ©. As explained in the
Introduction, noncommutative symbols over quantum Euclidean spaces are smooth
functions a : R — Sg and pseudodifferential operators look like

V06 = [ a©fEe()de

[ a©me(a(Ne(€))Ne(6) de
= (o me)[( [ @O 106 © Ao ) (10 a()]

The kernel k

Thus, we find formally that ¥, (Ao (f)) = Tk(Ao(f)) for

k= / (e mAe(©) @ Aa(n)* du(€.n) = / a(€)No(€) ® Ao (€)*d.
R xR™

n

Reciprocally, we also have the following expression for a

a(§) = N k(&) (1 ® Xe(n)*Ae(§))dn
when p is the Lebesgue measure in R" x R". The algebra of pseudodifferential
operators is formally generated by the derivatives 9§ and the left multiplication

maps Ae(f) — 2o, e (f).

REMARK 2.5. Pseudodifferential operators can be understood (intuitively) as
the algebra generated by Fourier multipliers Ag (f) — Ao(m f), for some function
m : R™ — C, as well as left multiplication operators x — ax, for a € Rg. The choice
of left multiplication operators can be changed to right ones. That gives rise to a
different, but highly related, notion of pseudodifferential operator that we describe
here. Let a : R™ — Sg be a smooth symbol, we define the right pseudodifferential
operator Wright ag

THE o (f)) = [ f(&)Ae(&)a(€) dE.

R
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2.2. CZ EXTRAPOLATION: MODEL CASE 25

Similarly, its associated integral kernel is given by
W () = (id @ o) [ / Re®) @ Ael())(a(§) © )it ) (1@ a).

k
It is natural to ask in which sense the operator above is defined. In Chapter [ we
shall see that ¥, : So¢ — Sg, for every symbol a in the classes S/Tc? (Ro) defined in
the Introduction, see Lemma [3.Il The same proof carries over without difficulty to
Uright A more elegant approach is to notice that it is possible to transfer results
between the left and the right pseudodifferential operators. Indeed, if we denote by
S the isometric operator in L,(Re) given by extension of S(z) = z* we have that

St — et where  b(€) = a(—£)*.
The proof of such intertwining identity amounts to a straightforward calculation. As
a consequence we have that if U : ,(Rg) — L,(Re) is bounded the same bound
hold for W)™ : L,(Re) — L,(Re). In particular, since the classes Srs(Re) are

closed under the involution a(§) — a(—&)* their left /right boundedness is equivalent
and thus we will work only with the left ones.

2.2. CZ extrapolation: Model case

We are ready to prove L,-boundedness of operators associated to elementary
kernels satisfying cancellation and smoothness conditions of Calderén-Zygmund
type. Our kernels will belong along this paragraph to Se ®aig Sgt, so that

k= Zj/ /n k1;(§)k2;(MAe(§) ® Ae(n)*dédn,

where the sum above is finite and k;; € S(R™). We will temporarily refer to
these kernels as algebraic kernels. Of course, in this case T} is L,-bounded for
1 < p < oo with constants a priori depending on the family x;;. Our goal is to
provide Lo, — BMO estimates with constants which only depend on structural
properties of the whose £ since this will allow us to include general singular kernels
below. The following result is the basic core of this paper. We shall use the quantum
metric dg defined in Section [[LZI] the notation Vgk to denote the operator

(V(—) ® idR?_)p)(k) € L(F,)@Re®@RY
for k € So ®az S and the dimensional constant K,, = %(n +1).
THEOREM 2.6. Let k € So ®a1g Sg and assume:
1) Cancellation
[Tk : La(Re) = La(Re)|| < As.
ii) Kernel smoothness. There exists
1
2
satisfying the gradient conditions below for p = a, 8

‘dg o (Vo ® idror)(k) o dg“”" < As.

1
Oé<Kn—§<B<Kn+

Then, we find the following Lo, — BMO, estimate
[Tk : Loo(Re) = BMO(Re)||,, < Cnle, 8) (A1 + Ag).
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26 2. CALDERON-ZYGMUND L, THEORY

Proof. Since k is an algebraic kernel, T}, is bounded on Rg. Moreover, T} is also
bounded on L;(Rg’) and T}, is a normal operator. On the other hand, the weak-*
topology in Rg is stronger than the inherited one from the weak-* topology in
BMO.(Rg). Therefore, by Kaplansky density theorem, it suffices to estimate the
norm of T on the weak-* dense subalgebra Sg. Given ¢ = Ag(f) € So

(§, It -atrima ),

where the second supremum runs over the set Qr of Euclidean balls Bg of radius
R and center cg,. Recall that og(Tryp) = Tk, ¢ for k, = (0o ® id)(k). Now let
¥ : R" — [0,1] be a Schwartz function which is identically 1 over the unit ball
B;(0) and identically 0 outside its concentric 2-dilation B2(0). Define

onts = v (5

to decompose the kernel k, = (0o ® id)(k) as follows
ke =ks o W@(wR) +k, o (1 - W@(QZJR)) .

ko1 (R) ko2(R)

Tk ¢llBMO, (Ro) ~ SUP  SUP
R>0BRr€ORr

Note here that 7o (¢¥r) ~ 1 ® T (¢r) is an element of Re®R¢ and only k, has a
component in Ly, (R™). We claim that the following inequality for k,1(R) holds up
to constants independent of the ball Bg € Qr and the radius R

1
2 2
(2.2.1) H (]{3 T (R) % = Ty (R)P)Br | dﬂ) HRO < CrArllelre-
. .

Before proving this first claim, let us continue with the argument. Of course, it
would suffice to give a similar estimate for ky2(R). To do so and according to the
Poincaré type inequality in Proposition [[L6] and its relation to BMO.(Re) outlined
in Remark [[7, it suffices to estimate

RH (1®qr @ 1)(V @ idre )(Th,(r)P) H

Tk ()

for gr = 1p, with constants independent of R. Since

L(F,)RLo(R")®Reo

(V ® id’R@) oog = (idﬁ([ﬁ*") X 0’@) oVe

we may rewrite Tk () as follows
Tk(p) = 1®q®1)(V®id) ((z‘d®2 ® 70)(ke2(R)(1%* ® w)))
= 1®@w®1)(id* ®716) ((v ®id®?)(ce @ id)[k] e (1 — UR)(1%°* ® <p))

= (1% @ 70) ( (18 gr © 15%)(id © 06 @ id)[Vok] o (1 = Wr)(1% 0 ¢))
K

with K € L(F,,)®Lo(R")@Re®Rg and Ui = me(¢r). For simplicity, we shall
use a more compact terminology and write K = gg V3k o (1 — ¥r). We may now
decompose K as follows

K=qgrVYreVgke(l—-VUgr)+qgr(l—Vr)eVike(1—Vg).

K Ko
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2.2. CZ EXTRAPOLATION: MODEL CASE 27

We claim that the following inequality holds for j = 1,2
A,
(2'2'2) HTKj (90) HL(IFH)@@LOO(R")@R@ < Cn(aa ﬂ)i ”‘PHR(—)

Our discussion so far has reduced the proof to justifying [22.1) and [2.2.2):
Proof of ([Z27)). It is clear that
1
) 1
(/ T el du)”
RTL

1
H(][ ‘TkGI(R)QO_(Tkgl(R)QO)BR|2dM) ’ H <C,R72
Br Re

On the other hand, given T : S¢ — L5(R")®Re we need to introduce its module
extension 7" : Se®@Re 3 Ao (f) @ p = T(Mo(f))(1®@¢) € L5(R")@Re. Recall the
following (elementary) algebraic identity

(id@ 7o) (ks @ (a®b) @ (L@ ¢)) =T, (¢b)(1®a) = T; ((¢ @ Dflip(a ®b)).

Then, noticing that & is assumed to be an algebraic kernel in Sg ®a1g Sgy , it is not
difficult to check that the above formula extends from elementary tensors a ® b to
arbitrary elements in Re®Rg . This yields

TrorR) = Thyewr e = Ti. ((¢ @ Dflip(re (¢r))).

In particular, we easily obtain the following estimate

1
[(] el an)’

< |7, : 15(Re)ERe — L5(R"ERs || [fip(re(vr)
According to Lemma
|| flip(7e (¢r))|

since the argument given there for mg also holds for flipomg. Therefore, it remains
to estimate the cb-norm of T,gd. We claim that it is bounded by A;, the Ly-norm
of Ty. To justify it, we introduce the map

Wi I5RYERa > [ e @a(€)ds s [ expesNa(Oale)ds € L5(R")ERe.

It is straightforward to show that W extends to an isometry. On the other hand,
letting jo : expg + Ao(&) be the Lo-isometry introduced in Section [L3.2] we
observe that

Wi @ id0e(fwa) = W( [ fe)exnwads)

Re

L5(Re)@Re |1PlIRe:

L5(Re)&Re = WRHLQ(R”) < C,R?

- /w f(©) expe @ Ao (§adé = oo(Xe(f))(1®a).

Identifying Ty¢ with Ag(f) for some smooth f : R™ — C we obtain the identity
W(i&Tk ®id)(p ® a) =Ty, (¢ ®a). This a fortiori implies that the cb-norm of the
map T,QU : L§(Re)@Re — L§(R™)®@Re is dominated by the L2(Rg) — La(Re)
norm of T}, as desired. This completes the proof of claim (ZZ.T]).
Proof of ([Z22). Let

De = (0o ®id)(de)

and decompose the kernels K; for j = 1,2 as follows

K, = (qR Up e Dé”‘) o ( oeVike Dgl) o (Dg“/ o(1— ‘IIR)QR)v
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28 2. CALDERON-ZYGMUND L, THEORY

K, — (qR (1—Ug)e Dg") . (Dg oVike Dé’) . (Dgﬁ' o(1- \I!R)qR),

with o/ =n+1—aand /' =n+1— . Using the terminology K; = A,;eB; ¢ C;
for the brackets above and according to the operator-valued (trivial) extension of
Lemma 2.2 we find for Bg = L(F,,)®Ls(R")@Re that

1 1
|7k, : Re = Be|| < [|(id @ ) (A;A |5, B | 5o g mep | (i © 70)(C5C;)| 5,

Since B; = (0g ®id)(dg oV@kodgH*p) for p = «, B and og is a *-homomorphism
we deduce from the hypotheses that || Bi| + [|Bz|| < A. Therefore, recalling that
we have a + o’ = + ' = n + 1, it suffices to prove the following inequalities for
the terms associated to A; and C;

ltid e o) (AIAD |7, < Cula)RE™,
l(idre)(CiC|F, < Cula)RE,
|(id© 70)(A2A3)||f. < Cu(B)REP,
|(id® 70)(C3Co)|5, < Cu(B)RE7,

for any a < K,, — % < B <K,+ % We will justify the above estimates for A;

and Cj, the proof of the others is very similar. Let Agn f(z,y) = f(z + y) be the
comultiplication map on R™. According to Lemma

(0o ®id) oo = (id ® Tg) 0 Agn.
In particular, A} = (id ® 7o) (Arn (| - |7*)gr(1 ® ¢¥r)) and we find

1
H(id® T@)(AlAT)Hf@@ = HAl Loo (R ®Re®L(RP)
|id @ mo | || Arn (|- |~*)gr(1 ® "/JR)HLOC(R")QELS(R")’

where id®mg : Loo (R")RLS(R™) = Lo (R")@Re®LS(RY). Its norm is dominated
by the cb-norm of 7e : L§(R™) - Re®L5(Ry ). We already proved in Lemma [I7]
the cb-contractivity of g : L§(R™) — L§(Re)®R{ and the exact same argument
can be trivially adapted to show that ||id ® me|| < 1 in the right hand side of the
above inequality. It then remains to estimate

IN

1

1
sup qR(I)(/ |z + y| YR (y) dy)2 < (/ Iy\*Qady) "<SRET
zERN n Bsr (0)

for a < %. In the case of C; = (id ® 7o) (Agrn (| - |7 )qr ® (1 — Yr)) we get

1 1
sup au(@)( [ ool 0= o)) < ([ i) SRE
zER™ n BR(0)

for o' > %. The same argument applies for Ay and Cs. This proves claim ([2.2.2)).
Conclusion. The argument above proves that Ty : Loo(Re) — BMO.(Re) defines
a bounded operator with norm dominated by C,,(a, 8)(A1 + Az). The exact same
argument can be used after matrix amplification to prove that the cb-norm of Ty
satisfies the same upper bound. This completes the proof of the theorem. ([l
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2.3. CZ EXTRAPOLATION: GENERAL CASE 29

REMARK 2.7. Our kernel conditions in Theorem are natural extensions
of the classical ones [34,[68]. The price for noncommutativity is a concrete and
balanced left /right location of the exponents «, 3, which of course is meaningless in
the commutative setting. These surprisingly transparent Calderén-Zygmund kernel
conditions are possible due to the very precise geometric information on Rg that we
collected in Chapter [[l Our results below for pseudodifferential operators crucially
rely on these conditions. For more general von Neumann algebras, the resulting
conditions are necessarily less transparent [44].

2.3. CZ extrapolation: General case

If S; denotes the space of continuous linear functionals on Sg —tempered
distributions— our aim now is to generalize our L., — BMO, estimate in Theorem
for continuous linear maps T' € L(Se,Sg) to incorporate Calderén-Zygmund
kernels. This imposes a careful analysis of tempered O-distributions and how this
affects our former kernel manipulations. By symmetrization, interpolation and
duality, we shall obtain L,-boundedness of quantum CZOs.

2.3.1. Tempered distributions. The Schwartz class S(R™) of Euclidean
smooth functions with rapid decay is equipped with the locally convex topology
determined by the seminorms p, g(f) = sup,egn |20 f(x)| for f : R® — C and
all a, f € N™. The quantum analogue for ¢ = Ag(f) in Sg was described in Remark
[[I0 In particular, ¢; = Ae(f;) converges to 0 in Sg when

lim [|P(r6)95 (\e(£))Q(z6) |, =0

for all 8 € N™ and all quantum monomials

P(l‘@): H xo,j, and Q(I@): H Ok, -

1<r<mg 1<s<m,
By Remark [[LI0] this holds iff
— —
. 2 T —
Jim [po[(TT 06, )( TT Do) Moo f]|, =0
1<r<mg 1<s<m,
LEMMA 2.8. If ©1,05 € A, (R) we find that

_lirn )\@1 (fj) =01n 891 54 _lim )\@2 (fj) =0 1n 892.
j—o0 Jj—o0

Proof. Let us set
PR0.s(Ne(f) = ||P(26)35 (Ne(f) Qo).

and assume that lim;_, pgll 01,6, (Ao, (fj)) = 0 for all B; € N™ and all quantum
©1-monomials P, Q1. Given 5 € N™ and quantum Os-monomials Ps, ()2 it then
suffices to show that

m p72 0,0 (es (£3)) = 0.

Jj—o0
According to Remark [LT0, we may find two commuting operators Pa[Dg, ;] and
Q> [D(_)QV j] —sums of modulations and derivations— satisfying the following identity

PR 0 (1) = o (PaDE, 102D, M iamer 1) |,
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30 2. CALDERON-ZYGMUND L, THEORY
Applying Riemann-Lebesgue and Cauchy-Schwartz with B(£) = 1+|£|™ and B~1(&)

PR 0y (Nea () < HPz[Dém]Qz[DBM]M(zmg)ﬂzfj

Li(R™)

N

HMB(E)PZ [DéQ,j]Cb[Déz,,ﬂM(zmg)ﬂz g HL
Q(Rn)

- H)‘el (Mp(e)P2[De, ;1Q2[D6, ;1 M(2ric)2 f;)

‘LZ(RGI )

By Proposition[I.12] there exists a quantum ©1-polynomial R (ze, ), whose inverse
lives in La(Re,). Therefore, multiplying and dividing by it on the left hand side
yields

P guine: () 5 [Ri@e,) e, (Mp(e Do, (P2)Dey(@2) Momigy f3)]|

©1
= H>\91(Rl[Dél,j]MB(g)PﬂDég,ﬂQz[Df—)g,j]M(zm'g)%fj)HRG :
A(f)
Using standard commutation relations, A(f;) may be written as
A(fj) = Zk Plk[Dé)l,j]Qlk[D(Tal,j]M(%ig)Blk fj

for finitely many B1x € N” and quantum ©;-monomials P and Q1. O

A linear functional L : S — Cis in Sg when it satisfies that lim;_, (L, ;) = 0
for any sequence p; € Sg converging to 0. Using the unitaries jo : expg Ao ()
we construct je,e, = jo, ©J§, : Ao, (§) = Ae,(§). According to Lemma 2.8 and
given L € Sg_, this means that (je,e,L, e, (f)) := (L, Xe, (f)) defines a tempered
distribution in Séz. Since this process is invertible, it turns out that the theory of
tempered distributions in Rg is formally equivalent to the classical theory.

Let us now consider continuous linear operators T € L(Sg,Sg). Of course,
since the topology in Sg, is that of pointwise convergence, a linear map 7' : Sg — Sg
is continuous whenever lim;(T'(Ao(f;j)), Ae(g)) = 0 for any family Ae(f;) which
converges to 0 in Sg and any A\e(g) € Se. To identify the kernel of T' € £L(Se, Sg)
consider j§Tje € L(S(R™), S(R™)’) where jg : S(R™) — S and j§ : Sg — S(R™)’
by our discussion above. Then, by a well-known result of Schwartz, there exists a
unique kernel m € §'(R?") = (S(R") @, S(R™))’ satisfying

<ngj@f,g> = <m,g®f> for all f,g € S(R").
Therefore, given T' € L(Se, Sg) we find its associated kernel
k=jo ®jo(m) € S/@@@ ~ (S ®x S@)/
such that

(Te(f)Aelg)) = (J6Tie(Mo(f)),Me(g))
(m, Xo(g) @ Mo(f)) = (k,de(9) @ Ae(f))-

Now, according to the density of the quantum Schwartz class Sege in Sgqq —since
the same result also holds in the commutative case— we easily conclude the density
of the algebraic tensor product Sg ®a1s Sg in Sé@@. This proves that the family of
algebraic kernels we considered for the proof of Theorem are dense in the space
Soee of arbitrary kernels for maps in £(Se, Sg). Moreover, by the weak-+ density
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2.3. CZ EXTRAPOLATION: GENERAL CASE 31

of trigonometric polynomials in Rege, we may also approximate Sgqeq by finite
sums of the form

k= Zj w(&j,mj) e (§5)" @ Aea(n;)"
According to our expression above —Section 2T} for kernels affiliated to Re@R ¢y’

- / R(Em)Ao(€) @ Ao () dul&,n),
R™ xRR™

this result amounts to say (not surprising) that kernels associated to finite sums of
Dirac deltas are dense. Note that identity (T(Ae(f)), Ao (9)) = (k, Xe(9) ® Xa(f))
takes the following form for finite sums of Dirac deltas

(T(Mo(f)); Nel9)) = Zj w(&j, ;) f(17)9(&5) = (K, Ao (9) @ Ae(f))-

2.3.2. Kernel manipulations and derivations. In our model case we have
decomposed the kernel k, = (0o ® id)(k) as k, e mo(¥r) + ko ® (1 — mo(¥R))
and, after applying our Poincaré type inequality to the second term, we further
decomposed the resulting kernel K as 7o (¢Yr) e K + (1 — mg(1r)) ® K. This leads
us to understand the same operation for general kernels in Sggq. To that end, we
introduce the following operations for L € S

LEMMA 2.9. Given ¢ € S(R™) and T € L(Se,Sg), the maps
M{(T)Me(f) = [ D(EAe(OT(Ne(§) Ne(f)) dE,

R™

M(T)Ne(f) = D(ET (e ()N (€)*)Ae(€) dE,

R’!L
belong to L(Se,S,) and their kernels extend mo (1) @ k and k o mg (1)) respectively.

Proof. We shall prove the assertion only for Mi (T'), since both operators can be
handled similarly. In order to prove continuity, assume that Ag(f;) — 0 in Sg as
J — 00. Then we need to show that

lim (M(T)(Ae(fi): de(9)) = lim [ $(E(T(Ne(€) N () Ao (9)Ae())dE

j—o0 j—oo Jrn

= lim | P&k Ne(9)re(€) @ re(E)*Na(f;))dE

j—oo Jrn
vanishes for all g € S(R™). We first note that
i (T(Mo(&)" Ao (f))): Aa(9)re(€)) =0
for all £ € R™, since Ao(§)*Ao(f;) — 0 in Sg as j — oo. Indeed, we have
Ao (€)*Aa(f;) = No(fje) for fie(n) = f;(n+&)e= 27480 and we then use Lemma

with (©1,02) = (0,0). Once this is known, we use the dominated convergence
theorem, for which we need an integrable upper bound of

(&) = sup [H(€)(k o (9)26 (€) © Xo(€)" Ao (/)]

Since Ao (g)Ae (&) = Ao (ge) for ge(n) = g(n — €)e*™ (1=69:8)  we have
(k, Mo (9)Xe(€) @ Xo(E)* Mo (f))) = (j& © j&(K), G ® fe)
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32 2. CALDERON-ZYGMUND L, THEORY

with j§ ® j& (k) € S(R*™). According to [33] Proposition 2.3.4], there exists an
absolute constant C and positive integers k,m such that the following inequality

holds
() < Cl(e) sup > pas(Ge @ Fie)
e
< CREOP( sgpl;kpaggwj) [BEOPEI € SR
|B]<m

for certain polynomial P. On the other hand, for integrable kernels

M{(T)(Xe(f)) = - ()N (€)(id @ T6) (1 ® Ao (€) N (f)) k) dE

D(E)(id @ 0) (1 ® Ao (f)) » (Na(€) ® A (€)") o k) dE

R

= (ido71e)(L@Xeo(f)) @mo() o k) = Trgwpyen(Ao(f)).

Interchanging trace and integral is justified for finite tensors by evaluation against
a test function, and a fortiori by density of these kernels in £(Se,Sg) ~ Sgge- O

REMARK 2.10. Given T € {¢,r}, it is also clear that
2T < Ea(Re) = La(Ro)| < ( [ 1501 d€) |7 La(Re) = La(Ro)|
REMARK 2.11. It will also be relevant to observe that
(MMM Ae(9) = (k (Malg) @ Aolf)) e To(t)),
(MyT)De(N):No0)) = (ko) e (Molg) @ Na(f)).

for the kernel k € Sl associated to T and any 1 € S(R"). Indeed, we have
(METIe()Nel9)) = [ HE(TOR(E) Mol Aalohro(6)) de

= [ 9Ok re()ro(€) = Ae(©) o)) de

= [ 9Ok (el9) © 20()) » (o(6) @ Aa(€)")) de

which gives the desired identity. Moreover, these identities hold for any function
for which both (Ae(g) ® Ae(f)) eme(v) and me(¢) @ (Ae(9) @ Ae(f)) stay in Sese-

Again as we did in the model case above, we shall need to operate with module
extensions. Given a linear map T : Sg — (S(R") @, So)’ we will use its module
extension 77 : Sg @, So — (S(R™) ®, Se)’ given by

T': do(f) ® Aolg) = T(a(F)(1 ® No(9)),
where (T(\o(f))(1® Ao (9)), (a®b)) = (T(he(f)), (1@ Ao(9))(a®b).

LEMMA 2.12. There exists a continuous map o : S — (S(R™) @ Se)" which
extends the corepresentation ge : Re 3 Ae(§) m expe @Ae(§) € Loo(R")®Re. In
particular, given Ty, € L(Se, Sg) with kernel k € SO@@ the composition Ty, = 0T}
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2.3. CZ EXTRAPOLATION: GENERAL CASE 33

belongs to L(Se,(S(R") @ Se)’) with kernel k, = (0o ® id)k. Moreover, Ty
extends to a continuous right modular map Se ®, Se — (S(R™) @, Se)’" with

T, (Mo (f) ® Dflip(me (v))) = My (Tk,) (Ao (f))-

Proof. The map q(f, g) = E arises as the conjugation of the multiplication map
(f,g9) — fg by the Fourier transform. It thus follows from the Leibniz rule that it
defines a continuous map S(R") ®, S(R™) — S(R™). Letting go = joogo (id® j&)
we define for L € S

(oL, Xo(f) @ Ae(9)) = (L,qo(Xo(f) ® e (9))).

It is clear that og : S§ — (S(R™) @, Se)’ is continuous and we find

(co(Xa(&)), M(f) ®Xelg)) = To(re(©)*Ae(fg)) = f(£)g(&)
(exp_¢ @Xa(£)*, Xo(f) ® Ao (g))

and thus og so defined extends the corepresentation og introduced in Section
This immediately implies that Tj, = 0T} belongs to L(Se, (S(R") @, Se)’) and
its kernel k, = (0o ® id)(k). Let us now justify the continuity of the module
extension T,éo. Indeed, the module extension of 0gjg, defines a continuous linear
map

W:SR") ®Se — (S(R") @ Se)’
satisfying W (exps ®Ae (1)) = expe ®Ae(§)Ae(n). Its continuity follows easily from
the continuity of og. Next, observe that Ty = W o (j§T) ® id) since it trivially
holds for the dense class of finite sums k = >, w(&;,m;) e (&))" ® Ae(n;)*. This
automatically implies the continuity of the module extension T, ,QG. It remains to
justify the given identity for 7},

T, (Mo (f) ® Dflip(re(v))) = DETT, (No(f)he(€)” @ Na(€)) dé

%\

_ / DETe, (Mo(NAe(€)*) (1 ® Ae(€)) de,

n

which is the definition of My (Tk,)(Ae(f)). This completes the proof. O

Our next goal is to generalize the Poincaré type inequality in Proposition
to the context of tempered distributions. Of course, the free ©-gradient can be
understood as a map Vg : S — L(F,,) ® S in the canonical way

VoL =Y s, ®04L for LeSp,
k=1

where (O5L, Ao (f)) = —(L,08 e(f)) = —2mi(L, Ao (fi))) and fix(€) = &.f(€).
Now, given a R"-ball Bg of radius R with characteristic function ggr, Proposition
gives an upper bound for

1
H@ — ¥Bg HR@®L§(¢) = H (]éR (v - @BR,)*(ap - SDBR)du) 3 -

in terms of the operator norm of the gradient of ¢ localized at Br. Let us recall
that the predual of Re®L5(¢) with respect to the linear bracket is given by the
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34 2. CALDERON-ZYGMUND L, THEORY
space Ag(Br) = L1 (R )®L5(¢), whose norm is

1% = Yoall 1 reryas() = H(][ (v~ wBR)(w—wBR)*du)%\

It is a simple exercise to show that S(R™) ®, S is norm dense in L1(RY )DL (¢).
In particular, the following result gives an extension of our Poincaré type inequality.

Li(Re)

PROPOSITION 2.13. Given L € (S(R™) ®, Se)’, assume
(8k ® idR(_)) (L) € Lo (BR)@R@
for 1 <k <n. Then, the following Poincaré type inequality holds

sup |(qrL, ) — ¥Bg)|
YESR™)®=Se
Hd’_d’BRHA(—)(BR)Sl

<22RH1 1)(V 'd—LH '
< \/_ ( ®qR® )( &1 7?.0)( ) L(Fp)®Loo (R")Q@Re

Proof. Assume for clarity that Bg is centered at the origin, see Proposition
for the standard modifications in the general case. Since OyL € Lo(R")®Re, we
may define

Z(m) / i@kL(tl‘)J)k dt

0 k=1
1
= /(TL(]F,L)®idR")(QR(x)VL(tI)QR(I)S(x))dt
0 N——
Epn A(t) B

for x € Br. Now let ¢; € S(R") ®- Se be an approximating sequence for L and
define the functions ¢;(z) = ¢;(x) — ¢;(0) accordingly. In particular, the following
identity holds for every test function ¢ € S(R") ®, Se

/ 70 (33(2) (%(x) — ¥py)) d = / 7o (123 (1) (1) — py,)) da

Br R
By approximation we get

‘<qRL7¢_wBR>’ = |<QRZ,'(/J_¢BR>|

[ (e om0 - v

/o ||ER" (A(t)B)||R@®Lg(¢) dt) de ~ ¥Bg ||A@(BR)'

Now we may complete the argument as we did in the proof of Proposition |

IN

2.3.3. A Calderdén-Zygmund extrapolation theorem. We are ready to
prove an estimate for general Calderén-Zygmund operators Ty. According to the
classical theory, we impose cancellation and smoothness conditions on the kernel.
To be more precise, let T, € L(Se,Sg) admit a kernel k € Sgge with gradient
(Vo ® idger)(k) affiliated to L(F,)@Re®@R¢. Then, we shall call Ty a column
Cualderdn-Zygmund operator with parameters (A;, a;, 5;) when:

i) Cancellation

[Tk : L2(Re) = La(Re)|| < Ar.
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2.3. CZ EXTRAPOLATION: GENERAL CASE 35

ii) Kernel smoothness. If K,, = £(n + 1), there exists

1

2
satisfying the gradient conditions below for p = a, 5

1
Oé<Kn—§<B<Kn+

’d”@ o (Vo ® idree)(k) o dg“*/)] < Ao.
REMARK 2.14. We implicitly use that

<dg) e Vokedl, z> = <V@k;, djeze d%>,
|43 @ Vok e df) sup (Voh.dhezedy).
z€L(Fn)RSege
I=2lL, (2EnereaREP) <1

HR@@Rg’ -

As explained in Remark 2.TT] this is justified for any tempered distribution when
7,1 € 2Z, but not for v,n < 2 since d, e zed/, does not stay in the test space Sege.
The necessity of using these values —only for n = 2 in the simpler statement of
Theorem A— forces us to impose that Vgk is, in addition, affiliated to the algebra.
Although our assumption is admissible in view of the classical theory we could
have alternatively used an approximation argument dj, = lima(d% + 51)7/ 2 to
avoid it. On the other hand, the kernel k¥ —not its gradient— should be treated as
a distribution since this allows certain Dirac deltas which do appear in the classical
theory, see Section [Z34] below for further details.

ProOPOSITION 2.15. If Ty is a column CZO and ¢ € Sgo
17 lpsro, ey < Cals B) (A1 + As) ellro-

Proof. We shall adapt our argument in the model case of Theorem Given
© = Xo(f) € Seo, this means that we need to control the operator-valued BMO norm
of oo (Tkp). According to Lemma 212 we have 0gT) = Ty, for k, = (0o ®id)(k)
and we may decompose it as follows

ke = ks o '/T@(wR) +k, o (1 - ﬂ—@(wR))a

ko1(R) ko2(R)

where the decomposition uses Lemma [2.9] and Remark 211l Next, we need to show
the validity of (ZZI)). To that end we follow the argument in Theorem by
recalling the crucial identity

T;, (Mo (f) ® Dflip(me () = M (Tk,)(Ne (),

which was justified in Lemma for general kernels. This is the part of the
proof which requires Lo-boundedness of Ty. Once we have completed our argument
for ks, (R), we apply the Poincaré type inequality in Proposition to the term
associated to ks2(R). This gives

1

s N3

H(]{g | T R) ® = (Thpa(m) )| du>2
R

S R|Qewe(Veidr) T.my) |

Tk (¢)

Re

L(Fp)®Loo (RM)®Re
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36 2. CALDERON-ZYGMUND L, THEORY

As in Theorem 2.6 the goal is to show that K is the distribution
K = qrVgke (1 - Ug) € L(F,)®(S(R") ©r So @x So)’

with grVEk = (1 ® qr ® 19?)(id ® 0g ® id)(Ve ® id)[k] and ¥ = Te(¢r). By
density, it suffices to justify it for elementary kernels k& = A\g(£) ® Ag(n). This is
possible via the identity (V®idr,)ooe = (idzr,)®0e)oVe due to our extensions
of the maps og and Vg for tempered distributions above. We may now decompose
K by means of Lemma [2.9] as follows

K:qR\I/R.VU@kO(].—\I/R)-FQR(].—\I/R).V%kO(].—\I/R).

K1 K2

At this point, the argument follows verbatim the proof of Theorem Indeed, we
further decompose K; = A;eB; ¢ C; as we did there and apply Lemma 221 —valid
for affiliated kernels, as we assume for K;— to obtain
(23.1) |7k, : Re — Be|
1 ) . 1
< |de 10)(A;A7)| 5, B |(id ® 70)(C;Cy) |3,

with Be = L(F,,)®Lo(R")®Re. The estimates for A;,B;, C; also apply here. O

J ||B@ SR

REMARK 2.16. Alternatively, if we do not want to assume that Vgk is affiliated
to L(F,,)@Re®Rg and use the approximation argument indicated in Remark 214}
we should be able to generalize the inequality (23] for tempered distributions.
Recall that the norm of Tk, : Re — Beo can be expressed as the supremum —over
Schwartz elements ¢, ¢ respectively in the unit ball of R’ and L;(Be)— of the
linear brackets

(T, 0, 0)| = [(AjeB;eCj,0© )

IN

||Aj *Bje Cj"BGQ‘@Ll(R?_)P)H¢HL1(B@) ”‘p”’R%"
Now we use the following characterization of the norm in M®X

All, - = sup (a@1)A(f®1) s
Mo = e | [
which is due to Pisier [61] when M is hyperfinite and X is any operator space. It is
also well-known that Pisier’s identity still holds for non-hyperfinite von Neumann
algebras —as in our case with M = Bg— as long as X is a noncommutative L,
space. In fact, Pisier’s identity generalizes to arbitrary mixed L,(L,)-norms. In
our case
|AjeB; e CJ‘HB@@’ng(RgP)

= sup ||(a®1)0Aj0BjOCjO(c®1)HL

Bo®@RP)*
2.c€B, (L»(Be)) 1(Be®Re

In particular, we find
law1)eAjeB;jeCie(c@)f], <[l(aw1)eAyll,|[Bs]|.[|C; e (c® 1),
and the elementary inequalities below complete the proof of (Z31)

[a®1)e Ajll, < lall2]|(id®70)(A; A7)

1
’2
Be’

1
[Cje(c@1)]l, < lell2(id®70)(C;Cy) |4,
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2.3. CZ EXTRAPOLATION: GENERAL CASE 37

PROPOSITION 2.17. Ewvery column CZO is normal. In particular
|7k : Re — BMOc(Re)|, < Cnla; ) (A1 + Az).

Proof. Let T} : Ly(Re) — L2(Re) denote the adjoint of Tk, so that

76 (T (Me(/))re(9))| = |re(Xe(f)Tr(Ne(9))*)

for all Ao (f), Ae(g9) € Se. Indeed, here H(Rg) denotes the predual of BMO.(Re)

with respect to the antilinear duality bracket above, as described in Appendix B

below. In particular, this inequality directly follows from Proposition 2.151 Now
we claim that this implies

||TE(<P)HL1(R@) < Ch(a, B) (A1 + A2) ol (o)
for all o = Ao (f) € So. Indeed, let us prove that
_ T (»)
- Cul(a,B) (A1 4 Ag) ol (o)
belongs to the unit ball of L1(Rg). To that end, it clearly suffices to prove that
|Te(qzqa)] < 1 for every contraction a in Reg and every Teo-finite projection g.

Since z € La(Reo), we have zq € L1(Re) and Kaplansky density theorem provides
a sequence u; € Sg in the unit ball of Rg so that

ITe(gzqa)| = lim |7e(u;zq)|.
j—o0
Moreover, since u;z € L1(Rg), we also find vy € Sg in the unit ball of Rg with
ITo(gzqa)] = lim |te(ujzq)| = lim lim |7g(u;zvy)|.
j—o0 j—o0 k—o0

Finally, since |7o(zw)| < 1 for every w € Sg in the unit ball of Rg —as we recalled
at the beginning of the proof— and the Schwartz class Sg is a *-algebra we obtain
that |Te(gzqa)| < 1 as expected. This proves our claim. Next, we use the norm
density of Sg in H(Rg) from Corollary [B.I0 in Appendix B below to conclude
that T} : H:(Re) — L1(Re) is bounded. The operator T} is the antilinear adjoint
corresponding to the duality

Li(Re) =Re
with respect to the antilinear duality bracket. Thus
Ty : Re — HI(Rg) ~ BMO.(Ro)
with the same constants, see Appendix B for further details on the duality Hi —BMO
in this setting. This proves the Lo, — BMO, boundedness of Tj. As in the model
case proved in Theorem[2.6] the cb-boundedness follows similarly and it just requires
a more involved notation to incorporate matrix amplifications. O

Once we have proved the complete Lo, — BMO, boundedness of column CZOs,
the general extrapolation theorem follows from additional assumptions of the same
kind on the kernel, which makes them more symmetric. More precisely, we know
that T), : Re — BMO,(Re) is cb-bounded iff the operator

T (e () = Te(o(£))"
defines a completely bounded map from Rg — BMO.(Rg). When this is the case
we get a cb-map T, : Re — BMO(Rg). Of course, the same assumptions for the
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38 2. CALDERON-ZYGMUND L, THEORY

adjoint T} trivially imply that T} also defines a cb-map T} : Hi(Re) — Li1(Re)
and interpolation —see Appendix B for details— yields complete L,-boundedness

for 1 < p < oo. This means that we should impose that the maps T,I ,T,’:,T; f
are column Calderén-Zygmund operators. It is clear that Lo-boundedness follows
automatically from Ty. Therefore, we just need to impose new kernel smoothness
conditions. We have

kernel(T,I) =k*, kernel(T}) = flip(k)*, kernel(leT) = flip(k).
Therefore, the results so far imply the following extrapolation theorem for CZOs.

THEOREM 2.18. Let T}, € L(Se,Sg) and assume:
i) Cancellation
|Tx : L2(Re) — La(Re)| < As.

i1) Kernel smoothness. There exists

1 1
a<Kn—§<B<Kn+§<7

satisfying the gradient conditions below for p = a, B,y

’d’é o (Vo ®id)(k) e di 7| +

df o (id © Vo) (k) o " | < As.
Then, we find the following endpoint estimates for Ty,
| T : Hi(Re) = L1(Re)||,, < Cula,B8,7)(A1+ Ag),
|7k : Loo(Re) = BMO(Ro) ||, < Cnle,8,7)(A1+As).
In particular, Ty, : L,(Re) = Ly(Re) is completely bounded for every 1 < p < oo.

In what follows, a Calderdn-Zygmund operator over the quantum Euclidean
space Reg associated to the parameters (A;, a;, 5;) will be any linear map T}, €
L(Se,Sg) satisfying the hypotheses in Theorem [ZI8 The kernel considerations
for the adjoint also appear in commutative Calderén-Zygmund theory, whereas the
t-operation is standard and arises from noncommutativity.

2.3.4. The principal value of kernel truncations. As it is customary in
classical Calderén-Zygmund theory, we want to understand how far is an operator
T € B(L2(Re)) from the principal value singular integral determined by its kernel
truncations. Our aim is to show that the difference is a left/right multiplier. Let
us be more precise. Consider a smooth function ¢ € S(R™) which is identically 1
over B;(0) and vanishes over R™ \ B5(0). Define

T

Vs =7e(¥a,s) with ¢as(z) = w(z) - w(%) = Ya(z) —vs(x)

for 0 < 6 << A < oo. We shall study the kernel truncations Wa s e k and k e Ux 5
and how their limits are related to Ty. To that end, we introduce the notion of
admissible projection. A projection p € Rg will be called admissible when the
function R™ — Proj(Re) defined as

s— \/ o5
s€Bs(0)

is weak-* continuous around § = 0. Here o (Ao (§)) = exp(2mi(s, &) Ao (§).
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2.3. CZ EXTRAPOLATION: GENERAL CASE 39

REMARK 2.19. Even in the Euclidean setting with ® = 0, not all projections
are admissible. In that case, the projection-valued function defined above associates
a measurable set A with Bs[A], the union of all the balls of radius ¢ with center in
A. Tf we take, for instance, a dense open subset of [0,1]" with measure strictly less
than 1, we will have that [0, 1] C Bs[A] for every § > 0, which poses an obstruction
to admissibility. This can be easily fixed in the Euclidean setting by considering
measurable sets which are closed up to a null set.

LEMMA 2.20. The bicommutant of admissible projections is the whole algebra
Reo-

Proof. It suffices to observe that one-dimensional spectral projections of the form
Xa,b) (Zo,j) are admissible for each of the quantum variables zg ; by Remark 219
and also that this family trivially generates Rg. This completes the proof. O

REMARK 2.21. Define a closed projection p € Re as those whose complement
1 — p is the left support of certain element ¢ € Eg as defined at beginning of
Chapter [II By the x-stability of Sg we could have replaced the left support £(¢p)
by the right one r(¢) or even by the full support s(¢) of self-adjoint elements. We
conjecture that all closed projections so defined are indeed admissible. At the time
of this writing we have not been able to confirm this conjecture, but this will have
no consequence in Theorem 2.23] below.

LEMMA 2.22. Given p € Re, there exist projections ps,qs such that

Te(s) e (1®p) = mo(is)e (ps @ p),
o(Ys) e (p@1) = mo(vs)e (p®qs).
If r(p) is admissible w*—girr(l)p(; =r(p), if L(v) is admissible W*—}in’(l) qs = L(p).

Proof. The assertions concerning ¢s follow from those for ps after applying the
map flip* : a ® b — b* ® a*, details are left to the reader. Now, let us recall that
the map T: Roe®R¢g — CB(L1(Re), Re) sending a kernel k to the corresponding
map T} is a complete isometry. Moreover, observe that

The(100)(9) = Tk(dp) and  Tre(po1)(¢) = Tk(®)e.

Since we clearly have

7o (¥s)lrearer < [1¥sllL, @) = 1YL, @n) < o0,

o —

we know that T (ys) is uniformly in CB(Li(Re), Re). Let us define
Ns = span™* {wTﬂe(wé)(gixp) 9 e Li1(Re), we ’R@} C Reo-

Clearly N5 is a weak-* closed left module. In particular, there must exist certain
projection ps € Re satisfying N5 = Re ps and the following identity holds for
every element ¢ € L1(Re)

Lo (1p5)0(109) () = Tre (15) (99) = T (15) (09) Ps = Trg (15)0(psp) (¢)-

Since T is (completely) isometric, T (¢s) @ (L ® ) = 7o (¥s) @ (ps ® ¢). It remains
to show that the projections ps so defined converges weakly to r(y) as § — 0F.
Given any ¢ € L1(Re), notice that

Tro(ps)(P0) = /Rn b5(€) 7o (Na(€) dp) Ao (€) dE = Ys(s)oé (o) ds.

B2s(0)
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40 2. CALDERON-ZYGMUND L, THEORY

Therefore, its right support satisfies
M(Trown(@9)) < \/ 0d(r(9)) = ps< \/ 0d(r(p).
s€B2s(0) s€B25(0)

Hence, since ps > (), we conclude by admissibility that w*- %ir%p(; =r(p). |
—

Given T, € B(L2(Re)) C L(Se,Sg), we truncate it as follows
Txs =My, ,(Ti) and T4 ;= My, (Ty).
According to Remark both truncations TL 5 satisfy the Lo-estimate

ITL 5 : L2(Re) = La(Ro)|| < 2%, || Tk : L2(Re) — La(Re)|-

In particular, the Banach-Alaoglu theorem confirms that certain subfamily of our
truncations TL 5 converges to some Lo-bounded operator S,Z : Ly(Re) — L2(Re)
for T € {¢,r}. We shall assume for simplicity of notation that the whole family of
truncations converges to S,Z as A — oo and § — 0.

THEOREM 2.23. There exist z; € Rg such that
(Ty — Sf)(a) =az and (T} — S§)(a) = z-a.
Proof. Given an admissible projection p and by Remark 2.17]
(TR 500 () Ao (9)) = (F To(¥as) ¢ (Ao (9) @ Xa(f)p) )

Since W@(XBR(O)) converges to 1 in the strong operator topology, we can safely
assume that Ae(g) ® Ae(f)p = (Ae(g) ® p) @ (1 ® Ae(f)) is left supported by
Te(XBg(0)) for R large enough. Then we have

(T = T2 ) Ne(P): Ao (9))
<k, To(1—vas) e (lelg) ® A@(f)p)>

= (b, mo(ws) o (Nol9) @ Ao(/)p) ) + (k To(1 = ¥a) o (Ne(g) @ Ao(/)) )-

Since £(Ae(g) ® do(f)p) < mo(1a) for large A, the second term vanishes when A
is large. The identity Ae(g) ® Ae(f)p = (1 ®@p) e (Aa(g) @ Ao (f)) allows to apply
Lemma to get

To(¥s) ® (Ma(9) ® Xe(f)p) = e (¥s) ® (psre(g) @ Ae(f)p)

for some projection ps converging to p in the weak—x* topology. This gives

(T = T2 5) e ()p). Ao (9))

= (k. mo(ts) » (psro(9) @ Xo(£)p) ) = ((Tk = T4 5) Mo(NP)ps: Ao (9) )

Taking limits in A — oo and § — 0, we get (T, —S;) (A (f)p) = (Tx — Sp) (e (f))p
for any admissible projection p € Reg. This readily implies that T}, — S} commutes
with the von Neumann algebra generated by right multiplication with admissible
projections and, by Lemma[2.20] we conclude that Tj, —S], belongs to the commutant
in B(L2(Re)) of Re acting by right multiplication. Such algebra is given by Re
acting on the left and so, there is a unique 2z, € Rg such that (T — S})(a) = zra.
A symmetric argument works for S’ﬁ, which also satisfies the assertion. O
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2.3. CZ EXTRAPOLATION: GENERAL CASE 41

REMARK 2.24. We may also consider two-sided principal values Tﬁ) sTA 5
Taking first a weak-*x accumulation point in (A, ) and then another in (A’,¢")
gives an element Sy, such that Si(Ae(f)) = z-Ae(f)+Ae(f)ze, for certain z; € Re.
This is the quantum analogue of a basic result in Calderén-Zygmund theory, further
details can be found in [34] Proposition 8.1.11].
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CHAPTER 3

Pseudodifferential L, calculus

The aim of this section is to establish sufficient smoothness conditions on a given
symbol a : R" — Rg for the L,-boundedness of the pseudodifferential operator ¥,
associated to it. This is the content of Theorem B in the Introduction. Sobolev
p-estimates naturally follow from this analysis. Before that, subtle transference
methods will be needed to extend the classical composition and adjoint formulae to
the context of quantum Euclidean spaces. The proof of Theorem B is divided into
several blocks. We begin with an analysis of Ly-boundedness, which includes the
quantum forms of Calderén-Vaillancourt theorem and Bourdaud’s condition stated
in Theorem B i) and ii) respectively. Theorem B iii) follows from it and Theorem
A, once we prove that ¥, is a Calderén-Zygmund operator.

3.1. Adjoint and product formulae

Recall that a symbol over Rg must be understood as a smooth function a :
R™ — Re whose associated pseudodifferential operator takes the form

T, (Ro(f)) = / a(€) F(E)ho (€) de.

n

Given m € R and 0 < § < p < 1, the Hérmander classes ;’?5(72@) are
S)'s(Re) = {a :R" - Ro : ‘3{; dga(é)] < Cl 5(€)mPlalHBl for all o, § € Zi}

Here we follow standard notation (£) = (1 + |£|?)'/2. Pseudodifferential operators
are formally generated by Fourier multipliers and left multiplication operators. It
is easy to see that these families of operators generate in turn the whole B(L2(Rg))
as a von Neumann algebra. It is therefore reasonable to think that adjoints and
composition of pseudodifferential operators are pseudodifferential operators. Our
first goal is to develop asymptotic formulae for adjoints and compositions to justify
that the adjoint of a regular (0 < p) pseudodifferential operator of degree m is again
a pseudodifferential operator of degree m and that the composition of operators of
degrees mi and my yields a pseudodifferential operator of degree mq + ms.

We start by defining ¥, in the distributional sense. First, ¥, : S — Seo
continuously whenever a € S(R™; Sg) is a Schwartz function itself. Indeed, recall
that a € S(R"; Sg) means that

(3.1.1) al€) = / (= E)e(2) dz
43
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44 3. PSEUDODIFFERENTIAL L, CALCULUS

for some @ € S(R™ x R™). This immediately gives
= [ ae-gan©enteotion(z) d:

F(z)

with F' € S(R™), which implies the assertion. The following lemma refines it.
LEMMA 3.1. Given a € 32?5(72@), we have that ¥, : Sg — Seo continuously.

Proof. Note that
1706ty = || [ a@@*5@200) s .

sup {[[(€)7"a(€) |, | (€1 £(&)] }-

£ERn

The term () ™a(&) is bounded by the Hérmander condition with o = 8 = 0 while
the term (£)"+t™¥1f(¢) is bounded since f € S(R"). According to Remark [0
and Lemma [2.8] it suffices to see that the operators

P(20)95%.(M\e(f))Q(ze)

satisfy similar inequalities for arbitrary monomials P, Q and 3 € Z'}. Recall that

O VaMe(f)) = Yo ,(Ne(f)) + Ta(5(Na(/))).

but dha € S5 (Re) and 9% (Ao (f)) = Ao (2mi€;f). In particular, 95T, (Ae(f))
behaves as ¥, (Ao (f)) and we may ignore 5. Thus, it will be enough to illustrate
the argument for (P,Q,8) = (1,z0,,,0) and (P,Q,8) = (ze,;,1,0). In the first
case, since our pseudodifferential operators act by left multiplication of the symbol
a, the exact same argument given in the proof of Proposition gives the identity
below, even for a taking values in Rg as it is the case

V,(Ae(f))re,; = Dg ;(af)(€)Ae(§) dE

Rn

A

= [ (w(©P5, (1€ ~ 5-0ka(€) 1O Ao e) e

21

Clearly Dg ;f € S(R") and 82@ € S5 "(Re), so we may proceed as above. We
need a similar expression when zg ; acts by left multiplication. In this second case
we need to be a bit more careful

ze,;¥q( Aol
fxo]/ / (=, €)Ao(z )dZ)f(E)A@(f)df

5= 0/n / (©)Xe(sej) e (2) Ao (€) dzdE
0/ {/ a(z,§)e2ms<ej,®z>)\e(z)dz f<§)e2ﬂis<ej,®l£>>\@(§+Sej)dg,

a‘js(f)
Equivalently, we may write it as follows

d ,
rosalo(f) = 5| / (€ = sej) (€ — sey) e Ng (€)dE.

27i ds
1 d

270 ds
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3.1. ADJOINT AND PRODUCT FORMULAE 45

In particular, Leibniz rule and the argument in Proposition [[L9] give
1 d
rosWalo(f)) = 5 | | an(@5(©rele)de
1 d
20 Jgn ds
1 n
= o= | {(D0ndba©)1(&) +2miDb ;(af)(©) Pro(©)de.
k=1

21t Jgn

(al = se) (& = sej) 240010 ) 1o (€)de

s=0

Since the new terms dfa € S:)”gr 5(72@), we may proceed as above once more. [

Consider a pair of symbols a1,as : R" — Rg. In order to properly identify
\I/aj with a;, we need to confirm that ¥,, = ¥,, implies that a; = ap. This is the
case when the symbols a; are of polynomial growth —there exists k > 0 such that
la;(&)] < Cj(€)*— and ¥,, = ¥,, holds as operators in B(Se, Se). This result will
be enough for our purposes and it follows by an elementary application of Fourier
inversion for distributions, which we omit.

LEMMA 3.2. Given a,a1,as € S(R™; Rg), we find:
i) Vi = Var where
€)= [ ¢ - 2alz) d

it) Wy, 0W,, = W, 04, where
(@oa)©) = [ aeaa( - £ 9ho(: - d=

Proof. By Lemma[22i) ¥V} =T} = Thip,)-- By BLI)

flip(k,)* = Aeo(§) @ Ae(§) a(§)" d¢

R

= / /nme—%ﬂz,@g))\@(g) ® No(z + &)* dzd¢
= / N / (2,6 — 2Aa(2)dz) Ao(€) ® Ao(€)” dE = Fuz,

which implies U} = \I/a? The composition formula is obtained similarly. ]

The formulas above are difficult to treat directly. Following the classical setting
we introduce double pseudodifferential operators. Namely, if A : R" - Rg®@Rg is
a double symbol, its associated operator is given by

Dale) = (ide o) { ([ A€ Go(e) 92067 dg) (10}

Observe that if the double symbol is of the form A(¢) = a(§)®1 then Dy = ¥,. The
advantage of the above class of operators is that they admit simpler expressions
for adjoints D35y = Dige+ and products Dy g1 © Diga, = Dayga,. We now
introduce extended Hormander classes for double symbols. To that end, we recall
the definition of the Haagerup tensor product. Given z € Re ®alz Re, let us define

IE4| = inf{H g T x*H% g iy H% z = 5 T; QY }
R "R gl - J5 ] : L i (-
o®rRe j Iy Re j 793 Re j J J

n
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46 3. PSEUDODIFFERENTIAL L, CALCULUS

The Haagerup tensor product Re ®p Re is defined by completion and also admits a
natural operator space structure [62]. We will say that A : R”™ — Re®Rg belongs
to 7%, s5,(Re) when

08 © 081 EAE, < Cupp gy riss s,

Re®nRe

for all multindices «, 51, B2. Our next result provides a compression map

B : S(R"; So @ So) = S(R™; Se),

B(A)(§) = (id®Te)/ A(n) e (Ae(n) @ Xe(n)*) & (Ao (€)@ Ae(£)) dn,

n

which sends double symbols into symbols inducing the same operators. This map
involves in turn the map m : Sg ®; So¢ — Se defined by linear extension of
©1 ® o > Y1p2. If © = 0, m is the restriction to the diagonal ¢(z,y) — ¢(z, x)
which extends to a positive preserving contraction with the C*-norm. This fails
in general for nonabelian algebras. Instead, the Haagerup tensor product can be
understood as the smallest (operator space) tensor product making the operation
m continuous. This justifies our use of the Haagerup tensor product in the above
definition of double Hérmander classes. Define

1 <. )
Log=exp (5= Y 0 ®idrg © 0} ) € B(S(R"; So &x So))-
j=1

THEOREM 3.3. The compression map B : S(R™; Se @, Se) — S(R™; Se) above
satisfies the identity Dy = W4y as operators in B(Se,Sg). In addition, the
following identities hold

B(A)(€) = Da(he(€)e(§)* = m(LeocA(E)).
Moreover, given A € 32?51752 (Re), the formal series expansion

m((9] @idre ® 93)A(E))
(2mi) vy

BA)E) ~ Y

WEZQ
is justified in the sense of the inequality below for do < p and N € Z, large

m((8 @ id © 9)A(€)) ’
(27i) Il

< Oy (gmintmon,

Re

PAIGEDY

[v|<N

In particular, B : S5 5 (Re) = S'5(Re) for § = max{d1, 02} whenever 6> < p.

Proof. The proof is divided into three blocks:
A. Expressions for B(A). Clearly B(A4)(§) = Da(Aa(§))ro(§)*, so

n

Da(e) =Da( [ #@Ne(O)d€) = [ FOBUEo(€)dt = ¥niy(e)

for any ¢ € Sg. To prove the identity B(A)(§) = m(Leo A(§)), we write

A& = X(u)ezm(u’g)du = / (

Av('u,’ U) ® Ao (’U) dv) e2mHw) 1,
Rn

R
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3.1. ADJOINT AND PRODUCT FORMULAE 47

where A is the Euclidean Fourier transform of A : R" — Reg ® R and A is the
quantum (partial) Fourier transform of it in the second tensor. In other words, we
have

-~

Aw,v) = (id@ro)(Aw)e (1@ re(v)"))

= [ o me)(A(s) e (1@ r0(0)"))e 20 ds,

Now, using the Taylor series expansion
k

Loe= Y S ([[EYsue ([[5)

k=0 Jijzse-ge=1 s=1 s=1

we easily get the following identity for Lo ¢A
LocA= / (/ A(u,v) ® Ao (v) dv) 2w} gy,
Applying m to this expression and writing A in terms of A, we get

m(LegA) = (id® 7o) /R - A(s) @ me(exp, ) 2™V dsduduy
n>< n>< n
= (d®T1e 5) ® T (exp s —wv)dsdv
d . A ) O¢ dsd
nx R

= (id® 7o) / A(s) e mo(expy_¢) ds.
This proves B(A) = m(Leo¢A). On the other hand

Y i g
Loc= 3" Bk ®zdnlel®ae
il - '

ez (2mi)1vIA!

by standard modification of the Taylor series. This gives the formal series expansion.
B. Estimate for the remainder. Thus, our next goal is to justify the Taylor
remainder estimate in the statement. This requires yet another expression for B(A).
We begin by noticing that

3)©) = m{aore)( [ A emolew, odn) 91}
= m{ /n /n(id ® 08)(A(n) e me(exp, ) dndz}
= m{ /n /n(id@) O'é)(A(’I])) ° 71'@(expnfg)efzm(z’”*§> dndz}.

The first identity follows from A above. The second identity reduces to
[ obe)dz=ra(e)1 with o5(e(c)) = T ha(()

and the last one since 0§ is a *-homomorphism. Using m(A e g (exp.)) = m(A)
we get

(3.1.2) B(A)(€) :/n (/nm((id@Ué)A({—Fn))e_%i(Z”’) dz) .

Q,(&+m)
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48 3. PSEUDODIFFERENTIAL L, CALCULUS

On the other hand, we use 5‘70@ = 040¢ to deduce

m((0] ®id © 9)A(£))

= Qo ’yzom((id © 04)A(6))
= 0/0, . / / m((id ® Ué)14(5))627”@_2’"> dzdn)
y= n n

= &% / / _m((id @ ag)A(§))e ™= (2min)” dzdn)

= 3 [ ey
This implies that
B - Y m((8 @ id © 9)A(£))

= [ fuerm— X Sorn @ dn

)1
IrI<N (2mi)io! IrI<N
Re(n)
By Taylor remainder formula
N 1
Re(n) = —(/ 1—tN1g] Qy(s) dt ).
=3 ([ a-oa|  aa)

[v|=N

In particular, we obtain the following estimate

H/n Re(n) i < Cx sup H/n 799 (n + t€) dnHRe

[v|=N
Since 8g commutes with m, we get the identity

0<t<1

0782 (s) =/ m((id ® 08)97 A(s)) e 2= .

Next, we use the standard oscillatory integral trick

e—27ri(z,n> — (_A’f])n —27i{z,m)
(42| 2[?)" ’
N
e—27ri(z,n> — (1 — AZ) 2 —27ri(z,7]>.

(14 4n2[n|?)%
Taking M (&, 7, z,t) = m((id ®0g)07A(n+ t{)) and integrating by parts

/ 093, (n + &) dn

) ., 2, 1) e 2™HEm) gz g
// 1+47r2|n\) e CUSUER) "

N
2

2 — )
= [ (] RS (e zn))e 2 ) a
B1(0) “Jre (1+4m2[n|?) =2

N
2

oo U s (s )
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3.1. ADJOINT AND PRODUCT FORMULAE 49

Let us write II; and Il for the two terms in the right hand side. Then, we use
one more time the identity 0)0g = 0§09 together with the contractivity of the

map m : Re ®, Re — Re and the ST 81,55 condition. This yields the following

inequality for any |y =N and 0 <t <1

Miee 5 [
S [ max{©.m)" N ay £ g,

Similarly, IT5 is dominated by

> o

|l/1+1/2| 2n

(ide (- de) )y +1)| dn

dzdn
Re®rRe |Z|2n

o ()4 1 - sy

which is bounded by <§)m+”_(p_‘52)N. This completes the estimate of the remainder.
C. B respects the Hormander classes. It remains to show that B(A) belongs
to the Hormander class 7% (Re) for 6 = max{d1,d2} whenever A € ST ;5 (Re)
and d2 < p. Since we have

850m— Z O(agl®6g2),
B1+Bs ﬁﬁl%

n

it turns out that the following inequality holds for any v € Z7

Haﬁagm((m@zmm H

< D

B1+B2=p

H 8ﬁ1 57+B2)3W+O‘A(5)H

Re®rRe

61'5 !

Since the Hormander classes are nested in the degree m, this implies that

ST m(( wideog)AE©) € | S0 (Re) = 875 (Re)

[v[<N [v[<N

as a consequence of A € S5 5 (Ro), § = max{dy,d2} and 63 < p. Therefore,
the inclusion B(A) € S)'5(Re) will follow if there exists a large enough N € Z,
satisfying the inequality

0802 (B(A)©) — - m((OF @id 2 IAE))|| < Cnaale) ooV,
hI<N e
Our estimate for the Taylor remainder above shows that this is indeed the case
when o = 8 = 0. Using d¢'m = mdg and the commutation formula for 8g om

given above, the exact same argument applies for general o, . This gives that any
N > n/(p — 02) works, details are left to the reader. O

COROLLARY 3.4. The following stability results hold:
i) If a € 57%5(Re) and p <0, then Wg = Wo: with

* a%aga* (f) m
i 2 Tamyiy © Fa(Re)

veZi
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50 3. PSEUDODIFFERENTIAL L, CALCULUS

it) If a; € S;';{éj, then Uy, 0 Uy, = Uy 00, with

§ A (©)%(0

a1 o as ~
Lene (27i) 17l

vs(Re)

WEZQ
for m =mq 4+ mg, p=min{py, p2} and 6 = max{dy,d2} when Js < p.

Proof. Recall that

‘I’Z = DZ®1 = Digar = ‘I’%(1®a*)
Ifa € S)5(Re) then a®1 € 5% ((Re) and 1 ®a™ € S 5(Re). By Theorem [3.3]
we have that af = B(1 ® a*) € 57';(Re). The second assertion follows similarly
by recalling that

\IJG,lOG,Q - \Ilal o \I/:;: = \Ijal © \IJZET
= Da1®1 OD1®a2f = ,Da1®112+ = \I"B(a1®a27)'

Indeed, according to the first assertion, we know that a; ® ag; € Sp 5162 (Ro).
The asymptotic expansions also follow easily from Theorem B3] using the identities
ai = B(1®a") and a1 ¢ az = B(a1 @ ast), see e.g. [71] for a similar approach. [

REMARK 3.5. A natural question is whether the classes X7 5(Ro) are closed
under products and adjoints for § < p. This question is still open Indeed, pro-
ceeding as for S7';(Re) we may define a new class ¥7's 5 (Re) of mixed double
symbols A : R” — Rg ®), Re satisfying the condition

N R T
eh /e

where, abusing of notation, 8%75 acts on S(R™; S(Re) @ S(Re)) as follows
(05,£4)(6) OLA(E) + 2mi[A(8), de ]
= mol(expe)” e 8g{W@(exp§) e A(&) e ’R’@(eng)*} o To(expy).

The operator dg ; is just zg ;®1—-1®xg ;. We shall identify the first term with zg ;
and the second with yg ;. Of course, we expect that our contraction map satisfies
B U5 5, (Re) = X7 5, (Re) for 62 < p. Unfortunately, our argument above
does not admit a direct generalization. The problem arises since the automorphism
oo in the oscillatory integral (B.1.2) for B does not commute with 8] . We refer to
Lemmas [Tl and [£.2] and Remark [£4] for the calculus of parametrlces 1n this setting.
On the other hand, a minimum stability for products —necessary for our Sobolev

p-estimates, see the proof of Corollary B.26t— does hold. Namely, if a; € ¥7"',(Re)
takes values in C1 or, more generally, in the center of Rg, we have that

+
a1 ¢ ag € EZ?IAPT)(Z; (Re) whenever as € EP2 s(Re).

In particular, composition with polynomials of 5%’5 transforms degrees as expected.

3.2. Ls-boundedness: Sufficient conditions

We now explore Ls-boundedness of pseudodifferential operators in 521 s(Re).
Since S’O s(Re) C 525(R@)052’p(7€@) it suffices to study Lo-boundedness for exotic
0 <§ =p<1and forbidden 6 = p = 1 symbols. The first case p < 1 requires
a quantum analogue of the celebrated Calderén-Vaillancourt theorem [9]. The
second one also requires an additional assumption extending Bourdaud’s condition
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3.2. L,-BOUNDEDNESS: SUFFICIENT CONDITIONS 51

[7], which can be regarded as a form of the 7T'(1) theorem for pseudodifferential
operators.

3.2.1. The Calderén-Vaillancourt theorem in Rg. As in the Euclidean
setting, the hardest point for a quantum form of Calderén-Vaillancourt theorem is
still the case p = 0. Our argument follows from a combination of [24][71] adapted
to Re which demands a careful argument due to the presence of a ©-phase. Given
a € 5870(7?,@), the first step consists in decomposing the symbol as follows. The

double Fourier transform of a in the quantum and classical variables (ze, £) is given
by

5(27<) = /Rn T@(a(ﬁ))\e(z)*)e*%”'(f@)dé'

= (1 ar?s )N (1 + an? ) Va2, ¢) (1 4n?(2?) TN (L an(¢?)

3(2,0) 9(2,0)

Here we fix N large enough. We shall also use the terminology

a(z,§) =Te (a(f)/\@(z)*) = /n 5(274)62Wi<5=C>d<

for a,b and g. In order to express ¥, in terms of b and g we need to introduce two
auxiliary maps. The first one is a left-module extension Ilg : Roe®@Rgy — Re®@RgG
of the x-homomorphism mg defined as follows

Ile (Ae (&) ® Ao (1) = Xe(§) @ Xe(£) Ae(n) = (1@ Ae(n)) @ Te(expg).

115 (Ao (&) @ Ao () = Ae (&) @ Ao (E)Xe(n) = (1@ Ao (n)) @ (Ao (£) ® Ao (£)) gives
the adjoint with respect to the module bracket ((«, 3)) = (7o ® id)(a ® 3*). The
second one is the left-modulation map M, (p1 ® p2) = Ae ()1 ® 2 with adjoint
M;;(SDI ®p2) = Ao (n)*p1 ® v with respect to the same bracket above. In the next
result we shall use the following symbol

w© = [ GOl d:
- / g(z,5)3_2”“5’@”)e2ﬂi<9"’z>)\@(z) dz.
LEMMA 3.6. If @, = IIg o M, the following identity holds
V() = (id s 7o)
Proof. We first claim that
o©) = (idora) [ o) [ 566~ mmaesp.) =) dn

I'(€—mn)

Indeed, writing the symbol a in terms of b and g we obtain
a(€) = / / b(z,0)3(2, €)™ & Ng (2) dadC

- / - b(zm)g(2, € = n)Ae(2) dzdn.

(1@ b(n) (®; 0 (T, @ id) 0 @, ) (o @ 1) dn.

n
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52 3. PSEUDODIFFERENTIAL L, CALCULUS

Now the claim follows from the quantum form of convolution via the identity

[ hEREe(R) de = id e T@){ (1 ® Mo fl)) ( [ hleme(e.) dz) }

Next we use the claim to produce an expression for ¥,(¢). Namely, we have

V(o) = (id 7o) [ (a(6)® p)malexp) dé
— (oreare) [ [ [AsbmIIE-n®¢|re(expous dedr

— (o) [ Aoim){idoidere) [ (-0 e)me(epgsy ) dr
with (a ® b)13) = a ® 1 ® b. The assertion reduces to prove the following identity
A = (id®id®Te) / (L(E—n)@¢)me(expg)13) d§ = (‘bf]o(\llgn ®id)o<1>n> (p®1)=:B.
Expanding T'(§ — 7) it is clear that

A= // 32,6 — Moo () @ Ao(2)* dade.

On the other hand, we have the identity

B = Qamenlo{ [ (m©)e(re @ id) (@, D06(e) © 1) ) Ge(en) de}
Bn (&)

n

n

where it is easily checked that
Bypu1) = ([ GeMalNe(s) @ Lds)
= [ B Mg (s ) @ da(s ) ds
so that B3, (€) = @(& + n)e™2mHmOL8) \g (¢). This yields

B = (o) @ Dlle{ [ (4,(6)@5,(9) Ne(©) & 1) de)}
= Qe o Dle{ [ [ (G(=80(2)® ,(6)) Ne(©) © 1) dudc]

Ol @) [ [ mito05,ha(z+) ® Nl + €)'y ) dade

= [ [ B+ e o005, (o (nAa(z +€) @ Ao + € Aale) dude.

Rearranging and using g, (2, &) = g(z, £)e274(6:0:2) 2miOn.2) vields A = B. O

REMARK 3.7. The above lemma may be regarded as the quantum analogue of
the identity in [71l Lemma XII1.1.1], whose Euclidean proof is trivial. The quantum
analogue gives unfortunately an extra ©-phase which vanishes for © = 0. It is this
phase what forces us to be very careful in adapting Cordes argument [24] below.

LEMMA 3.8. U, admits the factorization

U, =AyoBoA, with sup ||A,: Ly(Re) = L2(Re)|| || Bl|s
neRrn B

(L2(Re)) < O
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2. LyBOUNDEDNESS: SUFFIGIENT CONDITIONS .
Proof. Let w,(z,&) = e 27i(6:0:2) 2mi(On02) " 50 that
V(o) = [ m©pee) de
= [ [ 39w 08 (el dait
= [ [ 5 0ua 05N () hae) dedde.

Let us define j¢, : R* — C and my : R" — C as follows

, _ wy(z,§)
Jen(2) = (LFZWW’

2THEC) ~
mn(§) = /and(: = Jjoo(§),

where joo stands for the Euclidean Fourier transform of Jen when (£,7) = (0,0).
Inserting our definition of g(z, ¢), we finally end up with the following factorization

V() = [ [ Genlms(©p©r0() (e dede
= /n (/njfn(z)mN(f —2)p(€ - Z)€2wi<z,@¢(§*z)> dz))\@(g) d¢
- / . (/ (en(§ = )P0 iy (2) B(2) dz ) Ao (€) d

kn(&vz)

This gives ¥, = Ag 0T}, o )\(f)l, which reduces our goal to justify the assertion for
Ty, instead of ¥, . Indeed, assume T}, = A, oBoA, with A, uniformly bounded
in B(L2(R™)) and B a trace class operator on the Hilbert space La(R™). Then we
consider the maps

Ay :/\@oAno)\é1 and B:)\@oBo)\él,
which factorize ¥, ~and satisfy

[AnllBLareyy = [AgllBELs@n)),
IBllsizare)) = IBlls;(La@m))-

The kernel k,, can be written as follows
ko (,y) = e2THETVONTOEO) o (3 — )y mn(y) = 2HETVON iz, ).

If A, f(z) = e 2m@OM f(1), we see that T, = Ay oBoA, with B = T} and A,
unitaries. Thus, it suffices to show that B is trace class on Lo(R™). Composing it
with the Euclidean Fourier transform F = A\; ! as in the proof of [24, Lemma 1]
we end up with L = F o Ty, whose kernel is given by

Uz, y) = 2"V — Oy)mn(y),

where @ is the Buclidean Fourier transform of a(z) = joo(z)e 27*012) = j 4(2).
This is very similar to the kernel in [24, Lemma 1 - (1.25)], in fact we recover the
same kernel for © = 0. Unfortunately, due to the ©-phase we are carrying, we
do not have separated variables as in [24]. However, a detailed analysis of Cordes
argument shows that what really matters is that the z-factor of the kernel —, ()
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54 3. PSEUDODIFFERENTIAL L, CALCULUS

in [24]— yields a pointwise multiplier by my. We only have that in the y-variable.
Taking the adjoint L* = T,jn o F~! we get the kernel

C(a,y) = Uy, x) = ™V my(z)aly — O).

Then, Cordes factorization my(z) = {(z)r(z) with ((z) = exp(—3(z)) implies in
turn that L* = Ro S where their respective kernels r(z, z) and s(z,y) are given by

m e2mi(r—z,s)
= d
r(@z) (1 + 4r2|z)M /R (1 + 4m2[s[2)M ©*

S(Z,y) _ (1+4W2|Z‘2)M(1—AZ)M<C(Z)62M<Z’y>a(y—@Z)).

By [24], R is Hilbert-Schmidt for M large enough. Since & is as smooth as 3'\00, it
is C*(R™) for N > %(n + k) and exponentially decreasing at co. In particular, S is
also Hilbert-Schmidt for N large enough. Thus B = F~1S*R* € S;(Ly(R™)). O

THEOREM 3.9. If a € 57 ((Re), then Wo: Ly(Re) — La(Re) is bounded.

Proof. According to Lemmas and B.8 we find

W, () = (id ® 7o) /

n

(1 ®b(n)) (fI)j,(Aj;BA,] ® z‘d)cb,,) (p®1)dn.
A*BA

Given (1, s in the unit ball of Ls(Re), it suffices to get a uniform bound for
(Walor)z) = [ (r0 @) {@;A7BAD (1 @ v @ b))} d
= [ o mre){Biap, (o1 © 1BaA B (2 0 80)") i
where B = (u|B|2)|B|2 = B3B; from polar decomposition. By Cauchy-Schwarz

‘<\I/a(np1),<p2>| < (/ (T@ ® T@){‘B1|2Anq>n(gp1 X 1)Anq)n(<p1 ® 1)*} dn)%

R

1

< ([ (o 70){IBalP A2 @ b)) Ay 2 @ b))} i) =
Writing By = Bs ® id, we claim that the second term above § is dominated by

sup |[b(n) : L2(Re) = L2(Re)|| ||| B2

2|3
neRn | Hsl(L’z(Re))'

Note that the same estimate applies to the first term with b(n) = 1 and (¢2,B2)
replaced by (¢1,B1). Moreover, since |B;|? < |B| + u|B|u* and B is trace class, it
suffices to check that b(¢) = (1 — Ag)N(1 — Ag)Na(€) is uniformly bounded in Re
which follows from the fact that a € SJ)(Re). Therefore, it only remains to justify
our claim above. Since |Bs|? is trace class, let s; denote its singular numbers and
consider the corresponding set u; of unit eigenvectors. This gives

B |*(h) = Zj sj(1e @ id) (h(u; ©1)")(u; ® 1).
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3.2. L,-BOUNDEDNESS: SUFFICIENT CONDITIONS 55

In particular, using the module bracket ((h1,hs)) = (1o ®id)(hi ® h}), we get
= X [ re{l(A (b)) 0 1) far
= Z sJ/ To (2 ®b(n)" ),HGA;(UJ®1)>>|2}d"'

Now, recalling that A} (u; ® 1) = Aj(u;) ® 1 = g 0 Ay o Aot (uy) ® 1, we get

(M5 (02 @ b)), Tl Ay (u; © 1))

= (oot [ EEONG (Ora(exp) de ) )
( / O (€10 @ id) (Ao ()" 2 @ 1)me (expg)" ) d€ )b(n)”
([ rmicome 2mn @ T @p0(¢ + ) hale) de o).

(;nj (ﬁ)
This gives
2
s e, X, [, Pelnl
< sgﬂgub e 0 [ [ 17+ ] ande,
which is exactly the estimate we were looking for. This completes the proof. ]

REMARK 3.10. A careful analysis of the function @ in the proof of Lemma
could lead as in [24] to the sharp condition N > n/4. This would imply that
Theorem [3.9 holds under the optimal assumption

|3g@?a(§)| < Cuop for |af,|p] < [ } +1.

Now we are ready to study the Ls-boundedness for exotic symbols in 527 p(’R@)
with 0 < p < 1. A weak form of Cotlar’s almost orthogonality lemma naturally
plays a crucial role. Namely, given a family of operators (7}),;>0 C B(H) and a
summable sequence (¢;);j>0 C R4 we find

Sl £ 3
;JB(H) ;J

provided that the following conditions hold for j # k
=0, HTJ‘*T’C

S | Till sy < 000 11575 < cjen.

B(#H) HB(?—L)

The other ingredient is a dilation argument among different deformations Rg.

LEMMA 3.11. Given R > 0, the map
Dr : Re 3 Ao (€) — ARZ(_)(%) € Rizo
s a *-homomorphism. Moreover, ¥, = D;{I\IlaRDR for

0 R" 5 Re and Gn(€) = / (= RE)Anso(2/R) d= = Dy (a(RE)) € Riso.
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56 3. PSEUDODIFFERENTIAL L, CALCULUS

Proof. To prove that Dg is a *-homomorphism is straightforward. Now

Dr¥,Dy () = / (W, D5 ) (€) Ao (€/R) de

= [ - {(/ Dyl ()Xo (1) dn) Ao (€)" e (€/R) de

wo{( [ / @z (IR B0/ R) e () dzdn) Ao ()" PAree (/) de

e2THE—n,O My (5 n, n)R n (U/R))\P&@(g/R) dnd§

(&, Rn) Ao (/) dg ) () Anze (n) di

N

r(MP(MArze(n) dn = Vg, (¥). O

/.
L
=[] e mR /R A €/ R o (n/R) dnd
L.
/

THEOREM 3.12. Ifa € Sy ,(Re) andp < 1, ¥,: La(Re) = La2(Re) is bounded.

Proof. Let ¢y € C*°(R") radial, identically 1 in B1(0) and zero outside B2(0).

Using the partition of unity ¢o+> 5, ¢; = 1 with ¢;(£) = ¢o(277¢) —go(2-U71¢)
we decompose ¥, as follows B

oo oo 9
= Z \I/aj = Z \I/azj + Z \I/a2j+1 = \Ileven + \I/odd7
=0 =0 =0

where a; (&) = a(€)$;(£). We shall only bound the even part, since both are treated
in a similar way. To do so, we apply Cotlar’s lemma as stated above. Given j, k
distinct even numbers, we clearly have W, W7 = 0 since ¢; and ¢, have disjoint
supports. Therefore, it suffices to prove that

< 00,

i) sup 194, 52,0

ii) H\IJZJ-\I}% HB(LQ(’RG)) =
for some summable sequence (c;);>0 C Ry and any pair of distinct even integers
J, k. The first condition follows from our form of Calderén-Vaillancourt theorem in
580(Re) and Lemma 311l Indeed, pick R; = 277 and let

ag = (/a\/j)Rj = Dg, (aj(Rj ))

CjCk,

Then

., <|lv

HB(LQ(R(—))) a[j] HB(LQ(RR?@))

since ¥, = Dﬂ\I/ Dg,; and

(o

af)
1 _
||B(L2 R29)7L2(R@))HDRJ||B(L2(R@),L2(RRJ2_(_))) =1
The Lo-boundedness of ¥, follows from Theorem since ay) € S0o(Rr2e)-
J J
The proof of this fact follows essentially as in the Euclidean setting. Indeed, write
aj;) in terms of @; —Lemma B.IT}— and use that Dg; is a *-homomorphism. In
conjunction with the ¢-localization of a; in the annulus of radii ~ 27 this easily
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3.2. L,-BOUNDEDNESS: SUFFICIENT CONDITIONS 57

gives afj € S8y (Rr2e), we leave details to the reader. It remains to estimate the
J

norm of Wi W, for even j # k. After a calculation we obtain that the kernel k;j

of such operator is given by

b = (idsrawid) [ [ (ro(ewp)®1) (10a€)" arln) 91) (1oma(exp,) ded

where, in an abuse of notation, the element mg(exps) = Ao (§) ® Ao (§)” is seen as
belonging to Re®@Re instead of Re®@R¢ . We are also going to shorten a®b®1 by
(a ®b)[12) where the leg numbers just mean that the tensor components are placed
in the first and second places respectively. Now, we use

_ N
(1 —l—(:éll7r2|??)7]2)N Ae(mAre(§)" = Ae(n)re(§)”,
e (W) (1 —=2,)"Xe() @Ae(n)" = le(n) @e(n)",

m(m>(l—ﬁg)”/\e(f)®/\e(f)* = el ®Are(),

where d(z) = |z| is the Euclidean distance. Integration by parts yields

kjr = (id ® Te ®id)/ / 7o (pe )21 B(E,n)21me (vn)[23) dndé,

where
(1—Ae)N
(1 +4n2|n - £?)

and the function ¢ is given by exp(1 +472d?)~". After expanding the derivatives
using the Leibniz rule, we obtain that B is a finite sum of simple terms of the form

1
— A1 55 Q2 001 (¢\k 9B2 902
Bs(§,m) = ag 877 ((1 T Ar2|e — 77|2)N) ag o aj(g) an o ak(n),

Blem) = (1— A,)"(1— Aa“{ Naj@)*ak(n)}

HGE b3, (n)

where a;, 8;,0; € 27} satisfy a1 + as| < 2n, |1 + B2 < 2n, |01 + 02| < 2N and
s is the combination of the involved multindices. We can bound each of the above
summands in s independently

w5, @] <> / /R Tliagroid){ro(pe) 1z Bs € mizme on) sy} 1D HZZSAs-

Using |8§‘1851 & — n)_2N| < (€ — 1)~ we obtain

—2N
A S /” /n <§ - 77> || T(id®Te®id){7Te(%05)[12]bj(S)E‘Q]bi(77)[2]7@(%,)[231} || dndg.

Tjern

Tjerry can be factorized as T(b;;@l),,r(_)(@&) o Tiv: (n)@1)eme(@y)+ SO that

[ Tigknll gy irey) < 105 @R 10:(MIR6 1 Tro (p0) 18(22(Re) I Tre (o) | B(L2(Ra))-

Recall that || Trg (o) 1B(L2(Re)) < ll0¢llL, @n) S 1. Moreover, using that € ~ 27 and
n ~ 2F from the supports of a;(§) and ar(n) as well as the Hormander condition
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58 3. PSEUDODIFFERENTIAL L, CALCULUS

for a, we deduce the following bound

/ / Hbs HRo'l;S( )”Ro dfdn < 9—2N max{j,k} 92Np max{j,k} 27L(j+k).

Summing all the terms indexed by s we obtain

H‘I’:‘I’ <4—m"tx{3 kH(A=p)N=n) < 9=j((1=p)N=n)9—k((1~p)N-n) = ¢

akHB(Lg(R@)) Ck;

which arises from (¢;) ;>0 summable for N large enough. The proof is complete. [
REMARK 3.13. Let 0 < < p <1, since
Sy s(Re) C S35(Re) N S) (Re),
we deduce ¥, : Ly(Re) = L2(Re) for a € S9 5(Re) as long as (p,d) # (1,1).

REMARK 3.14. A standard (nonoptimal) proof of Calderén-Vaillancourt theo-
rem for Sf), in the Euclidean setting [68] follows from a suitable partition of unity
in the variables (z,£) € R™ x R” with no known analogue for z¢ € Re and £ € R™.
An alternative way to proceed is the following. Given a € S§,(Re), let

a(e.6) = 0g0() = [ a2 0502 dz = [ a9 ho () de

Using the intertwining identity ¥, o 0g = 0g o ¥, and recalling from Appendix
B that og : L§(Re) — L5(R™)®Re is a complete isometry, it turns our that the
Lo-boundedness of ¥, is equivalent to the boundedness of the operator-valued map
U, : L§(RM®Re — L5(R™")®Re. Now, since U, is a right Re-module map, it
follows from [42] Remark 2.4] that this will hold as long as ¥, is bounded over the
Hilbert space Lo(R™; La(Rg)). ¥, comes equipped with an operator-valued kernel
acting by left multiplication. This kind of maps are generally bad behaved [37] but
we know from our proof above that Ls-boundedness must hold in this case. Thus
this also opens the door to prove Calderdn-Vaillancourt using a partition of unity
in the z-component, which mirrors the behavior of its quantum analogue zg.

3.2.2. Bourdaud’s condition for forbidden symbols in Rg. We have
justified that all symbols in SO 5(Re) yield Ly-bounded pseudodifferential operators
except for the class of So—called forbidden symbols with p = § = 1, which is known
to fail it even in the Euclidean setting. Bourdaud established a sufﬁ(:lent condition

n [7] playing the role of the T'(1)-theorem for pseudodifferential operators and
which we now study in Re. Given p > 1 and s € R, let W5 ;(Rg) be the Sobolev
space defined as the closure of Sg with respect to the norm

lolw...re) = (1 = Do) 2],

LEMMA 3.15. Let ¢ : R®™ — Ry be a radial smooth function identically 1 in
B1(0) and vanishing outside B3 (0). Let j(€) = ¢(27&)—p(277T1E) for any integer
jJ € Z. Then, we have a norm equivalence

2 oi 2 oi 2
el ~ D2 Ao NIl = 3 227wy /.
JEL JEL
In particular, the following properties hold:
i) Wa _s(Re)* = Wy s(Re) under the pairing (x,y) = Te(z* y).
it) [W2s(Re), Wa,—s(Re)]. = L2(Re) by complex interpolation.
2
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3.2. L,-BOUNDEDNESS: SUFFICIENT CONDITIONS 59

The proofs of all assertions above are straightforward. Properties i) and ii)
above hold isomorphically from the first assertion, but also isometrically. We shall
use the following terminology for the rest of this section. Let us consider a function
¢ : R™ — R, which is identically 1 in By,5(0) and vanishing outside B, /4(0). Set
1o = ¢ and construct ¥;(£) = ¢(279¢) — p(277T1E) for j > 1. We shall also use the
partition of unity pg = ¥o + Y1 and p; = ;1 +1; + ;41 for j > 1, so that

o D (&) =

Jj=0
« D _ri(&) =3-9(),
Jj=0
* i (€)1 (&) = 1;(§) for j > 0.
LEMMA 3.16. Ifa € S?(Re) and N > n, we have

a(¢) = Z ZCJJCPJ 2 (277 E k)

kezn §>0

where the coefficients ¢, € Re satisfy the following estimate

)<oo.
Re

Proof. Let a;(¢) = a(&)y;(€) and b;(€) = a;(27€), so that

= "a;(©) = bj(2798) =" b;(277E)p;(¢

>0 >0 §>0

1

n 1
sup sup (||Cj,k\|7ze + TjH(Z |6(’;3cj,k|2) ’
=1

>0 kezn

According to this and recalling that supp p;(27¢) C [—1,1]" = Q, it suffices to see

that b; (&) = > czm (k) Nej, Re2TUER) v o (€) for some c;  satisfying the estimates in
the statement. Now, since b; is also supported by @, we find that b;(§) = d;(&)xq(§)

where d; is the Z"—periodization of b;. This gives rise to the identity
bi(©) = D bk xg(6)

kezn

_ Z /n —27ri(s7k)ds) 62m<5,k)xQ(§).

kezn

Integrating by parts, we obtain

~ B 1 —omi(s,k) g. _ /A —N

vl

To estimate (1 — Ag)%b-(f) we notice that |£] ~ 1, so

||8?bj(§)||no = 27l H Ogaz)( )(27€) HR < gilel (2igy=lal < 1

by the Hérmander condition and therefore (1 — Ag) %bj (€) is uniformly bounded in
norm. The second inequality uses a similar calculation for Vg (1 — Ag)%b(f). O

LEMMA 3.17. We have

Mo, 527 (S lobAaHl) ]| sor 550,
k=1
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" 5 PSEUDODIFFERENTIAL L, CALCULUS
Proof. Given g € S(R")
(@0 o) () = | a7 (holN)als) dy = 5 (o).
We also have [ Ao (t ). = 006 (¥l goar e and
cedo(Uif) = oede(f) 1y
= / o5 " (e()wy(y) dy
[ (57 0at) = 05 (o)) 50 dy

/,L (/O Zykae (962e(f)) dt)qu(y) dy

k=1

We have used that the integral of {b\j is 0 for any j > 0. Taking norms gives

HU@)‘@ (s f HRO®L (R™)

<J.I:

(/w i w) (S o)’
/‘y”‘? |dyH( |3®>\O )|)%

THEOREM 3.18. Ifa € SM(R@)
U, : Wy (Re) = Wa(Re) is bounded for 0<s<1.
Proof. By Lemma we have that

a€) = 3 (1) Y e (TN,

kezn j=>0

(9826 ()] 175l dy

IA

Re

el (S )’

k=1

O
Re

Z/\

ar(§)

By taking N > n we obtain that the symbol a is just a summable combination of
terms a;, and we can concentrate on studying such terms. If Ag(f) € Wa (Ro),
we have that

Vo, (Mo (f) =Y cindol(pjexpyiy f) = Y cjubik

Jj=0 320
Taking another partition of unity (1¢)¢>0 we get
Cjk—Z/ be(€)n(©Ne(§) dE =Dy
>0 >0
and Lemmas B.16] and BI7 give Hc?k”R@ < 277 for £ > 0. Now decompose

Vo, No(f) = D cpbin+ Y. cypbin+ D> by =L+D+T.
<j—4 j—A<e<j+4 0>5+4
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3.2. L,-BOUNDEDNESS: SUFFICIENT CONDITIONS 61

Let us begin with the estimate of the upper term U. The Fourier support of
Xo(f)re(g) = Ao (f *o g) is contained in the sum of the Fourier supports of Ag(f)
and Ag(g) respectively. In particular, the Fourier support of ci 0.k is contained in
SUpD e + supp p; C [Bye-2(0) \ Byr-s(0)] + Bs1(0) € By 1(0) \ Byr-s(0). Now
we apply Lemma to obtain

2
101y, smay S 2022 30 s, 2222 (2 Nk
>4

2
e lbsicll2)

>4 Jj<t—4 j<e—4
) 2 ) 2
< 22225( Z 2]7£||b‘7k”2) 52222(371)( Z QJHb‘,kHQ) .
>4 j<e—4 >4 j<t—4

On the other hand, given 0 < 6 < 1 — s we have that

. 2 )
(X Zlbinlle) < €52 > #O byl
j<t—4 j<t—4
In particular, we finally obtain the expected estimate
U, (rey S D > 22704309 p, 13
£>0 j<f—4
_ Z( Z 225(571+5)) 4j(176)|‘bjk||§
j=20  £>j+4
S Y AP bR S e ()R, L (re)-
j=0

For the lower part L, a similar argument yields that the Fourier support of cﬁ Py
is contained inside By;(0) \ Byij—s(0). Then we can apply the same principle so that

. 2
L) S 2227 30 b,

j24 ij_4

< T 3 el i
iz4 sy ’

DD L PE) | ey
j>4

In the third inequality we have used that ), cfj & = Cj,k and therefore

o0 o0
¢ ¢ ¢
H Z Cj,kHR = |Gk — Z Cj,kHR = llejkllre + Z l¢jrllre S 1.
1<j—4 @ 1=5—3 @ (=j—3

The diagonal part D is easier to bound. Assume for simplicity that j = ¢. The
Fourier support of c;,kbj?;C is comparable this time to a fixed dilation of By, (0), not
an annulus. Nevertheless, although we do not have a norm equivalence, the norm
in Wy s(Re) is still dominated by the corresponding weighted Lo-sum, and we get

DIy, ray < D2 2% (I ibilly S D227 105k 3 ~ Mo (Allsy, . rey: D
§>0 j=0

THEOREM 3.19. If a,a} € SY1(Re), then ¥, : Ly(Re) = La(Re) is bounded.
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62 3. PSEUDODIFFERENTIAL L, CALCULUS

Proof. By Theorem BI8 ¥, and its adjoint are bounded in Wj3 (Re). By
Lemma [3T5] taking duals gives ¥, : Wa _s(Re) = W3 _s(Re) and interpolating
both inequalities for ¥, yields the assertion. ([l
REMARK 3.20. A careful examination yields that
10602a(€)]I ., S (€)1 for Jal<n+1 and |3 <1

for a and its dual symbol a} suffices to deduce the Lo-boundedness of ¥,.

3.3. L,-boundedness and Sobolev p-estimates

Our Ls-boundedness results together with our Calderén-Zygmund theory for
Re are the tools to find sufficient smoothness conditions on a given symbol for the
L,-boundedness of its pseudodifferential operator. As pointed in the Introduction,
this naturally requires to work with a different quantum form of the Hormander
classes, which is more demanding, but still recovers the classical definition for © = 0.
Given a : R" — Re we say that it belongs to X7';(Re) when

08 08¢ 92a(€)] < Clay an p ()1 T2tV
for all a1, a2, 8 € Z7} . Here are some trivial, albeit important, properties:
i) ¥7'5(Re) C S)'5(Re) since one condition reduces to the other for ay = 0.

ii) The three demvatlves involved in the definition of ¥7's(Re) commute with
each other. In particular, the order considered is completely irrelevant.

ili) Fix (p,d, m) and set |a|SB and |al}, ,, 5 for the seminorms given by the
optimal constant in the defining 1nequaht1es of SKLJ (Ro) with parameters
(o, B) or ZZZ;(’R@) with parameters (aq, s, ) respectively. Then, we
have
(l)lm |a|0¢170¢2,ﬂ hm |a|a1+a27ﬁ

Given a € Y ;(Re) C 57 1(Re), we W111 now prove that the integral kernel &,
associated with ¥, satisfies the Calderén-Zygmund kernel conditions in Theorem
A. In conjunction with our Bourdaud type condition in Theorem BI9] it will give
the complete L,-boundedness of ¥, stated in Theorem B iii). Composition results

further yield Sobolev p-estimates

H\II :Wps(Re) = Wy s—m(Re) || o < 00,
P8 — ||(1 - A@)S/Z@HV

for many symbols of degree m, with 1 < p < oo and ||¢|
LEMMA 3.21. Given a € ¥]'5(Re), let
ki = (Vo ®id)(ky) and ky = (id® Ve)(ka).
Then, there exist by, by € 22;1(7?,9) satisfying that ky, = k1 and ky, = ka.
Proof. It is easily checked that

n

(Vo @id)(ka) = Y s(e;) ® | 0bla(§)re(€)] @ e (§)" dE = k,

j=1 R

where b1(§) = Veo(a)+2mis(§) @ a(€) takes values in L(F,,)@Re, we omit the extra
tensor component just to simplify our notation. A simple calculation also gives
that b2(&) = —2mis(§) @ a(§). It is clear that Veg(a) € E;’f}‘s(R@) C E;’fgrl(R@)
while the inclusion for s(¢) ® a(€) follows by Leibniz rule and 9} & = 0J¢. O
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3.3. L,-BOUNDEDNESS AND SOBOLEV p-ESTIMATES 63

LEMMA 3.22. Given a € S(R™;Se), let k, be the kernel of ¥,. Recall that
mo(P) is a distribution in Sege for any polynomial P in &1,...,&,. Then, the
following identities hold in the sense of distributions for all o € Z%}

ka [ ﬂ@((Zm'z)O‘) = kaga,
To ((2miz)*) ok, = kog .
Proof. Note that
k. @ mo(exp,) = (/ (a(§) ® 1) e mo(expe () df) =ka(.—0)-

Taking derivatives formally gives

) d
ko o mo(2miz;) =k, @ o

This symbolic calculation can be justified in the distributional sense. For the second
identity, we recall the identity (9% (a)(€) = Ao (£)I{ Ao (€)*a(é)Xe(€) J Ao (€)* and
notice that

[ (@@ @) emafespe) s = [ malexng) o o€ a(e)re(€) o 1) de
n R
Therefore, arguing as above, we obtain the identity for left multiplication. O

LEMMA 3.23. Let 1;(£) = ¢(277€) — ¢(27711E) be a standard partition of unity
in R™ from a smooth, radial and compactly supported ¢. If we let a;(&) = a(§)v; ()
forae EZfé(R@) and £1,05 > 0, we have

e (expse‘j) = kaga'

s=0

Hdg ok, 0d2 9 (ntm—p(t1+£2))

<
Re®@RY Cuts

Proof. It is clear that
J6.ca; = Z a(agﬁ%) + (9% ca)¥;.
B+y=a

Since \8?¢j(§)| < 277181 when (€) ~ 27, the a;’s are in ¥7'5(Re) with constants
independent of j. Assume first that ¢1, /5 are even numbers, £, = 2N;. Then the
£-th power of |z| is a polynomial of the form

|Z|£k: Z ZQa

|| =Ny
Applying Lemma [B.22] gives that

o b,

k 201 2
D 2 amge,

Re®RY (2 f1+‘2 Re®RYP
°®Re ) [a1|=N1 |2 |=N2 ®
and for each of the terms we have the estimate
_ 201 92« .
kozes o202, I oamer = H/ (9672 9 2%(5)@1)'We(expg)dfunemg
21 02« j(n+m—p(l1+£L2))
S 27 sup [[(97105°¢a;) (6|, S 2Hmoetatt)),

€129

For general (noneven) ¢1, 5 we proceed by interpolation. Note that the norm of k,
is not altered under left/right multiplication by d¥ for any s € R. Therefore we
have a bounded and holomorphic function ¢ +— (|22 12¢) e k, ® 7o (|2|%2) defined
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64 3. PSEUDODIFFERENTIAL L, CALCULUS

in the band 0 < (¢) < 1. An application of the three lines lemma gives the bound
for any /1, the same follows for £5. This completes the proof. O

PROPOSITION 3.24. Given a € ZZTP(R@) and my, mo > 0

<1

d3 ek, edl?
H © "M TT0 lrearer ~

provided p(my + mg) >n+m for p <1 or p(my +mg) >n+m for p=1.
Proof. Let
pi(€) = (277€) — p(2771¢)
be another partition of unity —this time for j € Z— and set b; = mg(p;). Then
A& o koo dd? = 3 + 30 + D0 (b 0dd ko edd?eby) = Ay + 4+ s
J,k>0  j,k<0  j-k<O

Estimate of A, . Letting a; = at, as in Lemma 323

IAtllroery < D D0 ||bs e g o ko o g2 o b =3 > Ak,
J,

§,k>0£>0 Ro@Re’ >

Pick ¢; and ¢5 large enough (see below) and use Lemma 323 to estimate A (j, k, £)
~ ¢ ¢

Ak 0) < ||dg e ka, @G| 5, prer

|Z‘ (m1—£1)

X

|76 (prlz| 2"

7o (p; )HR@@@R%" )HR(—)®ROQP

< t(nt+m—p(l1+£2))9j(mi—£1)gk(me—Ls)

Taking ¢1 > mq, lo > mgy and p(¢y + ¢3) > n + m we may sum over j,k,¢ > 0.
Estimate of A_. Letting ay = ay once more, we get

A= ST e ez e oagen) = 0 AL+ 4260

3k<0 S o>l e<|j| 3,k<0
= > ALGR) + Y. ALGER) + D AZGR) + > AR(Lk).
J<k<0 k<j<0 J<k<0 k<j<0
Al Al2 A2 A22

First, we may bound A (j, k) and A2 (4, k) in norm via Lemma 3.23]

||A1,(j, ]")”R@@z‘g < Z 27 (m1—t1) ob((ntm)—p(ti+£2)) gk(m2—t2)
£>1j]

||A?_(j7 k)HR@@Rg)P < Z 9d(m1—£1) 9l((n+m)—p(l1+£2)) gk(ma—L2)
£<]4]

ALY Taking p(¢1 + f2) >n+m and r =k — j > 0, we get

||A1 (] k)HR BREP < 2j(m1*fl)2|j\(”+mfp(£1+£2)) Qk(m2752)
_\Js ° ?—)

gr(mz2—£2) o|j|(nt+m+(1—p)(1+l2)—(mi1+m2))

If p < 1, our condition p(mi+msa) > n+m allows us to pick £1, {5 satisfying
01+l = my 4+ mg and o > mo. If p =1 we pick £; > m; for j =1,2. In
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3.3. L,-BOUNDEDNESS AND SOBOLEV p-ESTIMATES 65

both cases we get the inequalities n+m+ (1 —p)(¢1+¥{2) — (m1+m2) <0
and mg — 5 > 0. This gives

AN H AL, H
H HR9®R@" < g j; (J,J+7) Ro®R
< erup 1AL (5, J —|—7")||R®®ROp < ZTQT(mQ—Zz) <1
r>0 950 >0

By almost orthogonality of b;’s the sum inside the norm is a r-th diagonal
operator, dominated by r times the supremum of the norms of its entries.

A2Y) Letting r = k — j > 0, we get

|42 (4, < 9ilmi—t1) o {1, 2|ﬂ<n+mfp<el+z2>>}2k<mrez>

k)HRe@RZ)p ~
— or(ma—ts) maX{2\j|<<el+e2>f<m1+m2>>7Qm<n+m+<1fp>(z1+52>7<m1+m2>>}_

Then any choice with ¢; + f3 = m1 +mg and fo > my gives || A% < 1.
Al%) We may write
A = Z { Z + Z }(bj odl ek, 0dy? ‘bk) = A2l | pl22
R0 OSTk| lj<e<lk|

Then, A'2! is estimated exactly as A_11. On the other hand, the estimate
of A'?2 is very much similar to that of A%!, we leave the details to the
reader.

A?2) Interchanging roles of (j, k), A??isestimated as A?! above (even simpler).
Estimate of A.. Since the conditions on mi,ms are symmetric in the statement
and the sum 2, ;o splits into >, o, + > o, it suffices to estimate one of
these two sums. Arguing as above, if we pick ¢, {5 so that p(¢1 + ¢2) > n+m, the
problem reduces to estimate

Z {Z+Z}2j(m1—zl)2z(n+m—p(fz1+52))Qk(mz—fzz) — A+ B
j<0<k >k (<k

Again as above, we pick » = k — j > 0 and obtain
A< Z ZQ—T(ml—21)2k(n+m—(1+p)(€1+£2)+m1+m2),

r>0k>0
Z Z 9—r(mi—01) 1hax {Qk((mﬂrmz)*(fﬂr&))’ 9k(nt+m—(14p)(£1+£2)+m1+ms) }

r>0 k>0

B

A

Since n +m < p(my + ms), it suffices to take ¢; > my and €1 + fo > my +mao. O
THEOREM 3.25. If a,a} € 7 ,(Re), we have
|Pa : Hi(Re) — Ll(R(“))ch < 00,
|¥q : Loo(Re) = BMO(Re)||,, < oo
In particular, ¥q : Ly(Re) — Ly(Re) is completely bounded when 1 < p < oo.

Proof. According to our Calderén-Zygmund extrapolation in Theorem T8 it
suffices to see that ¥, is Ly-bounded and its kernel k, satisfies the CZ conditions
there. The Lo-boundedness follows from the quantum form of Bourdaud’s condition
in Theorem[3:I9 On the other hand, according to Lemmal[321] both (Ve ®id)(k,)
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66 3. PSEUDODIFFERENTIAL L, CALCULUS
and (id ® Vg)(k,) belong to Zil(R@). In particular, Proposition 3.24] yields the
CZ kernel conditions which we need for m; +m; =n + 1. O
COROLLARY 3.26. If a,a} € X7'1(Re), we have
H\I/a W, s(Re) — Wp7s_m(’R@)ch < oo forevery 1<p< oo.
Proof. We have that

s—m

(1-2e) 2 W.(1-Ae) 2

LP(R@) LP(RG)

v,
Wp.s (R@) - Wp,sfm(RG)

where (1 — Ag)"/? : W,.s(Re) = W, s—y(Re) are complete isometries. On the
other hand, the complete L,-boundedness of (1—Ag)~"™)/2¥,(1—-Ag) ™%/ follows
from Theorem once we observe that this pseudodifferential operator and its
adjoint are associated to symbols in 2(1)11(7?,@), which in turn follows from the
composition rules for £75(Re) established in Remark O

REMARK 3.27. Theorem 325 and Corollary [3.26] remain valid for a € %9 5(Re)
with 0 < ¢ < 1. Indeed, £ 5(Re) C S7 ;(Re) C 57 1(Re) and the middle class is
stable under adjoints. Thus, we may apply our Bourdaud’s condition as we did in
the proof of Theorem In addition, E(IJ)(;(R@) C X9, (Re) so that Proposition
applies. The argument for Sobolev spaces is similar.

REMARK 3.28. A careful analysis of our proof for Theorem and Corollary
yields that the condition XY ;(Re) can be replaced by the weaker condition
below

10808022 a(€)| + | 05081082 a% ()| < Cay,an (€)1 Te2F1A

for Joy + a2l < n+2 and |5] < 1. Indeed, according to Remark 20 Bourdaud’s
condition in Theorem B9 can be weakened to |ag + as] < n+ 1 and |B] < 1.
Moreover, our proof of Proposition[3.24]for mi+mg = n+1 requires |a; +asz| < n+2.

m

The L,-theory for exotic symbols ¥7",(Re) (p < 1) is only possible due to
the regularizing effect of a negative degree m. Fefferman proved in [29] the L,
bounds for the critical index m = —(1 — p)5. The noncritical range was proved
by Hirschman and Wainger [36,[76] (constant coefficients) and Hormander [38]
(general symbols). Standard interpolation arguments yield more general statements
[68] VII 5.12]. Now we shall prove (non optimal) inequalities of this kind in Reg
with applications below for L,-regularity of elliptic PDEs. Namely, in what follows
we shall write N for the best possible constant in Remark [3.10. As explained there
we suspect that any N > n/4 is valid and this would be optimal, as it is the case
in the Euclidean theory. Consider the index

Apn =—(1— p)max {2N,n + 2}.
It follows from arguments in [71] that 2N is (at least) less or equal than 3n + 2.

COROLLARY 3.29. Let a € X7 (Re) be a symbol satisfying m < A, ,, for some
p < 1. Then, the pseudodifferential operator U, satisfies the following estimates
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3.3. L,-BOUNDEDNESS AND SOBOLEV p-ESTIMATES 67

forl<p<oo
o :Hi(Re) = Li(Ro)||, < o,
[¥a : Ly(Re) = Ly(Re)||,, < oo,
|¥4 : Loo(Re) = BMO(Re)||,, < oo
Moreover, if m is any real number and £ =m — A, ,
[a: W, s(Re) = Wpse(Ro), < oo

Proof. Since a € X! (Re) and m={+ A, ,
<§>mfpla1+a2\+/)|ﬁ| _ <§>m+(1fﬁ)\041+042|*\0¢1+042\+P|5|

< <§>M+(1*P)max{?N,n+2}*|a1+az|+P\ﬁ\ < <€>f*|a1+a2|+mﬁ\

as long as |1 + as| < max{2N,n + 2}. This means that a satisfies the Hérmander
condition pr(’R@) for dg ¢, O¢ of order up to |oy + a2| < max{2N,n + 2}. For
the first assertion we apply Theorem A. The Ly-boundedness is guaranteed by our
Calderén-Valillancourt, theorem since XY (Re) C S5 ,(Re) and 2N ¢-derivatives
suffice, according to Remark Next, inclusion X9 (Re) C X ;(Re) together
with the fact that Proposition only requires |a; + as| < n + 2 —see Remark
B28— imply that the CZ kernel conditions also hold. This proves that the first
assertion follows from Theorem A. Then, the second assertion follows by adapting
the argument in the proof of Corollary Indeed, arguing as in Remark we
deduce that

a€ Ef’p(R@) = (1- A@)% U, (1—-Ap) 2=V, forsome be Z?’p(R@).

In fact, the same holds limiting the conditions above to a prescribed number of
derivatives dg ¢ and O¢. Hence, we apply Theorem A once more to conclude. [

REMARK 3.30. It is very tempting to claim that Corollary holds for the
index A, = —(1 — p)(n + 2) since it is reasonable to think that the above result
follows from a direct combination of Remarks and above. However, at
the time of this writing, we are not able to circumvent the adjoint stability used
in Remark [3.27], since we need it for Hormander conditions limited to a prescribed
number of derivatives. The product stability used above is straightforward instead.

REMARK 3.31. L,-boundedness up to the critical index m=—(1 — p)% is still
open.
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CHAPTER 4

L, regularity for elliptic PDEs

In this section, we illustrate our results with a basic application to elliptic
PDEs in quantum Euclidean spaces. Given 0 < § < p < 1 and m € R, a symbol
a € S)5(Re) is called elliptic of order m when there exist constants C, R > 0 for
which the following inequality holds

la(§)] = Cl¢[™  for all [¢] > R.

A prototypical example of elliptic symbol of order 2 is given by a(£) = £*A¢ for
some uniformly positive definite A € M,,(Re). We shall be interested in the elliptic
PDE
Uo(u) =

with data ¢ in the Sobolev space Wy, s(Re) and a € X7%5(Re). Ly-regularity means
that, no matter which a priori regularity do we have in a given solution w, it must
belong at least to the Sobolev space W s4m(Re). When the regularity gained
is smaller than m we speak about hypoellipticity. In the Euclidean case, elliptic
regularity arises naturally for (p,d) = (1,0) and still holds for p = 1, whereas the
case p < 1 leads to hypoelliptic scenarios [71]. As we shall see, this is also the case
in the quantum setting. Equipped with our results so far, the main obstruction
we shall need to overcome will be to construct suitable parametrices for symbols
in Y-classes, for which we can not use product stability in that class. Our first
step yields Sobolev p-estimates W), s(Re) = Wy, s_¢(Re) for symbols in S (Ro)
instead of Ef;} 5(Re), provided the order m is small enough.

LEMMA 4.1. Given s,f € R, we have
\Ifa : Wp,s('R@) — Wp,s_g(Re)
provided a € S)';(Re) with degree m + (1 + ¢) max {2N,n+2} < ¢.

Proof. Arguing as in the proof of Corollary B.29] it suffices to see that a satisfies the
E‘i’é(R@)—condition for Jg ¢ and J¢ of order up to max{2N,n + 2}. Then recalling
that

) ) 1 n
i ai } : ok
8975 — af + 27‘(’2 ejka@,
k=1
we easily get the following estimate

106050 a@lr, < 32 D 10670 a(¢)],

ajitaiz=a1 |y|=[aiq|

Z Z <§>m*P‘0412+042|+5|5+’Y|.

artaiz=ay |[y|=|aq1|

A
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70 4. L, REGULARITY FOR ELLIPTIC PDES

When |a; + az| < max{2N,n + 2}, we use

m — plaig + as| + 0|8 + 7|
= m+ (1 —p)larz + az| + (1 +6)|y| = [ar + 2] + 6|5
< m+ (149)|ar + az| — |og +az| +6|8] < £ — a1 + az| +6|p]
since m + max{2N,n + 2} < ¢ by hypothesis. This completes the proof. O

LEMMA 4.2. Let a € X7'5(Re) be an elliptic symbol for some 0 <0 < p <1
and degree m. Let £ = m+ Ap n- Then, for every k € N, there exist symbols by, and
¢k satisfying the following properties:

i) Uy, Uy =id— V.,
ii) cx € Sy}(Re) withy =06 —p <0,
iii) If p=1, then ¥y, : W, s(Ro) = Wy stm(Re) for all s € R.
i) If p <1, then Uy, : Wa s(Re) = Wa s4¢(Re) for all s € R.
In fact, the last assertion holds under the weaker assumption that a € S}, 's(Re)-

Proof. Let
b1(€) = (1 - ¢(€))a™"(€)
where ¢ is a smooth function which is identically 1 in Bg(0) and vanishes outside
Br+1(0). Here R is determined by the ellipticity of a, so that |a(¢)| > C|¢|™ for
|€] > R. We claim that
A) b1 €8 T (Re),
B) U, ¥, =id — ¥, for some c¢; € S) 5(Re).
Assuming the claim, let by, and c¢; be determined by
k-1
b= W W, and W, =Wk,
j=0

) Uy, W, pr Uy, ¥ pr (id—V,,) =id— V5 =id—V,,.

ii) ¢ € S’ (R@) with v = § — p < 0 follows from Corollary B4l since § < p.

iii) We may not use our results directly since we ignore whether or not by
belongs to the right Y-class, due to the lack (so far) of stability results for
the product of symbols in these classes. However, when p = 1 we know
from claim A) above and Remark that

\Ijbl : Wp7S(R(_)) — Wp75+m(R@).

Let us note in passing that Corollary would also do the job here
for p < 1 and ¢ in place of m. Next, it suffices to show that W7 takes
the Sobolev space Wy, s4+m(Re) to itself. This is clear for the identity
map with j = 0. On the other hand, the boundedness for j > 0 trivially
follows from the case j = 1. Since (a,b1) € X7’5(Re)x € ¥ §'(Re), the
boundedness of ¥., = id — ¥, ¥, follows again from Remark

iv) By the product stability of S-classes from Section BI] and according to
claims A) and B) we know that b, € S, ["(Re) and the result follows from
the argument in Corollary 3.26] Indeed it works in Lo when Y-classes are
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4. L, REGULARITY FOR ELLIPTIC PDES 71

replaced by S-classes since we just need to apply Calderén-Vaillancourt
and composition with the right powers of 1 — Ag in that case.
Once we have proved the assertion, it remains to justify our claim. Point A)
follows easily once we express the involved derivatives of a=!(¢£) in terms of those
for a. It is clear that 87 (a™1)(&) + a=1(£) 8 (a)(§)a™*(£) = 0 for the derivations
0 € {0¢,00.¢,00}. By ellipticity we obtain the estimates below for |{| > R

102(a™) (Ol S (O
105 ), S ©,
105, ()|, S €

By Leibniz rule and induction we get by € X "(Re) which proves A). Then B)
follows from the product stability in Corollary B.4] as in [71l, Theorem II1.1.3]. O

REMARK 4.3. The above result for p = 2 is still open for 1 < p < co. According
to point i) and Lemma I} we know that W7 is bounded on W, 4¢(Re) for j
large enough. It would be tempting to deduce the result by complex interpolation
with j = 0. However, imaginary powers of ., are generally unbounded in L, since
the same happens for U, , due to Fefferman’s critical index —(1 — p)n/2. Indeed,
U, will not be bounded in L, or W, s when || is small enough and p < 1.

REMARK 4.4. In the absence of stability for products of symbols in 3-classes
—Ileft open in Section BI}— Lemmas[ZIl and [£.2] give together a good substitute for
many applications. Lemma[L2 provides a parametrix ¥;, which, despite we ignore
for the moment whether or not it lives in the right ¥-class, it does send W, s(Re)
to the correct Sobolev space. Moreover, we know from Lemma (1] that the same
holds for the error term ., provided k is large enough, since v < 0.

THEOREM 4.5. Given 0 < § < p < 1, consider a € Z;’?(;(R@) an elliptic symbol
for somem € R and let { = m+ A,,. Givenl < p < oo andr,s € R, assume
v € Wy, s(Re) and let u solve

Va(u) =
for some u € W, .(Re). Then, the following estimates hold:

l) If p=1, we get ||ullw, ..,.(re) S lUllw,..(re) T l€llw,..(Ro)-
i) If p <1 andp =2, we get |ullw, .., (Re) S Itllwa, (Re) + 1€, (Ro)-

Proof. According to Lemma
U= \IjCk (u) = lIjbk\Ila(u) = \I]bk (90)

for any k£ > 0. This gives in particular
i) Ifp=1

||\Ilbk (¥) Hp73+m + ||\chk (u)

< |p,s+m
S lellp,s + [P, (w)llp,stm-

Hu||p,3+m

ii) fp<1landp=2

< e (P)ll2,500 + ey (u)
5 ”90”2,8 + ||\Ilck (u)”2,8+5'
Next, Lemma [Tl gives that ¥., : W, .(Re) = W, s4¢(Re) for k large enough. O

[ell2,s+0 2,540
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72 4. L, REGULARITY FOR ELLIPTIC PDES

REMARK 4.6. As in the Euclidean setting [71], Theorem [5labove gives elliptic
L,-regularity in the Hormander class Z;’fé(R@) and hypoelliptic Lo-regularity in
o (Ro) when p < 1. The latter result remains open for other values of p # 2.
Compared to [71] our result for p = 2 quantifies the loss of regularity in terms of p
and it holds in the larger class S)'5(Re).
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APPENDIX A

Noncommutative tori

Given any n xn anti-symmetric R-matrix ©, the subalgebra of Reg generated by
w; = u;(1) is the rotation algebra Ag —also known as quantum or noncommutative
torus— and we have
w;wg, = exp(2mi0 ji)wrw;.
Ae can also be described as the Z"-periodic subalgebra

Ao = (Do(k) ke zn) = {¢eR@\ag(¢) = ¢ for allkEZ”}.

The extension of our results for pseudodifferential operators to noncommutative
tori Ag follows by a combination of well-known transference arguments, which we
recall now. Given a symbol a : Z™ — Ag we shall say that

e a € 5);(Ae) when
069k a(®)

e a € X]';(Ae) when
10805052 a(K)| < Cayaq,p (k)™ Plor+ezl #3181,

In the above definitions, dg remains the same differential operator as in Re whereas
dx is the difference operator (dfa)(k) = a(k + ¢;) — a(k). The mixed derivatives
0o x are again O-deformations of Ox by Jg’s

IA

Cop <k>mfp\a|+5|/3|.

) ) ) 1 &
9% (k) = dLa(k) + 2mi[ze j,a(k)] = dla(k) + 5 Z 0,0 05a(k).
=1

The associated pseudodifferential operator is
Va(p) = Y a®pk)Ae(k) for o= Gk)re(k).
kezn kezZn

We say that a : R® — Ag is a Euclidean lifting of a when its restriction to Z™
coincides with the original symbol a : Z™ — Ag. Recall that we impose the lifting to
take values in the periodic subalgebra Ag, not just in Rg. The extension/restriction
theorem below provides a useful characterization of the quantum Hormander classes
in Ag defined above since it relates them with their siblings in Re.

THEOREM A.1. Assume p > 0:
i) a € 55 (Ae) iff it admits a lifting a € S7's (Re).
i) a € X705 (Ae) iff it admits a lifting a € X7'5(Re).
In fact, the lifting a : R™ — Ag has the form
a€) = Y o€ ~ka(k)
kezn
73
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74 A. NONCOMMUTATIVE TORI

for certain Schwartz function ¢ : R™ — R satisfying ¢(k) = dx0 fork € Z".

The proof follows verbatim [66], Theorem 4.5.3] since the argument only affects
the classical variables k € Z™ and £ € R". In particular, the exact same argument
applies when we take values in Ag. In fact, the same extension procedure applies
when the Hormander condition is only required for finitely many derivatives in
the line of Remark B28] see [66, Corollary 4.5.7]. The equality of the associated
pseudodifferential operators is also proved in [66, Theorem 4.6.12 and Corollary
4.6.13]. Namely, the class of pseudodifferential operators associated to Sy s (Ao)
or X75(Ae) can be identified with the corresponding Hérmander classes in R@ for
perlodlc symbols —that is, taking values in Ag— when acting on periodic elements
¢ = o8 () for k € Z". Finally, it is also worth mentioning that the extension above
also respects ellipticity, as shown in [66, Theorem 4.9.15].

THEOREM A.2. Leta:Z" — Ao and 1 < p < oo
i) Ifa € SO »(Ae) wzth 0<p<1,¥,: Ly(Ae) = La(Ae).
ii) If a € Sl 1 (Ae) NSY (Ae)*, then W, : Ly(Ae) — La(Ae).
ii) If a € X9 (Ae) NXY  (Ae)*, then ¥, : L,(Ae) = Ly(Ae).
Proof of Theorem [A.2]i) and ii). Let b; = By—;(0) and
.
vau

Observe that A; : Lg(.A@) — Ly(Re) is an isometry for all j > 1. Indeed

hj = /\@(11,].) and Aj : )\@(k) — /\@(k)hj.

, 2
A = k)e(1
H J(‘P)HL,‘,(R@) = O( b) Li(Re)
- k)1 k)2 OLETI0 \ g ( d‘
i |H/ n z SR

By Plancherel theorem and using that b; 4+ k are pairwise disjoint, we get

1 %) i 102
||Aj(<'0)||iz(7€@) = ol fon Z B(k)1, (€ — k)e2milie®ut k)‘ de
=
b |/n > 1809 1, € =1y de = 3 180" = ol am-
= o

Then, the assertion follows from the following claim

Jim HAJ‘ (Wa()) — Wa(Aj(p)

HLz (R@)
for any trigonometric polynomial ¢. In other words, for finite linear combinations
of the Ag(k)’s. Indeed, assume the limit above vanishes, then ¥, is Lo-bounded
since trigonometric polynomials are dense and

1% ey = Jim 14 (Fa@)) 1y )
= Jim 193 (A5 ()| 1, (%o
< ]113010”1\ O Larey = lelLacao)-

The inequality above follows by application of Theorem [AI] in conjunction with
Theorems 3.9 B.12] and 319l Let us then justify our claim above. It clearly suffices
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A. NONCOMMUTATIVE TORI 75

to prove it with ¢ = Ag(k) for any k € Z". Given an arbitrary £ > 0, we shall
prove that the quantity [|A;(V,(Ae(k)))—Pa(Aj(Ae(k)))||2 < Ce for some absolute
constant C independent of (k,e) and j large enough. Let ¢ : R — R be the
function used in Theorem [A.]] for the construction of the lifting. Since ¢ is a
Schwartz function and ¢(k) = di o for k € Z", there must exists a ¢ > 0 satisfying

€=l <0 = max{[6(¢ — k) — 1], sup|o(¢ — )|} < ek
j#k

where R, is large enough to satisfy

1
Z |k|T+1<€.

k>R

Next, consider the Fourier multiplier My, ;(¢) = [pn 1os (§)P(E) Ao (€)dE where we

write bys for Bs(k). Then, we decompose the L2 norm into three terms as follows
145 (Za(Ae(K))) — Ta(A;(Xe (K)))]

la(k)Ae (K)h; — g (re(k) )Hz

[|a(k) (Ao (k)hj — My, ;(Ne(k)hy))|],

[|a(k) My, (Ao (k)h;) — (Mbka()‘@( hi))l,

+ [ 0a (M, Ce (k) = Ta(Re(h)]|, = A+B+C.

+ IA

We recall one more time from Theorem [AJ] and Theorem B in the Introduction
that U3 : L2(Re)) — L2(Re) is a bounded map. Moreover, we also know that
a € Uo(Z™; Ap) since it has degree 0. In particular

A+ ((sup a00) o + [ Vel Ly ey ey ) 20 00 = Mas e (00)

The Lo-norm above can be estimated with Plancherel theorem

Ao (0)h; = M, (Mo (k)hy))

Do, (€ — k)00 M\ () de |

Sl L0 mte

1 3
(|b_j| k+b~‘1_1bk5(§)|2d§) — ’1—5k5(k)| =0

as j — oo. Therefore, it remains to estimate the term B. Letting

ak(g) = (5(5)_0“(1{))151«5(5)

= a(k)(p(& — k) — 1)1y,

+ Y alD)e€ = Dl
j#k
li—k|<Re

+ D aloE — b = a(é) +an(€) +as(é),

|J7k‘>RE
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76 A. NONCOMMUTATIVE TORI

we clearly have
B = ||Ta, (No(k)hy)||, < ZH\IIaJk: 2(Re) — La(Re)||

since Ag(k)h; is a unit vector in LQ(R@). This gives

B < (supflat)las ) sup [0 —1)-1])

+ (swllallae) (X sw fo—i))

jezn 7k |€—k|<5
li—k|<Rc
. n 1
+ (s la@laa) [l 0@l Y ) S 3
jezZn . lj — K]
li—k|>R.
Then, letting ¢ — 0 this completes the proof of the claim. O

Proof of Theorem [A.2]iii). The next ingredient we need is the natural BMO
space in Ag. Define BMO.(Ag) as the column BMO space associated to the
transferred heat semigroup ¢ — >, @(k) exp(—tk|?)Ao(k). As in Section [Z1]
it can be regarded as the weak-x closure of og(Ag) with respect to the pair
(H(Qo), BMO.(Qg)). In other words, we find

HaHBMOAA@)“’SUPH(][’UG( —oela ] du)
Qeo !N Jo

where Q is the set of all Euclidean cubes in R™ with sides parallel to the axes, u
stands for the Lebesgue measure and og(a)q is the average of og(a) over the cube
@. Up to absolute constants, it is not difficult to recover an equivalent norm when
restricting to cubes @ of side length ¢(Q) € (0,1) UN. Moreover, since a is spanned
by Ae(k) for k € Z™, it is clear that og(a) is Z"-periodic. In particular, the quantity
above for £(Q) € N coincides with the same quantity for @ = [0,1] x ... x [0, 1], so
that we may assume in addition £(Q) < 1. We have proved

][ ‘0’@ —0’@ Q’ du)

In other words, BMO,.(Ap) embeds into BMO.(T™; Ag) using Mei’s terminology
[62]. The interpolation behavior and other natural properties which we explore for
BMO(Re) in Appendix B are well-known in this case [41], due to the finiteness
of Ag. Note that, according to our definition of BMO(Ag), the natural inclusion
map Ao — Re extends to an embedding BMO(Ag) — BMO(Rg). In other
words, BMO(Ag) is the subspace of periodic elements in BMO(Rg). Now, recalling
that U5 sends periodic elements into periodic elements, this makes the following a
commutative diagram

)

Ao

a .
llallBmo. (4e) "

Loo(Ao) Loo(Re)
BMO(Ao) i BMO(Ro)

The assertion follows from it and Theorem [A.2]ii) by interpolation and duality. O
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A. NONCOMMUTATIVE TORI 7

REMARK A.3. Our Ly-inequalities also hold in the category of operator spaces
and admit the endpoint estimates Hy — Ly and L., — BMO, as in the quantum
Euclidean setting. Besides, the natural analogues of Remarks and as
well as Corollary concerning L,-estimates still apply. On the other hand, the
Sobolev p-estimates in Corollary B.26land the L,-regularity for elliptic PDEs require
in addition analogues of the product stability of Hérmander classes in Section Bl
which seems to be straightforward but we shall not generalize it here.
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APPENDIX B

BMO space theory in Rg

The theory of BMO spaces was originally developed as a natural endpoint
class for singular integral operators. In particular, the natural requirements for a
reasonable BMO space are:

1) Interpolation endpoint for the L,-scale.

2) John-Nirenberg inequalities and Hy — BMO duality.

3) Lo, — BMO boundedness for Calderén-Zygmund operators.
BMO spaces over von Neumann algebras were introduced by Pisier and Xu in [63]
and have been investigated since then. The theory when averages over balls or
martingale filtrations are replaced by the action of a Markovian semigroup has
been addressed for finite von Neumann algebras in [41]. Interpolation requires a
different approach over Rg —less intricate than the general semifinite case— which
we present here. Duality was developed by Mei [521[53] and endpoint estimates for
imaginary powers A% of infinitesimal generators, noncommutative Riesz transforms
or more general Fourier multipliers have been studied in [13[40H42][65]. In the
setting of Ag and Rg, Theorems A and B include many more singular integrals.

B.1. Operator space structures on BMO and H;

Let us recall the definitions of several natural operator space structures —o.s.s.
in short— for BMO(R"™) and its predual. We define the column operator space
structure by the family of matrix norms on f = [f;;] € M,,[BMO.(R™)] given by

)
m

”fHJVIm[BMOC(R")] = 5161% H ][Q(f - fQ)* (f - fQ)

where fg is the average of f over @) and Q stands for the set of all the Euclidean
balls. We will denote the resulting operator space by BMO.(R™). Similarly, we
can define the row o.s.s. by | f|las,,;Bmo,. @) = [|F* (a1, [BMO.(R7)). We shall also
denote by BMO(R"™) —sometimes BMO,x.(R™) for convenience— the operator
space structure

£l as,.. [BMO (R?))] —maX{HfHM BMO, (&) || 1|1, BMO, (Rn)]}-

These are dual operator spaces, with preduals HI (R™)* = BMOT(R") given by
2ds
s = (1o +2irs] &y

H(/ s(V + 82V P, f* ]2d5)

where Py is the Poisson semigroup. The quantities above are just pseudonorms. A
natural way of turning them into norms is working with O-integral functions, in a

Li(R")’

1 llexg ey L@’

79
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80 B. BMO SPACE THEORY IN Re

way dual to the quotient of constants taken in the definition of BMO. Comparable
norms can be defined by removing the 92 inside the square function and by using
the semigroup analogue of Lusin area integral, given by

1£ 1tz oy ~ H(/ (Y + 82)Puf () dsdy)

where 'y = {(y,s) € R® xR, : |[y—x| < s} is the cone centered at x. The row case
can be expressed analogously. The o.s.s. of Hardy spaces can be easily described
by taking matrix-valued functions f = [f;;] in the expression above and taking
norms in SP*®L;(R") = L;(R™; S7*). That will give a family of matrix norms
which describes the operator space structure. Indeed, using [61] Lemma 1.7] and
the well-known relation

Li(R™)

M, [HI(R™)] = CB(S}", H](R™))

see e.g. [62] Theorem 4.1], we can easily express the norm of M,,[H! (R™)] in terms
of the known norms. The operator space predual H; (R™) of BMO(R") is given by
the sum H$(R™) + H}(R™), whose norm is

”fHS;””@Hl(]R") = inf {HQHS;n@H;(Rn) + HhHsyl@H;(Rn) f=9+ h}~
Let us note that, by computations in Section [[2.1] we have that og gives an
isomorphic embedding BMO;(Rg) — BMO;(R")®Re. In particular, since Re
is hyperfinite, we may equip BMO{(Re) with an o.s.s. naturally inherited from
BMO;(R™). Following Mei [563,54], the definition of HI(Re) will be given by
completion on the 0-trace functions with respect to

|( [ sestvasiocelar)|

+

o = ([ sedvases @)’
+

The operator space structures of such spaces are defined in the same way as the
operator space structures of the classical ones, which could also have been defined
with this square function instead of the given one yielding an equivalent norm. Note
also that when © = 0, the semigroup Se ; behaves (intuitively) like an average over
balls of radius v/ and a calculation gives that the quantities above are comparable
to the Lusin integral and therefore recover the classical Hy(R™). We will write
H;(Re) or H™%(Re) for the sum

H;(Re) = Hi(Ro) + H{(Ro).

”‘P”Hf(R(—)) Li(Re)

LI(RG)).

B.2. The H;-BMO duality

The von Neumann algebra analogue of the celebrated Hy — BMO duality [30]
has been carefully studied in our semigroup setting by Tao Mei. By [64, Theorem
0.2], the duality between H;(Rg) and BMO(Rg) can be deduced after verifying
that the associated heat semigroup (Se )i>0 satisfies the following conditions:

i) Bakry’s I's > 0 condition.

ii) For all ,t > 0 and ¢ € L1(Ro)

H Se (146)t — Se,t) LF’HL (Re) ~ Se ||50||L1 (Re)-
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B.3. COMPLEX INTERPOLATION 81
iii) For every t > 0 and ¢ € L1(Ro)

sup | ][ So.0(1S6.1(¢)) ds)

t>0

< .
Li(Re) ™ ||<P||L1(Re)

Verifying such identities is relatively easy for the heat semigroup (Se.)i>o after
noting that it can be presented as an integrable convolution with respect to the
z-variable 0§ () and using bounds in L;/3(Re). In particular, we obtain the
expected duality theorem.

THEOREM B.1. We have
H{(Re)* = BMO(Re)
in the category of operator spaces for t € {r,c}. Also Hi(Re)* = BMO(Reg).

B.3. Complex interpolation

We are interested in proving the generalization of the classical interpolation
identities between L,, BMO and H;. According to Wolff’s interpolation theorem
[77], this can be reduced to justifying [L2(Re), BMO(Re)]s = L,y(Re) for p = 125
which in turn will be reduced, via suitable complemented subspaces, to the same
result in R™ with operator values in certain hyperfinite von Neumann algebra.

Let us recall a few standard definitions from interpolation theory. Given Xg, X3
Banach spaces, assume that they embed inside a topological vector space with dense
intersection, so that we can define Xg N X; and Xy + X; with their natural norms.
Let us write F (X, X1) for the space of (X + X;)-valued holomorphic functions in
the strip 0 < R(z) < 1 which admit a continuous extension to the boundary, with
Xj-values at 0; for j = 1,2. Such space is a Banach space with respect to the norm
given by

170 0y = mas { sup (i) 1, 5up [L£ (1 + ) |x, }-
seR seR
The interpolated space with parameter 0 < 6 < 1 is
[Xo,Xl]a = F(Xop,X1)/MNy,

where D1y is the subspace of functions with f(6) = 0. We can also define a larger
interpolation functor [Xg,X;]? that contains [Xg,X1]s isometrically by changing
F(Xo,X1) by a la larger space F.(Xo,X1) of holomorphic functions in which fls,
is a more general X;-valued distribution. These interpolation functors satisfy that
[Xo, X1]; = [X§,X;]? and both coincide if any of the spaces involved Xg,X; is
reflexive [5, Corollary 4.5.2] and [62] Theorem 2.7.4]. If X, are operator spaces,
the o.s.s. of [Xg,X1]g is given by the identification

Mm/([XOaxl]Q) = [Mm(XO);Mm(Xl)]G-

We first need an auxiliary result concerning complex interpolation of tensor
products against hyperfinite von Neumann algebras. This result is a consequence
of the interpolation identity [./\/l*@Xo, M*®X1]9 = M, ®X,y which can be found in
[61] page 40]. We prove it for completeness.

LEMMA B.2. We have
[M®X0,M®X1]e = M®&[Xo, X4]’
for any hyperfinite algebra M and any pair of dual operator spaces Xg, X.
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82 B. BMO SPACE THEORY IN Re

Proof. According to [26] the spaces involved are dual operator spaces. Indeed,
von Neumann algebra preduals have the OAP so M®X* = (M,®X)*. Now, since
hyperfiniteness and semidiscreteness are equivalent id : M — M is approximable
in the pointwise weak-* topology by a net i, = 1¥q¢p, where ¢, : M — M, (C)
and 9, : M, (C) = M are ucp. We have

a

ia®id

MEX? [M&Xo, M3X1]"

My, (X?) == [Min,, (Xo), Mim, (X))’

a commutative diagram for X = [X, X;]?. The maps i, approximate the identity
and taking a weak-* accumulation point in CB(M®&X0, [M&Xy, M@X;]?), which
is a dual space since CB(X,Y*) = (X®Y)*, we obtain a complete isomorphism. [

A key point in our interpolation argument will be to show that the co-action
0o : Re — Loo(R")@Re also carries other Rg-spaces —L, and BMO— into their
Reo-valued Euclidean counterparts.
ProprosITION B.3. We have complete contractions:
i) 06 : LY(Re) — LE(R™&Re for t € {r,c},
ii) oo : Lp(Re) — Lp(R")®Re for any 2 < p < oo,
ili) og : BMO+(Re) — BMO;(R™)®@Re for t € {r,c,r A c}.

Proof. Let us recall the Fubini-type identity

1ro(0) = [ o0z
In particular, given ¢ = [¢;;] € M,,[L5(Re)] we obtain
lelas, sran = i@ 70)(0"¢) |y, = I(id @ 170)(¢°¢) |41, (R0

z * _z o 2
— H /n U(—)(‘P) U@(SO) dzHMm[R(_)] = HO—@(SO)HMm[LS(R")Q_@Re]'

The same follows in the row case. In fact, og is a complete isometry in case|i)| and
also in case by construction of BMO(Reg). Assertion fii)| follows by interpolation
from Lemma [B.2l Indeed, since Ly(R"™) = [L§(R™), L5(R")]; /2 in the category of
operator spaces and all spaces involved are reflexive, we obtain from [i)| that og is
a complete contraction from Ls(Re) to La(R™)®@Re. The case p > 2 also follows
by complex interpolation, using the reflexivity of L, since the contractivity of the
other endpoint for p = co was already justified in Corollary [[.4l (]

REMARK B.4. It is interesting to know whether an analogue of Proposition
[B:3 holds for p = 1. Note that L;(R") is not a dual space, so that we can not use
the weak-* closed tensor product. Instead, we shall consider the mixed-norm space
Lo (Re; L1(R™)) as introduced in [39,[45]

Leo(Re; Li(R")) = (Ly(R™)&Re) (L§(R™)@Re),
where the operator space structure for w € My, (Loo(Ro; L1(R™))) is

e { | H H H
. { 2, ke Mo (L5 (R7)®Ro®R) 2, P en M (L§ (R") @R 8C)
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B.3. COMPLEX INTERPOLATION 83

where the infimum runs over all possible factorizations w = >, ayfr. Now, the
contractivity of og : L1(Rg) = Leo(Re; L1(R™)) follows easily from Proposition
m Particular cases of this kind of spaces —over finite von Neumann algebras or
discrete ¢1 spaces— have been proved to interpolate in the expected way with the
corresponding L, scale [391[45]. The lack of an available argument in the literature
for the general case has led us to avoid the case 1 < p < 2 in Proposition [B.3l This
contractivity result is unnecessary for our goals.

Observe that
ra0olf) = [ € (e ro(©)ds for f e SE)

Clearly such element is invariant under the group of trace preserving automorphisms
B. given by B, = 05 * ® 0. Let us denote by (X&Re)? the S-invariant part of
the X®Rg with X any of the Euclidean function spaces in Proposition We
need to see that (X®Re)? coincides with the image of g and that the B-invariant
subspace is complemented. Let us start with the complementation.

PRrROPOSITION B.5. The following subspaces
i) (LY(R"&Re)® C LYRMERe for t € {r,c},
i) (L,(R"®@Re)? C L,(R")@Re for any 2 < p < oo,
iii) (BMO;(R")®@Re)” C BMO:(R")@Re for t € {c,r,r Ac},
are completely complemented as operator spaces in the respective ambient spaces.

Proof. By amenability of R™, let m € Lo (R™)* be an invariant mean and let my,
be a sequence of probability measures in L;(R™) which approximate m. Given w
in L,(R")®Re, the function z — [,w sits in the space Lo (R™)QL,(R")®Re, so
P,(w) = (my ® id ®id)(B.w)
defines a family of completely positive operators
P, : Lo(R")QL,(R")®Re — L,(R")®Re.

Since the image is in a dual space, we use CB(X, Y*) = (X®Y)* and Banach-Alaoglu
theorem. Let P be an accumulation point of (P, o ), in the weak-* topology. P
gives a cb-bounded projection into the p-invariant part. We have only used that
L,(R™) is a dual space for weak-* compactness. Therefore, the same proof applies
to BMO;(R™). The projections P : L,(R")®Re — L,(R")®Re form compatible
family: they are restrictions of a map defined in the sum of the above spaces. [

PropoOSITION B.6. We have
i) oo(Li(Re)) = (LE(R")@Re)? for 1 € {r,c},
ii) 0o(Ly(Re)) = (L,(R")&Re)’ for any 2 < p < oo,
iii) 0o(BMO;(Re)) = (BMO(R™);®@Reg)? for t € {r,c,r Ac}.

Proof. Since the spaces (L,(R")@Reg)” are complemented subspaces, it is enough
to prove the identity for p = 2 and p = oo and interpolation will yield the result
for 2 < p < oo since the maps og : L,(Re) — L,(R")®Re are compatible. The
same argument gives that the Ly case follows by interpolation between L§(Re)
and L5(Re). This reduces the proof to the row/column cases, the case p = co and
BMO(Re). We shall only prove it for columns and for p = co, since the argument
is similar in BMO. Let us define the map W : L§(R")®Re — L5(R")®Re by
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84 B. BMO SPACE THEORY IN Re

extension of exp; ®Ae(n) — exp: ®Ae(§)Ae(n). A calculation easily yields that
W is a complete isometry. The same follows in the row case if one takes the map
expg @Ae(n)  expe ®Ae ()Xo (§) instead. We have that W gives an isomorphism
between L§(R™) ® 1 and og[Ae[L2(R™)]]. We also have that W intertwines the
action [, as follows

LE(R™@Re L5(RM@Re
laé lﬁz
LS(RM@Re W LS(RM)@Re.

Therefore, the subspace fixed by /5 corresponds under W with the subspace fixed
by id ® 0o. But evaluating such space against every ¢ ® id, with ¢ € Li(R™),
gives that the fixed subspace of id® g is L§(R™) tensored with the subspace fixed
by o0g. Such subspace is C1. Indeed, if ¢ € Rg is invariant under og we obtain
that ¢ = Ao (v)), where ¢ € S(R™)’ is a distribution supported on {0}. But such
distribution is a linear combination of distributions of the form (1, f) = f*)(0),
where f € S(R™). The derivatives with k£ > 0 give rise to unbounded elements and
so we obtain that ¢ has to be a multiple of dg or, equivalently, that ¢ € C1.

The case of p = oo follows similarly. We first define a normal *-homomorphim
U: Loo(R")@Re — Loo(R")@Re by extension of exp, @A (1) + exp, ¢ @A (§)-
To prove that such map is a x-homomorphism we can implement it spatially with
techniques analogous to that of Corollary [[4l We have that U/ carries 1 ® Rg in
co[Re] and that it intertwines the actions in the expected way. Proceeding like in
the case p = 2 we can conclude.

The case of BMO; can be deduced from a similar result for mixed spaces. First
we note that the result for BMO,.5. follows from the corresponding ones for BMO,.
and BMO,, we shall only prove it for BMO,. Fix a Euclidean ball B C R™ and
consider the following operator-valued inner product

. ) :]é‘fsﬁds—‘]ifsds’z for f € Loo(R") ®ag R

Let 1§ (B) denote the corresponding Hilbert module over Reg and let Hg be the
direct sum, in the {o,-sense, of Hg (B) over all balls B. Clearly BMO.(Rg) embeds
in Hg and we have that

1dRoo

BMO,(Re) 7° . BMO.(R")&Re

where = is the 2n x 2n-matrix Z = 0® ©. Now, we can define a map preserving the
operator-valued inner product (and thus an isometry) W, : HE — HE by extension
of expg, ®@expg, ®Aa(n) + expg, ®expg, , ®Ae(n) for every ball B. Such map
carries the copy of Hg ® 1 that lives in the first and third tensor components into
oo[H§] and proceeding like in the previous cases we get that og[H§] coincides with
the subspace of H¢ invariant under the group of automorphisms 3, = id®o; *®0§.
That result restricts to BMO.. O

ProrosiTiON B.7. We have complete isometries:

Licensed to Univ of Ill at Urbana-Champaign. Prepared on Wed Sep 14 07:37:29 EDT 2022for download from IP 130.126.162.126.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



B.3. COMPLEX INTERPOLATION 85

i) 06 : LY(Re) — LE(R™&@Re for € {r,c},
ii) oo : Ly(Re) — Ly(R")®Re for any 2 < p < oo,
ili) og : BMOt(Re) — BMO;(Re)®Re for T € {r,c,7 Ac}.
Proof. Assertions and were proved in the proof of Proposition Assertion

for p = oo was already justified in Corollary [[L4l The rest of the cases trivially
follow by complementation and complex interpolation from our results above. [

THEOREM B.8. We have
[Hi(Re),BMO(Re)], = [L7(Re),BMO(Re)],
= [Hi(Re),Lx(Re)], = Ly(Re)
forp= ﬁ. All isomorphisms above hold in the category of operator spaces.
Proof. Since Ly(Reg) is reflexive
0
[L2(Re),BMO(Re)|, = [L2(Re),BMO(Re)]
0

= [0e(L2(Re)),06(BMO(Re))]

— [P(Ly(R")&Re), P(BMO(R")&Re)]’

= P([L2(R")&Re, BMO(R")&Re]")

—  P(ILs(R"), BMO(R")’&Re)

= P(Lp(Rn)®R@) = 0p (LP(R@)) = LP(R@)
for p = 125. Indeed, the second identity follows from Proposition [B7} which gives
X = 0o(X) completely isomorphic for X = Ly(Reg) and X = BMO(Rg). The third
and fourth identities follow from Proposition [B.5] which shows that og(X) can be
identified with P(Z) where Z is the ambient space of operator-valued functions in
R™ associated to X. Moreover, since P is a bounded projection, it commutes with
the complex interpolation functor by complementation. The fifth identity follows
from Lemma[B.2 and the sixth one from Mei’s interpolation theorem [54]. The last

two identities apply from Propositions and [B.7 again. Once this is known we
use the reflexivity of Ly(Re) and duality Hy(Re)* = BMO(Re) to obtain

[Hi(Re), L2(Re)]; = [BMO(Re), L2(Re)]” = Ly (Re)
for ¢ = 325. This shows that [Hi(Re), L2(Re)]s must be reflexive and we get
[Hi(Re), L2(Re)], = Lq(Re).

The interpolation results in the statement follow from Wolff’s theorem [77], which
states that if X, Xy, X3, X4 are spaces with X; N X, dense inside both X5 and X3,
then

Xy = [X1,X3]g, and X3 = [Xg,Xy4ls, = Xo = [Xi, Xyly, and X3 = [X1, Xy]g,
where 9 = 9192/(1 — 01+ 9192) and ¥y = 92/(1 — 01 + 9192). Taking
X = Hl(R@), Xy = L%(R@), X3 = LQ('R,@), Xy = L4(R@),
71 = Hl(R@), 1o = LQ(R@), 73 = L4(R@), sy = Bl\/IO('R@)7

we first obtain, using X;-spaces and the interpolation of H;(Re) with La(Re),
that Hy(Re) and L4(Re) interpolate in the expected way. Then, using the same
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86 B. BMO SPACE THEORY IN Re

procedure with the Z;-spaces and the interpolation of Ly(Re) with BMO(Rg), we
finally get the expected result for the bracket

[Hl (R@)v BMO(R@)] 'S
The other two brackets in the statement can be treated analogously. ]

REMARK B.9. It is worth mentioning that our techniques have at least another
potential application in the abelian case. Let (X, 1) be a G-space with a G-invariant
measure. In that case, we can identify X and H x G/H as measure spaces, where
H is the stabilizer and we have the following Fubini-type identity

/G f(o 2) dpc(g) = /G o /H F(ht g ) dagy (h) dp(z),

see [31], Chapter 2]. If the stabilizer is compact we can exchange integration in X
and integration in G in a way analogous to the Fubini-type identity which relates
Te and og. If there is a natural definition of BMO(G), either with averages over
the balls of an invariant measure or with translation-invariant semigroups, and that
BMO interpolates, then we can transfer the interpolation to BMO(X) provided that
G is amenable. This seems to be a very direct approach for proving interpolation
of G-invariant BMO-spaces over X = G/K, where G is a solvable and unimodular
Lie group and K is a compact subgroup.

B.4. An auxiliary density result

Let us write in what follows Sg for the kernel of the trace functional 7g : Sg¢ —
C, which is of course continuous over Sg. It is trivial that Sg C H!(Re). We are
going to see that it is in fact dense. It will be an easy consequence of the fact that
oo : BMO{(Re) — BMO;(R")®Re, for T € {r,c,r A ¢} are normal and complete
isometries. Taking preduals we obtain a complete and surjective projection

(06). : H{(R")B(Re). — H|(Re),

for t € {r,c,r +c}. We are just going to need that such map carries S°(R") ®, Se
into S but indeed much more is true and the map (og). can be explicitly described

as a diagonal restriction multiplier. That is, it satisfies the following commutative
diagram, where Sp(R™) is the subclass of Schwartz functions with f(0) =0

~ (co)«
H}(R")®(Re)\ —— H{(Re)
/\0®/\@T l,\el
So(®™) ®, S®™) —I212 5 @)

Now, the proof of the density is immediate.
COROLLARY B.10. &g is dense inside HJ{ (Ro) forte{r,c,r+c}.

Proof. We just have to use that S°(R")®,Se C HI(R")&(Re ). is a dense subset.
Since (0)«(S°(R™)) C 8§ and the image under a projection of a dense set is a
dense set we conclude. ]
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