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Abstract

We shall establish the core of singular integral theory and pseudodifferential
calculus over the archetypal algebras of noncommutative geometry: quantum forms
of Euclidean spaces and tori. Our results go beyond Connes’ pseudodifferential
calculus for rotation algebras, thanks to a new form of Calderón-Zygmund theory
over these spaces which crucially incorporates nonconvolution kernels. We deduce
Lp-boundedness and Sobolev p-estimates for regular, exotic and forbidden symbols
in the expected ranks. In the L2 level both Calderón-Vaillancourt and Bourdaud
theorems for exotic and forbidden symbols are also generalized to the quantum
setting. As a basic application of our methods, we prove Lp-regularity of solutions
for elliptic PDEs.
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Introduction

Harmonic analysis and PDEs over Riemannian manifolds are paramount for the
solution of many important problems in differential geometry, fluid mechanics or
theoretical physics. In this paper, we establish the core of singular integral theory
and pseudodifferential calculus over the archetypal algebras of noncommutative
geometry. This includes the Heisenberg-Weyl algebra, quantum tori and other
noncommutative deformations of Euclidean spaces of great interest in quantum
field theory and quantum probability. Our approach crucially relies on a quantum
form of the fruitful interplay

Kernels

↙ ↘
Symbols −→ Operators

at the interface of analysis and geometry. Strong reasons to develop such a program
over matrix algebras and other noncommutative manifolds are also in connection
to string theory, where several PDEs arise naturally over quantum spaces. We
obtain optimal smoothness conditions for Lp-boundedness of singular integrals and
corresponding Sobolev p-estimates for pseudodifferential operators. This is crucial
for applications to PDEs, which we shall briefly discuss. In the line of the harmonic
analysis school, a key point has been a profound analysis of the associated kernels
which is specially challenging for noncommutative algebras.

Let Θ be an anti-symmetric real n×n matrix. Roughly speaking, the quantum
Euclidean space RΘ is the von Neumann algebra generated by certain family of
unitaries {uj(s) : 1 ≤ j ≤ n, s ∈ R} satisfying

uj(s)uj(t) = uj(s+ t),

uj(s)uk(t) = e2πiΘjkstuk(t)uj(s).

Set λΘ(ξ) = u1(ξ1)u2(ξ2) · · ·un(ξn) for ξ ∈ Rn and

λΘ : Cc(Rn) � f �−→
∫
Rn

f(ξ)λΘ(ξ) dξ ∈ RΘ.

Consider the trace determined by τΘ(λΘ(f)) = f(0) and the corresponding Lp

spaces Lp(RΘ, τΘ) [64]. Of course, Θ = 0 yields the Euclidean Lp-space in Rn with
the Lebesgue measure and (RΘ, τΘ) should be understood as a noncommutative
deformation of it. Chapter 1 includes a careful presentation of (RΘ, τΘ) for those
potential readers not familiar with them. Our approach also contains a key Poincaré
type inequality and a few more crucial results, maybe some known to experts. The
lack of appropriate literature justifies a self-contained presentation.

The algebraic structure of these operator (type I) algebras is quite simple, but
the connection to Euclidean spaces make them indispensable in a great variety of

vii
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viii INTRODUCTION

scenarios. If � stands for Planck’s constant, the choice

Θ = 2π� idMm
⊗
( 0 1
−1 0

)
yields the Heisenberg-Weyl algebra in quantum mechanics. Another description
arises from the unbounded generators xΘ,j of uj —a quantum analogue of the
Euclidean variables— which satisfy 2πi[xΘ,j , xΘ,k] = Θjk and provide additional
insight in our kernel manipulations below. Considering a Fock space representation
RΘ becomes the CCR algebra associated to the symplectic form Θ, thoroughly
studied in quantum probability and quantum field theory. In this setting, it is
simple to find a (nontracial) gaussian state with respect to which these xΘ,j admit
a gaussian distribution. In the physics literature, higher dimensional deformations
are usually referred to as Moyal deformations of Rn. An important instance in
string theory is given by the noncommutative deformation of R4 associated to an
invertible symbol Θ, which leads to instantons on a noncommutative space in the
influential papers [21,56,69]. In view of so many names for the same object, we
have decided to rebaptize these algebras as quantum Euclidean spaces, in conso-
nance with quantum tori AΘ —also known in the literature as noncommutative
tori or rotation algebras— which appear in turn as the subalgebra generated by
λΘ(ξ) with ξ running along Zn or any other lattice of Rn. Our main results in this
paper about pseudodifferential operators hold for AΘ and RΘ.

Calderón-Zygmund extrapolation

In harmonic analysis, integral kernel representations play a central role to study
the most relevant operators. In this particular form, pseudodifferential operators
become well-behaved singular integrals, which admit a fruitful Lp-theory [68]. A
singular integral operator in a Riemannian manifold (X, d, μ) admits the kernel
representation

Tkf(x) =

∫
X

k(x, y)f(y) dμ(y) for x /∈ supp f.

Namely, Tk is only assumed a priori to send test functions into distributions, so that
it admits a distributional kernel in X × X which coincides in turn with a locally
integrable function k away from the diagonal x = y, where the kernel presents
certain singularity. This already justifies the assumption x /∈ supp f in the kernel
representation. The paradigm of singular integral theory is the Hilbert transform
in R, paramount to study the convergence of Fourier series and integrals. The
challenge in higher dimensions required new real variable methods which culminated
in the celebrated theorem of Calderón and Zygmund [10], who established sufficient
conditions on a singular integral operator in Rn for its Lp-boundedness:

i) Cancellation ∥∥Tk : L2(R
n) → L2(R

n)
∥∥ ≤ A1.

ii) Kernel smoothness∣∣∇x k(x, y)
∣∣+ ∣∣∇y k(x, y)

∣∣ ≤ A2

|x− y|n+1
.

The same holds in Riemannian manifolds with nonnegative Ricci curvature [3].
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INTRODUCTION ix

Noncommutative Lp methods in harmonic analysis have gained a considerable
momentum in recent years. The fast development of Fourier Lp multiplier theory on
group von Neumann algebras [11,32,42,43,47,48,58] has been possible in part due
to a deeper comprehension of the involved kernels. In spite of this, the validity of
Calderón-Zygmund extrapolation principle over noncommutative manifolds is still
widely open. Noncommutative martingale methods were used in [57] to establish
endpoint estimates for singular integrals over tensor product von Neumann algebras
with an Euclidean factor, which have been the key for the recent solution in [12] of
the Nazarov-Peller conjecture. Other results in this direction include a CZ theory
for group algebras over orthogonal crossed products Rn�G, operator-valued kernels
acting by left/right or Schur multiplication, other BMO spaces in a new approach
towards nondoubling CZ theory, Littlewood-Paley estimates, Hörmander-Mihlin
multipliers or directional Hilbert transforms [15,16,37,42,55].

The Calderón-Zygmund theory presented below is the first form over a “fully
noncommutative” von Neumann algebra. In other words, the singular integral acts
on the whole algebra M, not just over copies of Rn as tensor or crossed product
factors in M. A major challenge for such a von Neumann algebra (M, τ ) is to
understand what it means to be a singular kernel. One has to identify the diagonal
where the kernel singularity should be located, the quantum metric which measures
the distance to it and its relation to the trace. A crucial point, undistinguishable
in abelian algebras or the work cited so far, is to define kernels over M⊗̄Mop with
the op-structure (reversed product law) in the second copy, see also [44]. In the
case of RΘ, this is justified from the important map

πΘ : L∞(Rn) → RΘ⊗̄Rop
Θ ,

exp(2πi〈ξ, ·〉) �−→ λΘ(ξ)⊗ λΘ(ξ)
∗,

which extends to a normal ∗-homomorphism, for which the op-structure is strictly
necessary. Note that πΘ(f)(x, y) = f(x− y) for Θ = 0. In particular, if | · | stands
for the Euclidean distance to 0, the operator

dΘ = πΘ(| · |)

is affiliated to the algebra RΘ⊗̄Rop
Θ and implements the distance to the diagonal

as an unbounded operator. Similarly, the diagonal bands bΘ(R) = πΘ(χ|·|≤R) or
smoothings of them will be indispensable to produce kernel truncations. An integral
representation in RΘ is formally given by

Tk(λΘ(f)) = (id⊗ τΘ)
(
k(1⊗ λΘ(f))

)
for some kernel k affiliated to RΘ⊗̄Rop

Θ . We shall work with more general singular
kernels which lead to Tk ∈ L(SΘ,S ′

Θ), a map which sends the quantum Schwartz
class SΘ = λΘ(S(Rn)) in RΘ into its tempered distribution class S ′

Θ. We shall also
use the “free gradient”

∇Θ =

n∑
j=1

sj ⊗ ∂j
Θ

associated to the partial derivatives ∂j
Θ(λΘ(ξ)) = 2πiξjλΘ(ξ) and a free family

s1, s2, . . . , sn of semicircular random variables living in the free group algebra L(Fn).

Theorem A. Let Tk ∈ L(SΘ,S ′
Θ) and assume :
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x INTRODUCTION

i) Cancellation ∥∥Tk : L2(RΘ) → L2(RΘ)
∥∥ ≤ A1.

ii) Kernel smoothness∣∣∣dαΘ • (∇Θ ⊗ id)(k) • dβΘ
∣∣∣+ ∣∣∣dαΘ • (id⊗∇Θ)(k) • dβΘ

∣∣∣ ≤ A2,

for (α, β) = (n+ 1, 0), (α, β) = (0, n+ 1) and (α, β) = (n+1
2 , n+1

2 ).

Then, Tk : Lp(RΘ) → Lp(RΘ) is completely bounded for every 1 < p < ∞.

A more general statement is proved in Theorem 2.18. Our argument establishes
L∞ → BMO endpoint estimates for a suitable noncommutative BMO. Interpolation
with Lp spaces is deduced in [41] from the theory of noncommutative martingales
with continuous index set and a theory of Markov dilations. The convolution kernel
case —in other words, quantum Fourier multipliers— is much easier to prove by
transference methods [13, 65]. In the classical terminology of pseudodifferential
operators, Fourier multipliers correspond to differential operators with constant
coefficients. Of course, we aim to include nonconstant coefficients which leads to
the analysis of the harder nonconvolution quantum kernels. Our statement above is
very satisfactory and crucial for applications to pseudodifferential operator theory
below. We shall also use other methods to justify that every CZ operator differs
from its principal value by a left/right pointwise multiplier. This is fundamental in
classical CZ theory and therefore of independent interest.

The Lp pseudodifferential calculus

The theory of pseudodifferential operators goes back to the mid 1960s with the
work of Kohn, Nirenberg and Hörmander. The basic idea is to exploit properties of
the Fourier transform to produce a suitable representation ΨL of partial differential
operators L =

∑
|α|≤m aα(x)∂

α
x which can be inverted up to a controllable error

term. This representation looks like

Ψaf(x) =

∫
Rn

a(x, ξ)f̂(ξ)e2πi〈x,ξ〉 dξ

for a smooth symbol a : Rn × Rn → C satisfying

(Sm
ρ,δ)

∣∣∂β
x∂

α
ξ a(x, ξ)

∣∣ ≤ Cαβ

(
1 + |ξ|

)m−ρ|α|+δ|β|
for all α, β ∈ Zn

+,

some m ∈ R and some 0 ≤ δ ≤ ρ ≤ 1. The realization of Ψa as singular integral is
given by partial Fourier inversion k(x, y) = (id⊗F−1)(a)(x, x− y), which opens a
door to CZ theory for Sobolev p-estimates of parametrices and error terms.

In the noncommutative setting, this line took off in 1980 with Connes’ work on
pseudodifferential calculus for C∗-dynamical systems [19], originally conceived to
extend the Atiyah-Singer index theorem for Lie group actions on C∗-algebras, see
also [1,2,50] for related results. Other applications in the context of quantum tori
include a well-established elliptic operator theory [17], the Gauss-Bonnet theorem
for 2D quantum tori [23,28] and recent results on the local differential geometry
of non-flat noncommutative tori [6, 22]. Unfortunately, the work of Connes and
his collaborators does not include Lp estimates for parametrices and error terms,
which are paramount in harmonic analysis and partial differential equations. On
the other hand, the only approach [13,65,78] to harmonic Lp-analysis in quantum
tori does not include pseudodifferential calculus, which requires Calderón-Zygmund
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INTRODUCTION xi

estimates in RΘ. In comparison with Connes’ work —which focuses on the smallest
Hörmander class Sm

ρ,δ with (ρ, δ) = (1, 0)— our main contributions in this direction
include all classes of symbols and Lp-estimates:

i) An L2-theory for exotic and forbidden symbols 0 < δ = ρ ≤ 1.
ii) An Lp-theory for arbitrary Hörmander classes and 1 < p < ∞.

We refer to [68,71,72] for applications of these results in the Euclidean context.
Pseudodifferential operators over quantum Euclidean spaces are easier to define

than Calderón-Zygmund operators. The symbol a(x, ξ) is now understood as an
smooth function a : Rn → RΘ since ξ is still (dual) Euclidean, while x becomes its
Θ-deformed analog xΘ = (xΘ,1, xΘ,2, . . . , xΘ,n) as introduced above. We shall deal
in this paper with two quantum forms of the Hörmander classes:

• We say that a ∈ Sm
ρ,δ(RΘ) when∣∣∂β

Θ∂
α
ξ a(ξ)

∣∣ ≤ Cαβ

(
1 + |ξ|

)m−ρ|α|+δ|β|
.

This is probably the most natural definition that comes to mind.

• We say that a ∈ Σm
ρ,δ(RΘ) when∣∣∂β

Θ∂
α1

Θ,ξ∂
α2

ξ a(ξ)
∣∣ ≤ Cα1α2β

(
1 + |ξ|

)m−ρ|α1+α2|+δ|β|
.

Here ∂Θ,ξ is a Θ-deformation of ∂ξ by ∂Θ’s. More precisely, we have

∂j
Θ,ξa(ξ) = ∂j

ξa(ξ) + 2πi
[
xΘ,j , a(ξ)

]
= ∂j

ξa(ξ) +
1

2πi

n∑
k=1

Θjk ∂
k
Θa(ξ)

= λΘ(ξ)
∗∂j

ξ

{
λΘ(ξ)a(ξ)λΘ(ξ)

∗}λΘ(ξ).

We clearly have Σm
ρ,δ(RΘ) ⊂ Sm

ρ,δ(RΘ). It is very important to recall that both
classes collapse into Hörmander classical set of symbols Sm

ρ,δ when Θ = 0, so that
both definitions above are a priori valid to generalize the Euclidean theory. It turns
out that the L2-theory holds for Sm

ρ,δ(RΘ), while the more involved class Σm
ρ,δ(RΘ)

makes the Lp-theory valid. The reason has to do with the link to CZ theory
and the two-sided nature of our Calderón-Zygmund conditions. Indeed, in all our
past experiences with noncommutative Calderón-Zygmund theory certain amount
of modularity is required. In this case, the bilateral form of our kernel conditions
in Theorem A ultimately imposes the mixed quantum-classical derivatives ∂Θ,ξ.
The pseudodifferential operator associated to a : Rn → RΘ has the form

Ψa(λΘ(f)) =

∫
Rn

a(ξ)f(ξ)λΘ(ξ) dξ

=
(
id⊗ τΘ

)[( ∫
Rn

(a(ξ)⊗ 1)(λΘ(ξ)⊗ λΘ(ξ)
∗)dξ︸ ︷︷ ︸

The kernel k

)(
1⊗ λΘ(f)

)]
.

The algebra of pseudodifferential operators is formally generated by the derivatives
∂j
Θ and the left multiplication maps λΘ(f) �→ xΘ,jλΘ(f). The kernels affiliated to

πΘ(L∞(Rn)) ⊂ RΘ⊗̄Rop
Θ implement Fourier multipliers λΘ(ξ) �→ m(ξ)λΘ(ξ) in this

setting, which correspond to the closure of pseudodifferential operators
∑

α aα∂
α

with constant coefficients aα. A very subtle transference method —which avoids
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xii INTRODUCTION

properly supported symbols— is required to obtain adjoint and product formulae
in Section 3.1. Our main Lp results are collected in the following statement.

Theorem B. Let a : Rn → RΘ and 1 < p < ∞ :

i) If a ∈ S0
ρ,ρ(RΘ) with 0 ≤ ρ < 1, Ψa : L2(RΘ) → L2(RΘ).

ii) If a ∈ S0
1,1 (RΘ) ∩ S0

1,1 (RΘ)
∗, then Ψa : L2(RΘ) → L2(RΘ).

iii) If a ∈ Σ0
1,1(RΘ) ∩ Σ0

1,1(RΘ)
∗, then Ψa : Lp(RΘ) → Lp(RΘ).

Using Sm
ρ,δ(RΘ) ⊂ Sm

δ,δ(RΘ)∩Sm
ρ,ρ(RΘ) for 0 ≤ δ ≤ ρ ≤ 1 —same inclusions for

Σ-classes— we get Lp-estimates for regular, exotic and forbidden symbols in the
expected ranks and Theorem B opens the core of the pseudodifferential Lp-calculus
[68,71] to the context of quantum Euclidean spaces:

• Theorem B i). Calderón-Vaillancourt theorem [9] on L2-boundedness for
exotic symbols quickly obtained a spectacular application [4] for ρ = 1/2.
Our proof of its quantum form for ρ = 0 requires a careful approach due
to the presence of a Θ-phase. The case ρ > 0 also imposes an unexpected
dilation argument among different deformed algebras RΘ.

• Theorem B ii). Bourdaud’s theorem [7] yields a form of the T (1)-theorem
for pseudodifferential operators when ρ = δ = 1: Ψa is L2-bounded iff
the symbol a∗† of Ψ∗

a remains in the same Hörmander class. Our proof
follows the classical one by showing that Ψa is bounded in the Sobolev
space W2,s(RΘ) under a minimal amount of regularity s > 0.

• Theorem B iii). Our Lp-results follow by showing that any such symbol is
a Calderón-Zygmund operator which fulfills all the hypotheses of Theorem
A, the L2-boundedness being assured by Theorem B ii). It is our CZ kernel
condition what imposes the mixed quantum-classical derivatives ∂Θ,ξ and
the corresponding “forbidden” Hörmander symbol classes Σm

ρ,δ(RΘ).

• Related estimates. Our Lp-inequalities give rise to Sobolev p-estimates for
symbols of arbitrary orderm, we shall recollect these estimates in the body
of the paper. On the other hand, the Lp-theory for symbols with ρ < 1
requires a negative degree to compensate lack of regularity. Fefferman
proved in [29] the Lp-bounds for the critical index m = −(1 − ρ)n2 . We
shall obtain nonoptimal Lp-estimates of this kind in RΘ. Interpolation
yields even finer results for intermediate values of m.

The analogue of Theorem B for quantum tori AΘ is proved by transference
in Appendix A. The Hörmander classes Sm

ρ,δ(AΘ) and Σm
ρ,δ(AΘ) involve discrete

derivations over Zn in the dual variable. In the line of Connes definition, we could
also proceed by restriction to Zn of symbols Rn → AΘ ⊂ RΘ in the corresponding
Hörmander classes. As in Tn both definitions turn out to be equivalent and this
will be the source of our transference approach. The discrete form of difference
operators has the advantage of being easier to be calculated with computers.

An illustration for elliptic PDEs

Pseudodifferential operators are a very powerful tool for linear and nonlinear
partial differential equations [71, 72]. The existence, uniqueness and qualitative
behavior of solutions for many PDEs are frequently understood by application of
these methods. After the announced results so far, the potential applications for
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INTRODUCTION xiii

PDEs over quantum Euclidean spaces and tori are vast and beyond the scope of
this paper. As a small but basic illustration, we prove in Theorem 4.5 the Lp

regularity for solutions of elliptic PDEs over quantum Euclidean spaces. We do
not include this statement in the Introduction to avoid more terminology at this
point. A profound analysis of partial differential equations over quantum spaces
—AΘ, RΘ or even more general noncommutative manifolds— constitutes a long
term program with conceivable implications for the geometry of such objects.
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CHAPTER 1

Quantum Euclidean spaces

Given an integer n ≥ 1, fix an anti-symmetric R-valued n × n matrix Θ. We
shall write An(R) for this class of matrices. Intuitively, quantum Euclidean spaces
can be thought as (the von Neumann algebra generated by) the universal C∗-algebra
generated by a family u1(s), u2(s), . . . , un(s) of strongly continuous one-parameter
unitary groups in s ∈ R satisfying the Θ-commutation relations

uj(s)uk(t) = e2πiΘjkstuk(t)uj(s).

More precisely, consider any pair (Hπ, π) formed by a Hilbert space Hπ together
with a family π = (π1, π2, . . . , πn) of strongly continuous one-parameter unitary
groups πj : R → B(Hπ) satisfying the Θ-commutation relations above. Call π
cyclic when span{π1(s1)π2(s2) . . . πn(sn)v : sj ∈ R} is dense in Hπ for some vector
v ∈ Hπ. Notice that if Hπ is separable when π is cyclic. We define the universal
unitaries uj as

uj(s) =
⊕
π

πj(s) ∈ B
(⊕

π

Hπ

)
= B(Hu),

where the direct sum runs over all cyclic π satisfying the Θ-commutation relations.
Given ξ = (ξ1, ξ2, . . . ξn) ∈ Rn, we shall extensively use the unitaries λΘ(ξ) given
by u1(ξ1)u2(ξ2) · · ·un(ξn) and we set

λΘ(f) =

∫
Rn

f(ξ)λΘ(ξ) dξ for f ∈ L1(R
n).

Define EΘ as the norm-closure of λΘ(L1(R
n)). It is not a unital C∗-algebra. If

needed, we shall denote its multiplier algebra [49, Chapter 2] by AΘ. When Θ = 0
and by Stone’s theorem we may take uj(s) = exp(2πis〈ej , ·〉) and therefore EΘ is the
space C0(Rn) of continuous functions Rn → C that tend to 0 at infinity. AΘ is the
multiplier algebra of C0(Rn), which coincides with the space of bounded continuous
functions over Rn. Moreover, since Rn is amenable AΘ may be described as an
spatial crossed product C�ΘRn ⊂ B(L2(R

n)) twisted by the 2-cocycle determined
by Θ, as introduced by Zeller-Meier [79]. Given any Θ, we easily see that

i) λΘ(ξ)
∗ = e2πi

∑
j>k ΘjkξjξkλΘ(−ξ),

ii) λΘ(ξ)λΘ(η) = e2πi〈ξ,Θη〉λΘ(η)λΘ(ξ),

iii) λΘ(ξ)λΘ(η) = e2πi
∑

j>k ΘjkξjηkλΘ(ξ + η),

iv) λΘ(f1)λΘ(f2) = λΘ(f1 ∗Θ f2) with Θ-convolution given by

f1 ∗Θ f2(ξ) =

∫
Rn

f1(ξ − η)f2(η)e
2πi

∑
j>k Θjk(ξj−ηj)ηk dη.

Note that
∑

j>k Θjkξjηk = 〈ξ,Θ↓η〉 for the lower triangular truncation Θ↓ of Θ.

It is also interesting to note that (i) and (iv) imply that λΘ(L1(R
n)) is a Banach

∗-algebra for the L1-norm.

1
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2 1. QUANTUM EUCLIDEAN SPACES

1.1. Crossed product form

In this section we are going to see that the natural integral in Rn remains as a
well-defined faithful tracial weight over EΘ that we shall denote by τΘ. Indeed, let
us define

τΘ(λΘ(f)) = τΘ

(∫
Rn

f(ξ)λΘ(ξ) dξ
)
= f(0)

for f : Rn → C smooth and integrable. As we shall see, τΘ extends uniquely to the
positive cone of EΘ. We shall also construct RΘ = A′′

Θ = E′′
Θ as the von Neumann

algebra generated by EΘ in the GNS representation associated to τΘ and we will
prove that τΘ extends to a normal, semifinite and faithful trace over RΘ. When
Θ = 0 we get RΘ = L∞(Rn) and τΘ coincides with the Lebesgue integral. In
general, we call the Θ-deformation RΘ a quantum Euclidean space.

1.1.1. Crossed products and trace. A C∗-dynamical system is a triple
formed by a C∗-algebra A, a locally compact group G and a continuous action
β : G → Aut(A) by ∗-automorphisms. The reduced crossed product A �β,red G is
the norm closure in A⊗̄B(L2(G)) of the ∗-algebra generated by the representations
ρ : A → L∞(G;A) and λ : G → U(L2(G)), given by

ρ(a)(g) = βg−1(a),

(λ(g)f)(h) = f(g−1h).

The full crossed product A �β,full G is the C∗-algebra generated by all covariant
representations γ : A → B(H) and u : G → U(H) over some Hilbert space H:
u(g)γ(a)u(g)∗ = γ(βg(a)). Given f : G → A continuous and integrable∥∥∥ ∫

G

fg � g dμ(g)
∥∥∥
A�β,fullG

= sup
γ, u

covariant

∥∥∥ ∫
G

γ(fg)u(g) dμ(g)
∥∥∥
B(H)

.

It is a very well-known result [8] that A�β,fullG = A�β,redG when G is amenable.
Given a pair (M, τ ) formed by a von Neumann algebra M equipped with a

normal faithful semifinite trace τ —noncommutative measure space— and a locally
compact unimodular group G acting on (M, τ ) by trace preserving automorphisms
β : G → Aut(M, τ ), the crossed product von Neumann algebra M �β G is the
von Neumann subalgebra of M⊗̄B(L2(G)) generated by ρ(M) and λ(G), defined
as above. In other words, M�β G is the weak-∗ closure of M�β,red G.

Given f : G → M continuous and integrable, set

τ�

(∫
G

fg � λ(g) dμ(g)
)
= τ (fe)

where μ and e stand for the Haar measure and the identity in the unimodular group
G. This determines a normal faithful semifinite trace which extends to the crossed
product von Neumann algebraM�βG, see Takesaki [70]. In the following result, we
provide an iterated crossed product characterization of quantum Euclidean spaces
and construct a normal faithful semifinite trace on them.

Proposition 1.1. The following results hold :

i) If n = 2 and Θ �= 0, we have

EΘ � C0(R)�R.

In this case, the crossed product action is given by R-translations.
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1.1. CROSSED PRODUCT FORM 3

ii) If n ≥ 2, let us define

τΘ(λΘ(f)) = τΘ

(∫
Rn

f(ξ)λΘ(ξ) dξ
)
= f(0)

for f : Rn → C smooth and integrable. Then, τΘ extends to a normal
faithful semifinite trace on EΘ. Moreover, let Ξ denote the (n−1)×(n−1)
upper left corner of Θ ∈ An(R). Then there exists a continuous group
action βn−1 : R → Aut(EΞ) satisfying

EΘ � EΞ �βn−1
R.

iii) Let RΘ = E′′
Θ be the von Neumann algebra generated by EΘ in the GNS

representation determined by τΘ. We have RΘ � L∞(R)�R � B(L2(R))
when n = 2 and Θ �= 0, with �-action given by R-translations. Moreover
τΘ extends to a n.f.s. trace on RΘ, and the action βn−1 is trace preserving
on (RΞ, τΞ). Induction on n and iteration give

RΘ � RΞ �βn−1
R,

RΘ �
((

L∞(R)�β1
R
)
· · ·�βn−1

R

)
.

Proof. Given Θ ∈ An(R) and a Hilbert space Hπ, every set of one-parameter
unitary groups {πj(s) : 1 ≤ j ≤ n, s ∈ R} in B(Hπ) satisfying the Θ-relations yields
a ∗-representation π : EΘ → B(Hπ). Consider again the universal representation
u in Hu as the direct sum of all the cyclic representations. We shall use in what
follows —with no further reference— that C0(R) is the closure of F(L1(R)), which
can also be understood replacing the characters exps = exp(2π〈s, ·〉) in the Fourier
transform F by uj(s) for any fixed 1 ≤ j ≤ n, since {uj(s) : s ∈ R} forms a
non-trivial one-parameter group of unitaries.

i) If n = 2 and Θ �= 0, there must exist δ �= 0 with Θ = δ(e12 − e21). We may
rescale u1(s), u2(t) and assume without loss of generality that δ = 1. Now, consider
the map

EΘ � z =

∫
R2

z(s, t)u1(s)u2(t) dsdt �→
∫
R

ft � t dt = f ∈ C0(R)�R

with ft ∈ C0(R) given by

ft =

∫
R

z(s, t)e2πis· ds �
∫
R

z(s, t)u1(s) ds.

If we set Hu = ⊕πHπ, define v : R → U(Hu) and γ : C0(R) → B(Hu) by

v(t) = u2(t) and γ
(∫

R

â(s)e2πis· ds
)
=

∫
R

â(s)u1(s) ds.

The pair (γ, v) forms a covariant representation since we have

v(t)γ(a)v(t)∗ =

∫
R

â(s)u2(t)u1(s)u2(−t) ds

=

∫
R

â(s)e−2πistu1(s) ds = γ
(∫

R

â(s)e2πis(·−t) ds
)

= γ(βt(a))

where βt(a) = λ(t)[a] is the left regular representation at t acting on a. This gives

‖f‖C0(R)�R ≥
∥∥∥ ∫

R

γ(ft)v(t) dt
∥∥∥
B(Hu)

=
∥∥∥ ∫

R2

z(s, t)u1(s)u2(t) dsdt
∥∥∥
B(Hu)

= ‖z‖EΘ
.
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4 1. QUANTUM EUCLIDEAN SPACES

The reverse inequality is proved similarly. Indeed, let us consider the following map

C0(R)�R � f =

∫
R

ft � t dt �→
∫
R2

z(s, t)u1(s)u2(t) dsdt = z ∈ EΘ

with z(s, t) = f̂t(s). Fix a Hilbert space Kγ,v and a covariant representation (γ, v)
of the pair (C0(R),R) in B(Kγ,v). Define w1(s) = γ(e2πis·) and w2(t) = v(t). This
shows that covariant representations of (C0(R),R) with action given by translations
are in one-to-one correspondence with ∗-representations of EΘ for the deformation
Θ = e12− e21. Indeed, w1(s) and w2(t) are one-parameter groups of unitaries since
γ is a ∗-representation and v a unitary representation. Moreover, the commutation
relations hold as a consequence of the covariant property

w1(s)w2(t) = γ(exps)v(t) = v(t)γ(β−t(exps)) = e2πistw2(t)w1(s)

for exp(s) = exp(2πis ·). In particular

‖z‖EΘ
≥
∥∥∥∫

R2

z(s, t)w1(s)w2(t) dsdt
∥∥∥
B(Kγ,v)

=
∥∥∥ ∫

R

γ(ft)v(t) dt
∥∥∥
B(Kγ,v)

.

Taking the supremum over (γ, v) covariant, we see that ‖z‖EΘ
≥ ‖f‖C0(R)�R.

ii) When n ≥ 2 we proceed by induction. To prove ii) for n = 2, it suffices
from i) to justify that τΘ extends to a faithful and semifinite tracial weight on
EΘ. Note that C0(R) � R is generated by expη �λ(ζ) for (η, ζ) ∈ R × R where
expη(x) = exp(2πixη) and λ(ζ)f(x) = f(x− ζ). According to i), this gives

λΘ(f) =

∫
R2

f(ξ)λΘ(ξ) dξ =

∫
R

[ ∫
R

f(η, ζ) expη dη︸ ︷︷ ︸
ϕζ

]
� λ(ζ) dζ.

This means that the crossed product trace

τ�

(∫
R

ϕζ � λ(ζ) dζ
)
=

∫
R

ϕ0(x) dx =

∫
R

[ ∫
R

f(η, 0) expη(x) dη
]
dx = f(0)

coincides with τΘ in EΘ. Since C0(R)�R embeds faithfully in L∞(R)�R and τ� is
n.s.f. it turns out that τΘ is a faithful and semifinite trace over EΘ and extends to
a n.s.f. trace over RΘ. That completes the argument in the case n = 2. Once this
is settled, consider Θ ∈ An(R) whose upper left (n− 1)× (n− 1) corner is denoted
by Ξ. Assume ii) holds for any dimension smaller than n, and set

βn−1(s)
(∫

Rn−1

ϕ(z)λΞ(z) dz
)
=

∫
Rn−1

ϕ(z)e−2πi
∑

j<n ΘjnzjsλΞ(z) dz.

Then, βn−1 trivially yields a τΞ-preserving action on (EΞ, τΞ). Moreover, the map
λΘ(ξ) �→ λΞ(ξ1, ξ2, . . . , ξn−1) � λ(ξn) also gives rise to EΘ � EΞ �βn−1

R and
τΘ = τ�|EΘ

by arguing as above for n = 2, details are left to the reader.
iii) Now, for n = 2 and Θ �= 0 we get

RΘ = E′′
Θ =

(
C0(R)�R

)′′
= C0(R)′′ �R = L∞(R)�R,

τΘ = τ� on RΘ and EΘ sits faithfully in RΘ. Moreover, L∞(R) � R ⊂ B(L2(R))
acts on L2(R) by modulation and translation, which implies RΘ � B(L2(R)) since
only constant multiples of the identity map commute with all modulations and
translations. When n > 2 we proceed by induction one more time to conclude that
βn−1 is τΞ-preserving, RΘ � RΞ �βn−1

R, τΘ = τ� and EΘ ⊂ RΘ faithfully. The
last assertion follows trivially by iteration. This completes the proof. �
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1.1. CROSSED PRODUCT FORM 5

Remark 1.2. The map

λΘ : L2(R
n) → L2(RΘ, τΘ)

is an isometric isomorphism, extending Plancherel theorem for Θ = 0. Indeed, once
we know τΘ is a trace, it follows from the density of the quantum Schwartz class
SΘ = λΘ(S(Rn)) in L2(RΘ) and the identity λΘ(f1)λΘ(f2) = λΘ(f1 ∗Θ f2).

Remark 1.3. When n = 1, RΘ = L∞(R) generated by u(s) = exp(2πis ·).
In the 2D case, we find one more time RΘ = L∞(R2) for Θ = 0. Otherwise,
there exists δ �= 0 such that Θ = δ(e12 − e21). Rescaling δ = 1 and arguing as in
Proposition 1.1 iii) gives

Θ =
( 0 1

−1 0

)
⇒ RΘ � B(L2(R)) � L∞(R)�R

generated by modulations expη �1 and translations 1 � λ(ζ) for η, ζ ∈ R. These
are the standard time/frequency unitaries in Fourier analysis. If we set Ξ to be the
n× n matrix with all its entries equal to 1, then the analogous space in dimension
2n is given by Θ = Ξ⊗ (e12− e21) with RΘ � B(L2(R

n)) � L∞(Rn)�Rn. The 3D
case admits other models. By Proposition 1.1 iii)

• If Θ = 0, then RΘ = L∞(R3) � L∞(R)⊗̄L∞(R)⊗̄L∞(R),

• If Θ =

⎛
⎝ 0 0 0

0 0 α
0 −α 0

⎞
⎠ ⇒ RΘ � L∞(R)⊗̄

(
L∞(R)�R

)
,

• If Θ =

⎛
⎝ 0 0 β

0 0 α
−β −α 0

⎞
⎠ ⇒ RΘ �

(
L∞(R)⊗̄L∞(R)

)
�R,

• If Θ =

⎛
⎝ 0 γ β
−γ 0 α
−β −α 0

⎞
⎠ ⇒ RΘ �

(
L∞(R)�R

)
�R,

for α, β, γ �= 0. Higher dimensions are treated similarly. When α �= 0 = β = γ, the
�-action is t · f(s) = f(s − αt). In the second case α, β �= 0 = γ, the �-action in
L∞(R2) is t · f(x, y) = f(x− βt, y−αt). In the third case α, β, γ �= 0, both actions
yield t ·ext

(
(s ·int f)(r)

)
=
(
(s − αt) ·int f

)
(r − βt) = f

(
r − γs + (αγ − β)t

)
. In

the particular case α = β = γ = 1, we have full symmetry under the action of the
permutation group. In this case, the time/frequency dichotomy described above
for n = 2 is replaced by three indistinguishable sets of unitaries. In Section 1.3.3
we will analyze how the structure of RΘ depends on Θ using a diagonalization of Θ
and extending the linear change of variable to RΘ by a Baker-Campbell-Hausdorff
type formula.

1.1.2. The corepresentation map. We now recall a useful consequence of
the crossed product characterization of RΘ, the normality (weak-∗ continuity) of
the corepresentation map σΘ : λΘ(ξ) �→ expξ ⊗λΘ(ξ), where expξ stands for the
character x �→ exp(2πi〈x, ξ〉) in L∞(Rn). This will be the source of several metric
and differentiability considerations over quantum Euclidean spaces.

Corollary 1.4. The above defined linear map σΘ uniquely extends to a normal
injective ∗-homomorphism σΘ :RΘ→L∞(Rn)⊗̄RΘ for every deformation Θ∈An(R)
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6 1. QUANTUM EUCLIDEAN SPACES

Proof. The assertion is a simple exercise in the C∗-algebra level, so that we shall
only justify normality. We proceed by induction on n, the case n = 1 is nothing
but comultiplication in L∞(Rn). In higher dimensions, σΘ factorizes as follows

RΘ
	

σΘ

��

RΞ �βn−1
R

σ̃Ξ=σΞ�idR

��
L∞(Rn)⊗̄RΘ

	

����
����

����
����

��
L∞(Rn−1)⊗̄RΞ �β̂n−1

R

Ω

��
L∞(R)⊗̄

(
(L∞(Rn−1)⊗̄RΞ)�β̂n−1

R
)

where β̂n−1 = idRn−1 ⊗ βn−1 and the map Ω is given by

M�β R �
∫
R

fs � λ(s) ds
Ω−→

∫
R

exps ⊗
(
fs � λ(s)

)
ds ∈ L∞(R)⊗̄(M�β R).

By such factorization, it suffices to justify the normality of σ̃Ξ and Ω:

• The map σΞ is equivariant

σΞ(βn−1(s)(a)) = β̂n−1(s)(σΞ(a)).

Let j = ρ�λ : RΞ �R → RΞ⊗̄B(L2(R)) be the natural injection. By the
above equivariance, j intertwines σΞ � id and σΞ ⊗ id

σ̃Ξ = σΞ � id = (idL∞(Rn−1) ⊗ j)−1 ◦ (σΞ ⊗ idB(L2(R))) ◦ j.

Since σΞ ⊗ id is normal by induction hypothesis, the same holds for σ̃Ξ.

• The fundamental unitary on R2

Wf(x, y) = f(x+ y, y)

satisfies W∗(1⊗ λ(s))W = λ(s)⊗ λ(s). Using the isometric isomorphism
Λ : L(R) � λ(s) �→ exps ∈ L∞(R), we get

Ω(f) =

∫
R

exps ⊗
(
fs � λ(s)

)
ds

= (Λ⊗ idM�R)(1�W∗)
(∫

R

1⊗
(
fs � λ(s)

)
ds
)
(1�W).

Thus Ω(f) = (Λ⊗ idM�R)(1�W∗)(1⊗ f)(1�W) and Ω is normal. �

1.2. Metrics and derivations

In this paragraph, we exploit the corepresentation σΘ to introduce some other
auxiliary operators which will help us to equipRΘ with an induced metric, a natural
BMO space and a differential structure.
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1.2. METRICS AND DERIVATIONS 7

1.2.1. A metric in RΘ and BMO. Given a von Neumann algebra M, its
opposite algebra Mop is obtained by preserving linear and adjoint structures but
reversing the product a1 · a2 = a2a1. Several reasons justify why noncommutative
singular integral operators require to understand the singular kernels as operators
affiliated to M⊗̄Mop, see [44] and Section 2.1 below. We shall use from now on ·
for the Mop-product, as well as • for the product in M⊗̄Mop, so that

(a1 ⊗ a2) • (a′1 ⊗ a′2) = (a1a
′
1)⊗ (a2 · a′2) = (a1a

′
1)⊗ (a′2a2).

Let us consider the linear map πΘ, determined by

expξ
πΘ�−→ λΘ(ξ)⊗ λΘ(ξ)

∗

where, as usual, we write expξ for the Fourier characters exp(2πi〈ξ, ·〉) in Rn. As
an illustration, recall that for Θ = 0 we may expect to get the following identity
for any (say) Schwartz function f : Rn → C

π0(f)(x, y) = π0

(∫
Rn

f̂(ξ) expξ dξ
)
(x, y) =

∫
Rn

f̂(ξ) expξ(x− y) dξ = f(x− y).

Of course, this requires to justify the continuity properties of the map πΘ which we
shall do in Lemma 1.5 below. The quantum analogue of this map is particularly
useful to identify the diagonal in RΘ⊗̄Rop

Θ , where the kernel singularities of our
operators are expected to live. Of particular relevance is the induced metric which
we define by

dΘ = πΘ(| · |)
for the Euclidean norm | · | or the bands around the diagonal bΘ(R) = πΘ(χ|·|≤R).

It is worth recalling that both σΘ and πΘ take L2(R
n) into L∞(Rn;L2(R

n))
when Θ = 0. The quantum analogue for Θ �= 0 requires noncommutative forms of
mixed-norm L∞(L2)-spaces, whose construction we briefly recall. Given a Hilbert
space H and x =

∑
j mj ⊗ hj ∈ M⊗alg H, we define

‖x‖M⊗̄Hr =
∥∥〈x, x〉r∥∥ 1

2

M =
∥∥∥∑

j,k

mjm
∗
k〈hj , hk〉H

∥∥∥ 1
2

M

‖x‖M⊗̄Hc =
∥∥〈x, x〉c∥∥ 1

2

M =
∥∥∥∑

j,k

m∗
jmk〈hj , hk〉H

∥∥∥ 1
2

M
.

Given † ∈ {r, c}, the space M⊗̄H† —also denoted by H†⊗̄M or L∞(M;H†)— is
defined as the closure of M⊗alg H with respect to the weak topology generated by
the functionals

pω(x) = ω
(
〈x, x〉

1
2

†
)

for every ω ∈ M∗.

Alternatively, M⊗̄H† is the weak-∗ closed tensor product of the dual operator
spaces M and H†, the latter space representing the row or column operator space
structure on H. Indeed, if X and Y are dual operator spaces, there are completely
isometric and weak-∗ continuous injections πX : X → B(HX), πY : Y → B(HY) and
we define X⊗̄Y as

πX[X]⊗alg πY[Y]w∗ ⊂ B(HX ⊗2 HX).

It is well-known that such construction is representation-independent and when one
of the tensor components is a von Neumann algebra, the predual is given by the
projective tensor product X∗⊗̂Y∗, see [26,62] for further details. Noncommutative
mixed-norm spaces have also been studied in [45,61].
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8 1. QUANTUM EUCLIDEAN SPACES

Lemma 1.5. πΘ extends to a normal ∗-homomorphism

πΘ : L∞(Rn) → RΘ⊗̄Rop
Θ satisfying (σΘ ⊗ idRop

Θ
) ◦ πΘ = (idRn ⊗ πΘ) ◦ΔRn

where ΔRn(expξ) = expξ ⊗ expξ is the comultiplication map in Rn. This shows in

particular that dΘ = πΘ(| · |) is a well-defined operator affiliated to RΘ⊗̄Rop
Θ as an

increasing limit of the bounded operators dΘ(R) = πΘ(χ|·|≤R| · |). Moreover, the
map πΘ also extends to a complete isometry πΘ : Lc

2(R
n) → Lc

2(RΘ)⊗̄Rop
Θ .

Proof. That πΘ : expξ �→ λΘ(ξ)⊗λΘ(ξ)
∗ extends to a ∗-homomorphism is a simple

consequence of the product in RΘ⊗̄Rop
Θ , details are left to the reader. Let us then

prove that πΘ is weak-∗ continuous. It is tedious but straightforward to check that

ΛΘ : h �→
∫
Rn×Rn

h(ξ1, ξ2)λΘ(ξ1)λΘ(ξ2)⊗ λΘ(ξ1)
∗ dξ1dξ2

yields an isometry L2(R
n) ⊗2 L2(R

n) → L2(RΘ) ⊗2 L2(Rop
Θ ). Indeed, by density

it suffices to expand τΘ ⊗ τΘ(ΛΘ(h)
∗ΛΘ(h)) for h smooth, then calculate the trace

applying twice the simple identity τΘ(λΘ(f)λΘ(ξ)
∗) = f(ξ) for a smooth integrable

function f in Rn. Moreover, given any z = ΛΘ(h) ∈ L2(RΘ) ⊗2 L2(Rop
Θ ) it turns

out that

πΘ(expξ)(z) =

∫
Rn×Rn

h(ξ1, ξ2)λΘ(ξ)λΘ(ξ1)λΘ(ξ2)⊗ λΘ(ξ)
∗·λΘ(ξ1)

∗ dξ1dξ2

=

∫
Rn×Rn

h(ξ1, ξ2)λΘ(ξ1 + ξ)λΘ(ξ2)⊗ λΘ(ξ1 + ξ)∗ dξ1dξ2

=

∫
Rn×Rn

h(ξ1 − ξ, ξ2)λΘ(ξ1)λΘ(ξ2)⊗ λΘ(ξ1)
∗ dξ1dξ2

=
(
ΛΘ ◦ (λRn(ξ)⊗ idRn) ◦ Λ−1

Θ

)
(z),

where λRn denotes the left regular representation on Rn. This shows that πΘ is
weak-∗ continuous and satisfies the identity πΘ(f) = ΛΘ ◦ (f ⊗ idRn) ◦ Λ−1

Θ for
all f ∈ L∞(Rn), after identifying expξ with λRn(ξ). Once we have justified the
weak-∗ continuity, the relation (σΘ ⊗ idRop

Θ
) ◦ πΘ = (idRn ⊗ πΘ) ◦ΔRn follows since

it trivially holds when acting on expξ for any ξ ∈ Rn. Also, it implies that dΘ is

affiliated to RΘ⊗̄Rop
Θ and arises as an increasing limit of bounded operators dΘ(R)

for R > 0. It remains to show that πΘ : Lc
2(R

n) → Lc
2(RΘ)⊗̄Rop

Θ . Recall that the
norm in Lc

2(M)⊗̄Mop is given by

a �→
∥∥∥(τ ⊗ idMop

)
(a∗a)

∥∥∥ 1
2

Mop

.

When M = RΘ and f ∈ L2(R
n) is smooth we find(

τΘ ⊗ idRop
Θ

)
(πΘ(f)) =

(
τΘ ⊗ idRop

Θ

)( ∫
Rn

f̂(ξ) λΘ(ξ)⊗ λΘ(ξ)
∗ dξ

)
= f̂(0)1Rop

Θ
.

Therefore, taking f =
∑

jk fjk ⊗ ejk ∈ Mn(L
c
2(R

n)) smooth, we obtain

∥∥(πΘ(fjk)
)
jk

∥∥
Mn(Lc

2(RΘ)⊗̄RΘ)
=

∥∥∥((τΘ ⊗ idRop
Θ

)(
πΘ(f

∗f)
))

jk

∥∥∥ 1
2

Mn⊗minRop
Θ

=
∥∥∥(∫

Rn

(f∗f)jk(ξ) dξ
)∥∥∥ 1

2

Mn

= ‖f‖Mn(Lc
2(R

n)).

By density, we see that πΘ :Lc
2(R

n) → Lc
2(RΘ)⊗̄Rop

Θ is a complete isometry. �
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1.2. METRICS AND DERIVATIONS 9

Let

Stf(x) =

∫
Rn

f̂(ξ)e−t|ξ|2e2πi〈x,ξ〉 dξ

denote the heat semigroup acting on f : Rn → C. Consider the induced semigroup
SΘ = (SΘ,t)t≥0 on RΘ determined by σΘ ◦ SΘ,t = (St ⊗ idRΘ

) ◦ σΘ. This yields a
Markov semigroup which formally acts as

SΘ,t(λΘ(f)) =

∫
Rn

f(ξ)e−t|ξ|2λΘ(ξ) dξ.

Consider the corresponding column BMO norm

‖a‖BMOc(RΘ) = sup
t>0

∥∥∥(SΘ,t(a
∗a)− SΘ,t(a)

∗SΘ,t(a)
) 1

2
∥∥∥
RΘ

∼ sup
Q∈Q

∥∥∥(−
∫
Q

∣∣σΘ(a)− σΘ(a)Q
∣∣2 dμ) 1

2
∥∥∥
RΘ

= ‖σΘ(a)‖BMOc(QΘ)

where Q denotes the set of all Euclidean balls in Rn, μ stands for the Lebesgue
measure and σΘ(a)Q is the average of σΘ(a) over the ball Q. The norm equivalence
above —which holds up to constants depending on the dimension n— is a simple
consequence of the intertwining identity σΘ ◦ SΘ,t = (St ⊗ idRΘ

) ◦ σΘ and the
equivalence between the BMO norms respectively associated to the heat semigroup
and the Euclidean metric in Rn, see [42, Section 1.2] for further details. The space
BMOc(QΘ) is an illustration of the operator-valued spaces BMOc(R

n;B(H)) which
were extensively studied by Tao Mei in his PhD Thesis [52].

We may use these latter spaces to properly define the column space BMOc(RΘ).
Indeed, we know from Corollary 1.4 that σΘ(RΘ) is a subalgebra of L∞(Rn)⊗̄RΘ,
which in turn is included in BMOc(QΘ). Since we know from [52] that BMOc(QΘ)
admits a predual Hc

1(QΘ), we may define

BMOc(RΘ) = σΘ(RΘ)w
∗

where the weak-∗ closure is taken with respect to the pair (Hc
1(QΘ),BMOc(QΘ)).

This kind of BMO spaces over Markov semigroups have been deeply investigated
in [41] for finite von Neumann algebras. The semifinite case is more subtle and we
shall give in Appendix B a self-contained argument for RΘ.

1.2.2. A Poincaré type inequality. Let

SΘ =
{
λΘ(f) : f ∈ S(Rn) = Rn-Schwartz class

}
.

Define ∂j
Θ as the linear extension of the map

∂j
Θ(λΘ(ξ)) = 2πiξjλΘ(ξ)

over the quantum Schwartz class SΘ for 1 ≤ j ≤ n. Recall that SΘ is an ∗-algebra
since λΘ(f1)λΘ(f2) = λΘ(f1 ∗Θ f2) and λΘ(f)

∗ = λΘ(f
∗
Θ) are stable in SΘ. In

what follows, we shall be working with this and other natural differential operators
in RΘ. The following one is a free analogue of the gradient operator associated to
the partial derivatives considered above. Let L(Fn) denote the group von Neumann
algebra associated to the free group over n generators Fn. It is well-known from
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10 1. QUANTUM EUCLIDEAN SPACES

(say) [75] that L(Fn) is generated by n semicircular random variables s1, s2, . . . , sn.
Let us consider the map s : Rn → L(Fn) given by

s(ξ) =
n∑

j=1

〈ξ, ej〉s(ej) =
n∑

j=1

ξjsj .

Then we introduce the Θ-deformed free gradient

∇Θ =

n∑
k=1

sk ⊗ ∂k
Θ : SΘ → L(Fn)⊗̄RΘ.

If ∇ denotes the free gradient for Θ = 0, is easily checked that

(idL(Fn) ⊗ σΘ)◦∇Θ =

n∑
k=1

sk ⊗ (σΘ ◦∂k
Θ) =

n∑
k=1

sk ⊗ (∂k ◦σΘ) = (∇⊗ idRΘ
)◦σΘ.

Moreover, let us recall that ∇Θ(λΘ(ξ)) =
∑

k
sk ⊗ 2πiξkλΘ(ξ) = 2πis(ξ)⊗ λΘ(ξ).

Proposition 1.6. Let BR and qR stand for any ball of radius R in Rn and
the characteristic function of it. Given a noncommutative measure space (M, τ )
and ϕ : BR → M smooth with BR-average denoted by ϕBR

, the following inequality
holds for the free gradient ∇ in Rn

∥∥∥−∫
BR

∣∣ϕ− ϕBR

∣∣2dμ∥∥∥ 1
2

M
≤ 2

√
2R

∥∥∥(1⊗ qR ⊗ 1)(∇⊗ idM)(ϕ)
∥∥∥
L(Fn)⊗̄L∞(Rn)⊗̄M

.

Proof. Consider the derivation map δ(f) = f ⊗ 1 − 1 ⊗ f . We shall use the
following straightforward algebraic identity, which is valid for any normal state φ
on any von Neumann algebra

φ
(
(f − φ(f))∗(f − φ(f))

)
=

1

2
φ⊗ φ

(
δ(f)∗δ(f)

)
.

Applying it for ϕ =
∑

j fj ⊗ yj we obtain

(φ⊗ idM)
(∣∣ϕ− (φ⊗ idM)(ϕ)

∣∣2) =
1

2
(φ⊗ φ⊗ idM)

(∣∣(δ ⊗ idM)(ϕ)
∣∣2).

If cR denotes the center of BR, we observe that

(δ ⊗ idM)(ϕ) = (ϕ− ϕ(cR))⊗ 1Rn − 1Rn ⊗ (ϕ− ϕ(cR)).

Then, letting φ be the average over BR we deduce the following inequality∥∥∥−∫
BR

∣∣ϕ− ϕBR

∣∣2dμ∥∥∥ 1
2

M
=

1√
2

∥∥∥(φ⊗ φ⊗ idM)
(∣∣(δ ⊗ idM)(ϕ)

∣∣2)∥∥∥ 1
2

M

≤ 1√
2

∥∥∥(φ⊗ idRn ⊗ idM)
(∣∣(ϕ− ϕ(cR))⊗ 1Rn

∣∣2)∥∥∥ 1
2

M

+
1√
2

∥∥∥(idRn ⊗ φ⊗ idM)
(∣∣1Rn ⊗ (ϕ− ϕ(cR))

∣∣2)∥∥∥ 1
2

M

=
√
2
∥∥∥(φ⊗ idM)

(∣∣ϕ− ϕ(cR)
∣∣2)∥∥∥ 1

2

M
.
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1.2. METRICS AND DERIVATIONS 11

In order to estimate the latter term, we use integration by parts to obtain

ϕ(x)− ϕ(cR) =

∫ 1

0

n∑
k=1

∂kϕ
(
t(x− cR) + cR

)
〈x− cR, ek〉dt

=

∫ 1

0

(τL(Fn) ⊗ idRn︸ ︷︷ ︸
ERn

)
(
qR(x)∇ϕ(t(x− cR) + cR)︸ ︷︷ ︸

A(t)

qR(x)s(x− cR)︸ ︷︷ ︸
B

)
dt

for x ∈ BR. By the operator-convexity of | · |2, we find the inequality below∥∥∥−∫
BR

∣∣ϕ− ϕBR

∣∣2dμ∥∥∥ 1
2

M
≤

√
2
(∫ 1

0

∥∥(φ⊗ idM)
(
|ERn(A(t)B)|2

)∥∥
Mdt

) 1
2

≤
√
2
(∫ 1

0

‖A(t)‖2L(Fn)⊗̄L∞(Rn)⊗̄Mdt
) 1

2 ‖B‖L(Fn)⊗̄L∞(Rn).

Now we observe that ‖A(t)‖ ≤ ‖A(1)‖ for all 0 ≤ t ≤ 1, so we conclude that∥∥∥−∫
BR

∣∣ϕ−ϕBR

∣∣2dμ∥∥∥ 1
2

M
≤

√
2‖B‖L(Fn)

∥∥∥(1⊗ qR⊗1)(∇⊗ idM)(ϕ)
∥∥∥
L(Fn)⊗̄L∞(Rn)⊗̄M

.

Finally, Voiculescu’s inequality [75] claims

‖s(h)‖L(Fn) = 2‖h‖Rn ,

so that ‖B‖L(Fn) ≤ 2 sup
x∈BR

‖x− cR‖ = 2R and the proof is complete. �

Remark 1.7. Recall that

‖a‖BMOc(RΘ) ∼ ‖σΘ(a)‖BMOc(QΘ)

= sup
R>0

∥∥∥(−
∫
BR

∣∣σΘ(a)− σΘ(a)BR

∣∣2 dμ) 1
2
∥∥∥
RΘ

.

According to Proposition 1.6 for M = RΘ, we deduce

‖a‖BMOc(RΘ) � sup
R>0

R
∥∥∥(1⊗ qR ⊗ 1)(∇⊗ idRΘ

) ◦ σΘ(a)
∥∥∥
L(Fn)⊗̄L∞(Rn)⊗̄RΘ

= sup
R>0

R
∥∥∥(1⊗ qR ⊗ 1)(idL(Fn) ⊗ σΘ) ◦ ∇Θ(a)

∥∥∥
L(Fn)⊗̄L∞(Rn)⊗̄RΘ

.

Remark 1.8. Given 2 ≤ p ≤ ∞, we have∥∥∇Θ(a)
∥∥
Lp(L(Fn)⊗̄RΘ)

∼
∥∥∥( n∑

k=1

(∂k
Θa)(∂

k
Θa)

∗
) 1

2
∥∥∥
Lp(RΘ)

+
∥∥∥( n∑

k=1

(∂k
Θa)

∗(∂k
Θa)

) 1
2
∥∥∥
Lp(RΘ)

from the operator-valued form of Voiculescu’s inequality [46, 74]. Let us recall
in passing that this norm equivalence holds in the category of operator spaces and
moreover, the constants do not depend on the dimension n. This justifies our choice
of free generators in the definition of ∇Θ. An alternative choice would have been
to work with Rademacher variables or matrix units, but the former does not lead
to the same norm equivalences for p = ∞. If Θ = 0 we get∥∥∇(f)

∥∥
Lp(L(Fn)⊗̄L∞(Rn))

∼
∥∥∥( n∑

k=1

|∂k
xf |2

) 1
2
∥∥∥
Lp(Rn)

.
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12 1. QUANTUM EUCLIDEAN SPACES

1.3. Quantum Euclidean variables

Now we consider other characterizations of RΘ in terms of the infinitesimal
generators of uj(s). These (unbounded) operators play the same role in RΘ as the
Euclidean variables xj do in Rn. We will use them to study the quantum analogue
of the Schwartz class, to give an intrinsic characterization of the quantum distance
dΘ and to deduce the algebraic structure of RΘ.

1.3.1. Another approach towards RΘ. Define

xΘ,j =
1

2πi

d

ds

∣∣∣
s=0

(uj(s)) for 1 ≤ j ≤ n,

with uj(s) the generating unitaries of the quantum Euclidean space RΘ. These are
the (self-adjoint) infinitesimal generators of the one-parameter groups of unitaries
(uj(s))s∈R given by Stone’s theorem and may be regarded as quantum forms of the
Euclidean variables. Namely, when Θ = 0 the one-parameter unitary group uj(s)
is composed of multiplication operators by the Fourier characters x �→ exp(2πisxj)
and

2πixj = ∂s(e
2πisxj )|s=0

.

The operators xΘ,j enjoy some fundamental properties of the Euclidean variables.

Proposition 1.9. The following results hold :

i) The generators xΘ,j satisfy

[xΘ,j , xΘ,k] =
1

2πi
Θjk for 1 ≤ j, k ≤ n.

ii) Recall the definition of the quantum Schwartz class

SΘ =
{
λΘ(f) : f ∈ S(Rn)

}
.

The infinitesimal generators xΘ,j are densely defined unbounded operators
affiliated to RΘ. Moreover, in the GNS representation on L2(RΘ) we find
SΘ ⊂ dom(xΘ,j) and xΘ,jSΘ,SΘxΘ,j ⊂ SΘ. More precisely

xΘ,jλΘ(f) = λΘ(D
�
Θ,jf) where D�

Θ,j =

j−1∑
k=1

ΘjkMξk − 1

2πi
∂j
ξ ,

λΘ(f)xΘ,j = λΘ(D
r
Θ,jf) where Dr

Θ,j =
n∑

i=j+1

ΘijMξi −
1

2πi
∂j
ξ ,

for f ∈ S(Rn) and Mξkf(ξ) = ξkf(ξ). In addition, [D�
Θ,j , D

r
Θ,k] = 0.

iii) Let (xΘ,j)j and (yΘ,j)j be the infinitesimal generators associated to RΘ⊗1
and 1⊗Rop

Θ respectively. Then, we may relate the quantum distance dΘ
with these quantum variables as follows

dΘ =
( n∑

j=1

(
xΘ,j − yΘ,j

)2) 1
2

.
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1.3. QUANTUM EUCLIDEAN VARIABLES 13

Proof. All the assertions are quite standard. Indeed

[xΘ,j , xΘ,k] =
1

−4π2

d2

dsdt

∣∣∣
s=t=0

(
uj(s)uk(t)− uk(t)uj(s)

)
=

1

−4π2

d2

dsdt

∣∣∣
s=t=0

(
e2πiΘjkst − 1

)
uk(t)uj(s) =

2πi

−4π2
Θjk =

Θjk

2πi
.

Regarding the second assertion ii), the first identity can be justified as follows

xΘ,jλΘ(f) =
1

2πi

d

ds

∣∣∣
s=0

(uj(s))λΘ(f)

=
1

2πi

d

ds

∣∣∣
s=0

∫
Rn

f(ξ)uj(s)λΘ(ξ)dξ

=
1

2πi

d

ds

∣∣∣
s=0

∫
Rn

f(ξ)e2πi
∑

k<j ΘjksξkλΘ(ξ + sej)dξ

=
1

2πi

d

ds

∣∣∣
s=0

∫
Rn

f(ξ − sej)e
2πi

∑
k<j ΘjksξkλΘ(ξ)dξ

=
1

2πi

[ ∫
Rn

(
2πi

∑
k<j

Θjkξk

)
f(ξ)λΘ(ξ)dξ −

∫
Rn

∂j
ξf(ξ)λΘ(ξ)dξ

]
.

The second identity is proved similarly. This shows that SΘ is a common core of
the xΘ,j for 1 ≤ j ≤ n. Thus, it just remains to show that [D�

Θ,j , D
r
Θ,k] = 0 to

complete the proof of ii). This is clear for j ≤ k, as for j > k

[D�
Θ,j , D

r
Θ,k] = −Θjk

2πi

(
[∂j

ξ ,Mξj ] + [Mξk , ∂
k
ξ ]
)

= 0.

Finally, since dΘ = πΘ(| · |) and πΘ is a ∗-homomorphism, assertion iii) reduces to
show that πΘ(xj) = xΘ,j − yΘ,j for 1 ≤ j ≤ n. This can be proved again with a
differentiation argument as follows

πΘ(xj) =
1

2πi

d

ds

∣∣∣
s=0

πΘ

(
e2πis〈·,ej〉

)
=

1

2πi

d

ds

∣∣∣
s=0

(
λΘ(sej)⊗ λΘ(sej)

∗)
=

( 1

2πi

d

ds

∣∣∣
s=0

uj(s)
)
⊗ 1+ 1⊗

( 1

2πi

d

ds

∣∣∣
s=0

uj(−s)
)
= xΘ,j − yΘ,j ,

according to our definition of xΘ,j and yΘ,j in RΘ⊗1 and 1⊗Rop
Θ respectively. �

Remark 1.10. A few comments are in order:

• Assume that vj(s) are one-parameter unitary groups for 1 ≤ j ≤ n. By
Stones’s theorem, vj(s) = exp(2πisxj), for some unbounded self-adjoint
operators xj . The point i) above can be generalized by stating that the
following two conditions are equivalent

[xj , xk] =
1

2πi
Θjk ⇔ vj(s)vk(t) = e2πiΘjkstvk(t)vj(s).

• RΘ is generated by the spectral projections of the quantum variables xΘ,j .

• The Euclidean Schwartz S(Rn) class is the space of infinitely differentiable
functions f : Rn → C which satisfy that f and its derivatives decay at
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14 1. QUANTUM EUCLIDEAN SPACES

infinity faster than polynomials. In RΘ, we find( →∏
1≤r≤m�

xΘ,jr

)
∂β
Θ

(
λΘ(f)

)( →∏
1≤s≤mr

xΘ,ks

)

= λΘ

[( →∏
1≤r≤m�

D�
Θ,jr

)( →∏
1≤s≤mr

Dr
Θ,ks

)
M(2πiξ)βf

]
∈ SΘ,

which admits other representations since D�
Θ,jr

and Dr
Θ,ks

commute. It
shows that the quantum Schwartz class is also closed under differentiation
and left/right multiplication by quantum polynomials.

• Proposition 1.9 iii) establishes a canonical Pythagorean formula for the
quantum Euclidean distance dΘ in terms of quantum variables. This
shows that the metric dΘ that we shall be using along the rest of the paper
is not induced but somehow intrinsic to RΘ. This gives some evidence
that our main results in this paper are formulated in their most natural
way.

• We also note in passing that the quantum variables zΘ,j = xΘ,j − yΘ,j

from Proposition 1.9 iii) are pairwise commuting for different values of
1 ≤ j ≤ n since

[zΘ,j , zΘ,k] = zΘ,j • zΘ,k − zΘ,k • zΘ,j

= [xΘ,j , xΘ,k]RΘ
⊗ 1+ 1⊗ [yΘ,j , yΘ,k]Rop

Θ
= 0.

1.3.2. On the quantum Schwartz class. Using quantum variables, we are
ready to prove some fundamental properties of the quantum Schwartz class. The
analogues in the commutative case Θ = 0 are rather easy to prove. Let us consider
the map jΘ : S(Rn) → SΘ given by

jΘ

(∫
Rn

f(ξ)e2πi〈·,ξ〉 dξ
)
=

∫
Rn

f(ξ)λΘ(ξ) dξ,

so that jΘ(f) = λΘ(f̂ ). By Remark 1.2 and Plancherel theorem, jΘ extends to
an isometric isomorphism L2(R

n) → L2(RΘ). We shall also need the space S ′
Θ

of continuous linear functionals on SΘ, tempered quantum distributions. Finally
recalling that the quantum variables xΘ,j are affiliated to RΘ, we set for 1 ≤ j ≤ n

RΘ,j =
〈
spectral projections of xΘ,j

〉′′
⊂ RΘ.

We write Rj for RΘ,j with Θ = 0. We begin with an elementary auxiliary result.

Lemma 1.11. We have :

i) jΘ(x
k
j ) = xk

Θ,j in the sense of distributions.

ii) jΘ : Rj → RΘ,j is a normal ∗-homomorphism.

Proof. Every element in SΘ may be represented in the form jΘ(f) for some f in
the Schwartz class of Rn. On the other hand, since jΘ : L2(R

n) → L2(RΘ) is an
isometric isomorphism, we define jΘ(x

k
j ) ∈ S ′

Θ by

〈
jΘ(x

k
j ), jΘ(f)

〉
=

∫
Rn

xk
j f(x) dx.
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1.3. QUANTUM EUCLIDEAN VARIABLES 15

Thus, it suffices to see that this quantity coincides with

τΘ
(
xk
Θ,jjΘ(f)

)
= τΘ

(
xk
Θ,jλΘ(f̂ )

)
= τΘ

(
λΘ

(
(D�

Θ,j)
kf̂

))
= (D�

Θ,j)
kf̂ (0)

for D�
Θ,j =

∑
s<j ΘjsMξs − 1

2πi∂
ξ
j , by Proposition 1.9. A simple computation

shows that this is indeed the case. Next, assertion ii) follows from the fact that
RΘ,j � L∞(R) for 1 ≤ j ≤ n no matter which is the deformation Θ. Indeed,
in order to use the same terminology as in the proof of Proposition 1.1, we shall
assume for convenience that j = n. Then, we may identifyRΘ,n with the subalgebra
1�βn−1

R of the von Neumann algebra RΞ �βn−1
R, which in turn is isomorphic to

RΘ. Then, it is a well-known fact that we have 1�βn−1
R � L∞(R). �

Proposition 1.12. If Θ ∈ An(R) and γ > 1
2 , we find

→∏
1≤j≤n

(
1+ |xΘ,j |γ

)−1 ∈ L2(RΘ).

In particular, the quantum Schwartz class SΘ ⊂ Lp(RΘ) for all p > 0.

Proof. According to Lemma 1.11(
1+ |xΘ,j |γ

)−1
= jΘ

( 1

1 + |xj |γ
)
.

Let us proceed by induction on n, the case n = 1 being trivial. According to
Proposition 1.1, τΘ coincides with the crossed product trace τ� in RΞ � R which
in turn factorizes for operators with separated variables. This means that

τΘ

(∣∣∣ →∏
1≤j≤n

(
1+ |xΘ,j |γ

)−1
∣∣∣2)

= τΞ

(∣∣∣ →∏
1≤j≤n−1

(
1+ |xΘ,j |γ

)−1
∣∣∣2)∫

R

dx

(1 + |x|γ)2

and we conclude by induction. To prove the last assertion, since SΘ ⊂ RΘ it clearly
suffices to show that SΘ ⊂ Lp(RΘ) for p small. Assume p = 1/m for m ∈ Z+ and
let

Q =
∣∣∣ →∏
1≤j≤n

(
1+ |xΘ,j |γ

)∣∣∣2m.

According to Hölder’s inequality, we find for f ∈ S(Rn)∥∥λΘ(f)
∥∥
p

≤
∥∥Q−1

∥∥
p

∥∥QλΘ(f)
∥∥
∞

= τΘ

[∣∣∣ →∏
1≤j≤n

(
1+ |xΘ,j |γ

)−1
∣∣∣2] 1

p ∥∥λΘ(Q[D�
Θ,j ]f)

∥∥
∞

where Q[D�
Θ,j ] is the differential operator associated to Q according to the second

point of Remark 1.10. Since Q[D�
Θ,j ]f ∈ S(Rn), the finiteness of the quantity in

the right hand side is guaranteed by the first assertion in the statement. �
Proposition 1.13. We have :

i) SΘ is weak-∗ dense in RΘ.
ii) SΘ is dense in Lp(RΘ) for all p > 0.

In particular, the same density results hold for λΘ(L1(R
n)) ⊂ RΘ.
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16 1. QUANTUM EUCLIDEAN SPACES

Proof. Since finite sums of the elementary frequencies λΘ(ξ) are weak-∗ dense
in RΘ by construction, it suffices to approximate λΘ(ξ) by elements of SΘ in the
weak-∗ topology. In other words, we need to find a family of functions φξ,ε ∈ S(Rn)
so that

lim
ε→0

τΘ
(
(λΘ(φξ,ε)− λΘ(ξ))a

)
= 0 for all a ∈ L1(RΘ).

If Bε(ξ) denotes the Euclidean ball around ξ of radius ε, let φξ,ε be a smoothing
of the function |Bε(ξ)|−1χBε(ξ), so that Lebesgue differentiation theorem holds for
the family {φξ,ε : ε > 0}. Now, since SΘ is dense in L2(RΘ), the same holds
for SΘSΘ ⊂ L2(RΘ)L2(RΘ) = L1(RΘ) and we may approximate a by a sequence
λΘ(fj) ∈ SΘ. Recall that∥∥λΘ(φξ,ε)− λΘ(ξ)

∥∥
RΘ

≤ 1 +

∫
Rn

φξ,ε(ζ)dζ = 2.

Given δ > 0, there exists jδ ≥ 1 so that ‖a− λΘ(fjδ )‖1 < δ/2. Thus∣∣∣ lim
ε→0

τΘ
(
(λΘ(φξ,ε)− λΘ(ξ))a

)∣∣∣ ≤ δ +
∣∣∣ lim
ε→0

τΘ
(
(λΘ(φξ,ε)− λΘ(ξ))λΘ(fjδ)

)∣∣∣.
On the other hand, since λΘ(ξ)

∗ = e2πi〈ξ,Θ↓ξ〉λΘ(−ξ) we find

τΘ
(
(λΘ(φξ,ε)− λΘ(ξ))λΘ(fjδ)

)
= φξ,ε ∗Θ fjδ (0)− e−2πi〈ξ,Θ↓ξ〉fjδ(−ξ)

=

∫
Rn

φξ,ε(ζ)e
−2πi〈ζ,Θ↓ζ〉fjδ (−ζ)dζ − e−2πi〈ξ,Θ↓ξ〉fjδ (−ξ),

where Θ↓ is the lower triangular part of Θ. The expression above converges to 0
as ε → 0. Letting δ → 0 we conclude that SΘ is weak-∗ dense in RΘ. Let us now
prove that SΘ is norm dense in Lp(RΘ) for all p > 0. Since SΘSΘ ⊂ SΘ, it suffices
from Hölder inequality to prove norm density in the case p > 2. Given a ∈ Lp(RΘ)
for some p > 2, we may approximate it in the Lp-norm by another element in RΘ

which is left/right supported by a finite projection. In other words, we may assume
that a itself belongs to RΘ and a = qaq for some projection q satisfying τΘ(q) < ∞.
Pick two sequences fj , gk ∈ S(Rn) satisfying that

w∗- lim
j→∞

λΘ(fj) = a and w∗- lim
k→∞

λΘ(gk) = q.

By Kaplanski density theorem, we may also assume that

sup
j,k≥1

(
‖λΘ(fj)‖RΘ

+ ‖λΘ(gk)‖RΘ

)
≤ 1 + ‖a‖RΘ

< ∞

and both convergences hold strongly. Therefore, since a ∈ L2(RΘ), given δ > 0
there must exists kδ satisfying ‖a(q − λΘ(gkδ

))‖2 < δ
2 . Moreover, once the index

kδ is fixed and since λΘ(gkδ
) ∈ L2(RΘ) there must exists an index jδ satisfying the

inequality ‖(a− λΘ(fjδ ))λΘ(gkδ
)‖2 < δ

2 . Combining these estimates∥∥a− λΘ(fjδ)λΘ(gkδ
)
∥∥
2
≤
∥∥a(q − λΘ(gkδ

))
∥∥
2
+
∥∥(a− λΘ(fjδ))λΘ(gkδ

)
∥∥
2
< δ.

On the other hand, by the three lines lemma∥∥a− λΘ(fjδ)λΘ(gkδ
)
∥∥
p

≤
∥∥a− λΘ(fjδ)λΘ(gkδ

)
∥∥1− 2

p

∞
∥∥a− λΘ(fjδ)λΘ(gkδ

)
∥∥ 2

p

2

≤ δ
2
p

∥∥a− λΘ(fjδ )λΘ(gkδ
)
∥∥1− 2

p

∞ ≤
(
2‖a‖RΘ

)1− 2
p δ

2
p .

Taking δ → 0 we see that SΘ is norm dense in Lp(RΘ) for p > 2. �
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1.3. QUANTUM EUCLIDEAN VARIABLES 17

1.3.3. Structure of RΘ. We start by showing the very simple algebraic
structure of quantum Euclidean spaces RΘ. Indeed, given Θ ∈ An(R) and ac-
cording to the spectral theorem, there exist d1, d2 ∈ Z+ with d1 + 2d2 = n and
κ1, κ2, . . . κd2

∈ R\{0} satisfying the following relation for some orthogonal matrix
B ∈ SO(n) and for Φ the d1 × d1 0-matrix

Θ = B
[
Φ⊕

d2⊕
j=1

κj

( 0 1
−1 0

)
︸ ︷︷ ︸

Δ

]
B∗ = BΔB∗.

Arguing as in Proposition 1.1 iii) for n = 2, we find that

RΔ � L∞(Rd1)⊗̄
( d2⊗

j=1

B(L2(R))
)

� L∞
(
Rd1 ;B(L2(R

d2))
)

� L∞(Rd1)⊗̄
( d2⊗

j=1

L∞(R)�R

)
� L∞

(
Rd1 ;L∞(Rd2)� Rd2

)
is a type I von Neumann algebra. Since the commutation relations are determined
by λΘ(ξ)λΘ(η) = exp(2πi〈ξ,Θη〉)λΘ(η)λΘ(ξ) it is tempting to set λΔ(ξ) = λΘ(Bξ)
to conclude that RΘ � RΔ is also a type I von Neumann algebra. This choice of
unitaries do not arise however from a family of one-parameter groups of unitaries
as expected. The right change of variables is xΘ �→ BxΘ, where xΘ stands for
(xΘ,1, xΘ,2, ..., xΘ,n), at the level of infinitesimal generators. If we want to take
exponentials to generate one-parameter groups of unitaries s �→ exp(2πis(BxΘ)j)
new extra terms appear due to nonvanishing commutators.

Proposition 1.14. The unitaries

λΔ(ξ) = exp
(
πi
∑
j<k

(
ξjξkΔjk − (Bξ)j(Bξ)kΘjk

))
λΘ(Bξ)

generate RΔ. In particular, RΘ � RΔ so that quantum Euclidean spaces RΘ

are always type I von Neumann algebras which are invariant under conjugation
by SO(n). Moreover, the traces coincide τΘ = τΔ and the one-parameter unitary
groups wj(s) = exp(2πisxΔ,j) = λΔ(sej) have the form

wj(s) = exp
(
− πis2

∑
α<β

B∗
jαΘαβBβj

)
λΘ(sBej).

Proof. Consider the self-adjoint operators

xΔ,j =
n∑

k=1

B∗
jk xΘ,k =

n∑
k=1

BkjxΘ,k.

It follows from Proposition 1.9 that the quantum Schwartz class SΘ is a common
core for the family xΔ,j with 1 ≤ j ≤ n. In particular, these operators are densely
defined in the Hilbert space L2(RΘ) � L2(R

n) � L2(RΔ). On the other hand, the
commutators are

[xΔ,j , xΔ,k] =
∑

1≤α,β≤n

B∗
jα[xΘ,α, xΘ,β ]Bβk =

1

2πi

∑
1≤α,β≤n

B∗
jαΘαβBβk =

1

2πi
Δjk.
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18 1. QUANTUM EUCLIDEAN SPACES

Therefore, Proposition 1.9 implies that RΔ is the weak-∗ closure of the C∗-algebra
generated by the one-parameter unitary groups wj(s) = exp(2πisxΔ,j) for j ≤ n
or equivalently by the products

w1(ξ1)w2(ξ2) · · ·wn(ξn) =
→∏

1≤j≤n

exp(2πiξjxΔ,j).

Consequently, if we can justify the equality

→∏
1≤j≤n

exp(2πiξjxΔ,j) = exp
(
πi
∑
j<k

(
ξjξkΔjk − (Bξ)j(Bξ)kΘjk

))
λΘ(Bξ)

it will follow automatically that RΘ � RΔ as expected. The identity τΘ = τΔ and
the expression given for wj(s) also follow easily from the above equality. This is
proved from the Baker-Campbell-Hausdorff formula. Namely, since we know that
[xΔ,j , xΔ,k] =

1
2πiΔjk we may use the simple identity below for operators X,Y with

vanishing iterated brackets

log
(
expX expY

)
= X+Y+

1

2
[X,Y].

Taking Xj = 2πiξjxΔ,j we have [Xj ,Xk] = 2πiξjξkΔjk, so that

→∏
1≤j≤n

exp(2πiξjxΔ,j) =

→∏
1≤j≤n

expXj

= exp
(1
2

∑
j<k

[Xj ,Xk]
)
exp

( n∑
j=1

Xj

)

= exp
(
πi
∑
j<k

ξjξkΔjk

)
exp

(
2πi

n∑
j=1

ξjxΔ,j

)

= exp
(
πi
∑
j<k

ξjξkΔjk

)
exp

(
2πi

n∑
k=1

(Bξ)kxΘ,k

)
.

Using the same formula for the family Zj = 2πi(Bξ)jxΘ,j we may conclude. �
It is important to recall that, although the technique that we have used here is

somewhat similar to the discussion in Remark 1.3, here we care strictly about the
isomorphism class of RΘ. On the contrary the discussion around Remark 1.3 gave
information on the presentation of RΘ as a crossed product.

1.3.4. A Θ-deformation of ∂ξ. We finish this section with another local
operator acting on a given symbol a : Rn → RΘ. It plays a crucial role in the
Hörmander classes Σm

ρ,δ(RΘ) from the Introduction. The mixed classical-quantized
derivative is given by

∂j
Θ,ξa(ξ) = λΘ(ξ)

∗∂j
ξ

{
λΘ(ξ)a(ξ)λΘ(ξ)

∗}λΘ(ξ).

Lemma 1.15. We have

∂j
Θ,ξa(ξ) = ∂j

ξa(ξ) + 2πi
[
xΘ,j , a(ξ)

]
.
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1.3. QUANTUM EUCLIDEAN VARIABLES 19

Proof. Note that
d

ds

∣∣∣
s=0

λΘ(ξ + sej) = λΘ(ξ)
( d

ds

∣∣∣
s=0

e−2πis〈ξ,Θ↓ej〉λΘ(sej)
)
,

d

ds

∣∣∣
s=0

λΘ(ξ + sej)
∗ =

( d

ds

∣∣∣
s=0

e2πis〈ξ,Θ↓ej〉λΘ(−sej)
)
λΘ(ξ)

∗.

A simple calculation then yields that

∂j
Θ,ξa(ξ) = λΘ(ξ)

∗
(

d

ds

∣∣∣
s=0

λΘ(ξ + sej)a(ξ + sej)λΘ(ξ + sej)
∗
)
λΘ(ξ)

=
(
2πixΘ,j − 2πi〈ξ,Θ↓ej〉

)
a(ξ) + ∂j

ξa(ξ) + a(ξ)
(
2πi〈ξ,Θ↓ej〉 − 2πixΘ,j

)
.

Eliminating vanishing terms and rearranging gives the desired identity. �
The commutator vanishes in the Euclidean setting Θ = 0. Therefore, we should

understand ∂Θ,ξ as a Θ-deformation of the classical derivative ∂ξ which —as it is
indicated by the result below— is also very much related to the quantum derivatives
∂Θ. Thus, we get a Θ-deformation of ∂ξ by ∂Θ.

Lemma 1.16. Given ϕ ∈ SΘ ⊂ RΘ we have[
xΘ,j , ϕ

]
=

1

2πi

n∑
k=1

Θjk ∂
k
Θϕ.

In particular, we obtain the following estimate∥∥[xΘ,j , ϕ
]∥∥

RΘ
≤ 1

2π

( n∑
k=1

|Θjk|2
) 1

2
∥∥∥( n∑

k=1

|∂k
Θϕ|2

) 1
2
∥∥∥
RΘ

.

Proof. Observe that[
xΘ,j , ϕ

]
=

∫
Rn

ϕ̂(ξ)
[
xΘ,j , λΘ(ξ)

]
dξ =

∫
Rn

ϕ̂(ξ)
1

2πi

d

ds

∣∣∣∣
s=0

[
λΘ(sej), λΘ(ξ)

]
dξ.

Using [λΘ(sej), λΘ(ξ)] = λΘ(sej)λΘ(ξ)(1 − e2πis〈ξ,Θej〉) and applying the Leibniz
rule, we easily deduce the first assertion. The second one is straightforward. �

The last estimate above provides a uniform and linear bound that explicitly
gives the convergence ∂j

Θ,ξ → ∂j
ξ in the point-operator norm when Θ → 0+. We

also recall that the assumption ϕ ∈ SΘ is just needed a priori and can be extended
to any ϕ in the weak-∗ closed domain of ∇Θ.

Remark 1.17. As indicated in the Introduction, quantum Euclidean spaces
can also be regarded as CCR algebras by means of a Fock space representation. We
shall not explain this connection in further detail. The interested reader may find
more information in [51,59,73].
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CHAPTER 2

Calderón-Zygmund Lp theory

We now introduce kernel representations of linear operators acting on a von
Neumann algebra and develop a very satisfactory Calderón-Zygmund theory over
quantum Euclidean spaces. We shall prove Lp-boundedness from L2-boundedness
and Calderón-Zygmund conditions for the kernel. L2-boundedness will be analyzed
below in this paper for pseudodifferential operators. Our kernel conditions are given
in terms of the intrinsic metric and gradient introduced above and resemble very
neatly the classical conditions. This is the first form of Calderón-Zygmund theory
over a fully noncommutative von Neumann algebra. We refer to [42,57] for related
results over tensor product and crossed product algebras containing an abelian
factor. An algebraic/probabilistic approach —lacking the geometric aspects of the
present one— will be presented in [44] for more general von Neumann algebras.

2.1. Kernels and symbols

Given a measure space (Ω, μ) and a linear map T acting on certain function
space X over Ω, a kernel representation has the following form for functions f living
in some dense domain in X

Tkf(x) =

∫
Ω

k(x, y)f(y) dμ(y),

where the kernel k : Ω × Ω → C is only assumed a priori to be defined almost
everywhere and measurable. Now, given a noncommutative measure space (M, τ )
composed by a semifinite von Neumann algebra M and normal faithful semifinite
trace τ , the kernel representation takes the analogous form

Tkϕ =
(
id⊗ τ

)(
k(1⊗ ϕ)

)
=
(
id⊗ τ

)(
(1⊗ ϕ)k

)
with the only difference that k is now an operator affiliated to M⊗̄Mop, instead
of M⊗̄M as one could have expected. This novelty —undistinguishable in the
abelian case, where M = Mop— is crucial to develop a consistent theory. Let us
begin by showing the fundamental properties of these kernel representations. This
will simplify the task of justifying our choice of M⊗̄Mop. Recall the products ·
and • in Mop and M⊗̄Mop respectively from Section 1.2.1 above.

Remark 2.1. Rigorously speaking, the map Tk so defined should send opera-
tors ϕ affiliated to Mop to another operator Tkϕ affiliated to M. Of course, this
is not an obstruction since the set of affiliated operators coincides for M and Mop

and τM = τMop
. We will regard ϕ as affiliated to M, so that Tk becomes a linear

map over the noncommutative measure space (M, τ ).

Lemma 2.2. The following properties hold :

21
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22 2. CALDERÓN-ZYGMUND Lp THEORY

i) Adjoints and composition

T ∗
k = Tflip(k)∗ with flip(a⊗ b) = b⊗ a,

Tk1
◦ Tk2

= Tk with k =
(
id⊗ τ ⊗ id

)((
k1 ⊗ 1

)(
1⊗ k2

))
.

ii) Schur lemma and factorization

TkA•kB
ϕ =

(
id⊗ τ

)(
kA
(
1⊗ ϕ

)
kB
)
,∥∥TkA•kB

: L2(M) → L2(M)
∥∥ ≤

∥∥(id⊗ τ )(kAk
∗
A)
∥∥ 1

2

M
∥∥(τ ⊗ id)(kBk

∗
B)
∥∥ 1

2

M,∥∥TkA•kB
: L∞(M) → L∞(M)

∥∥ ≤
∥∥(id⊗ τ )(kAk

∗
A)
∥∥ 1

2

M
∥∥(id⊗ τ )(k∗BkB)

∥∥ 1
2

M.

iii) Tk is completely positive if and only if k is positive as affiliated to M⊗̄Mop.

Proof. We have〈
Tkϕ1, ϕ2

〉
= τ

(
(id⊗ τ )

(
k(1⊗ ϕ1)

)∗
ϕ2

)
= τ

(
(τ ⊗ id)

(
(1⊗ ϕ∗

1)k
∗(ϕ2 ⊗ 1)

))
= τ

(
ϕ∗
1(id⊗ τ )

(
flip(k)∗(1⊗ ϕ2)

))
=

〈
ϕ1, T

∗
kϕ2

〉
,

which proves the kernel formula for the adjoint. Regarding the composition

Tk1
(Tk2

ϕ) = (id⊗ τ )
(
k1
(
1⊗ (id⊗ τ )(k2(1⊗ ϕ))

)
= (id⊗ τ ⊗ τ )

(
(k1 ⊗ 1)(1⊗ k2)(1⊗ 1⊗ ϕ)

)
= (id⊗ τ )

([
(id⊗ τ ⊗ id)(k1 ⊗ 1)(1⊗ k2)

]
(1⊗ ϕ)

)
.

In both cases —adjoints and compositions— we have regarded one more time the
involved operators as affiliated toM orMop according to the context, as we explain
in Remark 2.1. Next, the factorization identity in ii) uses in a fundamental way the
product • in M⊗̄Mop

TkA•kB
ϕ =

(
id⊗ τ

)(
kA • kB

(
1⊗ ϕ

))
=
(
id⊗ τ

)(
kA
(
1⊗ ϕ

)
kB
)
.

Namely, in the last identity above the first coordinate remains unchanged since
1 ⊗ ϕ does not affect the product in M ⊗ 1, whereas the second coordinate in
1⊗Mop is explained using its product · as follows

τ (α · β · ϕ) = τ (α · ϕβ) = τ (αϕβ).

Let us now prove the announced inequalities. By the Cauchy-Schwarz inequality
for the operator-valued inner product (x, y) = (id⊗ τ )(x∗y) over the von Neumann
algebra M⊗̄Mop we note that∣∣(id⊗ τ )(x∗y)

∣∣2 ≤
∥∥(id⊗ τ )(x∗x)

∥∥
M(id⊗ τ )(y∗y),

see for instance [49, Proposition 1.1]. In particular∣∣TkA•kB
ϕ
∣∣2 =

∣∣∣(id⊗ τ
)(
kA(1⊗ ϕ)kB

)∣∣∣2
≤

∥∥(id⊗ τ )(kAk
∗
A)
∥∥
M
(
id⊗ τ

)(
k∗B(1⊗ ϕ∗ϕ)kB

)
.
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2.1. KERNELS AND SYMBOLS 23

The L∞-estimate announced for TkA•kB
ϕ follows immediately from the inequality

above. In order to prove the L2-estimate, pick a unit vector ϕ ∈ L2(M). We just
need to take the trace and apply Fubini

τ
(∣∣TkA•kB

ϕ
∣∣2) ≤

∥∥(id⊗ τ )(kAk
∗
A)
∥∥
M
(
τ ⊗ τ

)(
k∗B • kB(1⊗ ϕ∗ϕ)

)
=

∥∥(id⊗ τ )(kAk
∗
A)
∥∥
M τ

(
(τ ⊗ id)(k∗B • kB)ϕ∗ϕ

)
=

∥∥(id⊗ τ )(kAk
∗
A)
∥∥
M τ

(
(τ ⊗ id)(kBk

∗
B)ϕ

∗ϕ
)

≤
∥∥(id⊗ τ )(kAk

∗
A)
∥∥
M
∥∥(τ ⊗ id)(kBk

∗
B)
∥∥
M.

It remains to prove the last assertion iii). As an operator affiliated to M⊗̄Mop, the
kernel k is positive iff there exists κ also affiliated to M⊗̄Mop so that k = κ∗ • κ
and the factorization identity above gives in that case

Tkf =
(
id⊗ τ

)(
κ∗(1⊗ ϕ)κ

)
which is clearly a completely positive map. Reciprocally, let Tk be completely
positive. Assume for simplicity that Tk is well-defined over projections in M.
Then, given any pair of projections p, q ∈ M we know from positivity of Tk that
τ (Tk(q)p) ≥ 0. However

τ (Tk(q)p) = τ
(
(id⊗ τ )

(
k(1⊗ q)

)
p
)

= τ
(
(id⊗ τ )

(
k • (1⊗ q)

)
p
)

= τ
(
(id⊗ τ )

(
k • (p⊗ q)

))
= τ ⊗ τ

(
k • (p⊗ q)

)
.

The positivity of the last term for arbitrary projections implies the assertion. �
Remark 2.3. Lemma 2.2 i) also holds for kernels affiliated to M⊗̄M, contrary

to points ii) and iii). On the other hand, recall that the norm of a completely
positive map is determined by its value at 1. The L∞-estimate in Lemma 2.2 ii)

rephrases it in terms of kernels when k ≥ 0 and kA = kB =
√
k, so this estimate

provides a generalization for nonpositive maps. Also, the L2-estimate generalizes a
classical result for integral kernels known as Schur lemma [68, Lemma in page 284].
Finally, the use of kernels k affiliated to M⊗̄Mop —essential for the properties in
Lemma 2.2 ii) and iii) above— is consistent with the duality

L1(M)∗ = Mop

via the pairing 〈x, y〉 = τ (xy), we refer to Pisier’s book [62] for further details.

Remark 2.4. Ignoring for the moment more general kernels which will arise
as tempered distributions, let us assume that k is affiliated to RΘ⊗̄Rop

Θ and admits
an expression

k =

∫
Rn×Rn

k̂(ξ, η)λΘ(ξ)⊗ λΘ(η)
∗ dμ(ξ, η)

for some measure μ on Rn×Rn. Noticing that τΘ(λΘ(f)λΘ(ξ)
∗) = f(ξ) for f smooth

we may interpret the kernel k as a bilinear form where —regardless λΘ(ξ), λΘ(η)
are not in L2(RΘ)— we put λΘ(ξ)⊗λΘ(η)

∗ ∼ |λΘ(ξ)〉〈λΘ(η)| following the bra-ket
notation. This is easily checked for Dirac measures μ = δξ0,η0〈

Tk(λΘ(f1)), λΘ(f2)
〉
= τΘ

(
Tk(λΘ(f1))

∗λΘ(f2)
)
= k̂(ξ0, η0)f1(η0)f2(ξ0).
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24 2. CALDERÓN-ZYGMUND Lp THEORY

We will approximate general measures as limits of finite sums of Dirac measures.

This paper is devoted to investigate singular integral operators over quantum
Euclidean spaces, both in terms of Calderón-Zygmund conditions for the kernel and
Hörmander smoothness for the associated symbol. Let us therefore briefly describe
the kernels and symbols we will be working with. There exists a very well-known
relation between kernels and symbols of classical pseudodifferential operators, the
reader can look for instance in [68,71] or almost any textbook on pseudodifferential
operators. Indeed, given

Ψaf(x) =

∫
Rn

a(x, ξ)f̂(ξ)e2πi〈x,ξ〉 dξ,

it turns out that Ψaf = Tkf for

k = (id⊗F−1)(a)(x, x− y) =

∫
Rn

a(x, ξ)e2πi〈x−y,ξ〉 dξ.

Given n ≥ 2, let us know consider a n × n deformation Θ. As explained in the
Introduction, noncommutative symbols over quantum Euclidean spaces are smooth
functions a : Rn → SΘ and pseudodifferential operators look like

Ψa(λΘ(f)) =

∫
Rn

a(ξ)f(ξ)λΘ(ξ) dξ

=

∫
Rn

a(ξ)τΘ
(
λΘ(f)λΘ(ξ)

∗)λΘ(ξ) dξ

=
(
id⊗ τΘ

)[( ∫
Rn

(a(ξ)⊗ 1)(λΘ(ξ)⊗ λΘ(ξ)
∗)dξ︸ ︷︷ ︸

The kernel k

)(
1⊗ λΘ(f)

)]
.

Thus, we find formally that Ψa(λΘ(f)) = Tk(λΘ(f)) for

k =

∫
Rn×Rn

k̂(ξ, η)λΘ(ξ)⊗ λΘ(η)
∗ dμ(ξ, η) =

∫
Rn

a(ξ)λΘ(ξ)⊗ λΘ(ξ)
∗dξ.

Reciprocally, we also have the following expression for a

a(ξ) =

∫
Rn

k̂(ξ, η)
(
1⊗ λΘ(η)

∗λΘ(ξ)
)
dη

when μ is the Lebesgue measure in Rn × Rn. The algebra of pseudodifferential
operators is formally generated by the derivatives ∂j

Θ and the left multiplication
maps λΘ(f) �→ xΘ,jλΘ(f).

Remark 2.5. Pseudodifferential operators can be understood (intuitively) as
the algebra generated by Fourier multipliers λΘ(f) �→ λΘ(mf), for some function
m : Rn → C, as well as left multiplication operators x �→ ax, for a ∈ RΘ. The choice
of left multiplication operators can be changed to right ones. That gives rise to a
different, but highly related, notion of pseudodifferential operator that we describe
here. Let a : Rn → SΘ be a smooth symbol, we define the right pseudodifferential
operator Ψright

a as

Ψright
a (λΘ(f)) =

∫
Rn

f(ξ)λΘ(ξ)a(ξ) dξ.
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2.2. CZ EXTRAPOLATION: MODEL CASE 25

Similarly, its associated integral kernel is given by

Ψright
a (x) =

(
id⊗ τΘ

)[( ∫
Rn

(λΘ(ξ)⊗ λΘ(ξ)
∗)(a(ξ)⊗ 1)dξ︸ ︷︷ ︸

k

)(
1⊗ x

)]
.

It is natural to ask in which sense the operator above is defined. In Chapter 3 we
shall see that Ψa : SΘ → SΘ, for every symbol a in the classes Sm

ρ,δ(RΘ) defined in
the Introduction, see Lemma 3.1. The same proof carries over without difficulty to
Ψright

a . A more elegant approach is to notice that it is possible to transfer results
between the left and the right pseudodifferential operators. Indeed, if we denote by
S the isometric operator in Lp(RΘ) given by extension of S(x) = x∗ we have that

SΨleft
a = Ψright

b S where b(ξ) = a(−ξ)∗.

The proof of such intertwining identity amounts to a straightforward calculation. As
a consequence we have that if Ψleft

a : Lp(RΘ) → Lp(RΘ) is bounded the same bound

hold for Ψright
b : Lp(RΘ) → Lp(RΘ). In particular, since the classes Sm

ρ,δ(RΘ) are

closed under the involution a(ξ) �→ a(−ξ)∗ their left/right boundedness is equivalent
and thus we will work only with the left ones.

2.2. CZ extrapolation: Model case

We are ready to prove Lp-boundedness of operators associated to elementary
kernels satisfying cancellation and smoothness conditions of Calderón-Zygmund
type. Our kernels will belong along this paragraph to SΘ ⊗alg Sop

Θ , so that

k =
∑

j

∫
Rn

∫
Rn

κ1j(ξ)κ2j(η)λΘ(ξ)⊗ λΘ(η)
∗dξdη,

where the sum above is finite and κij ∈ S(Rn). We will temporarily refer to
these kernels as algebraic kernels. Of course, in this case Tk is Lp-bounded for
1 ≤ p ≤ ∞ with constants a priori depending on the family κij . Our goal is to
provide L∞ → BMO estimates with constants which only depend on structural
properties of the whose k since this will allow us to include general singular kernels
below. The following result is the basic core of this paper. We shall use the quantum
metric dΘ defined in Section 1.2.1, the notation ∇Θk to denote the operator(

∇Θ ⊗ idRop
Θ

)
(k) ∈ L(Fn)⊗̄RΘ⊗̄Rop

Θ

for k ∈ SΘ ⊗alg Sop
Θ and the dimensional constant Kn = 1

2 (n+ 1).

Theorem 2.6. Let k ∈ SΘ ⊗alg Sop
Θ and assume :

i) Cancellation ∥∥Tk : L2(RΘ) → L2(RΘ)
∥∥ ≤ A1.

ii) Kernel smoothness. There exists

α < Kn − 1

2
< β < Kn +

1

2
satisfying the gradient conditions below for ρ = α, β∣∣∣dρΘ • (∇Θ ⊗ idRop

Θ
)(k) • dn+1−ρ

Θ

∣∣∣ ≤ A2.

Then, we find the following L∞ → BMOc estimate∥∥Tk : L∞(RΘ) → BMOc(RΘ)
∥∥
cb

≤ Cn(α, β)
(
A1 +A2

)
.
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26 2. CALDERÓN-ZYGMUND Lp THEORY

Proof. Since k is an algebraic kernel, Tk is bounded on RΘ. Moreover, T ∗
k is also

bounded on L1(Rop
Θ ) and Tk is a normal operator. On the other hand, the weak-∗

topology in RΘ is stronger than the inherited one from the weak-∗ topology in
BMOc(RΘ). Therefore, by Kaplansky density theorem, it suffices to estimate the
norm of Tk on the weak-∗ dense subalgebra SΘ. Given ϕ = λΘ(f) ∈ SΘ

‖Tkϕ‖BMOc(RΘ) ∼ sup
R>0

sup
BR∈QR

∥∥∥(−
∫
BR

∣∣σΘ(Tkϕ)− σΘ(Tkϕ)BR

∣∣2 dμ) 1
2
∥∥∥
RΘ

where the second supremum runs over the set QR of Euclidean balls BR of radius
R and center cBR

. Recall that σΘ(Tkϕ) = Tkσ
ϕ for kσ = (σΘ ⊗ id)(k). Now let

ψ : Rn → [0, 1] be a Schwartz function which is identically 1 over the unit ball
B1(0) and identically 0 outside its concentric 2-dilation B2(0). Define

ψR(x) = ψ
(x+ cBR

2R

)
to decompose the kernel kσ = (σΘ ⊗ id)(k) as follows

kσ = kσ • πΘ(ψR)︸ ︷︷ ︸
kσ1(R)

+ kσ •
(
1− πΘ(ψR)

)
︸ ︷︷ ︸

kσ2(R)

.

Note here that πΘ(ψR) � 1⊗ πΘ(ψR) is an element of RΘ⊗̄Rop
Θ and only kσ has a

component in L∞(Rn). We claim that the following inequality for kσ1(R) holds up
to constants independent of the ball BR ∈ QR and the radius R

(2.2.1)
∥∥∥(−

∫
BR

∣∣Tkσ1(R)ϕ− (Tkσ1(R)ϕ)BR

∣∣2 dμ) 1
2
∥∥∥
RΘ

≤ CnA1‖ϕ‖RΘ
.

Before proving this first claim, let us continue with the argument. Of course, it
would suffice to give a similar estimate for kσ2(R). To do so and according to the
Poincaré type inequality in Proposition 1.6 and its relation to BMOc(RΘ) outlined
in Remark 1.7, it suffices to estimate

R
∥∥∥ (1⊗ qR ⊗ 1)(∇⊗ idRΘ

)(Tkσ2(R)ϕ)︸ ︷︷ ︸
TK(ϕ)

∥∥∥
L(Fn)⊗̄L∞(Rn)⊗̄RΘ

for qR = 1BR
with constants independent of R. Since

(∇⊗ idRΘ
) ◦ σΘ = (idL(Fn) ⊗ σΘ) ◦ ∇Θ

we may rewrite TK(ϕ) as follows

TK(ϕ) = (1⊗ qR ⊗ 1)(∇⊗ id)
(
(id⊗2 ⊗ τΘ)

(
kσ2(R)(1

⊗2 ⊗ ϕ)
))

= (1⊗ qR ⊗ 1)
(
id⊗3 ⊗ τΘ

)(
(∇⊗ id⊗2)(σΘ ⊗ id)[k] • (1−ΨR)(1

⊗3 ⊗ ϕ)
)

=
(
id⊗3 ⊗ τΘ

)(
(1⊗ qR ⊗ 1⊗2)(id⊗ σΘ ⊗ id)[∇Θk] • (1−ΨR)︸ ︷︷ ︸

K

(1⊗3 ⊗ ϕ)
)

with K ∈ L(Fn)⊗̄L∞(Rn)⊗̄RΘ⊗̄Rop
Θ and ΨR = πΘ(ψR). For simplicity, we shall

use a more compact terminology and write K = qR∇σ
Θk • (1− ΨR). We may now

decompose K as follows

K = qRΨR • ∇σ
Θk • (1−ΨR)︸ ︷︷ ︸
K1

+ qR(1−ΨR) • ∇σ
Θk • (1−ΨR)︸ ︷︷ ︸

K2

.
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2.2. CZ EXTRAPOLATION: MODEL CASE 27

We claim that the following inequality holds for j = 1, 2

(2.2.2)
∥∥TKj

(ϕ)
∥∥
L(Fn)⊗̄L∞(Rn)⊗̄RΘ

≤ Cn(α, β)
A2

R
‖ϕ‖RΘ

.

Our discussion so far has reduced the proof to justifying (2.2.1) and (2.2.2):
Proof of (2.2.1). It is clear that∥∥∥(−∫

BR

∣∣Tkσ1(R)ϕ− (Tkσ1(R)ϕ)BR

∣∣2 dμ) 1
2
∥∥∥
RΘ

≤ CnR
−n

2

∥∥∥(∫
Rn

∣∣Tkσ1(R)ϕ
∣∣2 dμ) 1

2
∥∥∥
RΘ

.

On the other hand, given T : SΘ → Lc
2(R

n)⊗̄RΘ we need to introduce its module
extension T ′ : SΘ⊗̄RΘ � λΘ(f)⊗ϕ �→ T (λΘ(f))(1⊗ϕ) ∈ Lc

2(R
n)⊗̄RΘ. Recall the

following (elementary) algebraic identity

(id⊗ τΘ)
(
kσ • (a⊗ b) • (1⊗ ϕ)

)
= Tkσ

(ϕb)(1⊗ a) = T ′
kσ

(
(ϕ⊗ 1)flip(a⊗ b)

)
.

Then, noticing that k is assumed to be an algebraic kernel in SΘ ⊗alg Sop
Θ , it is not

difficult to check that the above formula extends from elementary tensors a⊗ b to
arbitrary elements in RΘ⊗̄Rop

Θ . This yields

Tkσ1(R)ϕ = Tkσ•ΨR
ϕ = T ′

kσ

(
(ϕ⊗ 1)flip(πΘ(ψR))

)
.

In particular, we easily obtain the following estimate∥∥∥(∫
Rn

∣∣Tkσ1(R)ϕ
∣∣2 dμ) 1

2
∥∥∥
RΘ

≤
∥∥∥T ′

kσ
: Lc

2(RΘ)⊗̄RΘ → Lc
2(R

n)⊗̄RΘ

∥∥∥
cb

∥∥flip(πΘ(ψR))
∥∥
Lc

2(RΘ)⊗̄RΘ
‖ϕ‖RΘ

.

According to Lemma 1.5∥∥flip(πΘ(ψR))
∥∥
Lc

2(RΘ)⊗̄RΘ
≤
∥∥ψR

∥∥
L2(Rn)

≤ CnR
n
2

since the argument given there for πΘ also holds for flip ◦πΘ. Therefore, it remains
to estimate the cb-norm of T ′

kσ
. We claim that it is bounded by A1, the L2-norm

of Tk. To justify it, we introduce the map

W : Lc
2(R

n)⊗̄RΘ �
∫
Rn

expξ ⊗ a(ξ) dξ �→
∫
Rn

expξ ⊗λΘ(ξ)a(ξ) dξ ∈ Lc
2(R

n)⊗̄RΘ.

It is straightforward to show that W extends to an isometry. On the other hand,
letting jΘ : expξ �→ λΘ(ξ) be the L2-isometry introduced in Section 1.3.2, we
observe that

W (j∗Θ ⊗ id)(λΘ(f)⊗ a) = W
(∫

Rn

f(ξ) expξ ⊗ a dξ
)

=

∫
Rn

f(ξ) expξ ⊗λΘ(ξ)a dξ = σΘ(λΘ(f))(1⊗ a).

Identifying Tkϕ with λΘ(f) for some smooth f : Rn → C we obtain the identity
W (j∗ΘTk ⊗ id)(ϕ⊗ a) = T ′

kσ
(ϕ⊗ a). This a fortiori implies that the cb-norm of the

map T ′
kσ

: Lc
2(RΘ)⊗̄RΘ → Lc

2(R
n)⊗̄RΘ is dominated by the L2(RΘ) → L2(RΘ)

norm of Tk, as desired. This completes the proof of claim (2.2.1).
Proof of (2.2.2). Let

DΘ = (σΘ ⊗ id)(dΘ)

and decompose the kernels Kj for j = 1, 2 as follows

K1 =
(
qR ΨR •D−α

Θ

)
•
(
Dα

Θ • ∇σ
Θk •Dα′

Θ

)
•
(
D−α′

Θ • (1−ΨR)qR

)
,
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28 2. CALDERÓN-ZYGMUND Lp THEORY

K2 =
(
qR (1−ΨR) •D−β

Θ

)
•
(
Dβ

Θ • ∇σ
Θk •Dβ′

Θ

)
•
(
D−β′

Θ • (1−ΨR)qR

)
,

with α′ = n+1−α and β′ = n+ 1− β. Using the terminology Kj = Aj •Bj •Cj

for the brackets above and according to the operator-valued (trivial) extension of
Lemma 2.2, we find for BΘ = L(Fn)⊗̄L∞(Rn)⊗̄RΘ that∥∥TKj

: RΘ → BΘ

∥∥ ≤
∥∥(id⊗ τΘ)(AjA

∗
j )
∥∥ 1

2

BΘ

∥∥Bj

∥∥
BΘ⊗̄Rop

Θ

∥∥(id⊗ τΘ)(C
∗
jCj)

∥∥ 1
2

BΘ
.

Since Bj = (σΘ⊗ id)(dρΘ •∇Θk•dn+1−ρ
Θ ) for ρ = α, β and σΘ is a ∗-homomorphism

we deduce from the hypotheses that ‖B1‖+ ‖B2‖ ≤ A2. Therefore, recalling that
we have α + α′ = β + β′ = n+ 1, it suffices to prove the following inequalities for
the terms associated to Aj and Cj∥∥(id⊗ τΘ)(A1A

∗
1)
∥∥ 1

2

BΘ
≤ Cn(α )R

n
2 −α,∥∥(id⊗ τΘ)(C

∗
1C1)

∥∥ 1
2

BΘ
≤ Cn(α

′)R
n
2 −α′

,∥∥(id⊗ τΘ)(A2A
∗
2)
∥∥ 1

2

BΘ
≤ Cn(β )R

n
2 −β ,∥∥(id⊗ τΘ)(C

∗
2C2)

∥∥ 1
2

BΘ
≤ Cn(β

′)R
n
2 −β′

,

for any α < Kn − 1
2 < β < Kn + 1

2 . We will justify the above estimates for A1

and C1, the proof of the others is very similar. Let ΔRnf(x, y) = f(x + y) be the
comultiplication map on Rn. According to Lemma 1.5

(σΘ ⊗ id) ◦ πΘ = (id⊗ πΘ) ◦ΔRn .

In particular, A∗
1 = (id⊗ πΘ)

(
ΔRn(| · |−α)qR(1⊗ ψR)

)
and we find∥∥(id⊗ τΘ)(A1A

∗
1)
∥∥ 1

2

BΘ
=

∥∥A∗
1

∥∥
L∞(Rn)⊗̄RΘ⊗̄Lc

2(R
op
Θ )

≤
∥∥id⊗ πΘ

∥∥ ∥∥ΔRn(| · |−α)qR(1⊗ ψR)
∥∥
L∞(Rn)⊗̄Lc

2(R
n)
,

where id⊗πΘ : L∞(Rn)⊗̄Lc
2(R

n) → L∞(Rn)⊗̄RΘ⊗̄Lc
2(R

op
Θ ). Its norm is dominated

by the cb-norm of πΘ : Lc
2(R

n) → RΘ⊗̄Lc
2(R

op
Θ ). We already proved in Lemma 1.5

the cb-contractivity of πΘ : Lc
2(R

n) → Lc
2(RΘ)⊗̄Rop

Θ and the exact same argument
can be trivially adapted to show that ‖id ⊗ πΘ‖ ≤ 1 in the right hand side of the
above inequality. It then remains to estimate

sup
x∈Rn

qR(x)
(∫

Rn

|x+ y|−2αψ2
R(y) dy

) 1
2 ≤

(∫
B5R(0)

|y|−2αdy
) 1

2 � R
n
2 −α

for α < n
2 . In the case of C1 = (id⊗ πΘ)

(
ΔRn(| · |−α′

)qR ⊗ (1− ψR)
)
we get

sup
x∈Rn

qR(x)
(∫

Rn

|x+ y|−2α′
(1− ψR(y))

2 dy
) 1

2 ≤
(∫

Bc
R(0)

|y|−2α′
dy
) 1

2 � R
n
2 −α′

for α′ > n
2 . The same argument applies for A2 and C2. This proves claim (2.2.2).

Conclusion. The argument above proves that Tk : L∞(RΘ) → BMOc(RΘ) defines
a bounded operator with norm dominated by Cn(α, β)(A1 +A2). The exact same
argument can be used after matrix amplification to prove that the cb-norm of Tk

satisfies the same upper bound. This completes the proof of the theorem. �
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2.3. CZ EXTRAPOLATION: GENERAL CASE 29

Remark 2.7. Our kernel conditions in Theorem 2.6 are natural extensions
of the classical ones [34, 68]. The price for noncommutativity is a concrete and
balanced left/right location of the exponents α, β, which of course is meaningless in
the commutative setting. These surprisingly transparent Calderón-Zygmund kernel
conditions are possible due to the very precise geometric information on RΘ that we
collected in Chapter 1. Our results below for pseudodifferential operators crucially
rely on these conditions. For more general von Neumann algebras, the resulting
conditions are necessarily less transparent [44].

2.3. CZ extrapolation: General case

If S ′
Θ denotes the space of continuous linear functionals on SΘ —tempered

distributions— our aim now is to generalize our L∞ → BMOc estimate in Theorem
2.6 for continuous linear maps T ∈ L(SΘ,S ′

Θ) to incorporate Calderón-Zygmund
kernels. This imposes a careful analysis of tempered Θ-distributions and how this
affects our former kernel manipulations. By symmetrization, interpolation and
duality, we shall obtain Lp-boundedness of quantum CZOs.

2.3.1. Tempered distributions. The Schwartz class S(Rn) of Euclidean
smooth functions with rapid decay is equipped with the locally convex topology
determined by the seminorms pα,β(f) = supx∈Rn |xα∂β

xf(x)| for f : Rn → C and
all α, β ∈ Nn. The quantum analogue for ϕ = λΘ(f) in SΘ was described in Remark
1.10. In particular, ϕj = λΘ(fj) converges to 0 in SΘ when

lim
j→∞

∥∥P (xΘ)∂
β
Θ

(
λΘ(fj)

)
Q(xΘ)

∥∥
RΘ

= 0

for all β ∈ Nn and all quantum monomials

P (xΘ) =
→∏

1≤r≤m�

xΘ,jr and Q(xΘ) =
→∏

1≤s≤mr

xΘ,ks
.

By Remark 1.10, this holds iff

lim
j→∞

∥∥∥λΘ

[( →∏
1≤r≤m�

D�
Θ,jr

)( →∏
1≤s≤mr

Dr
Θ,ks

)
M(2πiξ)βfj

]∥∥∥
RΘ

= 0.

Lemma 2.8. If Θ1,Θ2 ∈ An(R) we find that

lim
j→∞

λΘ1
(fj) = 0 in SΘ1

⇔ lim
j→∞

λΘ2
(fj) = 0 in SΘ2

.

Proof. Let us set

pΘP,Q,β

(
λΘ(f)

)
=
∥∥P (xΘ)∂

β
Θ

(
λΘ(f)

)
Q(xΘ)

∥∥
RΘ

and assume that limj→∞ pΘ1

P1,Q1,β1

(
λΘ1

(fj)
)
= 0 for all β1 ∈ Nn and all quantum

Θ1-monomials P1, Q1. Given β2 ∈ Nn and quantum Θ2-monomials P2, Q2 it then
suffices to show that

lim
j→∞

pΘ2

P2,Q2,β2

(
λΘ2

(fj)
)
= 0.

According to Remark 1.10, we may find two commuting operators P2[D
�
Θ2,j

] and

Q2[D
r
Θ2,j

] —sums of modulations and derivations— satisfying the following identity

pΘ2

P2,Q2,β2
(λΘ2

(fj)) =
∥∥∥λΘ2

(
P2[D

�
Θ2,j ]Q2[D

r
Θ2,j ]M(2πiξ)β2 fj

)∥∥∥
RΘ2

.
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30 2. CALDERÓN-ZYGMUND Lp THEORY

Applying Riemann-Lebesgue and Cauchy-Schwartz with B(ξ) = 1+|ξ|n and B−1(ξ)

pΘ2

P2,Q2,β2
(λΘ2

(fj)) ≤
∥∥∥P2[D

�
Θ2,j ]Q2[D

r
Θ2,j ]M(2πiξ)β2 fj

∥∥∥
L1(Rn)

�
∥∥∥MB(ξ)P2[D

�
Θ2,j ]Q2[D

r
Θ2,j ]M(2πiξ)β2 fj

∥∥∥
L2(Rn)

=
∥∥∥λΘ1

(
MB(ξ)P2[D

�
Θ2,j ]Q2[D

r
Θ2,j ]M(2πiξ)β2 fj

)∥∥∥
L2(RΘ1

)

By Proposition 1.12, there exists a quantum Θ1-polynomial R1(xΘ1
), whose inverse

lives in L2(RΘ1
). Therefore, multiplying and dividing by it on the left hand side

yields

pΘ2

P2,Q2,β2
(λΘ2

(fj)) �
∥∥∥R1(xΘ1

)λΘ1

(
MB(ξ)DΘ2

(P2)DΘ2
(Q2)M(2πiξ)β2 fj

)∥∥∥
RΘ1

=
∥∥∥λΘ1

(
R1[D

�
Θ1,j ]MB(ξ)P2[D

�
Θ2,j ]Q2[D

r
Θ2,j ]M(2πiξ)β2 fj︸ ︷︷ ︸

A(fj)

)∥∥∥
RΘ1

.

Using standard commutation relations, A(fj) may be written as

A(fj) =
∑

k
P1k[D

�
Θ1,j ]Q1k[D

r
Θ1,j ]M(2πiξ)β1k fj

for finitely many β1k ∈ Nn and quantum Θ1-monomials P1k and Q1k. �
A linear functional L : SΘ → C is in S ′

Θ when it satisfies that limj→∞〈L,ϕj〉 = 0
for any sequence ϕj ∈ SΘ converging to 0. Using the unitaries jΘ : expξ �→ λΘ(ξ)
we construct jΘ1Θ2

= jΘ2
◦ j∗Θ1

: λΘ1
(ξ) �→ λΘ2

(ξ). According to Lemma 2.8 and
given L ∈ S ′

Θ1
, this means that 〈jΘ1Θ2

L, λΘ2
(f)〉 := 〈L, λΘ1

(f)〉 defines a tempered
distribution in S ′

Θ2
. Since this process is invertible, it turns out that the theory of

tempered distributions in RΘ is formally equivalent to the classical theory.
Let us now consider continuous linear operators T ∈ L(SΘ,S ′

Θ). Of course,
since the topology in S ′

Θ is that of pointwise convergence, a linear map T : SΘ → S ′
Θ

is continuous whenever limj〈T (λΘ(fj)), λΘ(g)〉 = 0 for any family λΘ(fj) which
converges to 0 in SΘ and any λΘ(g) ∈ SΘ. To identify the kernel of T ∈ L(SΘ,S ′

Θ)
consider j∗ΘTjΘ ∈ L(S(Rn),S(Rn)′) where jΘ : S(Rn) → SΘ and j∗Θ : S ′

Θ → S(Rn)′

by our discussion above. Then, by a well-known result of Schwartz, there exists a
unique kernel m ∈ S ′(R2n) = (S(Rn)⊗π S(Rn))′ satisfying〈

j∗ΘTjΘf, g
〉
=
〈
m, g ⊗ f

〉
for all f, g ∈ S(Rn).

Therefore, given T ∈ L(SΘ,S ′
Θ) we find its associated kernel

k = jΘ ⊗ jΘ(m) ∈ S ′
Θ⊕Θ � (SΘ ⊗π SΘ)

′

such that〈
T (λΘ(f)), λΘ(g)

〉
=

〈
j∗ΘTjΘ(λ0(f)), λ0(g)

〉
=

〈
m,λ0(g)⊗ λ0(f)

〉
=

〈
k, λΘ(g)⊗ λΘ(f)

〉
.

Now, according to the density of the quantum Schwartz class SΘ⊕Θ in S ′
Θ⊕Θ —since

the same result also holds in the commutative case— we easily conclude the density
of the algebraic tensor product SΘ⊗alg SΘ in S ′

Θ⊕Θ. This proves that the family of
algebraic kernels we considered for the proof of Theorem 2.6 are dense in the space
S ′
Θ⊕Θ of arbitrary kernels for maps in L(SΘ,S ′

Θ). Moreover, by the weak-∗ density
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2.3. CZ EXTRAPOLATION: GENERAL CASE 31

of trigonometric polynomials in RΘ⊕Θ, we may also approximate S ′
Θ⊕Θ by finite

sums of the form

k =
∑

j
w(ξj , ηj)λΘ(ξj)

∗ ⊗ λΘ(ηj)
∗.

According to our expression above —Section 2.1— for kernels affiliated to RΘ⊗̄Rop
Θ

k =

∫
Rn×Rn

k̂(ξ, η)λΘ(ξ)⊗ λΘ(η)
∗ dμ(ξ, η),

this result amounts to say (not surprising) that kernels associated to finite sums of
Dirac deltas are dense. Note that identity

〈
T (λΘ(f)), λΘ(g)

〉
=
〈
k, λΘ(g)⊗λΘ(f)

〉
takes the following form for finite sums of Dirac deltas〈

T (λΘ(f)), λΘ(g)
〉
=
∑

j
w(ξj , ηj)f(ηj)g(ξj) =

〈
k, λΘ(g)⊗ λΘ(f)

〉
.

2.3.2. Kernel manipulations and derivations. In our model case we have
decomposed the kernel kσ = (σΘ ⊗ id)(k) as kσ • πΘ(ψR) + kσ • (1 − πΘ(ψR))
and, after applying our Poincaré type inequality to the second term, we further
decomposed the resulting kernel K as πΘ(ψR) •K+ (1− πΘ(ψR)) •K. This leads
us to understand the same operation for general kernels in S ′

Θ⊕Θ. To that end, we
introduce the following operations for L ∈ S ′

Θ〈
λΘ(ξ)L,ϕ

〉
=
〈
L,ϕλΘ(ξ)

〉
and

〈
LλΘ(ξ), ϕ

〉
=
〈
L, λΘ(ξ)ϕ

〉
.

Lemma 2.9. Given ψ ∈ S(Rn) and T ∈ L(SΘ,S ′
Θ), the maps

M �
ψ(T )(λΘ(f)) =

∫
Rn

ψ̂(ξ)λΘ(ξ)T (λΘ(ξ)
∗λΘ(f)) dξ,

Mr
ψ(T )(λΘ(f)) =

∫
Rn

ψ̂(ξ)T (λΘ(f)λΘ(ξ)
∗)λΘ(ξ) dξ,

belong to L(SΘ,S ′
Θ) and their kernels extend πΘ(ψ) • k and k • πΘ(ψ) respectively.

Proof. We shall prove the assertion only for M �
ψ(T ), since both operators can be

handled similarly. In order to prove continuity, assume that λΘ(fj) → 0 in SΘ as
j → ∞. Then we need to show that

lim
j→∞

〈
M �

ψ(T )(λΘ(fj)), λΘ(g)
〉

= lim
j→∞

∫
Rn

ψ̂(ξ)
〈
T (λΘ(ξ)

∗λΘ(fj)), λΘ(g)λΘ(ξ)
〉
dξ

= lim
j→∞

∫
Rn

ψ̂(ξ)
〈
k, λΘ(g)λΘ(ξ)⊗ λΘ(ξ)

∗λΘ(fj)
〉
dξ

vanishes for all g ∈ S(Rn). We first note that

lim
j→∞

〈
T (λΘ(ξ)

∗λΘ(fj)), λΘ(g)λΘ(ξ)
〉
= 0

for all ξ ∈ Rn, since λΘ(ξ)
∗λΘ(fj) → 0 in SΘ as j → ∞. Indeed, we have

λΘ(ξ)
∗λΘ(fj) = λΘ(fjξ) for fjξ(η) = fj(η+ ξ)e−2πi〈ξ,Θ↓η〉 and we then use Lemma

2.8 with (Θ1,Θ2) = (Θ, 0). Once this is known, we use the dominated convergence
theorem, for which we need an integrable upper bound of

Φ(ξ) = sup
j≥1

∣∣ψ̂(ξ)〈k, λΘ(g)λΘ(ξ)⊗ λΘ(ξ)
∗λΘ(fj)

〉∣∣.
Since λΘ(g)λΘ(ξ) = λΘ(gξ) for gξ(η) = g(η − ξ)e2πi〈η−ξ,Θ↓ξ〉, we have〈

k, λΘ(g)λΘ(ξ)⊗ λΘ(ξ)
∗λΘ(fj)

〉
=
〈
j∗Θ ⊗ j∗Θ(k), ĝξ ⊗ f̂jξ

〉
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32 2. CALDERÓN-ZYGMUND Lp THEORY

with j∗Θ ⊗ j∗Θ(k) ∈ S(R2n)′. According to [33, Proposition 2.3.4], there exists an
absolute constant C and positive integers k,m such that the following inequality
holds

Φ(ξ) ≤ C|ψ̂(ξ)| sup
j≥1

∑
|α|≤k
|β|≤m

pα,β
(
ĝξ ⊗ f̂jξ

)

≤ C|ψ̂(ξ)P (ξ)| sup
j≥1

∑
|α|≤k
|β|≤m

pα,β
(
ĝ ⊗ f̂j

)
� |ψ̂(ξ)P (ξ)| ∈ S(Rn)

for certain polynomial P . On the other hand, for integrable kernels

M �
ψ(T )(λΘ(f)) =

∫
Rn

ψ̂(ξ)λΘ(ξ)(id⊗ τΘ)
(
(1⊗ λΘ(ξ)

∗λΘ(f)) • k
)
dξ

=

∫
Rn

ψ̂(ξ)(id⊗ τΘ)
(
(1⊗ λΘ(f)) • (λΘ(ξ)⊗ λΘ(ξ)

∗) • k
)
dξ

= (id⊗ τΘ)
(
(1⊗ λΘ(f)) • πΘ(ψ) • k

)
= TπΘ(ψ)•k(λΘ(f)).

Interchanging trace and integral is justified for finite tensors by evaluation against
a test function, and a fortiori by density of these kernels in L(SΘ,S ′

Θ) � S ′
Θ⊕Θ. �

Remark 2.10. Given † ∈ {�, r}, it is also clear that∥∥M†
ψ(T ) : L2(RΘ) → L2(RΘ)

∥∥ ≤
(∫

Rn

|ψ̂(ξ)| dξ
)∥∥T : L2(RΘ) → L2(RΘ)

∥∥.
Remark 2.11. It will also be relevant to observe that〈

M �
ψ(T )(λΘ(f)), λΘ(g)

〉
=

〈
k,
(
λΘ(g)⊗ λΘ(f)

)
• πΘ(ψ)

〉
,〈

Mr
ψ(T )(λΘ(f)), λΘ(g)

〉
=

〈
k, πΘ(ψ) •

(
λΘ(g)⊗ λΘ(f)

)〉
,

for the kernel k ∈ S ′
Θ⊕Θ associated to T and any ψ ∈ S(Rn). Indeed, we have〈

M �
ψ(T )(λΘ(f)), λΘ(g)

〉
=

∫
Rn

ψ̂(ξ)
〈
T (λΘ(ξ)

∗λΘ(f)), λΘ(g)λΘ(ξ)
〉
dξ

=

∫
Rn

ψ̂(ξ)
〈
k, λΘ(g)λΘ(ξ)⊗ λΘ(ξ)

∗λΘ(f)
〉
dξ

=

∫
Rn

ψ̂(ξ)
〈
k,
(
λΘ(g)⊗ λΘ(f)

)
•
(
λΘ(ξ)⊗ λΘ(ξ)

∗)〉 dξ

which gives the desired identity. Moreover, these identities hold for any function ψ
for which both (λΘ(g)⊗λΘ(f))•πΘ(ψ) and πΘ(ψ)• (λΘ(g)⊗λΘ(f)) stay in SΘ⊕Θ.

Again as we did in the model case above, we shall need to operate with module
extensions. Given a linear map T : SΘ → (S(Rn) ⊗π SΘ)

′ we will use its module
extension T ′ : SΘ ⊗π SΘ → (S(Rn)⊗π SΘ)

′ given by

T ′ : λΘ(f)⊗ λΘ(g) �→ T (λΘ(f))(1⊗ λΘ(g)),

where
〈
T (λΘ(f))(1⊗ λΘ(g)), (a⊗ b)

〉
=
〈
T (λΘ(f)), (1⊗ λΘ(g))(a⊗ b)

〉
.

Lemma 2.12. There exists a continuous map σΘ : S ′
Θ → (S(Rn)⊗π SΘ)

′ which
extends the corepresentation σΘ : RΘ � λΘ(ξ) �→ expξ ⊗λΘ(ξ) ∈ L∞(Rn)⊗̄RΘ. In
particular, given Tk ∈ L(SΘ,S ′

Θ) with kernel k ∈ S ′
Θ⊕Θ the composition Tkσ

= σΘTk
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2.3. CZ EXTRAPOLATION: GENERAL CASE 33

belongs to L(SΘ, (S(Rn) ⊗π SΘ)
′) with kernel kσ = (σΘ ⊗ id)k. Moreover, T ′

kσ

extends to a continuous right modular map SΘ ⊗π SΘ → (S(Rn)⊗π SΘ)
′ with

T ′
kσ

(
(λΘ(f)⊗ 1)flip(πΘ(ψ))

)
= Mr

ψ(Tkσ
)(λΘ(f)).

Proof. The map q(f̂ , ĝ) = f̂g arises as the conjugation of the multiplication map
(f, g) �→ fg by the Fourier transform. It thus follows from the Leibniz rule that it
defines a continuous map S(Rn)⊗π S(Rn) → S(Rn). Letting qΘ = jΘ ◦ q ◦ (id⊗ j∗Θ)
we define for L ∈ S ′

Θ〈
σΘL, λ0(f)⊗ λΘ(g)

〉
=
〈
L, qΘ(λ0(f)⊗ λΘ(g))

〉
.

It is clear that σΘ : S ′
Θ → (S(Rn)⊗π SΘ)

′ is continuous and we find〈
σΘ(λΘ(ξ)

∗), λ0(f)⊗ λΘ(g)
〉

= τΘ
(
λΘ(ξ)

∗λΘ(fg)
)

= f(ξ)g(ξ)

=
〈
exp−ξ ⊗λΘ(ξ)

∗, λ0(f)⊗ λΘ(g)
〉

and thus σΘ so defined extends the corepresentation σΘ introduced in Section 1.1.2.
This immediately implies that Tkσ

= σΘTk belongs to L(SΘ, (S(Rn)⊗π SΘ)
′) and

its kernel kσ = (σΘ ⊗ id)(k). Let us now justify the continuity of the module
extension T ′

kσ
. Indeed, the module extension of σΘjΘ, defines a continuous linear

map

W : S(Rn)′ ⊗ SΘ → (S(Rn)⊗ SΘ)
′

satisfying W (expξ ⊗λΘ(η)) = expξ ⊗λΘ(ξ)λΘ(η). Its continuity follows easily from
the continuity of σΘ. Next, observe that T ′

kσ
= W ◦ (j∗ΘTk ⊗ id) since it trivially

holds for the dense class of finite sums k =
∑

j w(ξj , ηj)λΘ(ξj)
∗ ⊗ λΘ(ηj)

∗. This

automatically implies the continuity of the module extension T ′
kσ
. It remains to

justify the given identity for T ′
kσ

T ′
kσ

(
(λΘ(f)⊗ 1)flip(πΘ(ψ))

)
=

∫
Rn

ψ̂(ξ)T ′
kσ

(
λΘ(f)λΘ(ξ)

∗ ⊗ λΘ(ξ)
)
dξ

=

∫
Rn

ψ̂(ξ)Tkσ

(
λΘ(f)λΘ(ξ)

∗)(1⊗ λΘ(ξ)) dξ,

which is the definition of Mr
ψ(Tkσ

)(λΘ(f)). This completes the proof. �
Our next goal is to generalize the Poincaré type inequality in Proposition 1.6

to the context of tempered distributions. Of course, the free Θ-gradient can be
understood as a map ∇Θ : S ′

Θ → L(Fn)⊗ S ′
Θ in the canonical way

∇ΘL =

n∑
k=1

sk ⊗ ∂k
ΘL for L ∈ S ′

Θ,

where 〈∂k
ΘL, λΘ(f)〉 = −〈L, ∂k

ΘλΘ(f)〉 = −2πi〈L, λΘ(f[k])〉 and f[k](ξ) = ξkf(ξ).
Now, given a Rn-ball BR of radius R with characteristic function qR, Proposition
1.6 gives an upper bound for

∥∥ϕ− ϕBR

∥∥
RΘ⊗̄Lc

2(φ)
=
∥∥∥(−

∫
BR

(
ϕ− ϕBR

)∗(
ϕ− ϕBR

)
dμ
) 1

2
∥∥∥
RΘ

in terms of the operator norm of the gradient of ϕ localized at BR. Let us recall
that the predual of RΘ⊗̄Lc

2(φ) with respect to the linear bracket is given by the

Licensed to Univ of Ill at Urbana-Champaign.  Prepared on Wed Sep 14 07:37:29 EDT 2022for download from IP 130.126.162.126.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



34 2. CALDERÓN-ZYGMUND Lp THEORY

space AΘ(BR) = L1(Rop
Θ )⊗̂Lr

2(φ), whose norm is∥∥ψ − ψBR

∥∥
L1(Rop

Θ )⊗̂Lr
2(φ)

=
∥∥∥(−

∫
BR

(
ψ − ψBR

)(
ψ − ψBR

)∗
dμ
) 1

2
∥∥∥
L1(RΘ)

.

It is a simple exercise to show that S(Rn)⊗π SΘ is norm dense in L1(Rop
Θ )⊗̂Lr

2(φ).
In particular, the following result gives an extension of our Poincaré type inequality.

Proposition 2.13. Given L ∈ (S(Rn)⊗π SΘ)
′, assume(

∂k ⊗ idRΘ

)
(L) ∈ L∞(BR)⊗̄RΘ

for 1 ≤ k ≤ n. Then, the following Poincaré type inequality holds

sup
ψ∈S(Rn)⊗πSΘ

‖ψ−ψBR
‖AΘ(BR)≤1

∣∣〈qRL,ψ − ψBR

〉∣∣
≤ 2

√
2R

∥∥∥(1⊗ qR ⊗ 1)(∇⊗ idRΘ
)(L)

∥∥∥
L(Fn)⊗̄L∞(Rn)⊗̄RΘ

.

Proof. Assume for clarity that BR is centered at the origin, see Proposition 1.6
for the standard modifications in the general case. Since ∂kL ∈ L∞(Rn)⊗̄RΘ, we
may define

L̃(x) =

∫ 1

0

n∑
k=1

∂kL(tx)xk dt

=

∫ 1

0

(τL(Fn) ⊗ idRn︸ ︷︷ ︸
ERn

)
(
qR(x)∇L(tx)︸ ︷︷ ︸

A(t)

qR(x)s(x)︸ ︷︷ ︸
B

)
dt

for x ∈ BR. Now let ϕj ∈ S(Rn) ⊗π SΘ be an approximating sequence for L and
define the functions ϕ̃j(x) = ϕj(x)−ϕj(0) accordingly. In particular, the following
identity holds for every test function ψ ∈ S(Rn)⊗π SΘ∫

BR

τΘ
(
ϕ̃j(x)(ψ(x)− ψBR

)
)
dx =

∫
BR

τΘ
(
ϕj(x)(ψ(x)− ψBR

)
)
dx.

By approximation we get∣∣〈qRL,ψ − ψBR

〉∣∣ =
∣∣〈qRL̃, ψ − ψBR

〉∣∣
=

∣∣∣ ∫ 1

0

〈
ERn(A(t)B), ψ − ψBR

〉
dt
∣∣∣

≤
(∫ 1

0

∥∥ERn(A(t)B)
∥∥
RΘ⊗̄Lc

2(φ)
dt
)∥∥ψ − ψBR

∥∥
AΘ(BR)

.

Now we may complete the argument as we did in the proof of Proposition 1.6. �

2.3.3. A Calderón-Zygmund extrapolation theorem. We are ready to
prove an estimate for general Calderón-Zygmund operators Tk. According to the
classical theory, we impose cancellation and smoothness conditions on the kernel.
To be more precise, let Tk ∈ L(SΘ,S ′

Θ) admit a kernel k ∈ S ′
Θ⊕Θ with gradient

(∇Θ ⊗ idRop
Θ
)(k) affiliated to L(Fn)⊗̄RΘ⊗̄Rop

Θ . Then, we shall call Tk a column

Calderón-Zygmund operator with parameters (Aj , αj , βj) when:

i) Cancellation ∥∥Tk : L2(RΘ) → L2(RΘ)
∥∥ ≤ A1.
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2.3. CZ EXTRAPOLATION: GENERAL CASE 35

ii) Kernel smoothness. If Kn = 1
2 (n+ 1), there exists

α < Kn − 1

2
< β < Kn +

1

2

satisfying the gradient conditions below for ρ = α, β∣∣∣dρΘ • (∇Θ ⊗ idRop
Θ
)(k) • dn+1−ρ

Θ

∣∣∣ ≤ A2.

Remark 2.14. We implicitly use that〈
dγΘ • ∇Θk • dηΘ, z

〉
=
〈
∇Θk, d

η
Θ • z • dγΘ

〉
,

∥∥dγΘ • ∇Θk • dηΘ
∥∥
RΘ⊗̄Rop

Θ

= sup
z∈L(Fn)⊗̄SΘ⊕Θ

‖z‖L1(L(Fn)⊗̄RΘ⊗̄Rop
Θ

)≤1

〈
∇Θk, d

η
Θ • z • dγΘ

〉
.

As explained in Remark 2.11, this is justified for any tempered distribution when
γ, η ∈ 2Z, but not for γ, η < 2 since dηΘ•z•dγΘ does not stay in the test space SΘ⊕Θ.
The necessity of using these values —only for n = 2 in the simpler statement of
Theorem A— forces us to impose that ∇Θk is, in addition, affiliated to the algebra.
Although our assumption is admissible in view of the classical theory we could
have alternatively used an approximation argument dγΘ = limε(d

2
Θ + ε1)γ/2 to

avoid it. On the other hand, the kernel k —not its gradient— should be treated as
a distribution since this allows certain Dirac deltas which do appear in the classical
theory, see Section 2.3.4 below for further details.

Proposition 2.15. If Tk is a column CZO and ϕ ∈ SΘ∥∥Tk(ϕ)
∥∥
BMOc(RΘ)

≤ Cn(α, β)
(
A1 +A2

)
‖ϕ‖RΘ

.

Proof. We shall adapt our argument in the model case of Theorem 2.6. Given
ϕ = λΘ(f) ∈ SΘ, this means that we need to control the operator-valued BMO norm
of σΘ(Tkϕ). According to Lemma 2.12, we have σΘTk = Tkσ

for kσ = (σΘ ⊗ id)(k)
and we may decompose it as follows

kσ = kσ • πΘ(ψR)︸ ︷︷ ︸
kσ1(R)

+ kσ •
(
1− πΘ(ψR)

)
︸ ︷︷ ︸

kσ2(R)

,

where the decomposition uses Lemma 2.9 and Remark 2.11. Next, we need to show
the validity of (2.2.1). To that end we follow the argument in Theorem 2.6 by
recalling the crucial identity

T ′
kσ

(
(λΘ(f)⊗ 1)flip(πΘ(ψ))

)
= Mr

ψ(Tkσ
)(λΘ(f)),

which was justified in Lemma 2.12 for general kernels. This is the part of the
proof which requires L2-boundedness of Tk. Once we have completed our argument
for kσ1

(R), we apply the Poincaré type inequality in Proposition 2.13 to the term
associated to kσ2(R). This gives∥∥∥(−

∫
BR

∣∣Tkσ2(R)ϕ− (Tkσ2(R)ϕ)BR

∣∣2dμ) 1
2
∥∥∥
RΘ

� R
∥∥∥ (1⊗ qR ⊗ 1)(∇⊗ idRΘ

)(Tkσ2(R)ϕ)︸ ︷︷ ︸
TK(ϕ)

∥∥∥
L(Fn)⊗̄L∞(Rn)⊗̄RΘ

.
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36 2. CALDERÓN-ZYGMUND Lp THEORY

As in Theorem 2.6, the goal is to show that K is the distribution

K = qR∇σ
Θk • (1−ΨR) ∈ L(Fn)⊗̄

(
S(Rn)⊗π SΘ ⊗π SΘ

)′
with qR∇σ

Θk = (1 ⊗ qR ⊗ 1⊗2)(id ⊗ σΘ ⊗ id)(∇Θ ⊗ id)[k] and ΨR = πΘ(ψR). By
density, it suffices to justify it for elementary kernels k = λΘ(ξ) ⊗ λΘ(η). This is
possible via the identity (∇⊗idRΘ

)◦σΘ = (idL(Fn)⊗σΘ)◦∇Θ due to our extensions
of the maps σΘ and ∇Θ for tempered distributions above. We may now decompose
K by means of Lemma 2.9 as follows

K = qRΨR • ∇σ
Θk • (1−ΨR)︸ ︷︷ ︸
K1

+ qR(1−ΨR) • ∇σ
Θk • (1−ΨR)︸ ︷︷ ︸

K2

.

At this point, the argument follows verbatim the proof of Theorem 2.6. Indeed, we
further decompose Kj = Aj •Bj •Cj as we did there and apply Lemma 2.2 —valid
for affiliated kernels, as we assume for Kj— to obtain∥∥TKj

: RΘ → BΘ

∥∥(2.3.1)

≤
∥∥(id⊗ τΘ)(AjA

∗
j )
∥∥ 1

2

BΘ

∥∥Bj

∥∥
BΘ⊗̄Rop

Θ

∥∥(id⊗ τΘ)(C
∗
jCj)

∥∥ 1
2

BΘ

with BΘ = L(Fn)⊗̄L∞(Rn)⊗̄RΘ. The estimates for Aj ,Bj ,Cj also apply here. �

Remark 2.16. Alternatively, if we do not want to assume that ∇Θk is affiliated
to L(Fn)⊗̄RΘ⊗̄Rop

Θ and use the approximation argument indicated in Remark 2.14,
we should be able to generalize the inequality (2.3.1) for tempered distributions.
Recall that the norm of TKj

: RΘ → BΘ can be expressed as the supremum —over
Schwartz elements ϕ, φ respectively in the unit ball of Rop

Θ and L1(BΘ)— of the
linear brackets∣∣〈TKj

ϕ, φ
〉∣∣ =

∣∣〈Aj •Bj •Cj , φ⊗ ϕ
〉∣∣

≤
∥∥Aj •Bj •Cj

∥∥
BΘ⊗̄L1(Rop

Θ )
‖φ‖L1(BΘ)‖ϕ‖Rop

Θ
.

Now we use the following characterization of the norm in M⊗̄X∥∥A∥∥M⊗̄X
= sup

α,β∈B1(L2(M))

∥∥(α⊗ 1)A(β ⊗ 1)
∥∥
L1(M;X)

,

which is due to Pisier [61] when M is hyperfinite and X is any operator space. It is
also well-known that Pisier’s identity still holds for non-hyperfinite von Neumann
algebras —as in our case with M = BΘ— as long as X is a noncommutative Lp

space. In fact, Pisier’s identity generalizes to arbitrary mixed Lp(Lq)-norms. In
our case∥∥Aj •Bj •Cj

∥∥
BΘ⊗̄L1(Rop

Θ )

= sup
a,c∈B1(L2(BΘ))

∥∥(a⊗ 1) •Aj •Bj •Cj • (c⊗ 1)
∥∥
L1(BΘ⊗̄Rop

Θ )
.

In particular, we find∥∥(a⊗ 1) •Aj •Bj •Cj • (c⊗ 1)
∥∥
1
≤
∥∥(a⊗ 1) •Aj

∥∥
2

∥∥Bj

∥∥
∞
∥∥Cj • (c⊗ 1)

∥∥
2

and the elementary inequalities below complete the proof of (2.3.1)∥∥(a⊗ 1) •Aj

∥∥
2

≤ ‖a‖2
∥∥(id⊗ τΘ)(AjA

∗
j )
∥∥ 1

2

BΘ
,∥∥Cj • (c⊗ 1)

∥∥
2

≤ ‖c‖2
∥∥(id⊗ τΘ)(C

∗
jCj)

∥∥ 1
2

BΘ
.
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2.3. CZ EXTRAPOLATION: GENERAL CASE 37

Proposition 2.17. Every column CZO is normal. In particular∥∥Tk : RΘ → BMOc(RΘ)
∥∥
cb

≤ Cn(α, β)
(
A1 +A2

)
.

Proof. Let T ∗
k : L2(RΘ) → L2(RΘ) denote the adjoint of Tk, so that∣∣τΘ(T ∗

k (λΘ(f))λΘ(g)
∗)∣∣ =

∣∣τΘ(λΘ(f)Tk(λΘ(g))
∗)∣∣

≤ Cn(α, β)
(
A1 +A2

)∥∥λΘ(f)
∥∥
H1

c(RΘ)

∥∥λΘ(g)
∥∥
RΘ

for all λΘ(f), λΘ(g) ∈ SΘ. Indeed, here H
1
c(RΘ) denotes the predual of BMOc(RΘ)

with respect to the antilinear duality bracket above, as described in Appendix B
below. In particular, this inequality directly follows from Proposition 2.15. Now
we claim that this implies∥∥T ∗

k (ϕ)
∥∥
L1(RΘ)

≤ Cn(α, β)
(
A1 +A2

)
‖ϕ‖H1

c(RΘ)

for all ϕ = λΘ(f) ∈ SΘ. Indeed, let us prove that

z =
T ∗
k (ϕ)

Cn(α, β)
(
A1 +A2

)
‖ϕ‖H1

c(RΘ)

belongs to the unit ball of L1(RΘ). To that end, it clearly suffices to prove that
|τΘ(qzqa)| ≤ 1 for every contraction a in RΘ and every τΘ-finite projection q.
Since z ∈ L2(RΘ), we have zq ∈ L1(RΘ) and Kaplansky density theorem provides
a sequence uj ∈ SΘ in the unit ball of RΘ so that

|τΘ(qzqa)| = lim
j→∞

|τΘ(ujzq)|.

Moreover, since ujz ∈ L1(RΘ), we also find vk ∈ SΘ in the unit ball of RΘ with

|τΘ(qzqa)| = lim
j→∞

|τΘ(ujzq)| = lim
j→∞

lim
k→∞

|τΘ(ujzvk)|.

Finally, since |τΘ(zw)| ≤ 1 for every w ∈ SΘ in the unit ball of RΘ —as we recalled
at the beginning of the proof— and the Schwartz class SΘ is a ∗-algebra we obtain
that |τΘ(qzqa)| ≤ 1 as expected. This proves our claim. Next, we use the norm
density of SΘ in H1

c(RΘ) from Corollary B.10 in Appendix B below to conclude
that T ∗

k : H1
c(RΘ) → L1(RΘ) is bounded. The operator T

∗
k is the antilinear adjoint

corresponding to the duality

L1(RΘ)
∗
= RΘ

with respect to the antilinear duality bracket. Thus

Tk : RΘ → H1
c(RΘ)

∗ � BMOc(RΘ)

with the same constants, see Appendix B for further details on the duality H1−BMO
in this setting. This proves the L∞ → BMOc boundedness of Tk. As in the model
case proved in Theorem 2.6, the cb-boundedness follows similarly and it just requires
a more involved notation to incorporate matrix amplifications. �

Once we have proved the complete L∞ → BMOc boundedness of column CZOs,
the general extrapolation theorem follows from additional assumptions of the same
kind on the kernel, which makes them more symmetric. More precisely, we know
that Tk : RΘ → BMOr(RΘ) is cb-bounded iff the operator

T †
k (λΘ(f)) = Tk(λΘ(f)

∗)∗

defines a completely bounded map from RΘ → BMOc(RΘ). When this is the case
we get a cb-map Tk : RΘ → BMO(RΘ). Of course, the same assumptions for the
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38 2. CALDERÓN-ZYGMUND Lp THEORY

adjoint T ∗
k trivially imply that Tk also defines a cb-map Tk : H1(RΘ) → L1(RΘ)

and interpolation —see Appendix B for details— yields complete Lp-boundedness

for 1 < p < ∞. This means that we should impose that the maps T †
k , T

∗
k , T

∗†
k

are column Calderón-Zygmund operators. It is clear that L2-boundedness follows
automatically from Tk. Therefore, we just need to impose new kernel smoothness
conditions. We have

kernel(T †
k ) = k∗, kernel(T ∗

k ) = flip(k)∗, kernel(T ∗†
k ) = flip(k).

Therefore, the results so far imply the following extrapolation theorem for CZOs.

Theorem 2.18. Let Tk ∈ L(SΘ,S ′
Θ) and assume :

i) Cancellation ∥∥Tk : L2(RΘ) → L2(RΘ)
∥∥ ≤ A1.

ii) Kernel smoothness. There exists

α < Kn − 1

2
< β < Kn +

1

2
< γ

satisfying the gradient conditions below for ρ = α, β, γ∣∣∣dρΘ • (∇Θ ⊗ id)(k) • dn+1−ρ
Θ

∣∣∣+ ∣∣∣dρΘ • (id⊗∇Θ)(k) • dn+1−ρ
Θ

∣∣∣ ≤ A2.

Then, we find the following endpoint estimates for Tk∥∥Tk : H1(RΘ) → L1(RΘ)
∥∥
cb

≤ Cn(α, β, γ)
(
A1 +A2

)
,∥∥Tk : L∞(RΘ) → BMO(RΘ)

∥∥
cb

≤ Cn(α, β, γ)
(
A1 +A2

)
.

In particular, Tk : Lp(RΘ) → Lp(RΘ) is completely bounded for every 1 < p < ∞.

In what follows, a Calderón-Zygmund operator over the quantum Euclidean
space RΘ associated to the parameters (Aj , αj , βj) will be any linear map Tk ∈
L(SΘ,S ′

Θ) satisfying the hypotheses in Theorem 2.18. The kernel considerations
for the adjoint also appear in commutative Calderón-Zygmund theory, whereas the
†-operation is standard and arises from noncommutativity.

2.3.4. The principal value of kernel truncations. As it is customary in
classical Calderón-Zygmund theory, we want to understand how far is an operator
Tk ∈ B(L2(RΘ)) from the principal value singular integral determined by its kernel
truncations. Our aim is to show that the difference is a left/right multiplier. Let
us be more precise. Consider a smooth function ψ ∈ S(Rn) which is identically 1
over B1(0) and vanishes over Rn \ B2(0). Define

ΨΔ,δ = πΘ(ψΔ,δ) with ψΔ,δ(x) = ψ
( x
Δ

)
− ψ

(x
δ

)
= ψΔ(x)− ψδ(x)

for 0 < δ << Δ < ∞. We shall study the kernel truncations ΨΔ,δ • k and k •ΨΔ,δ

and how their limits are related to Tk. To that end, we introduce the notion of
admissible projection. A projection p ∈ RΘ will be called admissible when the
function Rn → Proj(RΘ) defined as

δ �−→
∨

s∈Bδ(0)

σs
Θ(p)

is weak-∗ continuous around δ = 0. Here σs
Θ(λΘ(ξ)) = exp(2πi〈s, ξ〉)λΘ(ξ).
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2.3. CZ EXTRAPOLATION: GENERAL CASE 39

Remark 2.19. Even in the Euclidean setting with Θ = 0, not all projections
are admissible. In that case, the projection-valued function defined above associates
a measurable set A with Bδ[A], the union of all the balls of radius δ with center in
A. If we take, for instance, a dense open subset of [0, 1]n with measure strictly less
than 1, we will have that [0, 1] ⊂ Bδ[A] for every δ > 0, which poses an obstruction
to admissibility. This can be easily fixed in the Euclidean setting by considering
measurable sets which are closed up to a null set.

Lemma 2.20. The bicommutant of admissible projections is the whole algebra
RΘ.

Proof. It suffices to observe that one-dimensional spectral projections of the form
χ[a,b](xΘ,j) are admissible for each of the quantum variables xΘ,j by Remark 2.19
and also that this family trivially generates RΘ. This completes the proof. �

Remark 2.21. Define a closed projection p ∈ RΘ as those whose complement
1 − p is the left support of certain element ϕ ∈ EΘ as defined at beginning of
Chapter 1. By the ∗-stability of SΘ we could have replaced the left support �(ϕ)
by the right one r(ϕ) or even by the full support s(ϕ) of self-adjoint elements. We
conjecture that all closed projections so defined are indeed admissible. At the time
of this writing we have not been able to confirm this conjecture, but this will have
no consequence in Theorem 2.23 below.

Lemma 2.22. Given ϕ ∈ RΘ, there exist projections pδ, qδ such that

πΘ(ψδ) • (1⊗ ϕ) = πΘ(ψδ) • (pδ ⊗ ϕ),

πΘ(ψδ) • (ϕ⊗ 1) = πΘ(ψδ) • (ϕ⊗ qδ).

If r(ϕ) is admissible w∗- lim
δ→0

pδ = r(ϕ), if �(ϕ) is admissible w∗- lim
δ→0

qδ = �(ϕ).

Proof. The assertions concerning qδ follow from those for pδ after applying the
map flip∗ : a ⊗ b �→ b∗ ⊗ a∗, details are left to the reader. Now, let us recall that
the map T : RΘ⊗̄Rop

Θ → CB(L1(RΘ),RΘ) sending a kernel k to the corresponding
map Tk is a complete isometry. Moreover, observe that

Tk•(1⊗ϕ)(φ) = Tk(φϕ) and Tk•(ϕ⊗1)(φ) = Tk(φ)ϕ.

Since we clearly have

‖πΘ(ψδ)‖RΘ⊗̄Rop
Θ

≤ ‖ψ̂δ‖L1(Rn) = ‖ψ̂‖L1(Rn) < ∞,

we know that TπΘ(ψδ) is uniformly in CB(L1(RΘ),RΘ). Let us define

Nδ = spanw∗{�TπΘ(ψδ)(φϕ) : φ ∈ L1(RΘ), � ∈ RΘ

}
⊂ RΘ.

Clearly Nδ is a weak-∗ closed left module. In particular, there must exist certain
projection pδ ∈ RΘ satisfying Nδ = RΘ pδ and the following identity holds for
every element φ ∈ L1(RΘ)

TπΘ(ψδ)•(1⊗ϕ)(φ) = TπΘ(ψδ)(φϕ) = TπΘ(ψδ)(φϕ) pδ = TπΘ(ψδ)•(pδ⊗ϕ)(φ).

Since T is (completely) isometric, πΘ(ψδ) • (1⊗ϕ) = πΘ(ψδ) • (pδ ⊗ϕ). It remains
to show that the projections pδ so defined converges weakly to r(ϕ) as δ → 0+.
Given any φ ∈ L1(RΘ), notice that

TπΘ(ψδ)(φϕ) =

∫
Rn

ψ̂δ(ξ) τΘ
(
λΘ(ξ)

∗φϕ
)
λΘ(ξ) dξ =

∫
B2δ(0)

ψδ(s)σ
s
Θ(φϕ) ds.
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40 2. CALDERÓN-ZYGMUND Lp THEORY

Therefore, its right support satisfies

r
(
TπΘ(ψδ)(φϕ)

)
≤

∨
s∈B2δ(0)

σs
Θ(r(ϕ)) ⇒ pδ ≤

∨
s∈B2δ(0)

σs
Θ(r(ϕ)).

Hence, since pδ ≥ r(ϕ), we conclude by admissibility that w∗- lim
δ→0

pδ = r(ϕ). �

Given Tk ∈ B(L2(RΘ)) ⊂ L(SΘ,S ′
Θ), we truncate it as follows

T �
Δ,δ = M �

ΨΔ,δ
(Tk) and T r

Δ,δ = Mr
ΨΔ,δ

(Tk).

According to Remark 2.10 both truncations T †
Δ,δ satisfy the L2-estimate∥∥T †

Δ,δ : L2(RΘ) → L2(RΘ)
∥∥ ≤ 2

∥∥ψ̂∥∥
1

∥∥Tk : L2(RΘ) → L2(RΘ)
∥∥.

In particular, the Banach-Alaoglu theorem confirms that certain subfamily of our

truncations T †
Δ,δ converges to some L2-bounded operator S†

k : L2(RΘ) → L2(RΘ)

for † ∈ {�, r}. We shall assume for simplicity of notation that the whole family of

truncations converges to S†
k as Δ → ∞ and δ → 0.

Theorem 2.23. There exist z† ∈ RΘ such that

(Tk − S�
k)(a) = az� and (Tk − Sr

k)(a) = zra.

Proof. Given an admissible projection p and by Remark 2.11〈
T r
Δ,δ(λΘ(f)p), λΘ(g)

〉
=
〈
k, πΘ(ΨΔ,δ) •

(
λΘ(g)⊗ λΘ(f)p

)〉
.

Since πΘ(χBR(0)) converges to 1 in the strong operator topology, we can safely
assume that λΘ(g) ⊗ λΘ(f)p = (λΘ(g) ⊗ p) • (1 ⊗ λΘ(f)) is left supported by
πΘ(χBR(0)) for R large enough. Then we have〈

(Tk − T r
Δ,δ)(λΘ(f)p), λΘ(g)

〉
=

〈
k, πΘ(1− ψΔ,δ) •

(
λΘ(g)⊗ λΘ(f)p

)〉
=

〈
k, πΘ(ψδ) •

(
λΘ(g)⊗ λΘ(f)p

)〉
+
〈
k, πΘ(1− ψΔ) •

(
λΘ(g)⊗ λΘ(f)

)〉
.

Since �(λΘ(g)⊗ λΘ(f)p) ≤ πΘ(ψΔ) for large Δ, the second term vanishes when Δ
is large. The identity λΘ(g)⊗ λΘ(f)p = (1⊗ p) • (λΘ(g)⊗ λΘ(f)) allows to apply
Lemma 2.22 to get

πΘ(ψδ) •
(
λΘ(g)⊗ λΘ(f)p

)
= πΘ(ψδ) •

(
pδλΘ(g)⊗ λΘ(f)p

)
for some projection pδ converging to p in the weak−∗ topology. This gives〈

(Tk − T r
Δ,δ)(λΘ(f)p), λΘ(g)

〉
=

〈
k, πΘ(ψδ) •

(
pδλΘ(g)⊗ λΘ(f)p

)〉
=
〈
(Tk − T r

Δ,δ)(λΘ(f)p)pδ, λΘ(g)
〉
.

Taking limits in Δ → ∞ and δ → 0, we get (Tk−Sr
k)(λΘ(f)p) = (Tk−Sr

k)(λΘ(f))p
for any admissible projection p ∈ RΘ. This readily implies that Tk − Sr

k commutes
with the von Neumann algebra generated by right multiplication with admissible
projections and, by Lemma 2.20, we conclude that Tk−Sr

k belongs to the commutant
in B(L2(RΘ)) of RΘ acting by right multiplication. Such algebra is given by RΘ

acting on the left and so, there is a unique zr ∈ RΘ such that (Tk − Sr
k)(a) = zra.

A symmetric argument works for S�
k, which also satisfies the assertion. �
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2.3. CZ EXTRAPOLATION: GENERAL CASE 41

Remark 2.24. We may also consider two-sided principal values T �
Δ,δT

r
Δ′,δ′ .

Taking first a weak-∗ accumulation point in (Δ, δ) and then another in (Δ′, δ′)
gives an element Sk such that Sk(λΘ(f)) = zrλΘ(f)+λΘ(f)z�, for certain z† ∈ RΘ.
This is the quantum analogue of a basic result in Calderón-Zygmund theory, further
details can be found in [34, Proposition 8.1.11].
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CHAPTER 3

Pseudodifferential Lp calculus

The aim of this section is to establish sufficient smoothness conditions on a given
symbol a : Rn → RΘ for the Lp-boundedness of the pseudodifferential operator Ψa

associated to it. This is the content of Theorem B in the Introduction. Sobolev
p-estimates naturally follow from this analysis. Before that, subtle transference
methods will be needed to extend the classical composition and adjoint formulae to
the context of quantum Euclidean spaces. The proof of Theorem B is divided into
several blocks. We begin with an analysis of L2-boundedness, which includes the
quantum forms of Calderón-Vaillancourt theorem and Bourdaud’s condition stated
in Theorem B i) and ii) respectively. Theorem B iii) follows from it and Theorem
A, once we prove that Ψa is a Calderón-Zygmund operator.

3.1. Adjoint and product formulae

Recall that a symbol over RΘ must be understood as a smooth function a :
Rn → RΘ whose associated pseudodifferential operator takes the form

Ψa(λΘ(f)) =

∫
Rn

a(ξ)f(ξ)λΘ(ξ) dξ.

Given m ∈ R and 0 ≤ δ ≤ ρ ≤ 1, the Hörmander classes Sm
ρ,δ(RΘ) are

Sm
ρ,δ(RΘ) =

{
a : Rn → RΘ :

∣∣∂β
Θ ∂α

ξ a(ξ)
∣∣ ≤ Cα,β〈ξ〉m−ρ|α|+δ|β| for all α, β ∈ Zn

+

}
.

Here we follow standard notation 〈ξ〉 = (1 + |ξ|2)1/2. Pseudodifferential operators
are formally generated by Fourier multipliers and left multiplication operators. It
is easy to see that these families of operators generate in turn the whole B(L2(RΘ))
as a von Neumann algebra. It is therefore reasonable to think that adjoints and
composition of pseudodifferential operators are pseudodifferential operators. Our
first goal is to develop asymptotic formulae for adjoints and compositions to justify
that the adjoint of a regular (δ < ρ) pseudodifferential operator of degree m is again
a pseudodifferential operator of degree m and that the composition of operators of
degrees m1 and m2 yields a pseudodifferential operator of degree m1 +m2.

We start by defining Ψa in the distributional sense. First, Ψa : SΘ → SΘ

continuously whenever a ∈ S(Rn;SΘ) is a Schwartz function itself. Indeed, recall
that a ∈ S(Rn;SΘ) means that

(3.1.1) a(ξ) =

∫
Rn

â(z, ξ)λΘ(z) dz

43
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44 3. PSEUDODIFFERENTIAL Lp CALCULUS

for some â ∈ S(Rn × Rn). This immediately gives

Ψa(λΘ(f)) =

∫
Rn

∫
Rn

â(z − ξ, ξ)f(ξ)e2πi〈z−ξ,Θ↓ξ〉dξ︸ ︷︷ ︸
F (z)

λΘ(z) dz

with F ∈ S(Rn), which implies the assertion. The following lemma refines it.

Lemma 3.1. Given a ∈ Sm
ρ,δ(RΘ), we have that Ψa : SΘ → SΘ continuously.

Proof. Note that∥∥Ψa(λΘ(f))
∥∥
RΘ

=
∥∥∥ ∫

Rn

a(ξ)〈ξ〉n+1f(ξ)λΘ(ξ)
dξ

〈ξ〉n+1

∥∥∥
RΘ

� sup
ξ∈Rn

{∥∥〈ξ〉−ma(ξ)
∥∥
RΘ

∣∣ 〈ξ〉n+m+1f(ξ)
∣∣}.

The term 〈ξ〉−ma(ξ) is bounded by the Hörmander condition with α = β = 0 while
the term 〈ξ〉n+m+1f(ξ) is bounded since f ∈ S(Rn). According to Remark 1.10
and Lemma 2.8, it suffices to see that the operators

P (xΘ)∂
β
ΘΨa(λΘ(f))Q(xΘ)

satisfy similar inequalities for arbitrary monomials P,Q and β ∈ Zn
+. Recall that

∂j
ΘΨa(λΘ(f)) = Ψ∂j

Θa(λΘ(f)) + Ψa(∂
j
Θ(λΘ(f))),

but ∂j
Θa ∈ Sm+δ

ρ,δ (RΘ) and ∂j
Θ(λΘ(f)) = λΘ(2πiξjf). In particular, ∂β

ΘΨa(λΘ(f))

behaves as Ψa(λΘ(f)) and we may ignore β. Thus, it will be enough to illustrate
the argument for (P,Q, β) = (1, xΘ,j , 0) and (P,Q, β) = (xΘ,j , 1, 0). In the first
case, since our pseudodifferential operators act by left multiplication of the symbol
a, the exact same argument given in the proof of Proposition 1.9 gives the identity
below, even for a taking values in RΘ as it is the case

Ψa(λΘ(f))xΘ,j =

∫
Rn

Dr
Θ,j(af)(ξ)λΘ(ξ) dξ

=

∫
Rn

(
a(ξ)Dr

Θ,j(f)(ξ)−
1

2πi
∂j
ξa(ξ)f(ξ)

)
λΘ(ξ) dξ.

Clearly Dr
Θ,jf ∈ S(Rn) and ∂j

ξa ∈ Sm−ρ
ρ,δ (RΘ), so we may proceed as above. We

need a similar expression when xΘ,j acts by left multiplication. In this second case
we need to be a bit more careful

xΘ,jΨa(λΘ(f))

= xΘ,j

∫
Rn

(∫
Rn

â(z, ξ)λΘ(z) dz
)
f(ξ)λΘ(ξ) dξ

=
1

2πi

d

ds

∣∣∣
s=0

∫
Rn

∫
Rn

â(z, ξ)f(ξ)λΘ(sej)λΘ(z)λΘ(ξ) dzdξ

=
1

2πi

d

ds

∣∣∣
s=0

∫
Rn

[ ∫
Rn

â(z, ξ)e2πis〈ej ,Θz〉λΘ(z)dz
]

︸ ︷︷ ︸
ajs(ξ)

f(ξ)e2πis〈ej,Θ↓ξ〉λΘ(ξ + sej)dξ.

Equivalently, we may write it as follows

xΘ,jΨa(λΘ(f)) =
1

2πi

d

ds

∣∣∣
s=0

∫
Rn

ajs(ξ − sej)f(ξ − sej)e
2πis〈ej ,Θ↓ξ〉λΘ(ξ)dξ.
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3.1. ADJOINT AND PRODUCT FORMULAE 45

In particular, Leibniz rule and the argument in Proposition 1.9 give

xΘ,jΨa(λΘ(f)) =
1

2πi

∫
Rn

d

ds

∣∣∣
s=0

ajs(ξ)f(ξ)λΘ(ξ)dξ

+
1

2πi

∫
Rn

d

ds

∣∣∣
s=0

(
a(ξ − sej)f(ξ − sej)e

2πis〈ej ,Θ↓ξ〉
)
λΘ(ξ)dξ

=
1

2πi

∫
Rn

{( n∑
k=1

Θjk∂
k
Θa(ξ)

)
f(ξ) + 2πiD�

Θ,j(af)(ξ)
}
λΘ(ξ)dξ.

Since the new terms ∂k
Θa ∈ Sm+δ

ρ,δ (RΘ), we may proceed as above once more. �
Consider a pair of symbols a1, a2 : Rn → RΘ. In order to properly identify

Ψaj
with aj , we need to confirm that Ψa1

= Ψa2
implies that a1 = a2. This is the

case when the symbols aj are of polynomial growth —there exists k ≥ 0 such that
|aj(ξ)| ≤ Cj〈ξ〉k— and Ψa1

= Ψa2
holds as operators in B(SΘ,SΘ). This result will

be enough for our purposes and it follows by an elementary application of Fourier
inversion for distributions, which we omit.

Lemma 3.2. Given a, a1, a2 ∈ S(Rn;RΘ), we find :

i) Ψ∗
a = Ψa∗

†
where

a†(ξ) =

∫
Rn

â(z, ξ − z)λΘ(z) dz.

ii) Ψa1
◦Ψa2

= Ψa1�a2
where

(a1 � a2)(ξ) =
∫
Rn

a1(z)â2(z − ξ, ξ)λΘ(z − ξ) dz.

Proof. By Lemma 2.2 i) Ψ∗
a = T ∗

ka
= Tflip(ka)∗ . By (3.1.1)

flip(ka)
∗ =

∫
Rn

λΘ(ξ)⊗ λΘ(ξ)
∗a(ξ)∗ dξ

=

∫
Rn

∫
Rn

â(z, ξ) e−2πi〈z,Θ↓ξ〉λΘ(ξ)⊗ λΘ(z + ξ)∗ dz dξ

=

∫
Rn

(∫
Rn

â(z, ξ − z)λΘ(z)dz
)∗

λΘ(ξ)⊗ λΘ(ξ)
∗ dξ = ka∗

†
,

which implies Ψ∗
a = Ψa∗

†
. The composition formula is obtained similarly. �

The formulas above are difficult to treat directly. Following the classical setting
we introduce double pseudodifferential operators. Namely, if A : Rn → RΘ⊗̄Rop

Θ is
a double symbol, its associated operator is given by

DA(ϕ) = (id⊗ τΘ)
{(∫

Rn

A(ξ) •
(
λΘ(ξ)⊗ λΘ(ξ)

∗) dξ) (1⊗ ϕ)
}
.

Observe that if the double symbol is of the form A(ξ) = a(ξ)⊗1 then DA = Ψa. The
advantage of the above class of operators is that they admit simpler expressions
for adjoints D∗

a⊗1 = D1⊗a∗ and products Da1⊗1 ◦ D1⊗a2
= Da1⊗a2

. We now
introduce extended Hörmander classes for double symbols. To that end, we recall
the definition of the Haagerup tensor product. Given z ∈ RΘ⊗algRΘ, let us define

‖z‖RΘ⊗hRΘ
= inf

{∥∥∥∑
j
xjx

∗
j

∥∥∥ 1
2

RΘ

∥∥∥∑
j
y∗j yj

∥∥∥ 1
2

RΘ

: z =
∑

j
xj ⊗ yj

}
.
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46 3. PSEUDODIFFERENTIAL Lp CALCULUS

The Haagerup tensor product RΘ⊗hRΘ is defined by completion and also admits a
natural operator space structure [62]. We will say that A : Rn → RΘ⊗̄Rop

Θ belongs
to Sm

ρ,δ1,δ2
(RΘ) when∥∥∥(∂β1

Θ ⊗ ∂β2

Θ ) ∂α
ξA(ξ)

∥∥∥
RΘ⊗hRΘ

≤ Cα,β1,β2
〈ξ〉m−ρ|α|+δ1|β1|+δ2|β2|,

for all multindices α, β1, β2. Our next result provides a compression map

B : S(Rn;SΘ ⊗π SΘ) → S(Rn;SΘ),

B(A)(ξ) = (id⊗ τΘ)

∫
Rn

A(η) • (λΘ(η)⊗ λΘ(η)
∗) • (λΘ(ξ)

∗ ⊗ λΘ(ξ)) dη,

which sends double symbols into symbols inducing the same operators. This map
involves in turn the map m : SΘ ⊗π SΘ → SΘ defined by linear extension of
ϕ1 ⊗ ϕ2 �→ ϕ1ϕ2. If Θ = 0, m is the restriction to the diagonal ϕ(x, y) �→ ϕ(x, x)
which extends to a positive preserving contraction with the C∗-norm. This fails
in general for nonabelian algebras. Instead, the Haagerup tensor product can be
understood as the smallest (operator space) tensor product making the operation
m continuous. This justifies our use of the Haagerup tensor product in the above
definition of double Hörmander classes. Define

LΘ,ξ = exp
( 1

2πi

n∑
j=1

∂j
ξ ⊗ idRΘ

⊗ ∂j
Θ

)
∈ B

(
S(Rn;SΘ ⊗π SΘ)

)
.

Theorem 3.3. The compression map B : S(Rn;SΘ⊗π SΘ) → S(Rn;SΘ) above
satisfies the identity DA = ΨB(A) as operators in B(SΘ,S ′

Θ). In addition, the
following identities hold

B(A)(ξ) = DA(λΘ(ξ))λΘ(ξ)
∗ = m

(
LΘ,ξA(ξ)

)
.

Moreover, given A ∈ Sm
ρ,δ1,δ2

(RΘ), the formal series expansion

B(A)(ξ) ∼
∑
γ∈Zn

+

m
(
(∂γ

ξ ⊗ idRΘ
⊗ ∂γ

Θ)A(ξ)
)

(2πi)|γ|γ!
.

is justified in the sense of the inequality below for δ2 < ρ and N ∈ Z+ large

∥∥∥B(A)(ξ)−
∑

|γ|<N

m
(
(∂γ

ξ ⊗ id⊗ ∂γ
Θ)A(ξ)

)
(2πi)|γ|γ!

∥∥∥
RΘ

≤ CN 〈ξ〉m+n−(ρ−δ2)N,

In particular, B : Sm
ρ,δ1,δ2

(RΘ) → Sm
ρ,δ(RΘ) for δ = max{δ1, δ2} whenever δ2 < ρ.

Proof. The proof is divided into three blocks:
A. Expressions for B(A). Clearly B(A)(ξ) = DA(λΘ(ξ))λΘ(ξ)

∗, so

DA(ϕ) = DA

(∫
Rn

ϕ̂(ξ)λΘ(ξ) dξ
)
=

∫
Rn

ϕ̂(ξ)B(A)(ξ)λΘ(ξ) dξ = ΨB(A)(ϕ)

for any ϕ ∈ SΘ. To prove the identity B(A)(ξ) = m(LΘ,ξA(ξ)), we write

A(ξ) =

∫
Rn

Â(u)e2πi〈u,ξ〉du =

∫
Rn

(∫
Rn

Ã(u, v)⊗ λΘ(v) dv
)
e2πi〈u,ξ〉 du
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3.1. ADJOINT AND PRODUCT FORMULAE 47

where Â is the Euclidean Fourier transform of A : Rn → RΘ ⊗ Rop
Θ and Ã is the

quantum (partial) Fourier transform of it in the second tensor. In other words, we
have

Ã(u, v) = (id⊗ τΘ)
(
Â(u) • (1⊗ λΘ(v)

∗)
)

=

∫
Rn

(id⊗ τΘ)
(
A(s) • (1⊗ λΘ(v)

∗)
)
e−2πi〈u,s〉 ds.

Now, using the Taylor series expansion

LΘ,ξ =
∞∑
k=0

(2πi)k

k!

n∑
j1,j2,...,jk=1

( k∏
s=1

∂js
ξ

2πi

)
⊗ id⊗

( k∏
s=1

∂js
Θ

2πi

)
we easily get the following identity for LΘ,ξA

LΘ,ξA =

∫
Rn

(∫
Rn

Ã(u, v)⊗ λΘ(v) dv
)
e2πi〈u,ξ+v〉 du.

Applying m to this expression and writing Ã in terms of A, we get

m(LΘ,ξA) = (id⊗ τΘ)

∫
Rn×Rn×Rn

A(s) • πΘ(expv) e
2πi〈u,ξ+v−s〉 dsdudv

= (id⊗ τΘ)

∫
Rn×Rn

A(s) • πΘ(expv) δξ(s− v) dsdv

= (id⊗ τΘ)

∫
Rn

A(s) • πΘ(exps−ξ) ds.

This proves B(A) = m(LΘ,ξA). On the other hand

LΘ,ξ =
∑
γ∈Zn

+

∂γ
ξ ⊗ idRΘ

⊗ ∂γ
Θ

(2πi)|γ|γ!

by standard modification of the Taylor series. This gives the formal series expansion.
B. Estimate for the remainder. Thus, our next goal is to justify the Taylor
remainder estimate in the statement. This requires yet another expression forB(A).
We begin by noticing that

B(A)(ξ) = m
{
(id⊗ τΘ)

(∫
Rn

A(η) • πΘ(expη−ξ) dη
)
⊗ 1

}
= m

{∫
Rn

∫
Rn

(id⊗ σz
Θ)
(
A(η) • πΘ(expη−ξ)

)
dηdz

}
= m

{∫
Rn

∫
Rn

(id⊗ σz
Θ)
(
A(η)

)
• πΘ(expη−ξ)e

−2πi〈z,η−ξ〉 dηdz
}
.

The first identity follows from A above. The second identity reduces to∫
Rn

σz
Θ(ϕ) dz = τΘ(ϕ)1 with σz

Θ(λΘ(ζ)) = e2πi〈z,ζ〉λΘ(ζ)

and the last one since σz
Θ is a ∗-homomorphism. Using m(A • πΘ(expζ)) = m(A)

we get

(3.1.2) B(A)(ξ) =

∫
Rn

(∫
Rn

m
(
(id⊗ σz

Θ)A(ξ + η)
)
e−2πi〈z,η〉 dz

)
︸ ︷︷ ︸

Ωη(ξ+η)

dη.
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On the other hand, we use ∂γ
yσ

y
Θ = σy

Θ∂
γ
Θ to deduce

m
(
(∂γ

ξ ⊗ id⊗ ∂γ
Θ)A(ξ)

)
= ∂γ

ξ ∂
γ
y

∣∣∣
y=0

m
(
(id⊗ σy

Θ)A(ξ)
)

= ∂γ
ξ ∂

γ
y

∣∣∣
y=0

(∫
Rn

∫
Rn

m
(
(id⊗ σz

Θ)A(ξ)
)
e2πi〈y−z,η〉 dzdη

)
= ∂γ

ξ

(∫
Rn

∫
Rn

m
(
(id⊗ σz

Θ)A(ξ)
)
e−2πi〈z,η〉(2πiη)γ dzdη

)
= ∂γ

ξ

∫
Rn

Ωη(ξ)(2πiη)
γ dη.

This implies that

B(A)(ξ)−
∑

|γ|<N

m
(
(∂γ

ξ ⊗ id⊗ ∂γ
Θ)A(ξ)

)
(2πi)|γ|γ!

=

∫
Rn

Ωη(ξ + η)−
∑

|γ|<N

1

γ!
∂γ
ξΩη(ξ)η

γ

︸ ︷︷ ︸
Rξ(η)

dη.

By Taylor remainder formula

Rξ(η) =
∑
|γ|=N

N

γ!

(∫ 1

0

(1− t)N−1∂γ
s

∣∣∣
s=η+tξ

Ωη(s) dt
)
ηγ .

In particular, we obtain the following estimate∥∥∥ ∫
Rn

Rξ(η) dη
∥∥∥
RΘ

≤ CN sup
|γ|=N
0≤t≤1

∥∥∥ ∫
Rn

ηγ∂γ
sΩη(η + tξ) dη

∥∥∥
RΘ

.

Since ∂γ
ξ commutes with m, we get the identity

∂γ
sΩη(s) =

∫
Rn

m
(
(id⊗ σz

Θ)∂
γ
sA(s)

)
e−2πi〈z,η〉 dz.

Next, we use the standard oscillatory integral trick

e−2πi〈z,η〉 =
(−Δη)

n

(4π2|z|2)n e
−2πi〈z,η〉,

e−2πi〈z,η〉 =
(1−Δz)

N
2

(1 + 4π2|η|2)N
2

e−2πi〈z,η〉.

Taking M(ξ, η, z, t) = m
(
(id⊗ σz

Θ)∂
γ
sA(η + tξ)

)
and integrating by parts∫

Rn

ηγ∂γ
sΩη(η + tξ) dη

=

∫
Rn

∫
Rn

ηγ(1−Δz)
N
2

(1 + 4π2|η|2)N
2

(
M(ξ, η, z, t)

)
e−2πi〈z,η〉 dzdη

=

∫
B1(0)

(∫
Rn

ηγ(1−Δz)
N
2

(1 + 4π2|η|2)N
2

(
M(ξ, η, z, t)

)
e−2πi〈z,η〉 dη

)
dz

+

∫
Bc

1(0)

(∫
Rn

(−Δη)
n

(4π2|z|2)n
[ ηγ(1−Δz)

N
2

(1 + 4π2|η|2)N
2

(
M(ξ, η, z, t)

)]
e−2πi〈z,η〉 dη

)
dz.
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3.1. ADJOINT AND PRODUCT FORMULAE 49

Let us write Π1 and Π2 for the two terms in the right hand side. Then, we use
one more time the identity ∂γ

z σ
z
Θ = σz

Θ∂
γ
Θ together with the contractivity of the

map m : RΘ ⊗h RΘ → RΘ and the Sm
ρ,δ1,δ2

– condition. This yields the following

inequality for any |γ| = N and 0 ≤ t ≤ 1

‖Π1‖RΘ
�

∫
Rn

∥∥∥(id⊗ (1−ΔΘ)
N
2

)
∂γ
sA(η + tξ)

∥∥∥
RΘ⊗hRΘ

dη

�
∫
Rn

max
{
〈ξ〉, 〈η〉

}m−(ρ−δ2)N dη � 〈ξ〉m+n−(ρ−δ2)N.

Similarly, Π2 is dominated by∑
|ν1+ν2|=2n

∫
Bc

1(0)×Rn

∣∣∣∂ν1
η

( ηγ

〈η〉N
)∣∣∣ ∥∥∥(id⊗ (1−ΔΘ)

N
2

)
∂γ+ν2
s A(η + tξ)

∥∥∥
RΘ⊗hRΘ

dzdη

|z|2n

which is bounded by 〈ξ〉m+n−(ρ−δ2)N. This completes the estimate of the remainder.
C. B respects the Hörmander classes. It remains to show that B(A) belongs
to the Hörmander class Sm

ρ,δ(RΘ) for δ = max{δ1, δ2} whenever A ∈ Sm
ρ,δ1,δ2

(RΘ)
and δ2 < ρ. Since we have

∂β
Θ ◦m =

∑
β1+β2=β

β!

β1!β2!
m ◦

(
∂β1

Θ ⊗ ∂β2

Θ

)
,

it turns out that the following inequality holds for any γ ∈ Zn
+∥∥∥∂β

Θ∂
α
ξ m

(
(∂γ

ξ ⊗ id⊗ ∂γ
Θ)A(ξ)

)∥∥∥
RΘ

≤
∑

β1+β2=β

β!

β1!β2!

∥∥∥(∂β1

Θ ⊗ ∂γ+β2

Θ

)
∂γ+α
ξ A(ξ)

∥∥∥
RΘ⊗hRΘ

.

Since the Hörmander classes are nested in the degree m, this implies that∑
|γ|<N

m
(
(∂γ

ξ ⊗ id⊗ ∂γ
Θ)A(ξ)

)
∈

⋃
|γ|<N

S
m−(ρ−δ2)|γ|
ρ,δ (RΘ) = Sm

ρ,δ(RΘ)

as a consequence of A ∈ Sm
ρ,δ1,δ2

(RΘ), δ = max{δ1, δ2} and δ2 < ρ. Therefore,

the inclusion B(A) ∈ Sm
ρ,δ(RΘ) will follow if there exists a large enough N ∈ Z+

satisfying the inequality∥∥∥∂β
Θ∂

α
ξ

(
B(A)(ξ)−

∑
|γ|<N

m
(
(∂γ

ξ ⊗ id⊗ ∂γ
Θ)A(ξ)

))∥∥∥
RΘ

≤ CN,α,β〈ξ〉m−ρ|α|+δ|β|.

Our estimate for the Taylor remainder above shows that this is indeed the case

when α = β = 0. Using ∂α
ξ m = m∂α

ξ and the commutation formula for ∂β
Θ ◦ m

given above, the exact same argument applies for general α, β. This gives that any
N ≥ n/(ρ− δ2) works, details are left to the reader. �

Corollary 3.4. The following stability results hold :

i) If a ∈ Sm
ρ,δ(RΘ) and ρ < δ, then Ψ∗

a = Ψa∗
†
with

a∗† ∼
∑
γ∈Zn

+

∂γ
Θ∂

γ
ξ a

∗(ξ)

(2πi)|γ|γ!
∈ Sm

ρ,δ(RΘ).
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50 3. PSEUDODIFFERENTIAL Lp CALCULUS

ii) If aj ∈ S
mj

ρj ,δj
, then Ψa1

◦Ψa2
= Ψa1�a2

with

a1 � a2 ∼
∑
γ∈Zn

+

∂γ
ξ a1(ξ)∂

γ
Θa2(ξ)

(2πi)|γ|γ!
∈ Sm

ρ,δ(RΘ)

for m = m1 +m2, ρ = min{ρ1, ρ2} and δ = max{δ1, δ2} when δ2 < ρ.

Proof. Recall that
Ψ∗

a = D∗
a⊗1 = D1⊗a∗ = ΨB(1⊗a∗).

If a ∈ Sm
ρ,δ(RΘ) then a⊗ 1 ∈ Sm

ρ,δ,0(RΘ) and 1⊗ a∗ ∈ Sm
ρ,0,δ(RΘ). By Theorem 3.3

we have that a∗† = B(1 ⊗ a∗) ∈ Sm
ρ,δ(RΘ). The second assertion follows similarly

by recalling that

Ψa1�a2
= Ψa1

◦Ψ∗∗
a2

= Ψa1
◦Ψ∗

a∗
2†

= Da1⊗1 ◦ D1⊗a2† = Da1⊗a2† = ΨB(a1⊗a2†).

Indeed, according to the first assertion, we know that a1 ⊗ a2† ∈ Sm
ρ,δ1,δ2

(RΘ).
The asymptotic expansions also follow easily from Theorem 3.3 using the identities
a∗† = B(1⊗ a∗) and a1 � a2 = B(a1 ⊗ a2†), see e.g. [71] for a similar approach. �

Remark 3.5. A natural question is whether the classes Σm
ρ,δ(RΘ) are closed

under products and adjoints for δ < ρ. This question is still open. Indeed, pro-
ceeding as for Sm

ρ,δ(RΘ) we may define a new class Σm
ρ,δ1,δ2

(RΘ) of mixed double
symbols A : Rn → RΘ ⊗h RΘ satisfying the condition∥∥∥(∂β1

Θ ⊗ ∂β2

Θ ) ∂α1

Θ,ξ ∂
α2

ξ A(ξ)
∥∥∥
RΘ⊗hRΘ

≤ Cα1,α2,β1,β2
〈ξ〉m−ρ|α1+α2|+δ1|β1|+δ2|β2|,

where, abusing of notation, ∂j
Θ,ξ acts on S(Rn;S(RΘ)⊗π S(RΘ)) as follows

(∂j
Θ,ξA)(ξ) = ∂j

ξA(ξ) + 2πi
[
A(ξ), dΘ,j

]
= πΘ(expξ)

∗ • ∂j
ξ

{
πΘ(expξ) •A(ξ) • πΘ(expξ)

∗} • πΘ(expξ).

The operator dΘ,j is just xΘ,j⊗1−1⊗xΘ,j . We shall identify the first term with xΘ,j

and the second with yΘ,j . Of course, we expect that our contraction map satisfies
B : Σm

ρ,δ1,δ2
(RΘ) → Σm

ρ,δ1∨δ2
(RΘ) for δ2 < ρ. Unfortunately, our argument above

does not admit a direct generalization. The problem arises since the automorphism
σΘ in the oscillatory integral (3.1.2) for B does not commute with ∂j

Θ,ξ. We refer to
Lemmas 4.1 and 4.2 and Remark 4.4 for the calculus of parametrices in this setting.
On the other hand, a minimum stability for products —necessary for our Sobolev
p-estimates, see the proof of Corollary 3.26— does hold. Namely, if a1 ∈ Σm1

ρ1,0
(RΘ)

takes values in C1 or, more generally, in the center of RΘ, we have that

a1 � a2 ∈ Σm1+m2

ρ1∧ρ2,δ
(RΘ) whenever a2 ∈ Σm2

ρ2,δ
(RΘ).

In particular, composition with polynomials of ∂j
Θ’s transforms degrees as expected.

3.2. L2-boundedness: Sufficient conditions

We now explore L2-boundedness of pseudodifferential operators in S0
ρ,δ(RΘ).

Since S0
ρ,δ(RΘ) ⊂ S0

δ,δ(RΘ)∩S0
ρ,ρ(RΘ) it suffices to study L2-boundedness for exotic

0 ≤ δ = ρ < 1 and forbidden δ = ρ = 1 symbols. The first case ρ < 1 requires
a quantum analogue of the celebrated Calderón-Vaillancourt theorem [9]. The
second one also requires an additional assumption extending Bourdaud’s condition
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3.2. L2-BOUNDEDNESS: SUFFICIENT CONDITIONS 51

[7], which can be regarded as a form of the T (1) theorem for pseudodifferential
operators.

3.2.1. The Calderón-Vaillancourt theorem in RΘ. As in the Euclidean
setting, the hardest point for a quantum form of Calderón-Vaillancourt theorem is
still the case ρ = 0. Our argument follows from a combination of [24,71] adapted
to RΘ which demands a careful argument due to the presence of a Θ-phase. Given
a ∈ S0

0,0(RΘ), the first step consists in decomposing the symbol as follows. The
double Fourier transform of a in the quantum and classical variables (xΘ, ξ) is given
by

̂̂a(z, ζ) =

∫
Rn

τΘ
(
a(ξ)λΘ(z)

∗)e−2πi〈ξ,ζ〉dξ

=
(
1 + 4π2|z|2

)N(
1 + 4π2|ζ|2

)N ̂̂a(z, ζ)︸ ︷︷ ︸
̂̂
b(z,ζ)

(
1 + 4π2|z|2

)−N(
1 + 4π2|ζ|2

)−N︸ ︷︷ ︸
̂̂g(z,ζ)

.

Here we fix N large enough. We shall also use the terminology

â(z, ξ) = τΘ
(
a(ξ)λΘ(z)

∗) = ∫
Rn

̂̂a(z, ζ)e2πi〈ξ,ζ〉dζ
for a, b and g. In order to express Ψa in terms of b and g we need to introduce two
auxiliary maps. The first one is a left-module extension ΠΘ : RΘ⊗̄Rop

Θ → RΘ⊗̄Rop
Θ

of the ∗-homomorphism πΘ defined as follows

ΠΘ

(
λΘ(ξ)⊗ λΘ(η)

)
= λΘ(ξ)⊗ λΘ(ξ)

∗λΘ(η) =
(
1⊗ λΘ(η)

)
• πΘ(expξ).

Π∗
Θ

(
λΘ(ξ)⊗ λΘ(η)

)
= λΘ(ξ) ⊗ λΘ(ξ)λΘ(η) = (1⊗ λΘ(η)) • (λΘ(ξ)⊗ λΘ(ξ)) gives

the adjoint with respect to the module bracket 〈〈α, β〉〉 = (τΘ ⊗ id)(α • β∗). The
second one is the left-modulation map Mη(ϕ1 ⊗ ϕ2) = λΘ(η)ϕ1 ⊗ ϕ2 with adjoint
M∗

η (ϕ1⊗ϕ2) = λΘ(η)
∗ϕ1⊗ϕ2 with respect to the same bracket above. In the next

result we shall use the following symbol

gη(ξ) =

∫
Rn

ĝη(z, ξ)λΘ(z) dz

=

∫
Rn

ĝ(z, ξ)e−2πi〈ξ,Θ↓z〉e2πi〈Θη,z〉λΘ(z) dz.

Lemma 3.6. If Φη = Π∗
Θ ◦M∗

η , the following identity holds

Ψa(ϕ) = (id⊗ τΘ)

∫
Rn

(1⊗ b(η))
(
Φ∗

η ◦
(
Ψgη ⊗ id

)
◦ Φη

)
(ϕ⊗ 1) dη.

Proof. We first claim that

a(ξ) = (id⊗ τΘ)

∫
Rn

(1⊗ b(η))
(∫

Rn

ĝ(z, ξ − η)πΘ(expz) dz︸ ︷︷ ︸
Γ(ξ−η)

)
dη.

Indeed, writing the symbol a in terms of b and g we obtain

a(ξ) =

∫
Rn

∫
Rn

̂̂
b(z, ζ)̂̂g(z, ζ)e2πi〈ξ,ζ〉λΘ(z) dzdζ

=

∫
Rn

∫
Rn

b̂(z, η)ĝ(z, ξ − η)λΘ(z) dzdη.
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Now the claim follows from the quantum form of convolution via the identity∫
Rn

f1(z)f2(z)λΘ(z) dz = (id⊗ τΘ)
{(

1⊗ λΘ(f1)
)(∫

Rn

f2(z)πΘ(expz) dz
)}

.

Next we use the claim to produce an expression for Ψa(ϕ). Namely, we have

Ψa(ϕ) = (id⊗ τΘ)

∫
Rn

(a(ξ)⊗ ϕ)πΘ(expξ) dξ

= (id⊗ τΘ ⊗ τΘ)

∫
Rn

∫
Rn

[
(1⊗ b(η))Γ(ξ − η)⊗ ϕ

]
πΘ(expξ)[13] dξdη

= (id⊗ τΘ)

∫
Rn

(1⊗ b(η))
{
(id⊗ id⊗ τΘ)

∫
Rn

(Γ(ξ − η)⊗ ϕ)πΘ(expξ)[13] dξ
}
dη

with (a⊗ b)[13] = a⊗ 1⊗ b. The assertion reduces to prove the following identity

A := (id⊗id⊗τΘ)

∫
Rn

(Γ(ξ−η)⊗ϕ)πΘ(expξ)[13] dξ=
(
Φ∗

η◦
(
Ψgη⊗id

)
◦Φη

)
(ϕ⊗1)=:B.

Expanding Γ(ξ − η) it is clear that

A =

∫
Rn

∫
Rn

ϕ̂(ξ)ĝ(z, ξ − η)λΘ(z)λΘ(ξ)⊗ λΘ(z)
∗ dzdξ.

On the other hand, we have the identity

B = (λΘ(η)⊗1)ΠΘ

{∫
Rn

(
gη(ξ)⊗(τΘ ⊗ id)

(
Φη(ϕ⊗ 1)(λΘ(ξ)

∗ ⊗ 1)
)

︸ ︷︷ ︸
βη(ξ)

)
(λΘ(ξ)⊗1) dξ

}

where it is easily checked that

Φη(ϕ⊗ 1) = Π∗
Θ

(∫
Rn

ϕ̂(s)λΘ(η)
∗λΘ(s)⊗ 1 ds

)
=

∫
Rn

ϕ̂(s)e2πi〈η,Θ↓(η−s)〉λΘ(s− η)⊗ λΘ(s− η) ds,

so that βη(ξ) = ϕ̂(ξ + η)e−2πi〈η,Θ↓ξ〉λΘ(ξ). This yields

B = (λΘ(η)⊗ 1)ΠΘ

{∫
Rn

(
gη(ξ)⊗ βη(ξ)

)
(λΘ(ξ)⊗ 1) dξ

}
= (λΘ(η)⊗ 1)ΠΘ

{∫
Rn

∫
Rn

(
ĝη(z, ξ)λΘ(z)⊗ βη(ξ)

)
(λΘ(ξ)⊗ 1) dzdξ

}
= (λΘ(η)⊗ 1)

∫
Rn

∫
Rn

e2πi〈z,Θ↓ξ〉ĝη(z, ξ)λΘ(z + ξ)⊗ λΘ(z + ξ)∗βη(ξ) dzdξ

=

∫
Rn

∫
Rn

ϕ̂(ξ + η)e2πi〈z−η,Θ↓ξ〉ĝη(z, ξ)λΘ(η)λΘ(z + ξ)⊗ λΘ(z + ξ)∗λΘ(ξ) dzdξ.

Rearranging and using ĝη(z, ξ) = ĝ(z, ξ)e−2πi〈ξ,Θ↓z〉e2πi〈Θη,z〉 yields A = B. �
Remark 3.7. The above lemma may be regarded as the quantum analogue of

the identity in [71, Lemma XIII.1.1], whose Euclidean proof is trivial. The quantum
analogue gives unfortunately an extra Θ-phase which vanishes for Θ = 0. It is this
phase what forces us to be very careful in adapting Cordes argument [24] below.

Lemma 3.8. Ψgη admits the factorization

Ψgη = A∗
η ◦B ◦Aη with sup

η∈Rn

∥∥Aη : L2(RΘ) → L2(RΘ)
∥∥∥∥B∥∥

S1(L2(RΘ))
< ∞.
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3.2. L2-BOUNDEDNESS: SUFFICIENT CONDITIONS 53

Proof. Let wη(z, ξ) = e−2πi〈ξ,Θ↓z〉e2πi〈Θη,z〉, so that

Ψgη (ϕ) =

∫
Rn

gη(ξ)ϕ̂(ξ)λΘ(ξ) dξ

=

∫
Rn

∫
Rn

ĝ(z, ξ)wη(z, ξ)ϕ̂(ξ)λΘ(z)λΘ(ξ) dzdξ

=

∫
Rn

∫
Rn

∫
Rn

̂̂g(z, ζ)wη(z, ξ)e
2πi〈ξ,ζ〉ϕ̂(ξ)λΘ(z)λΘ(ξ) dzdζdξ.

Let us define jξη : Rn → C and mN : Rn → C as follows

jξη(z) =
wη(z, ξ)

(1 + 4π2|z|2)N ,

mN(ξ) =

∫
Rn

e2πi〈ξ,ζ〉

(1 + 4π2|ζ|2)N dζ = ĵ00(ξ),

where ĵ00 stands for the Euclidean Fourier transform of jξη when (ξ, η) = (0, 0).

Inserting our definition of ̂̂g(z, ζ), we finally end up with the following factorization

Ψgη (ϕ) =

∫
Rn

∫
Rn

jξη(z)mN(ξ)ϕ̂(ξ)λΘ(z)λΘ(ξ) dzdξ

=

∫
Rn

(∫
Rn

jξη(z)mN(ξ − z)ϕ̂(ξ − z)e2πi〈z,Θ↓(ξ−z)〉 dz
)
λΘ(ξ) dξ

=

∫
Rn

(∫
Rn

(
jξη(ξ − z)e2πi〈ξ−z,Θ↓z〉)mN(z)︸ ︷︷ ︸

kη(ξ,z)

ϕ̂(z) dz
)
λΘ(ξ) dξ.

This gives Ψgη = λΘ ◦ Tkη
◦ λ−1

Θ , which reduces our goal to justify the assertion for
Tkη

instead of Ψgη . Indeed, assume Tkη
= A∗

η ◦ B ◦ Aη with Aη uniformly bounded
in B(L2(R

n)) and B a trace class operator on the Hilbert space L2(R
n). Then we

consider the maps

Aη = λΘ ◦ Aη ◦ λ−1
Θ and B = λΘ ◦ B ◦ λ−1

Θ ,

which factorize Ψgη and satisfy

‖Aη‖B(L2(RΘ)) = ‖Aη‖B(L2(Rn)),

‖B‖S1(L2(RΘ)) = ‖B‖S1(L2(Rn)).

The kernel kη can be written as follows

kη(x, y) = e2πi〈x−y,Θη+Θ↓y+Θ↑x〉j00(x− y)mN(y) = e2πi〈x−y,Θη〉k(x, y).

If Aηf(x) = e−2πi〈x,Θη〉f(x), we see that Tkη
= A∗

η ◦ B ◦ Aη with B = Tk and Aη

unitaries. Thus, it suffices to show that B is trace class on L2(R
n). Composing it

with the Euclidean Fourier transform F = λ−1
0 as in the proof of [24, Lemma 1]

we end up with L = F ◦ Tk, whose kernel is given by

�(x, y) = e−2πi〈x,y〉α̂(x−Θy)mN(y),

where α̂ is the Euclidean Fourier transform of α(z) = j00(z)e
−2πi〈z,Θ↓z〉 = jz0(z).

This is very similar to the kernel in [24, Lemma 1 - (1.25)], in fact we recover the
same kernel for Θ = 0. Unfortunately, due to the Θ-phase we are carrying, we
do not have separated variables as in [24]. However, a detailed analysis of Cordes
argument shows that what really matters is that the x-factor of the kernel —ψτ (x)
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in [24]— yields a pointwise multiplier by mN. We only have that in the y-variable.
Taking the adjoint L∗ = T ∗

kη
◦ F−1 we get the kernel

�∗(x, y) = �(y, x) = e2πi〈x,y〉mN(x)α̂(y −Θx).

Then, Cordes factorization mN(x) = ζ(x)κ(x) with ζ(x) = exp(− 1
2 〈x〉) implies in

turn that L∗ = R ◦S where their respective kernels r(x, z) and s(z, y) are given by

r(x, z) =
κ(x)

(1 + 4π2|z|2)M
∫
Rn

e2πi〈x−z,s〉

(1 + 4π2|s|2)M ds,

s(z, y) = (1 + 4π2|z|2)M(1−Δz)
M
(
ζ(z)e2πi〈z,y〉α̂(y −Θz)

)
.

By [24], R is Hilbert-Schmidt for M large enough. Since α̂ is as smooth as ĵ00, it
is Ck(Rn) for N > 1

2 (n+ k) and exponentially decreasing at ∞. In particular, S is

also Hilbert-Schmidt for N large enough. Thus B = F−1S∗R∗ ∈ S1(L2(R
n)). �

Theorem 3.9. If a ∈ S0
0,0(RΘ), then Ψa: L2(RΘ) → L2(RΘ) is bounded.

Proof. According to Lemmas 3.6 and 3.8 we find

Ψa(ϕ) = (id⊗ τΘ)

∫
Rn

(1⊗ b(η))
(
Φ∗

η

(
A∗

ηBAη ⊗ id︸ ︷︷ ︸
A∗

ηBAη

)
Φη

)
(ϕ⊗ 1) dη.

Given ϕ1, ϕ2 in the unit ball of L2(RΘ), it suffices to get a uniform bound for

〈
Ψa(ϕ1), ϕ2

〉
=

∫
Rn

(τΘ ⊗ τΘ)
{
Φ∗

ηA
∗
ηBAηΦη(ϕ1 ⊗ 1)(ϕ2 ⊗ b(η)∗)∗

}
dη

=

∫
Rn

(τΘ ⊗ τΘ)
{
B1AηΦη(ϕ1 ⊗ 1)B2AηΦη(ϕ2 ⊗ b(η)∗)∗

}
dη,

where B = (u|B| 12 )|B| 12 = B∗
2B1 from polar decomposition. By Cauchy-Schwarz

∣∣〈Ψa(ϕ1), ϕ2

〉∣∣ ≤ (∫
Rn

(τΘ ⊗ τΘ)
{
|B1|2AηΦη(ϕ1 ⊗ 1)AηΦη(ϕ1 ⊗ 1)∗

}
dη
) 1

2

×
(∫

Rn

(τΘ ⊗ τΘ)
{
|B2|2AηΦη(ϕ2 ⊗ b(η)∗)AηΦη(ϕ2 ⊗ b(η)∗)∗

}
dη
) 1

2

= αβ.

Writing B2 = B2 ⊗ id, we claim that the second term above β is dominated by

sup
η∈Rn

∥∥b(η) : L2(RΘ) → L2(RΘ)
∥∥ ∥∥|B2|2

∥∥ 1
2

S1(L2(RΘ))
.

Note that the same estimate applies to the first term with b(η) = 1 and (ϕ2,B2)
replaced by (ϕ1,B1). Moreover, since |Bj |2 ≤ |B|+ u|B|u∗ and B is trace class, it
suffices to check that b(ξ) = (1−ΔΘ)

N(1−Δξ)
Na(ξ) is uniformly bounded in RΘ

which follows from the fact that a ∈ S0
00(RΘ). Therefore, it only remains to justify

our claim above. Since |B2|2 is trace class, let sj denote its singular numbers and
consider the corresponding set uj of unit eigenvectors. This gives

|B2|2(h) =
∑

j
sj(τΘ ⊗ id)

(
h(uj ⊗ 1)∗

)
(uj ⊗ 1).
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3.2. L2-BOUNDEDNESS: SUFFICIENT CONDITIONS 55

In particular, using the module bracket 〈〈h1, h2〉〉 = (τΘ ⊗ id)(h1 • h∗
2), we get

β2 =
∑

j
sj

∫
Rn

τΘ

{∣∣〈〈AηΦη(ϕ2 ⊗ b(η)∗), uj ⊗ 1
〉〉∣∣2} dη

=
∑

j
sj

∫
Rn

τΘ

{∣∣〈〈M∗
η (ϕ2 ⊗ b(η)∗),ΠΘA

∗
η(uj ⊗ 1)

〉〉∣∣2} dη.

Now, recalling that A∗
η(uj ⊗ 1) = A∗

η(uj)⊗ 1 = λΘ ◦ A∗
η ◦ λ−1

Θ (uj)⊗ 1, we get〈〈
M∗

η (ϕ2 ⊗ b(η)∗),ΠΘA
∗
η(uj ⊗ 1)

〉〉
=

〈〈
λΘ(η)

∗ϕ2 ⊗ b(η)∗,

∫
Rn

e2πi〈ξ,Θη〉ûj(ξ)πΘ(expξ) dξ
〉〉

=
(∫

Rn

e−2πi〈ξ,Θη〉ûj(ξ)(τΘ ⊗ id)
((

λΘ(η)
∗ϕ2 ⊗ 1

)
πΘ(expξ)

∗
)
dξ
)
b(η)∗

=
(∫

Rn

e−2πi〈ξ,Θη〉e−2πi〈η,Θ↓ξ〉ûj(ξ)ϕ̂2(ξ + η)︸ ︷︷ ︸
φ̂ηj(ξ)

λΘ(ξ) dξ
)
b(η)∗.

This gives

β2 ≤ sup
η∈Rn

∥∥b(η)∥∥2RΘ

∑
j
sj

∫
Rn

∥∥λΘ(φηj
)
∥∥2
L2(RΘ)

dη

≤ sup
η∈Rn

∥∥b(η)∥∥2RΘ

∑
j
sj

∫
Rn

∫
Rn

∣∣ûj(ξ)ϕ̂2(ξ + η)
∣∣2 dηdξ,

which is exactly the estimate we were looking for. This completes the proof. �
Remark 3.10. A careful analysis of the function α̂ in the proof of Lemma

3.8 could lead as in [24] to the sharp condition N > n/4. This would imply that
Theorem 3.9 holds under the optimal assumption∣∣∂β

Θ∂
α
ξ a(ξ)

∣∣ ≤ Cαβ for |α|, |β| ≤
[n
2

]
+ 1.

Now we are ready to study the L2-boundedness for exotic symbols in S0
ρ,ρ(RΘ)

with 0 < ρ < 1. A weak form of Cotlar’s almost orthogonality lemma naturally
plays a crucial role. Namely, given a family of operators (Tj)j≥0 ⊂ B(H) and a
summable sequence (cj)j≥0 ⊂ R+ we find∥∥∥∑

j≥0

Tj

∥∥∥
B(H)

�
∑
j≥0

cj

provided that the following conditions hold for j �= k

sup
j≥0

∥∥Tj

∥∥
B(H)

< ∞,
∥∥TjT

∗
k

∥∥
B(H)

= 0,
∥∥T ∗

j Tk

∥∥
B(H)

≤ cjck.

The other ingredient is a dilation argument among different deformations RΘ.

Lemma 3.11. Given R > 0, the map

DR : RΘ � λΘ(ξ) �→ λR2Θ

( ξ

R

)
∈ RR2Θ

is a ∗-homomorphism. Moreover, Ψa = D−1
R ΨãR

DR for

a : Rn → RΘ and ãR(ξ) =

∫
Rn

â(z,Rξ)λR2Θ(z/R) dz = DR(a(Rξ)) ∈ RR2Θ.
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Proof. To prove that DR is a ∗-homomorphism is straightforward. Now

DRΨaD
−1
R (ϕ) =

∫
Rn

( ̂ΨaD
−1
R ϕ)(ξ)λR2Θ(ξ/R) dξ

=

∫
Rn

τΘ

{(∫
Rn

a(η)D̂−1
R ϕ(η)λΘ(η) dη

)
λΘ(ξ)

∗
}
λR2Θ(ξ/R) dξ

=

∫
Rn

τΘ

{(∫
Rn

∫
Rn

â(z, η)λΘ(z)R
−nϕ̂(η/R)λΘ(η) dzdη

)
λΘ(ξ)

∗
}
λR2Θ(ξ/R) dξ

=

∫
Rn

∫
Rn

e2πi〈ξ−η,Θ↓η〉â(ξ − η, η)R−nϕ̂(η/R)λR2Θ(ξ/R) dηdξ

=

∫
Rn

∫
Rn

â(ξ, η)R−nϕ̂(η/R)λR2Θ(ξ/R)λR2Θ(η/R) dηdξ

=

∫
Rn

(∫
Rn

â(ξ,Rη)λR2Θ(ξ/R) dξ
)
ϕ̂(η)λR2Θ(η) dη

=

∫
Rn

ãR(η)ϕ̂(η)λR2Θ(η) dη = ΨãR
(ϕ). �

Theorem 3.12. If a ∈ S0
ρ,ρ(RΘ) and ρ < 1, Ψa: L2(RΘ) → L2(RΘ) is bounded.

Proof. Let φ0 ∈ C∞(Rn) radial, identically 1 in B1(0) and zero outside B2(0).
Using the partition of unity φ0+

∑
j≥1 φj ≡ 1 with φj(ξ) = φ0(2

−jξ)−φ0(2
−(j−1)ξ)

we decompose Ψa as follows

Ψa =

∞∑
j=0

Ψaj
=

∞∑
j=0

Ψa2j
+

∞∑
j=0

Ψa2j+1
= Ψeven +Ψodd,

where aj(ξ) = a(ξ)φj(ξ). We shall only bound the even part, since both are treated
in a similar way. To do so, we apply Cotlar’s lemma as stated above. Given j, k
distinct even numbers, we clearly have Ψaj

Ψ∗
ak

= 0 since φj and φk have disjoint
supports. Therefore, it suffices to prove that

i) sup
j≥0

∥∥Ψaj

∥∥
B(L2(RΘ))

< ∞,

ii)
∥∥Ψ∗

aj
Ψak

∥∥
B(L2(RΘ))

≤ cjck,

for some summable sequence (cj)j≥0 ⊂ R+ and any pair of distinct even integers
j, k. The first condition follows from our form of Calderón-Vaillancourt theorem in
S0
00(RΘ) and Lemma 3.11. Indeed, pick Rj = 2jρ and let

a[j] = (̃aj)Rj
= DRj

(
aj(Rj ·)

)
.

Then ∥∥Ψaj

∥∥
B(L2(RΘ))

≤
∥∥Ψa[j]

∥∥
B(L2(RR2

j
Θ
))

since Ψaj
= D−1

Rj
Ψa[j]

DRj
and∥∥D−1

Rj

∥∥
B(L2(RR2

j
Θ
),L2(RΘ))

∥∥DRj

∥∥
B(L2(RΘ),L2(RR2

j
Θ
))
= 1.

The L2-boundedness of Ψa[j]
follows from Theorem 3.9 since a[j] ∈ S0

00(RR2
jΘ

).

The proof of this fact follows essentially as in the Euclidean setting. Indeed, write
a[j] in terms of âj —Lemma 3.11— and use that DRj

is a ∗-homomorphism. In

conjunction with the ξ-localization of aj in the annulus of radii ∼ 2j , this easily
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3.2. L2-BOUNDEDNESS: SUFFICIENT CONDITIONS 57

gives a[j] ∈ S0
00(RR2

jΘ
), we leave details to the reader. It remains to estimate the

norm of Ψ∗
aj
Ψak

for even j �= k. After a calculation we obtain that the kernel kjk
of such operator is given by

kjk = (id⊗τΘ⊗id)

∫
Rn

∫
Rn

(πΘ(expξ)⊗1) (1⊗aj(ξ)
∗ak(η)⊗1) (1⊗πΘ(expη)) dξdη,

where, in an abuse of notation, the element πΘ(expξ) = λΘ(ξ)⊗ λΘ(ξ)
∗ is seen as

belonging to RΘ⊗̄RΘ instead of RΘ⊗̄Rop
Θ . We are also going to shorten a⊗b⊗1 by

(a⊗ b)[12] where the leg numbers just mean that the tensor components are placed
in the first and second places respectively. Now, we use

(1−ΔΘ)
N

(1 + 4π2|ξ − η|2)N λΘ(η)λΘ(ξ)
∗ = λΘ(η)λΘ(ξ)

∗,

πΘ

(
1

(1 + 4π2d2)n

)
(1−Δη)

n λΘ(η)⊗ λΘ(η)
∗ = λΘ(η)⊗ λΘ(η)

∗,

πΘ

(
1

(1 + 4π2d2)n

)
(1− Δξ)

n λΘ(ξ)⊗ λΘ(ξ)
∗ = λΘ(ξ)⊗ λΘ(ξ)

∗,

where d(x) = |x| is the Euclidean distance. Integration by parts yields

kjk = (id⊗ τΘ ⊗ id)

∫
Rn

∫
Rn

πΘ(ϕξ)[12]B(ξ, η)[2]πΘ(ϕη)[23] dηdξ,

where

B(ξ, η) = (1−Δη)
n(1−Δξ)

n

{
(1−ΔΘ)

N

(1 + 4π2|η − ξ|2)N aj(ξ)
∗ak(η)

}

and the function ϕζ is given by expζ(1+4π2d2)−n. After expanding the derivatives
using the Leibniz rule, we obtain that B is a finite sum of simple terms of the form

Bs(ξ, η) = ∂α1

ξ ∂β1
η

( 1

(1 + 4π2|ξ − η|2)N
)
∂α2

ξ ∂σ1

Θ aj(ξ)
∗︸ ︷︷ ︸

bsj(ξ)
∗

∂β2
η ∂σ2

Θ ak(η)︸ ︷︷ ︸
bsk(η)

,

where αi, βi, σi ∈ Zn
+ satisfy |α1 + α2| ≤ 2n, |β1 + β2| ≤ 2n, |σ1 + σ2| ≤ 2N and

s is the combination of the involved multindices. We can bound each of the above
summands in s independently∥∥Ψ∗

aj
Ψak

∥∥≤∑
s

∥∥∥∥
∫
Rn

∫
Rn

T(id⊗τΘ⊗id){πΘ(ϕξ)[12]Bs(ξ,η)[2]πΘ(ϕη)[23]}dηdξ

∥∥∥∥=∑s
As.

Using
∣∣∂α1

ξ ∂β1
η 〈ξ − η〉−2N

∣∣ � 〈ξ − η〉−2N we obtain

As �
∫
Rn

∫
Rn

〈ξ − η〉−2N
∥∥T(id⊗τΘ⊗id){πΘ(ϕξ)[12]b

s
j (ξ)

∗
[2]

bsk(η)[2]πΘ(ϕη)[23]}︸ ︷︷ ︸
Tjξkη

∥∥ dηdξ.
Tjξkη can be factorized as T(bsj⊗1)•πΘ(ϕξ) ◦ T(bsk(η)⊗1)•πΘ(ϕη), so that∥∥Tjξkη

∥∥
B(L2(RΘ))

≤ ‖bsj(ξ)‖RΘ
‖bsk(η)‖RΘ

‖TπΘ(ϕξ)‖B(L2(RΘ))‖TπΘ(ϕη)‖B(L2(RΘ)).

Recall that ‖TπΘ(ϕζ)‖B(L2(RΘ)) ≤ ‖ϕζ‖L1(Rn) � 1. Moreover, using that ξ ∼ 2j and

η ∼ 2k from the supports of aj(ξ) and ak(η) as well as the Hörmander condition
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for a, we deduce the following bound

As �
∫
Rn

∫
Rn

‖bsj(ξ)‖RΘ
‖bsk(η)‖RΘ

〈ξ − η〉2N dξdη � 2−2Nmax{j,k} 22Nρmax{j,k} 2n(j+k).

Summing all the terms indexed by s we obtain∥∥Ψ∗
aj
Ψak

∥∥
B(L2(RΘ))

� 4−max{j,k}((1−ρ)N−n) ≤ 2−j((1−ρ)N−n)2−k((1−ρ)N−n) = cjck,

which arises from (cj)j≥0 summable for N large enough. The proof is complete. �

Remark 3.13. Let 0 ≤ δ ≤ ρ ≤ 1, since

S0
ρ,δ(RΘ) ⊂ S0

δ,δ(RΘ) ∩ S0
ρ,ρ(RΘ),

we deduce Ψa : L2(RΘ) → L2(RΘ) for a ∈ S0
ρ,δ(RΘ) as long as (ρ, δ) �= (1, 1).

Remark 3.14. A standard (nonoptimal) proof of Calderón-Vaillancourt theo-
rem for S0

00 in the Euclidean setting [68] follows from a suitable partition of unity
in the variables (x, ξ) ∈ Rn×Rn with no known analogue for xΘ ∈ RΘ and ξ ∈ Rn.
An alternative way to proceed is the following. Given a ∈ S0

00(RΘ), let

a(x, ξ) = σx
Θa(ξ) =

∫
Rn

â(z, ξ)σx
Θ(λΘ(z)) dz =

∫
Rn

â(z, ξ)e2πi〈x,z〉λΘ(z) dz.

Using the intertwining identity Ψa ◦ σΘ = σΘ ◦ Ψa and recalling from Appendix
B that σΘ : Lc

2(RΘ) → Lc
2(R

n)⊗̄RΘ is a complete isometry, it turns our that the
L2-boundedness of Ψa is equivalent to the boundedness of the operator-valued map
Ψa : Lc

2(R
n)⊗̄RΘ → Lc

2(R
n)⊗̄RΘ. Now, since Ψa is a right RΘ-module map, it

follows from [42, Remark 2.4] that this will hold as long as Ψa is bounded over the
Hilbert space L2(R

n;L2(RΘ)). Ψa comes equipped with an operator-valued kernel
acting by left multiplication. This kind of maps are generally bad behaved [37] but
we know from our proof above that L2-boundedness must hold in this case. Thus
this also opens the door to prove Calderón-Vaillancourt using a partition of unity
in the x-component, which mirrors the behavior of its quantum analogue xΘ.

3.2.2. Bourdaud’s condition for forbidden symbols in RΘ. We have
justified that all symbols in S0

ρ,δ(RΘ) yield L2-bounded pseudodifferential operators
except for the class of so-called forbidden symbols with ρ = δ = 1, which is known
to fail it even in the Euclidean setting. Bourdaud established a sufficient condition
in [7] playing the role of the T (1)-theorem for pseudodifferential operators and
which we now study in RΘ. Given p ≥ 1 and s ∈ R, let W2,s(RΘ) be the Sobolev
space defined as the closure of SΘ with respect to the norm

‖ϕ‖W2,s(RΘ) =
∥∥(1−ΔΘ)

s
2ϕ
∥∥
2
.

Lemma 3.15. Let φ : Rn → R+ be a radial smooth function identically 1 in
B1(0) and vanishing outside B2(0). Let ψj(ξ) = φ(2−jξ)−φ(2−j+1ξ) for any integer
j ∈ Z. Then, we have a norm equivalence∥∥λΘ(f)

∥∥2
2,s

∼
∑
j∈Z

22sj
∥∥λΘ(ψjf)

∥∥2
2
=
∑
j∈Z

22sj
∥∥ψjf

∥∥2
2
.

In particular, the following properties hold :

i) W2,−s(RΘ)
∗ = W2,s(RΘ) under the pairing 〈x, y〉 = τΘ(x

∗ y).
ii)

[
W2,s(RΘ),W2,−s(RΘ)

]
1
2

= L2(RΘ) by complex interpolation.
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The proofs of all assertions above are straightforward. Properties i) and ii)
above hold isomorphically from the first assertion, but also isometrically. We shall
use the following terminology for the rest of this section. Let us consider a function
φ : Rn → R+ which is identically 1 in B1/8(0) and vanishing outside B1/4(0). Set

ψ0 = φ and construct ψj(ξ) = φ(2−jξ)−φ(2−j+1ξ) for j ≥ 1. We shall also use the
partition of unity ρ0 = ψ0 + ψ1 and ρj = ψj−1 + ψj + ψj+1 for j ≥ 1, so that

•
∑
j≥0

ψj(ξ) = 1,

•
∑
j≥0

ρj(ξ) = 3− φ(ξ),

• ρj(ξ)ψj(ξ) = ψj(ξ) for j ≥ 0.

Lemma 3.16. If a ∈ S0
1,1(RΘ) and N > n, we have

a(ξ) =
∑
k∈Zn

〈k〉−N
∑
j≥0

cj,kρj(ξ)e
2πi〈2−jξ,k〉

where the coefficients cj,k ∈ RΘ satisfy the following estimate

sup
j≥0

sup
k∈Zn

(
‖cj,k‖RΘ

+ 2−j
∥∥∥( n∑

i=1

|∂i
Θcj,k|2

) 1
2
∥∥∥
RΘ

)
< ∞.

Proof. Let aj(ξ) = a(ξ)ψj(ξ) and bj(ξ) = aj(2
jξ), so that

a(ξ) =
∑
j≥0

aj(ξ) =
∑
j≥0

bj(2
−jξ) =

∑
j≥0

bj(2
−jξ)ρj(ξ).

According to this and recalling that supp ρj(2
jξ) ⊂ [− 1

2 ,
1
2 ]

n = Q, it suffices to see

that bj(ξ) =
∑

k∈Zn〈k〉−Ncj,ke
2πi〈ξ,k〉χQ(ξ) for some cj,k satisfying the estimates in

the statement. Now, since bj is also supported byQ, we find that bj(ξ) = dj(ξ)χQ(ξ)
where dj is the Zn-periodization of bj . This gives rise to the identity

bj(ξ) =
∑
k∈Zn

b̂j(k)e
2πi〈ξ,k〉χQ(ξ)

=
∑
k∈Zn

(∫
Tn

bj(s)e
−2πi〈s,k〉ds

)
e2πi〈ξ,k〉χQ(ξ).

Integrating by parts, we obtain

b̂j(k) =
1

(1 + 4π2|k|2)N
2

∫
Tn

(1−Δs)
N
2

(
bj(s)

)
e−2πi〈s,k〉 ds = 〈k〉−Ncj,k.

To estimate (1−Δξ)
N
2 bj(ξ) we notice that |ξ| ∼ 1, so∥∥∂α

ξ bj(ξ)
∥∥
RΘ

= 2j|α|
∥∥(∂α

ξ aj)(2
jξ)

∥∥
RΘ

� 2j|α| 〈2jξ〉−|α| � 1

by the Hörmander condition and therefore (1−Δξ)
N
2 bj(ξ) is uniformly bounded in

norm. The second inequality uses a similar calculation for ∇Θ(1−Δξ)
N
2 b(ξ). �

Lemma 3.17. We have∥∥λΘ(ψjf)
∥∥
RΘ

� 2−j
∥∥∥( n∑

k=1

∣∣∂k
ΘλΘ(f)

∣∣2) 1
2
∥∥∥
RΘ

for j > 0.
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60 3. PSEUDODIFFERENTIAL Lp CALCULUS

Proof. Given g ∈ S(Rn)

(σΘ

(
λΘ(f)

)
∗ g)(x) =

∫
Rn

σx−y
Θ

(
λΘ(f)

)
g(y) dy = σx

Θ

(
λΘ(ĝf)

)
.

We also have
∥∥λΘ(ψjf)

∥∥
RΘ

=
∥∥σΘλΘ(ψjf)

∥∥
RΘ⊗̄L∞(Rn)

and

σΘλΘ(ψjf) = σΘλΘ(f) ∗ ψ̂j

=

∫
Rn

σx−y
Θ

(
λΘ(f)

)
ψ̂j(y) dy

=

∫
Rn

(
σx−y
Θ

(
λΘ(f)

)
− σx

Θ

(
λΘ(f)

))
ψ̂j(y) dy

=

∫
Rn

(∫ 1

0

n∑
k=1

ykσ
x−ty
Θ

(
∂k
ΘλΘ(f)

)
dt
)
ψ̂j(y) dy.

We have used that the integral of ψ̂j is 0 for any j > 0. Taking norms gives∥∥σΘλΘ(ψjf)
∥∥
RΘ⊗̄L∞(Rn)

≤
∫
Rn

∥∥∥ n∑
k=1

yk
(
∂k
ΘλΘ(f)

)∥∥∥
RΘ

|ψ̂j(y)| dy

≤
(∫

Rn

|y||ψ̂j(y)| dy
)∥∥∥( n∑

k=1

∣∣∂k
ΘλΘ(f)

∣∣2) 1
2
∥∥∥
RΘ

� 2−j

∫
Rn

|y||φ̂(y)| dy
∥∥∥( n∑

k=1

∣∣∂k
ΘλΘ(f)

∣∣2) 1
2
∥∥∥
RΘ

� 2−j
∥∥∥( n∑

k=1

∣∣∂k
ΘλΘ(f)

∣∣2) 1
2
∥∥∥
RΘ

�

Theorem 3.18. If a ∈ S0
1,1(RΘ)

Ψa : W2,s(RΘ) → W2,s(RΘ) is bounded for 0 < s < 1.

Proof. By Lemma 3.16 we have that

a(ξ) =
∑
k∈Zn

〈k〉−N
∑
j≥0

cj,kρj(ξ)e
2πi〈2−jξ,k〉

︸ ︷︷ ︸
ak(ξ)

.

By taking N > n we obtain that the symbol a is just a summable combination of
terms ak and we can concentrate on studying such terms. If λΘ(f) ∈ W2,s(RΘ),
we have that

Ψak
(λΘ(f)) =

∑
j≥0

cj,kλΘ(ρj exp2−jk f) =
∑
j≥0

cj,kbj,k.

Taking another partition of unity (ψ�)�≥0 we get

cj,k =
∑
�≥0

∫
Rn

ψ�(ξ)ĉj,k(ξ)λΘ(ξ) dξ =
∑
�≥0

c�j,k

and Lemmas 3.16 and 3.17 give ‖c�j,k‖RΘ
� 2j−� for � > 0. Now decompose

Ψak
(λΘ(f)) =

∑
�≤j−4

c�j,kbj,k +
∑

j−4<�<j+4

c�j,kbj,k +
∑

�≥j+4

c�j,kbj,k = L +D+U.
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3.2. L2-BOUNDEDNESS: SUFFICIENT CONDITIONS 61

Let us begin with the estimate of the upper term U. The Fourier support of
λΘ(f)λΘ(g) = λΘ(f ∗Θ g) is contained in the sum of the Fourier supports of λΘ(f)
and λΘ(g) respectively. In particular, the Fourier support of c�j,kbj,k is contained in

supp ψ� + supp ρj ⊂ [B2�−2(0) \ B2�−4(0)] + B2j−1(0) ⊂ B2�−1(0) \ B2�−5(0). Now
we apply Lemma 3.15 to obtain

‖U‖2W2,s(RΘ) �
∑
�≥4

22�s
∥∥∥ ∑

j≤�−4

c�j,kbj,k

∥∥∥2
2

�
∑
�≥4

22�s
( ∑

j≤�−4

‖c�j,k‖RΘ
‖bj,k‖2

)2

�
∑
�≥4

22�s
( ∑

j≤�−4

2j−�‖bj,k‖2
)2

�
∑
�≥4

22�(s−1)
( ∑

j≤�−4

2j‖bj,k‖2
)2

.

On the other hand, given 0 < δ < 1− s we have that( ∑
j≤�−4

2j‖bj,k‖2
)2

≤ Cδ 2
�δ

∑
j≤�−4

4j(1−δ)‖bj,k‖22.

In particular, we finally obtain the expected estimate

‖U‖2W2,s(RΘ) �
∑
�≥0

∑
j≤�−4

22�(s−1+δ)4j(1−δ)‖bj,k‖22

=
∑
j≥0

( ∑
�≥j+4

22�(s−1+δ)
)
4j(1−δ)‖bj,k‖22

�
∑
j≥0

4j(s−1+δ)4j(1−δ)‖bj,k‖22 � ‖λΘ(f)‖2W2,s(RΘ).

For the lower part L, a similar argument yields that the Fourier support of c�j,kbj,k
is contained inside B2j (0)\B2j−6(0). Then we can apply the same principle so that

‖L‖2W2,s(RΘ) �
∑
j≥4

22js
∥∥∥ ∑

�≤j−4

c�j,k bj,k

∥∥∥2
2

≤
∑
j≥4

22js
∥∥∥ ∑

�≤j−4

c�j,k

∥∥∥
RΘ

‖bj,k‖22

�
∑
j≥4

22js‖bj,k‖22 � ‖λΘ(f)‖2W2,s(RΘ).

In the third inequality we have used that
∑

� c
�
j,k = cj,k and therefore

∥∥∥ ∑
�≤j−4

c�j,k

∥∥∥
RΘ

=
∥∥∥cj,k −

∞∑
�=j−3

c�j,k

∥∥∥
RΘ

= ‖cj,k‖RΘ
+

∞∑
�=j−3

‖c�j,k‖RΘ
� 1.

The diagonal part D is easier to bound. Assume for simplicity that j = �. The
Fourier support of cjj,kbj,k is comparable this time to a fixed dilation of B2j (0), not
an annulus. Nevertheless, although we do not have a norm equivalence, the norm
in W2,s(RΘ) is still dominated by the corresponding weighted L2-sum, and we get

‖D‖2W2,s(RΘ) ≤
∑
j≥0

22js
∥∥cjj,kbj,k∥∥22 �

∑
j≥0

22js‖bj,k‖22 ∼
∥∥λΘ(f)

∥∥2
W2,s(RΘ)

. �

Theorem 3.19. If a, a∗† ∈ S0
1,1(RΘ), then Ψa : L2(RΘ) → L2(RΘ) is bounded.
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62 3. PSEUDODIFFERENTIAL Lp CALCULUS

Proof. By Theorem 3.18, Ψa and its adjoint are bounded in W2,s(RΘ). By
Lemma 3.15, taking duals gives Ψa : W2,−s(RΘ) → W2,−s(RΘ) and interpolating
both inequalities for Ψa yields the assertion. �

Remark 3.20. A careful examination yields that∥∥∂β
Θ∂

α
ξ a(ξ)

∥∥
RΘ

� 〈ξ〉−|α|+|β| for |α| ≤ n+ 1 and |β| ≤ 1

for a and its dual symbol a∗† suffices to deduce the L2-boundedness of Ψa.

3.3. Lp-boundedness and Sobolev p-estimates

Our L2-boundedness results together with our Calderón-Zygmund theory for
RΘ are the tools to find sufficient smoothness conditions on a given symbol for the
Lp-boundedness of its pseudodifferential operator. As pointed in the Introduction,
this naturally requires to work with a different quantum form of the Hörmander
classes, which is more demanding, but still recovers the classical definition for Θ = 0.
Given a : Rn → RΘ we say that it belongs to Σm

ρ,δ(RΘ) when∣∣∂β
Θ ∂α1

Θ,ξ ∂
α2

ξ a(ξ)
∣∣ ≤ Cα1,α2,β〈ξ〉m−ρ|α1+α2|+δ|β|

for all α1, α2, β ∈ Zn
+. Here are some trivial, albeit important, properties:

i) Σm
ρ,δ(RΘ) ⊂ Sm

ρ,δ(RΘ) since one condition reduces to the other for α1 = 0.

ii) The three derivatives involved in the definition of Σm
ρ,δ(RΘ) commute with

each other. In particular, the order considered is completely irrelevant.

iii) Fix (ρ, δ,m) and set |a|Sα,β and |a|Σα1,α2,β
for the seminorms given by the

optimal constant in the defining inequalities of Sm
ρ,δ(RΘ) with parameters

(α, β) or Σm
ρ,δ(RΘ) with parameters (α1, α2, β) respectively. Then, we

have
lim
Θ→0

|a|Σα1,α2,β = lim
Θ→0

|a|Sα1+α2,β .

Given a ∈ Σ0
1,1(RΘ) ⊂ S0

1,1(RΘ), we will now prove that the integral kernel ka
associated with Ψa satisfies the Calderón-Zygmund kernel conditions in Theorem
A. In conjunction with our Bourdaud type condition in Theorem 3.19, it will give
the complete Lp-boundedness of Ψa stated in Theorem B iii). Composition results
further yield Sobolev p-estimates∥∥Ψa : Wp,s(RΘ) → Wp,s−m(RΘ)

∥∥
cb

< ∞,

for many symbols of degree m, with 1 < p < ∞ and ‖ϕ‖p,s = ‖(1−ΔΘ)
s/2ϕ‖p.

Lemma 3.21. Given a ∈ Σm
ρ,δ(RΘ), let

k1 = (∇Θ ⊗ id)(ka) and k2 = (id⊗∇Θ)(ka).

Then, there exist b1, b2 ∈ Σm+1
ρ,δ (RΘ) satisfying that kb1 = k1 and kb2 = k2.

Proof. It is easily checked that

(∇Θ ⊗ id)(ka) =

n∑
j=1

s(ej)⊗
∫
Rn

∂j
Θ[a(ξ)λΘ(ξ)]⊗ λΘ(ξ)

∗ dξ = kb1

where b1(ξ) = ∇Θ(a)+2πis(ξ)⊗a(ξ) takes values in L(Fn)⊗̄RΘ, we omit the extra
tensor component just to simplify our notation. A simple calculation also gives
that b2(ξ) = −2πis(ξ) ⊗ a(ξ). It is clear that ∇Θ(a) ∈ Σm+δ

ρ,δ (RΘ) ⊂ Σm+1
ρ,δ (RΘ)

while the inclusion for s(ξ)⊗ a(ξ) follows by Leibniz rule and ∂j
Θ,ξξ = ∂j

ξξ. �
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3.3. Lp-BOUNDEDNESS AND SOBOLEV p-ESTIMATES 63

Lemma 3.22. Given a ∈ S(Rn;SΘ), let ka be the kernel of Ψa. Recall that
πΘ(P ) is a distribution in SΘ⊕Θ for any polynomial P in ξ1, ..., ξn. Then, the
following identities hold in the sense of distributions for all α ∈ Zn

+

ka • πΘ((2πiz)
α) = k∂α

ξ a,

πΘ

(
(2πiz)α

)
• ka = k∂α

Θ,ξa
.

Proof. Note that

ka • πΘ(expζ) =
(∫

Rn

(a(ξ)⊗ 1) • πΘ(expξ+ζ) dξ
)
= ka( · − ζ).

Taking derivatives formally gives

ka • πΘ(2πizj) = ka •
d

ds

∣∣∣
s=0

πΘ(expsej ) = k∂j
ξa
.

This symbolic calculation can be justified in the distributional sense. For the second
identity, we recall the identity (∂j

Θ,ξa)(ξ) = λΘ(ξ)∂
j
ξ

{
λΘ(ξ)

∗a(ξ)λΘ(ξ)
}
λΘ(ξ)

∗ and
notice that∫

Rn

(a(ξ)⊗ 1) • πΘ(expξ) dξ =

∫
Rn

πΘ(expξ) • (λΘ(ξ)
∗a(ξ)λΘ(ξ)⊗ 1) dξ.

Therefore, arguing as above, we obtain the identity for left multiplication. �

Lemma 3.23. Let ψj(ξ) = φ(2−jξ)−φ(2−j+1ξ) be a standard partition of unity
in Rn from a smooth, radial and compactly supported φ. If we let aj(ξ) = a(ξ)ψj(ξ)
for a ∈ Σm

ρ,δ(RΘ) and �1, �2 ≥ 0, we have∥∥∥d�1Θ • kaj
• d�2Θ

∥∥∥
RΘ⊗̄Rop

Θ

≤ C�1,�2 2j(n+m−ρ(�1+�2)).

Proof. It is clear that

∂α
Θ,ξaj =

∑
β+γ=α

a(∂β
ξ ψj) + (∂γ

Θ,ξa)ψj .

Since |∂β
ξ ψj(ξ)| � 2−j|β| when 〈ξ〉 ∼ 2j , the aj ’s are in Σm

ρ,δ(RΘ) with constants
independent of j. Assume first that �1, �2 are even numbers, �k = 2Nk. Then the
�k-th power of |z| is a polynomial of the form

|z|�k =
∑

|α|=Nk

z2α.

Applying Lemma 3.22 gives that∥∥∥d�1Θ • kaj
• d�2Θ

∥∥∥
RΘ⊗̄Rop

Θ

=
1

(2π)�1+�2

∥∥∥ ∑
|α1|=N1

∑
|α2|=N2

k
∂
2α1
Θ,ξ ∂

2α2
ξ aj

∥∥∥
RΘ⊗̄Rop

Θ

and for each of the terms we have the estimate∥∥k
∂
2α1
Θ,ξ ∂

2α2
ξ aj

∥∥
RΘ⊗̄Rop

Θ

=
∥∥∥ ∫

Rn

(
∂2α1

Θ,ξ ∂
2α2

ξ aj(ξ)⊗ 1
)
• πΘ(expξ) dξ

∥∥∥
RΘ⊗̄Rop

Θ

� 2jn sup
|ξ|�2j

∥∥(∂2α1

ξ ∂2α2

Θ,ξ aj)(ξ)
∥∥
RΘ

� 2j(n+m−ρ(�1+�2)).

For general (noneven) �1, �2 we proceed by interpolation. Note that the norm of ka
is not altered under left/right multiplication by disΘ for any s ∈ R. Therefore we
have a bounded and holomorphic function ζ �→ πΘ(|z|�1+2ζ) • ka • πΘ(|z|�2) defined
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64 3. PSEUDODIFFERENTIAL Lp CALCULUS

in the band 0 < �(ζ) < 1. An application of the three lines lemma gives the bound
for any �1, the same follows for �2. This completes the proof. �

Proposition 3.24. Given a ∈ Σm
ρ,ρ(RΘ) and m1,m2 > 0∥∥∥dm1

Θ • ka • dm2

Θ

∥∥∥
RΘ⊗̄Rop

Θ

� 1

provided ρ(m1 +m2) > n+m for ρ < 1 or ρ(m1 +m2) ≥ n+m for ρ = 1.

Proof. Let

ρj(ξ) = φ(2−jξ)− φ(2−j+1ξ)

be another partition of unity —this time for j ∈ Z— and set bj = πΘ(ρj). Then

dm1

Θ • ka • dm2

Θ =
∑
j,k≥0

+
∑
j,k≤0

+
∑
j·k<0

(
bj • dm1

Θ • ka • dm2

Θ • bk
)
= A+ +A− +A±.

Estimate of A+. Letting a� = aψ� as in Lemma 3.23

‖A+‖RΘ⊗̄Rop
Θ

≤
∑
j,k≥0

∑
�≥0

∥∥∥bj • dm1

Θ • ka�
• dm2

Θ • bk
∥∥∥
RΘ⊗̄Rop

Θ

=
∑
j,k≥0

∑
�≥0

A+(j, k, �).

Pick �1 and �2 large enough (see below) and use Lemma 3.23 to estimate A+(j, k, �)

A+(j, k, �) ≤
∥∥d�1Θ • ka�

• d�2Θ
∥∥
RΘ⊗̄Rop

Θ

×
∥∥πΘ(ρj |z|(m1−�1))

∥∥
RΘ⊗̄Rop

Θ

∥∥πΘ(ρk|z|(m2−�2))
∥∥
RΘ⊗̄Rop

Θ

� 2�(n+m−ρ(�1+�2))2j(m1−�1)2k(m2−�2).

Taking �1 > m1, �2 > m2 and ρ(�1 + �2) > n+m we may sum over j, k, � ≥ 0.
Estimate of A−. Letting a� = aψ� once more, we get

A− =
∑
j,k≤0

{ ∑
�>|j|

+
∑
�≤|j|

}(
bj • dm1

Θ • ka�
• dm2

Θ • bk
)
=

∑
j,k≤0

A1
−(j, k) +A2

−(j, k)

=
∑

j≤k≤0

A1
−(j, k)

︸ ︷︷ ︸
A11

−

+
∑

k<j≤0

A1
−(j, k)

︸ ︷︷ ︸
A12

−

+
∑

j≤k≤0

A2
−(j, k)

︸ ︷︷ ︸
A21

−

+
∑

k<j≤0

A2
−(j, k)

︸ ︷︷ ︸
A22

−

.

First, we may bound A1
−(j, k) and A2

−(j, k) in norm via Lemma 3.23∥∥A1
−(j, k)

∥∥
RΘ⊗̄Rop

Θ

�
∑
�>|j|

2j(m1−�1)2�((n+m)−ρ(�1+�2))2k(m2−�2),

∥∥A2
−(j, k)

∥∥
RΘ⊗̄Rop

Θ

�
∑
�≤|j|

2j(m1−�1)2�((n+m)−ρ(�1+�2))2k(m2−�2).

A11
− ) Taking ρ(�1 + �2) > n+m and r = k − j ≥ 0, we get∥∥A1

−(j, k)
∥∥
RΘ⊗̄Rop

Θ

� 2j(m1−�1)2|j|(n+m−ρ(�1+�2)) 2k(m2−�2)

= 2r(m2−�2) 2|j|(n+m+(1−ρ)(�1+�2)−(m1+m2)).

If ρ < 1, our condition ρ(m1+m2) > n+m allows us to pick �1, �2 satisfying
�1 + �2 = m1 +m2 and �2 > m2. If ρ = 1 we pick �j > mj for j = 1, 2. In
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3.3. Lp-BOUNDEDNESS AND SOBOLEV p-ESTIMATES 65

both cases we get the inequalities n+m+(1−ρ)(�1+ �2)− (m1+m2) ≤ 0
and m2 − �2 > 0. This gives∥∥A11

−
∥∥
RΘ⊗̄Rop

Θ

≤
∑
r≥0

∥∥∥∑
j≤0

A1
−(j, j + r)

∥∥∥
RΘ⊗̄Rop

Θ

≤
∑
r≥0

r sup
j≤0

∥∥A1
−(j, j + r)

∥∥
RΘ⊗̄Rop

Θ

�
∑
r≥0

r2r(m2−�2) � 1.

By almost orthogonality of bj ’s the sum inside the norm is a r-th diagonal
operator, dominated by r times the supremum of the norms of its entries.

A21
− ) Letting r = k − j ≥ 0, we get∥∥A2

−(j, k)
∥∥
RΘ⊗̄Rop

Θ

� 2j(m1−�1) max
{
1, 2|j|(n+m−ρ(�1+�2))

}
2k(m2−�2)

= 2r(m2−�2) max
{
2|j|((�1+�2)−(m1+m2)), 2|j|(n+m+(1−ρ)(�1+�2)−(m1+m2))

}
.

Then any choice with �1 + �2 = m1 +m2 and �2 > m2 gives ‖A21
− ‖ � 1.

A12
− ) We may write

A12
− =

∑
k<j≤0

{ ∑
�>|k|

+
∑

|j|<�≤|k|

}(
bj • dm1

Θ • ka�
• dm2

Θ • bk
)
= A121

− +A122
− .

Then, A121
− is estimated exactly as A−11. On the other hand, the estimate

of A122
− is very much similar to that of A21

− , we leave the details to the
reader.

A22
− ) Interchanging roles of (j, k), A22

− is estimated as A21
− above (even simpler).

Estimate of A±. Since the conditions on m1,m2 are symmetric in the statement
and the sum

∑
i·j<0 splits into

∑
j<0<k +

∑
k<0<j , it suffices to estimate one of

these two sums. Arguing as above, if we pick �1, �2 so that ρ(�1 + �2) > n+m, the
problem reduces to estimate∑

j<0<k

{∑
�>k

+
∑
�≤k

}
2j(m1−�1)2�(n+m−ρ(�1+�2))2k(m2−�2) = A+B.

Again as above, we pick r = k − j > 0 and obtain

A �
∑
r>0

∑
k>0

2−r(m1−�1)2k(n+m−(1+ρ)(�1+�2)+m1+m2),

B �
∑
r>0

∑
k>0

2−r(m1−�1) max
{
2k((m1+m2)−(�1+�2)), 2k(n+m−(1+ρ)(�1+�2)+m1+m2)

}
.

Since n+m ≤ ρ(m1 +m2), it suffices to take �1 > m1 and �1 + �2 > m1 +m2. �
Theorem 3.25. If a, a∗† ∈ Σ0

1,1(RΘ), we have∥∥Ψa : H1(RΘ) → L1(RΘ)
∥∥
cb

< ∞,∥∥Ψa : L∞(RΘ) → BMO(RΘ)
∥∥
cb

< ∞.

In particular, Ψa : Lp(RΘ) → Lp(RΘ) is completely bounded when 1 < p < ∞.

Proof. According to our Calderón-Zygmund extrapolation in Theorem 2.18, it
suffices to see that Ψa is L2-bounded and its kernel ka satisfies the CZ conditions
there. The L2-boundedness follows from the quantum form of Bourdaud’s condition
in Theorem 3.19. On the other hand, according to Lemma 3.21, both (∇Θ⊗ id)(ka)
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66 3. PSEUDODIFFERENTIAL Lp CALCULUS

and (id ⊗ ∇Θ)(ka) belong to Σ1
1,1(RΘ). In particular, Proposition 3.24 yields the

CZ kernel conditions which we need for m1 +m1 = n+ 1. �

Corollary 3.26. If a, a∗† ∈ Σm
1,1(RΘ), we have∥∥Ψa : Wp,s(RΘ) → Wp,s−m(RΘ)

∥∥
cb

< ∞ for every 1 < p < ∞.

Proof. We have that

Lp(RΘ)
(1−ΔΘ)

s−m
2 Ψa(1−ΔΘ)−

s
2

�� Lp(RΘ)

(1−ΔΘ)−
s−m

2�����
���

���
��

Wp,s(RΘ)
Ψa ��

(1−ΔΘ)
s
2

������������
Wp,s−m(RΘ)

where (1 − ΔΘ)
u/2 : Wp,s(RΘ) → Wp,s−u(RΘ) are complete isometries. On the

other hand, the complete Lp-boundedness of (1−ΔΘ)
(s−m)/2Ψa(1−ΔΘ)

−s/2 follows
from Theorem 3.25 once we observe that this pseudodifferential operator and its
adjoint are associated to symbols in Σ0

1,1(RΘ), which in turn follows from the
composition rules for Σm

ρ,δ(RΘ) established in Remark 3.5. �

Remark 3.27. Theorem 3.25 and Corollary 3.26 remain valid for a ∈ Σ0
1,δ(RΘ)

with 0 ≤ δ < 1. Indeed, Σ0
1,δ(RΘ) ⊂ S0

1,δ(RΘ) ⊂ S0
1,1(RΘ) and the middle class is

stable under adjoints. Thus, we may apply our Bourdaud’s condition as we did in
the proof of Theorem 3.25. In addition, Σ0

1,δ(RΘ) ⊂ Σ0
1,1(RΘ) so that Proposition

3.24 applies. The argument for Sobolev spaces is similar.

Remark 3.28. A careful analysis of our proof for Theorem 3.25 and Corollary
3.26 yields that the condition Σ0

1,1(RΘ) can be replaced by the weaker condition
below ∣∣∂β

Θ∂
α1

Θ,ξ∂
α2

ξ a(ξ)
∣∣+ ∣∣∂β

Θ∂
α1

Θ,ξ∂
α2

ξ a∗†(ξ)
∣∣ ≤ Cα1,α2,β〈ξ〉−|α1+α2|+|β|

for |α1 + α2| ≤ n + 2 and |β| ≤ 1. Indeed, according to Remark 3.20, Bourdaud’s
condition in Theorem 3.19 can be weakened to |α1 + α2| ≤ n + 1 and |β| ≤ 1.
Moreover, our proof of Proposition 3.24 form1+m2 = n+1 requires |α1+α2| ≤ n+2.

The Lp-theory for exotic symbols Σm
ρ,ρ(RΘ) (ρ < 1) is only possible due to

the regularizing effect of a negative degree m. Fefferman proved in [29] the Lp

bounds for the critical index m = −(1 − ρ)n2 . The noncritical range was proved
by Hirschman and Wainger [36, 76] (constant coefficients) and Hörmander [38]
(general symbols). Standard interpolation arguments yield more general statements
[68, VII 5.12]. Now we shall prove (non optimal) inequalities of this kind in RΘ

with applications below for Lp-regularity of elliptic PDEs. Namely, in what follows
we shall write N for the best possible constant in Remark 3.10. As explained there
we suspect that any N > n/4 is valid and this would be optimal, as it is the case
in the Euclidean theory. Consider the index

Λρ,n = −(1− ρ)max
{
2N, n+ 2

}
.

It follows from arguments in [71] that 2N is (at least) less or equal than 3n+ 2.

Corollary 3.29. Let a ∈ Σm
ρ,ρ(RΘ) be a symbol satisfying m ≤ Λρ,n for some

ρ < 1. Then, the pseudodifferential operator Ψa satisfies the following estimates
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3.3. Lp-BOUNDEDNESS AND SOBOLEV p-ESTIMATES 67

for 1 < p < ∞ ∥∥Ψa : H1(RΘ) → L1(RΘ)
∥∥
cb

< ∞,∥∥Ψa : Lp(RΘ) → Lp(RΘ)
∥∥
cb

< ∞,∥∥Ψa : L∞(RΘ) → BMO(RΘ)
∥∥
cb

< ∞.

Moreover, if m is any real number and � = m− Λρ,n∥∥Ψa : Wp,s(RΘ) → Wp,s−�(RΘ)
∥∥
cb

< ∞.

Proof. Since a ∈ Σm
ρ,ρ(RΘ) and m = �+ Λρ,n

〈ξ〉m−ρ|α1+α2|+ρ|β| = 〈ξ〉m+(1−ρ)|α1+α2|−|α1+α2|+ρ|β|

≤ 〈ξ〉m+(1−ρ)max{2N,n+2}−|α1+α2|+ρ|β| ≤ 〈ξ〉�−|α1+α2|+ρ|β|

as long as |α1 + α2| ≤ max{2N, n+ 2}. This means that a satisfies the Hörmander
condition Σ�

1,ρ(RΘ) for ∂Θ,ξ, ∂ξ of order up to |α1 + α2| ≤ max{2N, n + 2}. For
the first assertion we apply Theorem A. The L2-boundedness is guaranteed by our
Calderón-Valillancourt theorem since Σ0

1,ρ(RΘ) ⊂ S0
ρ,ρ(RΘ) and 2N ξ-derivatives

suffice, according to Remark 3.10. Next, inclusion Σ0
1,ρ(RΘ) ⊂ Σ0

1,1(RΘ) together
with the fact that Proposition 3.24 only requires |α1 + α2| ≤ n + 2 —see Remark
3.28— imply that the CZ kernel conditions also hold. This proves that the first
assertion follows from Theorem A. Then, the second assertion follows by adapting
the argument in the proof of Corollary 3.26. Indeed, arguing as in Remark 3.5 we
deduce that

a ∈ Σ�
1,ρ(RΘ) ⇒ (1−ΔΘ)

s−�
2 Ψa(1−ΔΘ)

− s
2 = Ψb for some b ∈ Σ0

1,ρ(RΘ).

In fact, the same holds limiting the conditions above to a prescribed number of
derivatives ∂Θ,ξ and ∂ξ. Hence, we apply Theorem A once more to conclude. �

Remark 3.30. It is very tempting to claim that Corollary 3.29 holds for the
index Λρ,n = −(1 − ρ)(n+ 2) since it is reasonable to think that the above result
follows from a direct combination of Remarks 3.27 and 3.28 above. However, at
the time of this writing, we are not able to circumvent the adjoint stability used
in Remark 3.27, since we need it for Hörmander conditions limited to a prescribed
number of derivatives. The product stability used above is straightforward instead.

Remark 3.31. Lp-boundedness up to the critical index m=−(1− ρ)n2 is still
open.
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CHAPTER 4

Lp regularity for elliptic PDEs

In this section, we illustrate our results with a basic application to elliptic
PDEs in quantum Euclidean spaces. Given 0 ≤ δ ≤ ρ ≤ 1 and m ∈ R, a symbol
a ∈ Sm

ρ,δ(RΘ) is called elliptic of order m when there exist constants C,R > 0 for
which the following inequality holds∣∣a(ξ)∣∣ ≥ C|ξ|m for all |ξ| ≥ R.

A prototypical example of elliptic symbol of order 2 is given by a(ξ) = ξtAξ for
some uniformly positive definite A ∈ Mn(RΘ). We shall be interested in the elliptic
PDE

Ψa(u) = ϕ

with data ϕ in the Sobolev space Wp,s(RΘ) and a ∈ Σm
1,δ(RΘ). Lp-regularity means

that, no matter which a priori regularity do we have in a given solution u, it must
belong at least to the Sobolev space Wp,s+m(RΘ). When the regularity gained
is smaller than m we speak about hypoellipticity. In the Euclidean case, elliptic
regularity arises naturally for (ρ, δ) = (1, 0) and still holds for ρ = 1, whereas the
case ρ < 1 leads to hypoelliptic scenarios [71]. As we shall see, this is also the case
in the quantum setting. Equipped with our results so far, the main obstruction
we shall need to overcome will be to construct suitable parametrices for symbols
in Σ-classes, for which we can not use product stability in that class. Our first
step yields Sobolev p-estimates Wp,s(RΘ) → Wp,s−�(RΘ) for symbols in Sm

ρ,δ(RΘ)

instead of Σ�
ρ,δ(RΘ), provided the order m is small enough.

Lemma 4.1. Given s, � ∈ R, we have

Ψa : Wp,s(RΘ) → Wp,s−�(RΘ)

provided a ∈ Sm
ρ,δ(RΘ) with degree m+ (1 + δ)max

{
2N, n+ 2

}
≤ �.

Proof. Arguing as in the proof of Corollary 3.29, it suffices to see that a satisfies the
Σ�

1,δ(RΘ)-condition for ∂Θ,ξ and ∂ξ of order up to max{2N, n+ 2}. Then recalling
that

∂j
Θ,ξ = ∂j

ξ +
1

2πi

n∑
k=1

Θjk∂
k
Θ,

we easily get the following estimate∥∥∂β
Θ∂

α1

Θ,ξ∂
α2

ξ a(ξ)
∥∥
RΘ

�
∑

α11+α12=α1

∑
|γ|=|α11|

∥∥∂β+γ
Θ ∂α12+α2

ξ a(ξ)
∥∥
RΘ

�
∑

α11+α12=α1

∑
|γ|=|α11|

〈ξ〉m−ρ|α12+α2|+δ|β+γ|.
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70 4. Lp REGULARITY FOR ELLIPTIC PDES

When |α1 + α2| ≤ max{2N, n+ 2}, we use

m− ρ|α12 + α2|+ δ|β + γ|
= m+ (1− ρ)|α12 + α2|+ (1 + δ)|γ| − |α1 + α2|+ δ|β|
≤ m+ (1 + δ)|α1 + α2| − |α1 + α2|+ δ|β| ≤ �− |α1 + α2|+ δ|β|

since m+max{2N, n+ 2} ≤ � by hypothesis. This completes the proof. �
Lemma 4.2. Let a ∈ Σm

ρ,δ(RΘ) be an elliptic symbol for some 0 ≤ δ < ρ ≤ 1
and degree m. Let � = m+Λρ,n. Then, for every k ∈ N, there exist symbols bk and
ck satisfying the following properties :

i) ΨbkΨa = id−Ψck ,

ii) ck ∈ Skγ
ρ,δ(RΘ) with γ = δ − ρ < 0,

iii) If ρ = 1, then Ψbk : Wp,s(RΘ) → Wp,s+m(RΘ) for all s ∈ R.

iv) If ρ < 1, then Ψbk : W2,s(RΘ) → W2, s+ � (RΘ) for all s ∈ R.

In fact, the last assertion holds under the weaker assumption that a ∈ Sm
ρ,δ(RΘ).

Proof. Let
b1(ξ) =

(
1− φ(ξ)

)
a−1(ξ)

where φ is a smooth function which is identically 1 in BR(0) and vanishes outside
BR+1(0). Here R is determined by the ellipticity of a, so that |a(ξ)| ≥ C|ξ|m for
|ξ| ≥ R. We claim that

A) b1 ∈ Σ−m
ρ,δ (RΘ),

B) Ψb1Ψa = id−Ψc1 for some c1 ∈ Sγ
ρ,δ(RΘ).

Assuming the claim, let bk and ck be determined by

Ψbk =
k−1∑
j=0

Ψj
c1
Ψb1 and Ψck = Ψk

c1
.

i) ΨbkΨa =

k−1∑
j=0

Ψj
c1Ψb1Ψa =

k−1∑
j=0

Ψj
c1

(
id−Ψc1

)
= id−Ψk

c1 = id−Ψck .

ii) ck ∈ Skγ
ρ,δ(RΘ) with γ = δ − ρ < 0 follows from Corollary 3.4, since δ < ρ.

iii) We may not use our results directly since we ignore whether or not bk
belongs to the right Σ-class, due to the lack (so far) of stability results for
the product of symbols in these classes. However, when ρ = 1 we know
from claim A) above and Remark 3.27 that

Ψb1 : Wp,s(RΘ) → Wp,s+m(RΘ).

Let us note in passing that Corollary 3.29 would also do the job here
for ρ < 1 and � in place of m. Next, it suffices to show that Ψj

c1 takes
the Sobolev space Wp,s+m(RΘ) to itself. This is clear for the identity
map with j = 0. On the other hand, the boundedness for j > 0 trivially
follows from the case j = 1. Since (a, b1) ∈ Σm

1,δ(RΘ)× ∈ Σ−m
1,δ (RΘ), the

boundedness of Ψc1 = id−Ψb1Ψa follows again from Remark 3.27.

iv) By the product stability of S-classes from Section 3.1 and according to
claims A) and B) we know that bk ∈ S−m

ρ,δ (RΘ) and the result follows from
the argument in Corollary 3.26. Indeed, it works in L2 when Σ-classes are
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4. Lp REGULARITY FOR ELLIPTIC PDES 71

replaced by S-classes since we just need to apply Calderón-Vaillancourt
and composition with the right powers of 1−ΔΘ in that case.

Once we have proved the assertion, it remains to justify our claim. Point A)
follows easily once we express the involved derivatives of a−1(ξ) in terms of those
for a. It is clear that ∂j

(
a−1

)
(ξ) + a−1(ξ)∂j(a)(ξ)a−1(ξ) = 0 for the derivations

∂ ∈ {∂ξ, ∂Θ,ξ, ∂Θ}. By ellipticity we obtain the estimates below for |ξ| ≥ R∥∥∂j
ξ

(
a−1

)
(ξ)

∥∥
RΘ

� 〈ξ〉−m−ρ,∥∥∂j
Θ

(
a−1

)
(ξ)

∥∥
RΘ

� 〈ξ〉−m+δ,∥∥∂j
Θ,ξ

(
a−1

)
(ξ)

∥∥
RΘ

� 〈ξ〉−m−ρ.

By Leibniz rule and induction we get b1 ∈ Σ−m
ρ,δ (RΘ) which proves A). Then B)

follows from the product stability in Corollary 3.4 as in [71, Theorem III.1.3]. �

Remark 4.3. The above result for p = 2 is still open for 1 < p < ∞. According
to point ii) and Lemma 4.1, we know that Ψj

c1 is bounded on Wp,s+�(RΘ) for j
large enough. It would be tempting to deduce the result by complex interpolation
with j = 0. However, imaginary powers of Ψc1 are generally unbounded in Lp since
the same happens for Ψc1 , due to Fefferman’s critical index −(1 − ρ)n/2. Indeed,
Ψc1 will not be bounded in Lp or Wp,s when |γ| is small enough and ρ < 1.

Remark 4.4. In the absence of stability for products of symbols in Σ-classes
—left open in Section 3.1— Lemmas 4.1 and 4.2 give together a good substitute for
many applications. Lemma 4.2 provides a parametrix Ψbk which, despite we ignore
for the moment whether or not it lives in the right Σ-class, it does send Wp,s(RΘ)
to the correct Sobolev space. Moreover, we know from Lemma 4.1 that the same
holds for the error term Ψck provided k is large enough, since γ < 0.

Theorem 4.5. Given 0 ≤ δ < ρ ≤ 1, consider a ∈ Σm
ρ,δ(RΘ) an elliptic symbol

for some m ∈ R and let � = m + Λρ,n. Given 1 < p < ∞ and r, s ∈ R, assume
ϕ ∈ Wp,s(RΘ) and let u solve

Ψa(u) = ϕ

for some u ∈ Wp,r(RΘ). Then, the following estimates hold :

i) If ρ = 1, we get ‖u‖Wp,s+m(RΘ) � ‖u‖Wp,r(RΘ) + ‖ϕ‖Wp,s(RΘ).
ii) If ρ < 1 and p = 2, we get ‖u‖W2,s+�(RΘ) � ‖u‖W2,r(RΘ) + ‖ϕ‖W2,s(RΘ).

Proof. According to Lemma 4.2

u−Ψck(u) = ΨbkΨa(u) = Ψbk(ϕ)

for any k ≥ 0. This gives in particular

i) If ρ = 1

‖u‖p,s+m ≤ ‖Ψbk(ϕ)‖p,s+m + ‖Ψck(u)‖p,s+m

� ‖ϕ‖p,s + ‖Ψck(u)‖p,s+m.

ii) If ρ < 1 and p = 2

‖u‖2,s+� ≤ ‖Ψbk(ϕ)‖2,s+� + ‖Ψck(u)‖2,s+�

� ‖ϕ‖2,s + ‖Ψck(u)‖2,s+�.

Next, Lemma 4.1 gives that Ψck : Wp,r(RΘ) → Wp,s+�(RΘ) for k large enough. �
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72 4. Lp REGULARITY FOR ELLIPTIC PDES

Remark 4.6. As in the Euclidean setting [71], Theorem 4.5 above gives elliptic
Lp-regularity in the Hörmander class Σm

1,δ(RΘ) and hypoelliptic L2-regularity in

Σm
ρ,δ(RΘ) when ρ < 1. The latter result remains open for other values of p �= 2.

Compared to [71] our result for p = 2 quantifies the loss of regularity in terms of ρ
and it holds in the larger class Sm

ρ,δ(RΘ).
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APPENDIX A

Noncommutative tori

Given any n×n anti-symmetric R-matrix Θ, the subalgebra ofRΘ generated by
wj = uj(1) is the rotation algebra AΘ —also known as quantum or noncommutative
torus— and we have

wjwk = exp(2πiΘjk)wkwj .

AΘ can also be described as the Zn-periodic subalgebra

AΘ =
〈
λΘ(k) : k ∈ Zn

〉′′
=

{
ϕ ∈ RΘ

∣∣ σk
Θ(ϕ) = ϕ for all k ∈ Zn

}
.

The extension of our results for pseudodifferential operators to noncommutative
tori AΘ follows by a combination of well-known transference arguments, which we
recall now. Given a symbol a : Zn → AΘ we shall say that

• a ∈ Sm
ρ,δ(AΘ) when∣∣∂β

Θ∂
α
k a(k)

∣∣ ≤ Cα,β 〈k〉m−ρ|α|+δ|β|.

• a ∈ Σm
ρ,δ(AΘ) when∣∣∂β

Θ∂
α1

Θ,k∂
α2

k a(k)
∣∣ ≤ Cα1,α2,β 〈k〉m−ρ|α1+α2|+δ|β|.

In the above definitions, ∂Θ remains the same differential operator as inRΘ whereas
∂k is the difference operator (∂j

ka)(k) = a(k + ej) − a(k). The mixed derivatives
∂Θ,k are again Θ-deformations of ∂k by ∂Θ’s

∂j
Θ,ka(k) = ∂j

ka(k) + 2πi
[
xΘ,j , a(k)

]
= ∂j

ka(k) +
1

2πi

n∑
�=1

Θj�∂
�
Θa(k).

The associated pseudodifferential operator is

Ψa(ϕ) =
∑
k∈Zn

a(k)ϕ̂(k)λΘ(k) for ϕ =
∑
k∈Zn

ϕ̂(k)λΘ(k).

We say that ã : Rn → AΘ is a Euclidean lifting of a when its restriction to Zn

coincides with the original symbol a : Zn → AΘ. Recall that we impose the lifting to
take values in the periodic subalgebraAΘ, not just inRΘ. The extension/restriction
theorem below provides a useful characterization of the quantum Hörmander classes
in AΘ defined above since it relates them with their siblings in RΘ.

Theorem A.1. Assume ρ > 0 :

i) a ∈ Sm
ρ,δ (AΘ) iff it admits a lifting ã ∈ Sm

ρ,δ (RΘ).

ii) a ∈ Σm
ρ,δ(AΘ) iff it admits a lifting ã ∈ Σm

ρ,δ(RΘ).

In fact, the lifting ã : Rn → AΘ has the form

ã(ξ) =
∑
k∈Zn

φ(ξ − k)a(k)
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74 A. NONCOMMUTATIVE TORI

for certain Schwartz function φ : Rn → R satisfying φ(k) = δk,0 for k ∈ Zn.

The proof follows verbatim [66, Theorem 4.5.3] since the argument only affects
the classical variables k ∈ Zn and ξ ∈ Rn. In particular, the exact same argument
applies when we take values in AΘ. In fact, the same extension procedure applies
when the Hörmander condition is only required for finitely many derivatives in
the line of Remark 3.28, see [66, Corollary 4.5.7]. The equality of the associated
pseudodifferential operators is also proved in [66, Theorem 4.6.12 and Corollary
4.6.13]. Namely, the class of pseudodifferential operators associated to Sm

ρ,δ(AΘ)

or Σm
ρ,δ(AΘ) can be identified with the corresponding Hörmander classes in RΘ for

periodic symbols —that is, taking values in AΘ— when acting on periodic elements
ϕ = σk

Θ(ϕ) for k ∈ Zn. Finally, it is also worth mentioning that the extension above
also respects ellipticity, as shown in [66, Theorem 4.9.15].

Theorem A.2. Let a : Zn → AΘ and 1 < p < ∞ :

i) If a ∈ S0
ρ,ρ(AΘ) with 0 ≤ ρ < 1, Ψa : L2(AΘ) → L2(AΘ).

ii) If a ∈ S0
1,1 (AΘ) ∩ S0

1,1 (AΘ)
∗, then Ψa : L2(AΘ) → L2(AΘ).

iii) If a ∈ Σ0
1,1(AΘ) ∩ Σ0

1,1(AΘ)
∗, then Ψa : Lp(AΘ) → Lp(AΘ).

Proof of Theorem A.2 i) and ii). Let bj = B2−j (0) and

hj =
1√
|bj |

λΘ(1bj ) and Λj : λΘ(k) �→ λΘ(k)hj.

Observe that Λj : L2(AΘ) → L2(RΘ) is an isometry for all j ≥ 1. Indeed∥∥Λj(ϕ)
∥∥2
L2(RΘ)

=
1

|bj |

∥∥∥ ∑
k∈Zn

ϕ̂(k)λΘ(k)λΘ(1bj )
∥∥∥2
L2(RΘ)

=
1

|bj |

∥∥∥ ∫
Rn

∑
k∈Zn

ϕ̂(k)1bj (ξ − k)e2πi〈k,Θ↓ξ−k〉λΘ(ξ) dξ
∥∥∥2
L2(RΘ)

.

By Plancherel theorem and using that bj + k are pairwise disjoint, we get∥∥Λj(ϕ)
∥∥2
L2(RΘ)

=
1

|bj |

∫
Rn

∣∣∣ ∑
k∈Zn

ϕ̂(k)1bj (ξ − k)e2πi〈k,Θ↓ξ−k〉
∣∣∣2 dξ

=
1

|bj |

∫
Rn

∑
k∈Zn

∣∣ϕ̂(k)∣∣21bj (ξ − k) dξ =
∑
k∈Zn

∣∣ϕ̂(k)∣∣2 = ‖ϕ‖2L2(AΘ).

Then, the assertion follows from the following claim

lim
j→∞

∥∥∥Λj

(
Ψa(ϕ)

)
−Ψã

(
Λj(ϕ)

)∥∥∥
L2(RΘ)

= 0

for any trigonometric polynomial ϕ. In other words, for finite linear combinations
of the λΘ(k)’s. Indeed, assume the limit above vanishes, then Ψa is L2-bounded
since trigonometric polynomials are dense and∥∥Ψa(ϕ)

∥∥
L2(AΘ)

= lim
j→∞

∥∥Λj

(
Ψa(ϕ)

)∥∥
L2(RΘ)

= lim
j→∞

∥∥Ψã

(
Λj(ϕ)

)∥∥
L2(RΘ)

≤ lim
j→∞

∥∥Λj(ϕ)
∥∥
L2(RΘ)

= ‖ϕ‖L2(AΘ).

The inequality above follows by application of Theorem A.1 in conjunction with
Theorems 3.9, 3.12 and 3.19. Let us then justify our claim above. It clearly suffices
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A. NONCOMMUTATIVE TORI 75

to prove it with ϕ = λΘ(k) for any k ∈ Zn. Given an arbitrary ε > 0, we shall
prove that the quantity ‖Λj(Ψa(λΘ(k)))−Ψã(Λj(λΘ(k)))‖2 < Cε for some absolute
constant C independent of (k, ε) and j large enough. Let φ : Rn → R be the
function used in Theorem A.1 for the construction of the lifting. Since φ is a
Schwartz function and φ(k) = δk,0 for k ∈ Zn, there must exists a δ > 0 satisfying

|ξ − k| < δ ⇒ max
{∣∣φ(ξ − k)− 1

∣∣, sup
j�=k

|φ(ξ − j)|
}
< εR−n

ε

where Rε is large enough to satisfy∑
|k|>Rε

1

|k|n+1
< ε.

Next, consider the Fourier multiplier Mbkδ (ϕ) =
∫
Rn 1bkδ (ξ)ϕ̂(ξ)λΘ(ξ)dξ where we

write bkδ for Bδ(k). Then, we decompose the L2-norm into three terms as follows∥∥Λj

(
Ψa(λΘ(k))

)
−Ψã(Λj(λΘ(k)))

∥∥
2

=
∥∥a(k)λΘ(k)hj −Ψã

(
λΘ(k)hj

)∥∥
2

≤
∥∥a(k)(λΘ(k)hj −Mbkδ (λΘ(k)hj)

)∥∥
2

+
∥∥a(k)Mbkδ(λΘ(k)hj)−Ψã

(
Mbkδ (λΘ(k)hj)

)∥∥
2

+
∥∥Ψã

(
Mbkδ (λΘ(k)hj)

)
−Ψã

(
λΘ(k)hj

)∥∥
2

= A+ B+ C.

We recall one more time from Theorem A.1 and Theorem B in the Introduction
that Ψã : L2(RΘ)) → L2(RΘ) is a bounded map. Moreover, we also know that
a ∈ �∞(Zn;AΘ) since it has degree 0. In particular

A + C ≤
(

sup
k∈Zn

‖a(k)‖AΘ
+
∥∥Ψã

∥∥
L2(RΘ)→L2(RΘ)

)∥∥λΘ(k)hj −Mbkδ (λΘ(k)hj)
)∥∥

2
.

The L2-norm above can be estimated with Plancherel theorem∥∥λΘ(k)hj −Mbkδ (λΘ(k)hj)
)∥∥

2

=
1√
|bj |

∥∥∥ ∫
Rn

(1− 1bkδ (ξ))1bj (ξ − k)e2πi〈k,Θ↓ξ−k〉λΘ(ξ) dξ
∥∥∥
2

=
( 1

|bj |

∫
k+bj

∣∣1− 1bkδ (ξ)
∣∣2 dξ) 1

2 −→
∣∣1− bkδ(k)

∣∣ = 0

as j → ∞. Therefore, it remains to estimate the term B. Letting

ak(ξ) =
(
ã(ξ)− a(k)

)
1bkδ(ξ)

= a(k)
(
φ(ξ − k)− 1

)
1bkδ(ξ)

+
∑
j�=k

|j−k|≤Rε

a(j)φ(ξ − j)1bkδ(ξ)

+
∑

|j−k|>Rε

a(j)φ(ξ − j)1bkδ(ξ) = a1k(ξ) + a2k(ξ) + a3k(ξ),
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76 A. NONCOMMUTATIVE TORI

we clearly have

B =
∥∥Ψak

(λΘ(k)hj)
∥∥
2
≤

3∑
j=1

∥∥Ψajk
: L2(RΘ) → L2(RΘ)

∥∥
since λΘ(k)hj is a unit vector in L2(RΘ). This gives

B ≤
(
sup
j∈Zn

‖a(j)‖AΘ

)(
sup

|ξ−k|<δ

∣∣φ(ξ − k)− 1
∣∣)

+
(
sup
j∈Zn

‖a(j)‖AΘ

)( ∑
j�=k

|j−k|≤Rε

sup
|ξ−k|<δ

|φ(ξ − j)|
)

+
(
sup
j∈Zn

‖a(j)‖AΘ

)∥∥|ξ|n+1φ(ξ)
∥∥( ∑

|j−k|>Rε

1

|j− k|n+1

)
� 3ε.

Then, letting ε → 0+ this completes the proof of the claim. �
Proof of Theorem A.2 iii). The next ingredient we need is the natural BMO
space in AΘ. Define BMOc(AΘ) as the column BMO space associated to the
transferred heat semigroup ϕ �→

∑
k ϕ̂(k) exp(−t|k|2)λΘ(k). As in Section 1.2.1

it can be regarded as the weak-∗ closure of σΘ(AΘ) with respect to the pair
(Hc

1(QΘ),BMOc(QΘ)). In other words, we find

‖a‖BMOc(AΘ) ∼ sup
Q∈Q

∥∥∥(−
∫
Q

∣∣σΘ(a)− σΘ(a)Q
∣∣2 dμ) 1

2
∥∥∥
AΘ

,

where Q is the set of all Euclidean cubes in Rn with sides parallel to the axes, μ
stands for the Lebesgue measure and σΘ(a)Q is the average of σΘ(a) over the cube
Q. Up to absolute constants, it is not difficult to recover an equivalent norm when
restricting to cubes Q of side length �(Q) ∈ (0, 1)∪N. Moreover, since a is spanned
by λΘ(k) for k ∈ Zn, it is clear that σΘ(a) is Z

n-periodic. In particular, the quantity
above for �(Q) ∈ N coincides with the same quantity for Q = [0, 1]× . . .× [0, 1], so
that we may assume in addition �(Q) ≤ 1. We have proved

‖a‖BMOc(AΘ) ∼ sup
Q∈Tn

∥∥∥(−
∫
Q

∣∣σΘ(a)− σΘ(a)Q
∣∣2 dμ) 1

2
∥∥∥
AΘ

.

In other words, BMOc(AΘ) embeds into BMOc(T
n;AΘ) using Mei’s terminology

[52]. The interpolation behavior and other natural properties which we explore for
BMO(RΘ) in Appendix B are well-known in this case [41], due to the finiteness
of AΘ. Note that, according to our definition of BMO(AΘ), the natural inclusion
map AΘ → RΘ extends to an embedding BMO(AΘ) → BMO(RΘ). In other
words, BMO(AΘ) is the subspace of periodic elements in BMO(RΘ). Now, recalling
that Ψã sends periodic elements into periodic elements, this makes the following a
commutative diagram

L∞(AΘ)

Ψa

��

id �� L∞(RΘ)

Ψã

��
BMO(AΘ)

id �� BMO(RΘ)

The assertion follows from it and Theorem A.2 ii) by interpolation and duality. �
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A. NONCOMMUTATIVE TORI 77

Remark A.3. Our Lp-inequalities also hold in the category of operator spaces
and admit the endpoint estimates H1 → L1 and L∞ → BMO, as in the quantum
Euclidean setting. Besides, the natural analogues of Remarks 3.27 and 3.28 as
well as Corollary 3.29 concerning Lp-estimates still apply. On the other hand, the
Sobolev p-estimates in Corollary 3.26 and the Lp-regularity for elliptic PDEs require
in addition analogues of the product stability of Hörmander classes in Section 3.1,
which seems to be straightforward but we shall not generalize it here.
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APPENDIX B

BMO space theory in RΘ

The theory of BMO spaces was originally developed as a natural endpoint
class for singular integral operators. In particular, the natural requirements for a
reasonable BMO space are:

1) Interpolation endpoint for the Lp-scale.
2) John-Nirenberg inequalities and H1 − BMO duality.
3) L∞ → BMO boundedness for Calderón-Zygmund operators.

BMO spaces over von Neumann algebras were introduced by Pisier and Xu in [63]
and have been investigated since then. The theory when averages over balls or
martingale filtrations are replaced by the action of a Markovian semigroup has
been addressed for finite von Neumann algebras in [41]. Interpolation requires a
different approach over RΘ —less intricate than the general semifinite case— which
we present here. Duality was developed by Mei [52,53] and endpoint estimates for
imaginary powers Ais of infinitesimal generators, noncommutative Riesz transforms
or more general Fourier multipliers have been studied in [13, 40–42, 65]. In the
setting of AΘ and RΘ, Theorems A and B include many more singular integrals.

B.1. Operator space structures on BMO and H1

Let us recall the definitions of several natural operator space structures —o.s.s.
in short— for BMO(Rn) and its predual. We define the column operator space
structure by the family of matrix norms on f = [fij ] ∈ Mm[BMOc(R

n)] given by

‖f‖Mm[BMOc(Rn)] = sup
Q∈Q

∥∥∥−
∫
Q

(f − fQ)
∗ (f − fQ) dμ

∥∥∥ 1
2

Mm

,

where fQ is the average of f over Q and Q stands for the set of all the Euclidean
balls. We will denote the resulting operator space by BMOc(R

n). Similarly, we
can define the row o.s.s. by ‖f‖Mm[BMOr(Rn)] = ‖f∗‖Mm[BMOc(Rn)]. We shall also
denote by BMO(Rn) —sometimes BMOr∧c(R

n) for convenience— the operator
space structure

‖f‖Mm[BMO(Rn)] = max
{
‖f‖Mm[BMOc(Rn)], ‖f‖Mm[BMOr(Rn)]

}
.

These are dual operator spaces, with preduals H†
1(R

n)∗ = BMO†(R
n) given by

‖f‖Hc
1(R

n) =
∥∥∥(∫

R+

∣∣s(∇+ ∂2
s )Psf

∣∣2 ds
s

) 1
2
∥∥∥
L1(Rn)

,

‖f‖Hr
1(R

n) =
∥∥∥(∫

R+

∣∣s(∇+ ∂2
s )Psf

∗∣∣2 ds
s

) 1
2
∥∥∥
L1(Rn)

,

where Ps is the Poisson semigroup. The quantities above are just pseudonorms. A
natural way of turning them into norms is working with 0-integral functions, in a

79
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80 B. BMO SPACE THEORY IN RΘ

way dual to the quotient of constants taken in the definition of BMO. Comparable
norms can be defined by removing the ∂2

s inside the square function and by using
the semigroup analogue of Lusin area integral, given by

‖f‖Hc
1(R

n) ∼
∥∥∥(∫

Γx

∣∣(∇+ ∂2
s )Psf(y)

∣∣2 dsdy) 1
2
∥∥∥
L1(Rn)

,

where Γx = {(y, s) ∈ Rn×R+ : |y−x| ≤ s} is the cone centered at x. The row case
can be expressed analogously. The o.s.s. of Hardy spaces can be easily described
by taking matrix-valued functions f = [fij ] in the expression above and taking

norms in Sm
1 ⊗̂L1(R

n) = L1(R
n;Sm

1 ). That will give a family of matrix norms
which describes the operator space structure. Indeed, using [61, Lemma 1.7] and
the well-known relation

Mm[H†
1(R

n)] = CB(Sm
1 ,H†

1(R
n))

see e.g. [62, Theorem 4.1], we can easily express the norm of Mm[H†
1(R

n)] in terms
of the known norms. The operator space predual H1(R

n) of BMO(Rn) is given by
the sum Hc

1(R
n) + Hr

1(R
n), whose norm is

‖f‖Sm
1 ⊗̂H1(Rn) = inf

{
‖g‖Sm

1 ⊗̂Hr
1(R

n) + ‖h‖Sm
1 ⊗̂Hc

1(R
n) : f = g + h

}
.

Let us note that, by computations in Section 1.2.1 we have that σΘ gives an
isomorphic embedding BMO†(RΘ) → BMO†(R

n)⊗̄RΘ. In particular, since RΘ

is hyperfinite, we may equip BMO†(RΘ) with an o.s.s. naturally inherited from

BMO†(R
n). Following Mei [53, 54], the definition of H†

1(RΘ) will be given by
completion on the 0-trace functions with respect to

‖ϕ‖Hc
1(RΘ) =

∥∥∥(∫
R+

SΘ,t

∣∣∇ΘSΘ,tϕ
∣∣2 dt) 1

2
∥∥∥
L1(RΘ)

,

‖ϕ‖Hr
1(RΘ) =

∥∥∥(∫
R+

SΘ,t

∣∣∇ΘSΘ,tϕ
∗∣∣2 dt) 1

2
∥∥∥
L1(RΘ)

.

The operator space structures of such spaces are defined in the same way as the
operator space structures of the classical ones, which could also have been defined
with this square function instead of the given one yielding an equivalent norm. Note
also that when Θ = 0, the semigroup SΘ,t behaves (intuitively) like an average over

balls of radius
√
t and a calculation gives that the quantities above are comparable

to the Lusin integral and therefore recover the classical H1(R
n). We will write

H1(RΘ) or H
r+c
1 (RΘ) for the sum

H1(RΘ) = Hr
1(RΘ) + Hc

1(RΘ).

B.2. The H1-BMO duality

The von Neumann algebra analogue of the celebrated H1 − BMO duality [30]
has been carefully studied in our semigroup setting by Tao Mei. By [54, Theorem
0.2], the duality between H1(RΘ) and BMO(RΘ) can be deduced after verifying
that the associated heat semigroup (SΘ,t)t≥0 satisfies the following conditions:

i) Bakry’s Γ2 ≥ 0 condition.

ii) For all ε, t > 0 and ϕ ∈ L1(RΘ)∥∥(SΘ,(1+ε)t − SΘ,t)ϕ
∥∥
L1(RΘ)

� εr‖ϕ‖L1(RΘ).
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B.3. COMPLEX INTERPOLATION 81

iii) For every t > 0 and ϕ ∈ L1(RΘ)

sup
t>0

∥∥∥(−
∫ 8t

0

SΘ,s(|SΘ,t(ϕ)|2) ds
) 1

2
∥∥∥
L1(RΘ)

� ‖ϕ‖L1(RΘ).

Verifying such identities is relatively easy for the heat semigroup (SΘ,t)t≥0 after
noting that it can be presented as an integrable convolution with respect to the
z-variable σz

Θ(ϕ) and using bounds in L1/2(RΘ). In particular, we obtain the
expected duality theorem.

Theorem B.1. We have

H†
1(RΘ)

∗ = BMO†(RΘ)

in the category of operator spaces for † ∈ {r, c}. Also H1(RΘ)
∗ = BMO(RΘ).

B.3. Complex interpolation

We are interested in proving the generalization of the classical interpolation
identities between Lp, BMO and H1. According to Wolff’s interpolation theorem
[77], this can be reduced to justifying [L2(RΘ),BMO(RΘ)]θ = Lp(RΘ) for p = 2

1−θ

which in turn will be reduced, via suitable complemented subspaces, to the same
result in Rn with operator values in certain hyperfinite von Neumann algebra.

Let us recall a few standard definitions from interpolation theory. Given X0,X1

Banach spaces, assume that they embed inside a topological vector space with dense
intersection, so that we can define X0 ∩X1 and X0 +X1 with their natural norms.
Let us write F(X0,X1) for the space of (X0 +X1)-valued holomorphic functions in
the strip 0 < �(z) < 1 which admit a continuous extension to the boundary, with
Xj-values at ∂j for j = 1, 2. Such space is a Banach space with respect to the norm
given by

‖f‖F(X0,X1) = max
{
sup
s∈R

‖f(is)‖X0
, sup
s∈R

‖f(1 + is)‖X1

}
.

The interpolated space with parameter 0 < θ < 1 is[
X0, X1

]
θ
= F(X0,X1)/Nθ,

where Nθ is the subspace of functions with f(θ) = 0. We can also define a larger
interpolation functor [X0,X1]

θ that contains [X0,X1]θ isometrically by changing
F(X0,X1) by a la larger space F∗(X0,X1) of holomorphic functions in which f |∂j

is a more general Xj-valued distribution. These interpolation functors satisfy that
[X0,X1]

∗
θ = [X∗

0,X
∗
1]

θ and both coincide if any of the spaces involved X0,X1 is
reflexive [5, Corollary 4.5.2] and [62, Theorem 2.7.4]. If Xj are operator spaces,
the o.s.s. of [X0,X1]θ is given by the identification

Mm

(
[X0,X1]θ

)
=
[
Mm(X0),Mm(X1)

]
θ
.

We first need an auxiliary result concerning complex interpolation of tensor
products against hyperfinite von Neumann algebras. This result is a consequence
of the interpolation identity [M∗⊗̂X0,M∗⊗̂X1]θ = M∗⊗̂Xθ which can be found in
[61, page 40]. We prove it for completeness.

Lemma B.2. We have[
M⊗̄X0,M⊗̄X1

]θ
= M⊗̄[X0,X1]

θ

for any hyperfinite algebra M and any pair of dual operator spaces X0, X1.
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82 B. BMO SPACE THEORY IN RΘ

Proof. According to [26] the spaces involved are dual operator spaces. Indeed,
von Neumann algebra preduals have the OAP so M⊗̄X∗ = (M∗⊗̂X)∗. Now, since
hyperfiniteness and semidiscreteness are equivalent id : M → M is approximable
in the pointwise weak-∗ topology by a net iα = ψαφα where φα : M → Mmα

(C)
and ψα : Mmα

(C) → M are ucp. We have

M⊗̄Xθ

ψα⊗id

����
��

��
��

��
�

iα⊗id ��
[
M⊗̄X0,M⊗̄X1

]θ

Mmα
(Xθ)

	 [
Mmα

(X0),Mmα
(X1)

]θ
φα⊗id

����������������

a commutative diagram for Xθ = [X0,X1]
θ. The maps iα approximate the identity

and taking a weak-∗ accumulation point in CB(M⊗̄Xθ, [M⊗̄X0,M⊗̄X1]
θ), which

is a dual space since CB(X,Y∗) = (X⊗̂Y)∗, we obtain a complete isomorphism. �
A key point in our interpolation argument will be to show that the co-action

σΘ : RΘ → L∞(Rn)⊗̄RΘ also carries other RΘ-spaces —Lp and BMO— into their
RΘ-valued Euclidean counterparts.

Proposition B.3. We have complete contractions :

i) σΘ : L†
2(RΘ) −→ L†

2(R
n)⊗̄RΘ for † ∈ {r, c},

ii) σΘ : Lp(RΘ) −→ Lp(R
n)⊗̄RΘ for any 2 ≤ p ≤ ∞,

iii) σΘ : BMO†(RΘ) −→ BMO†(R
n)⊗̄RΘ for † ∈ {r, c, r ∧ c}.

Proof. Let us recall the Fubini-type identity

1τΘ(ϕ) =

∫
Rn

σz
Θ(ϕ) dz.

In particular, given ϕ = [ϕij ] ∈ Mm[Lc
2(RΘ)] we obtain

‖ϕ‖2Mm[Lc
2(RΘ)] =

∥∥(id⊗ τΘ)
(
ϕ∗ϕ

)∥∥
Mm

=
∥∥(id⊗ 1τΘ)

(
ϕ∗ϕ

)∥∥
Mm[RΘ]

=
∥∥∥ ∫

Rn

σz
Θ(ϕ)

∗σz
Θ(ϕ) dz

∥∥∥
Mm[RΘ]

=
∥∥σΘ(ϕ)

∥∥2
Mm[Lc

2(R
n)⊗̄RΘ]

.

The same follows in the row case. In fact, σΘ is a complete isometry in case i) and
also in case iii) by construction of BMO(RΘ). Assertion ii) follows by interpolation
from Lemma B.2. Indeed, since L2(R

n) = [Lc
2(R

n), Lr
2(R

n)]1/2 in the category of
operator spaces and all spaces involved are reflexive, we obtain from i) that σΘ is
a complete contraction from L2(RΘ) to L2(R

n)⊗̄RΘ. The case p > 2 also follows
by complex interpolation, using the reflexivity of L2, since the contractivity of the
other endpoint for p = ∞ was already justified in Corollary 1.4. �

Remark B.4. It is interesting to know whether an analogue of Proposition
B.3 holds for p = 1. Note that L1(R

n) is not a dual space, so that we can not use
the weak-∗ closed tensor product. Instead, we shall consider the mixed-norm space
L∞(RΘ;L1(R

n)) as introduced in [39,45]

L∞
(
RΘ;L1(R

n)
)
=

(
Lr
2(R

n)⊗̄RΘ

)(
Lc
2(R

n)⊗̄RΘ

)
,

where the operator space structure for ω ∈ Mm(L∞(RΘ;L1(R
n))) is

inf

{∥∥∥∑
k
αk ⊗ e1k

∥∥∥
Mm(Lr

2(R
n)⊗̄RΘ⊗R)

∥∥∥∑
k
βk ⊗ ek1

∥∥∥
Mm(Lc

2(R
n)⊗̄RΘ⊗C)

}

Licensed to Univ of Ill at Urbana-Champaign.  Prepared on Wed Sep 14 07:37:29 EDT 2022for download from IP 130.126.162.126.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



B.3. COMPLEX INTERPOLATION 83

where the infimum runs over all possible factorizations ω =
∑

k αkβk. Now, the
contractivity of σΘ : L1(RΘ) → L∞(RΘ;L1(R

n)) follows easily from Proposition
B.3 i). Particular cases of this kind of spaces —over finite von Neumann algebras or
discrete �1 spaces— have been proved to interpolate in the expected way with the
corresponding Lp scale [39,45]. The lack of an available argument in the literature
for the general case has led us to avoid the case 1 < p < 2 in Proposition B.3. This
contractivity result is unnecessary for our goals.

Observe that

σΘ(λΘ(f)) =

∫
Rn

f(ξ) (expξ ⊗λΘ(ξ)) d ξ for f ∈ S(Rn).

Clearly such element is invariant under the group of trace preserving automorphisms
βz given by βz = σ−z

0 ⊗ σz
Θ. Let us denote by (X⊗̄RΘ)

β the β-invariant part of
the X⊗̄RΘ with X any of the Euclidean function spaces in Proposition B.3. We
need to see that (X⊗̄RΘ)

β coincides with the image of σΘ and that the β-invariant
subspace is complemented. Let us start with the complementation.

Proposition B.5. The following subspaces

i) (L†
2(R

n)⊗̄RΘ)
β ⊂ L†

2(R
n)⊗̄RΘ for † ∈ {r, c},

ii) (Lp(R
n)⊗̄RΘ)

β ⊂ Lp(R
n)⊗̄RΘ for any 2 ≤ p ≤ ∞,

iii) (BMO†(R
n)⊗̄RΘ)

β ⊂ BMO†(R
n)⊗̄RΘ for † ∈ {c, r, r ∧ c},

are completely complemented as operator spaces in the respective ambient spaces.

Proof. By amenability of Rn, let m ∈ L∞(Rn)∗ be an invariant mean and let mα

be a sequence of probability measures in L1(R
n) which approximate m. Given ω

in Lp(R
n)⊗̄RΘ, the function z �→ βzω sits in the space L∞(Rn)⊗̄Lp(R

n)⊗̄RΘ, so

Pα(ω) = (mα ⊗ id⊗ id)(βzω)

defines a family of completely positive operators

Pα : L∞(Rn)⊗̄Lp(R
n)⊗̄RΘ → Lp(R

n)⊗̄RΘ.

Since the image is in a dual space, we use CB(X,Y∗) = (X⊗̂Y)∗ and Banach-Alaoglu
theorem. Let P be an accumulation point of (Pα ◦ β)α in the weak-∗ topology. P
gives a cb-bounded projection into the β-invariant part. We have only used that
Lp(R

n) is a dual space for weak-∗ compactness. Therefore, the same proof applies
to BMO†(R

n). The projections P : Lp(R
n)⊗̄RΘ → Lp(R

n)⊗̄RΘ form compatible
family: they are restrictions of a map defined in the sum of the above spaces. �

Proposition B.6. We have

i) σΘ(L
†
2(RΘ)) = (L†

2(R
n)⊗̄RΘ)

β for † ∈ {r, c},
ii) σΘ(Lp(RΘ)) = (Lp(R

n)⊗̄RΘ)
β for any 2 ≤ p ≤ ∞,

iii) σΘ(BMO†(RΘ)) = (BMO(Rn)†⊗̄RΘ)
β for † ∈ {r, c, r ∧ c}.

Proof. Since the spaces (Lp(R
n)⊗̄RΘ)

β are complemented subspaces, it is enough
to prove the identity for p = 2 and p = ∞ and interpolation will yield the result
for 2 < p < ∞ since the maps σΘ : Lp(RΘ) → Lp(R

n)⊗̄RΘ are compatible. The
same argument gives that the L2 case follows by interpolation between Lc

2(RΘ)
and Lr

2(RΘ). This reduces the proof to the row/column cases, the case p = ∞ and
BMO(RΘ). We shall only prove it for columns and for p = ∞, since the argument
is similar in BMO. Let us define the map W : Lc

2(R
n)⊗̄RΘ → Lc

2(R
n)⊗̄RΘ by
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84 B. BMO SPACE THEORY IN RΘ

extension of expξ ⊗λΘ(η) �→ expξ ⊗λΘ(ξ)λΘ(η). A calculation easily yields that
W is a complete isometry. The same follows in the row case if one takes the map
expξ ⊗λΘ(η) �→ expξ ⊗λΘ(η)λΘ(ξ) instead. We have that W gives an isomorphism
between Lc

2(R
n) ⊗ 1 and σΘ[λΘ[L2(R

n)]]. We also have that W intertwines the
action βz as follows

Lc
2(R

n)⊗̄RΘ
W ��

σz
Θ

��

Lc
2(R

n)⊗̄RΘ

βz

��
Lc
2(R

n)⊗̄RΘ
W �� Lc

2(R
n)⊗̄RΘ.

Therefore, the subspace fixed by β corresponds under W with the subspace fixed
by id ⊗ σΘ. But evaluating such space against every ϕ ⊗ id, with ϕ ∈ Lr

2(R
n),

gives that the fixed subspace of id⊗σΘ is Lc
2(R

n) tensored with the subspace fixed
by σΘ. Such subspace is C1. Indeed, if ϕ ∈ RΘ is invariant under σΘ we obtain
that ϕ = λΘ(ψ), where ψ ∈ S(Rn)′ is a distribution supported on {0}. But such
distribution is a linear combination of distributions of the form 〈ψ, f〉 = f (k)(0),
where f ∈ S(Rn). The derivatives with k > 0 give rise to unbounded elements and
so we obtain that ψ has to be a multiple of δ0 or, equivalently, that ϕ ∈ C1.

The case of p = ∞ follows similarly. We first define a normal ∗-homomorphim
U : L∞(Rn)⊗̄RΘ → L∞(Rn)⊗̄RΘ by extension of expξ ⊗λΘ(η) �→ expη+ξ ⊗λΘ(ξ).
To prove that such map is a ∗-homomorphism we can implement it spatially with
techniques analogous to that of Corollary 1.4. We have that U carries 1 ⊗ RΘ in
σΘ[RΘ] and that it intertwines the actions in the expected way. Proceeding like in
the case p = 2 we can conclude.

The case of BMO† can be deduced from a similar result for mixed spaces. First
we note that the result for BMOr∧c follows from the corresponding ones for BMOr

and BMOc, we shall only prove it for BMOc. Fix a Euclidean ball B ⊂ Rn and
consider the following operator-valued inner product

〈f, f〉B = −
∫
B

|fs|2 ds−
∣∣∣−∫

B

fs ds
∣∣∣2 for f ∈ L∞(Rn)⊗alg RΘ.

Let Hc
Θ(B) denote the corresponding Hilbert module over RΘ and let Hc

Θ be the
direct sum, in the �∞-sense, of Hc

Θ(B) over all balls B. Clearly BMOc(RΘ) embeds
in Hc

Θ and we have that

Hc
Θ

id⊗σΘ �� Hc
Ξ

BMOc(RΘ)
��

��

σΘ �� BMOc(R
n)⊗̄RΘ

��

��

where Ξ is the 2n×2n-matrix Ξ = 0⊗Θ. Now, we can define a map preserving the
operator-valued inner product (and thus an isometry) Wc : Hc

Ξ → Hc
Ξ by extension

of expξ1 ⊗ expξ2 ⊗λΘ(η) �→ expξ1 ⊗ expξ2+η ⊗λΘ(η) for every ball B. Such map
carries the copy of Hc

Θ ⊗ 1 that lives in the first and third tensor components into
σΘ[Hc

Θ] and proceeding like in the previous cases we get that σΘ[Hc
Θ] coincides with

the subspace of Hc
Ξ invariant under the group of automorphisms βz = id⊗σ−z

0 ⊗σz
Θ.

That result restricts to BMOc. �

Proposition B.7. We have complete isometries :
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B.3. COMPLEX INTERPOLATION 85

i) σΘ : L†
2(RΘ) −→ L†

2(R
n)⊗̄RΘ for † ∈ {r, c},

ii) σΘ : Lp(RΘ) −→ Lp(R
n)⊗̄RΘ for any 2 ≤ p ≤ ∞,

iii) σΘ : BMO†(RΘ) −→ BMO†(RΘ)⊗̄RΘ for † ∈ {r, c, r ∧ c}.

Proof. Assertions i) and iii) were proved in the proof of Proposition B.3. Assertion
ii) for p = ∞ was already justified in Corollary 1.4. The rest of the cases trivially
follow by complementation and complex interpolation from our results above. �

Theorem B.8. We have[
H1(RΘ),BMO(RΘ)

]
θ

=
[
L◦
1(RΘ),BMO(RΘ)

]
θ

=
[
H1(RΘ), L∞(RΘ)

]
θ

= Lp(RΘ)

for p = 1
1−θ . All isomorphisms above hold in the category of operator spaces.

Proof. Since L2(RΘ) is reflexive[
L2(RΘ),BMO(RΘ)

]
θ

=
[
L2(RΘ),BMO(RΘ)

]θ
=

[
σΘ(L2(RΘ)), σΘ(BMO(RΘ))

]θ
=

[
P (L2(R

n)⊗̄RΘ), P (BMO(Rn)⊗̄RΘ)
]θ

= P
([
L2(R

n)⊗̄RΘ,BMO(Rn)⊗̄RΘ

]θ)
= P

(
[L2(R

n),BMO(Rn)]θ⊗̄RΘ

)
= P

(
Lp(R

n)⊗̄RΘ

)
= σΘ

(
Lp(RΘ)

)
= Lp(RΘ)

for p = 2
1−θ . Indeed, the second identity follows from Proposition B.7, which gives

X = σΘ(X) completely isomorphic for X = L2(RΘ) and X = BMO(RΘ). The third
and fourth identities follow from Proposition B.5, which shows that σΘ(X) can be
identified with P (Z) where Z is the ambient space of operator-valued functions in
Rn associated to X. Moreover, since P is a bounded projection, it commutes with
the complex interpolation functor by complementation. The fifth identity follows
from Lemma B.2 and the sixth one from Mei’s interpolation theorem [54]. The last
two identities apply from Propositions B.5 and B.7 again. Once this is known we
use the reflexivity of L2(RΘ) and duality H1(RΘ)

∗ = BMO(RΘ) to obtain[
H1(RΘ), L2(RΘ)

]∗
θ
=

[
BMO(RΘ), L2(RΘ)

]θ
= Lq′(RΘ)

for q = 2
2−θ . This shows that [H1(RΘ), L2(RΘ)]θ must be reflexive and we get[

H1(RΘ), L2(RΘ)
]
θ
= Lq(RΘ).

The interpolation results in the statement follow from Wolff’s theorem [77], which
states that if X1, X2, X3, X4 are spaces with X1 ∩X4 dense inside both X2 and X3,
then

X2 = [X1,X3]θ1 and X3 = [X2,X4]θ2 ⇒ X2 = [X1,X4]ϑ1
and X3 = [X1,X4]ϑ2

where ϑ1 = θ1θ2/(1− θ1 + θ1θ2) and ϑ2 = θ2/(1− θ1 + θ1θ2). Taking

X1 = H1(RΘ), X2 = L 4
3
(RΘ), X3 = L2(RΘ), X4 = L4(RΘ),

Z1 = H1(RΘ), Z2 = L2 (RΘ), Z3 = L4(RΘ), Z4 = BMO(RΘ),

we first obtain, using Xj-spaces and the interpolation of H1(RΘ) with L2(RΘ),
that H1(RΘ) and L4(RΘ) interpolate in the expected way. Then, using the same
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86 B. BMO SPACE THEORY IN RΘ

procedure with the Zj-spaces and the interpolation of L2(RΘ) with BMO(RΘ), we
finally get the expected result for the bracket[

H1(RΘ),BMO(RΘ)
]
θ
.

The other two brackets in the statement can be treated analogously. �
Remark B.9. It is worth mentioning that our techniques have at least another

potential application in the abelian case. Let (X,μ) be a G-space with a G-invariant
measure. In that case, we can identify X and H ×G/H as measure spaces, where
H is the stabilizer and we have the following Fubini-type identity∫

G

f(g−1 x) dμG(g) =

∫
G/H=X

∫
H

f(h−1 g−1 x) dμH(h) dμ(x),

see [31, Chapter 2]. If the stabilizer is compact we can exchange integration in X
and integration in G in a way analogous to the Fubini-type identity which relates
τΘ and σΘ. If there is a natural definition of BMO(G), either with averages over
the balls of an invariant measure or with translation-invariant semigroups, and that
BMO interpolates, then we can transfer the interpolation to BMO(X) provided that
G is amenable. This seems to be a very direct approach for proving interpolation
of G-invariant BMO-spaces over X = G/K, where G is a solvable and unimodular
Lie group and K is a compact subgroup.

B.4. An auxiliary density result

Let us write in what follows S◦
Θ for the kernel of the trace functional τΘ : SΘ →

C, which is of course continuous over SΘ. It is trivial that S◦
Θ ⊂ H†

1(RΘ). We are
going to see that it is in fact dense. It will be an easy consequence of the fact that
σΘ : BMO†(RΘ) → BMO†(R

n)⊗̄RΘ, for † ∈ {r, c, r ∧ c} are normal and complete
isometries. Taking preduals we obtain a complete and surjective projection

(σΘ)∗ : H†
1(R

n)⊗̂(RΘ)∗ −→ H†
1(RΘ),

for † ∈ {r, c, r+ c}. We are just going to need that such map carries S◦(Rn)⊗π SΘ

into S◦
Θ but indeed much more is true and the map (σΘ)∗ can be explicitly described

as a diagonal restriction multiplier. That is, it satisfies the following commutative
diagram, where S0(R

n) is the subclass of Schwartz functions with f(0) = 0

H†
1(R

n)⊗̂(RΘ)∗
(σΘ)∗ �� H†

1(RΘ)

λ−1
Θ

��
S0(R

n)⊗π S(Rn)

λ0⊗λΘ

��

f �→f |Δ �� S0(R
n)

Now, the proof of the density is immediate.

Corollary B.10. S◦
Θ is dense inside H†

1(RΘ) for † ∈ {r, c, r + c}.

Proof. We just have to use that S◦(Rn)⊗πSΘ ⊂ H†
1(R

n)⊗̂(RΘ)∗ is a dense subset.
Since (σΘ)∗(S◦(Rn)) ⊂ S◦

Θ and the image under a projection of a dense set is a
dense set we conclude. �
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Partial Differential Equations 13 (1988), no. 9, 1059–1083, DOI 10.1080/03605308808820568.
MR946282

[8] Nathanial P. Brown and Narutaka Ozawa, C∗-algebras and finite-dimensional approxima-
tions, Graduate Studies in Mathematics, vol. 88, American Mathematical Society, Providence,
RI, 2008, DOI 10.1090/gsm/088. MR2391387
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tions, vol. 2, Birkhäuser Verlag, Basel, 2010, DOI 10.1007/978-3-7643-8514-9. MR2567604

[67] Donald Sarason, Functions of vanishing mean oscillation, Trans. Amer. Math. Soc. 207
(1975), 391–405, DOI 10.2307/1997184. MR0377518

Licensed to Univ of Ill at Urbana-Champaign.  Prepared on Wed Sep 14 07:37:29 EDT 2022for download from IP 130.126.162.126.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms

https://www.ams.org/mathscinet-getitem?mr=2589944
https://www.ams.org/mathscinet-getitem?mr=2330976
https://www.ams.org/mathscinet-getitem?mr=3781331
https://www.ams.org/mathscinet-getitem?mr=2838352
https://www.ams.org/mathscinet-getitem?mr=1325694
https://www.ams.org/mathscinet-getitem?mr=3540454
https://www.ams.org/mathscinet-getitem?mr=0238536
https://www.ams.org/mathscinet-getitem?mr=2327840
https://www.ams.org/mathscinet-getitem?mr=2469026
https://www.ams.org/mathscinet-getitem?mr=2496770
https://www.ams.org/mathscinet-getitem?mr=1670037
https://www.ams.org/mathscinet-getitem?mr=2476951
https://www.ams.org/mathscinet-getitem?mr=3437562
https://www.ams.org/mathscinet-getitem?mr=1057180
https://www.ams.org/mathscinet-getitem?mr=1342022
https://www.ams.org/mathscinet-getitem?mr=1648908
https://www.ams.org/mathscinet-getitem?mr=2006539
https://www.ams.org/mathscinet-getitem?mr=1482934
https://www.ams.org/mathscinet-getitem?mr=1999201
https://www.ams.org/mathscinet-getitem?mr=3490779
https://www.ams.org/mathscinet-getitem?mr=2567604
https://www.ams.org/mathscinet-getitem?mr=0377518


90 BIBLIOGRAPHY

[68] Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory in-
tegrals: With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III,
vol. 43, Princeton University Press, Princeton, NJ, 1993. MR1232192

[69] Nathan Seiberg and Edward Witten, String theory and noncommutative geometry, J. High
Energy Phys. 9 (1999), Paper 32, 93, DOI 10.1088/1126-6708/1999/09/032. MR1720697

[70] M. Takesaki, Theory of operator algebras. II, Operator Algebras and Non-commutative Geom-
etry, 6, vol. 125, Springer-Verlag, Berlin, 2003, DOI 10.1007/978-3-662-10451-4. MR1943006

[71] Michael E. Taylor, Pseudodifferential operators, Princeton Mathematical Series, vol. 34,
Princeton University Press, Princeton, N.J., 1981. MR618463

[72] Michael E. Taylor, Pseudodifferential operators and nonlinear PDE, Progress in Mathemat-
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