

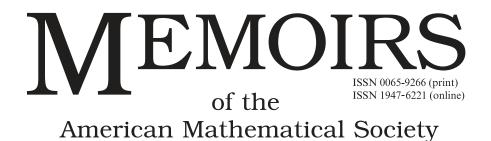
# Number 1334

# Singular Integrals in Quantum Euclidean Spaces

Adrían Manuel González-Pérez Marius Junge Javier Parcet

July 2021 • Volume 272 • Number 1334 (fourth of 7 numbers)





# Number 1334

# Singular Integrals in Quantum Euclidean Spaces

Adrían Manuel González-Pérez Marius Junge Javier Parcet

July 2021 • Volume 272 • Number 1334 (fourth of 7 numbers)

#### Library of Congress Cataloging-in-Publication Data

Cataloging-in-Publication Data has been applied for by the AMS. See http://www.loc.gov/publish/cip/. DOI: https://doi.org/10.1090/memo/1334

#### Memoirs of the American Mathematical Society

This journal is devoted entirely to research in pure and applied mathematics.

Subscription information. Beginning with the January 2010 issue, *Memoirs* is accessible from www.ams.org/journals. The 2021 subscription begins with volume 269 and consists of six mailings, each containing one or more numbers. Subscription prices for 2021 are as follows: for paper delivery, US\$1085 list, US\$868 institutional member; for electronic delivery, US\$955 list, US\$764 institutional member. Upon request, subscribers to paper delivery of this journal are also entitled to receive electronic delivery. If ordering the paper version, add US\$20 for delivery within the United States; US\$80 for outside the United States. Subscription renewals are subject to late fees. See www.ams.org/help-faq for more journal subscription information. Each number may be ordered separately; *please specify number* when ordering an individual number.

Back number information. For back issues see www.ams.org/backvols.

Subscriptions and orders should be addressed to the American Mathematical Society, P.O. Box 845904, Boston, MA 02284-5904 USA. *All orders must be accompanied by payment*. Other correspondence should be addressed to 201 Charles Street, Providence, RI 02904-2213 USA.

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy select pages for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for permission to reuse portions of AMS publication content are handled by the Copyright Clearance Center. For more information, please visit www.ams.org/publications/pubpermissions.

Send requests for translation rights and licensed reprints to reprint-permission@ams.org.

Excluded from these provisions is material for which the author holds copyright. In such cases, requests for permission to reuse or reprint material should be addressed directly to the author(s). Copyright ownership is indicated on the copyright page, or on the lower right-hand corner of the first page of each article within proceedings volumes.

Memoirs of the American Mathematical Society (ISSN 0065-9266 (print); 1947-6221 (online)) is published bimonthly (each volume consisting usually of more than one number) by the American Mathematical Society at 201 Charles Street, Providence, RI 02904-2213 USA. Periodicals postage paid at Providence, RI. Postmaster: Send address changes to Memoirs, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2213 USA.

 $\ \odot$  2021 by the American Mathematical Society. All rights reserved.

This publication is indexed in Mathematical Reviews®, Zentralblatt MATH, Science Citation Index®, Science Citation Index<sup>TM</sup>-Expanded, ISI Alerting Services<sup>SM</sup>, SciSearch®, Research Alert®, CompuMath Citation Index®, Current Contents®/Physical, Chemical & Earth Sciences.

This publication is archived in Portico and CLOCKSS.

Printed in the United States of America.

The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.

Visit the AMS home page at https://www.ams.org/

10 9 8 7 6 5 4 3 2 1 26 25 24 23 22 21

# Contents

| vii                                              |
|--------------------------------------------------|
| $\begin{array}{c} 1 \\ 2 \\ 6 \\ 12 \end{array}$ |
| 21<br>21<br>25<br>29                             |
| 43<br>43<br>50<br>62                             |
| 69<br>73                                         |
| 79<br>79<br>80<br>81<br>86                       |
|                                                  |

## Abstract

We shall establish the core of singular integral theory and pseudodifferential calculus over the archetypal algebras of noncommutative geometry: quantum forms of Euclidean spaces and tori. Our results go beyond Connes' pseudodifferential calculus for rotation algebras, thanks to a new form of Calderón-Zygmund theory over these spaces which crucially incorporates nonconvolution kernels. We deduce  $L_p$ -boundedness and Sobolev p-estimates for regular, exotic and forbidden symbols in the expected ranks. In the  $L_2$  level both Calderón-Vaillancourt and Bourdaud theorems for exotic and forbidden symbols are also generalized to the quantum setting. As a basic application of our methods, we prove  $L_p$ -regularity of solutions for elliptic PDEs.

©2021 American Mathematical Society

Received by the editor November 22, 2017, and, in revised form, July 23, 2018.

Article electronically published on September 27, 2021.

DOI: https://doi.org/10.1090/memo/1334

<sup>2020</sup>  $\overline{Mathematics}$  Subject Classification. Primary 42B20, 42B37, 47G30, 46L51, 46L10, 81R60.

 $Key\ words\ and\ phrases.$  Singular integral, pseudodifferential operator, quantum Euclidean space.

Adrián M. González-Pérez's affiliation is: Departement Wiskunde, KU Leuven, 200B Celestijnenlaan, 3001 Leuven. Belgium; email: chadrian.glz@gmail.com.

Marius Junge's affiliation is Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 W. Green Street, Urbana, Illinois, USA; email: junge@math.uiuc.edu.

Javier Parcet's affiliation is Instituto de Ciencias Matemáticas, Consejo Superior de Investigaciones Científicas, C/ Nicolás Cabrera 13-15. 28049, Madrid. Spain; email: javier.parcet@icmat.es and Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 W. Green Street, Urbana, Illinois, USA.

## Introduction

Harmonic analysis and PDEs over Riemannian manifolds are paramount for the solution of many important problems in differential geometry, fluid mechanics or theoretical physics. In this paper, we establish the core of singular integral theory and pseudodifferential calculus over the archetypal algebras of noncommutative geometry. This includes the Heisenberg-Weyl algebra, quantum tori and other noncommutative deformations of Euclidean spaces of great interest in quantum field theory and quantum probability. Our approach crucially relies on a quantum form of the fruitful interplay

at the interface of analysis and geometry. Strong reasons to develop such a program over matrix algebras and other noncommutative manifolds are also in connection to string theory, where several PDEs arise naturally over quantum spaces. We obtain optimal smoothness conditions for  $L_p$ -boundedness of singular integrals and corresponding Sobolev p-estimates for pseudodifferential operators. This is crucial for applications to PDEs, which we shall briefly discuss. In the line of the harmonic analysis school, a key point has been a profound analysis of the associated kernels which is specially challenging for noncommutative algebras.

Let  $\Theta$  be an anti-symmetric real  $n \times n$  matrix. Roughly speaking, the quantum Euclidean space  $\mathcal{R}_{\Theta}$  is the von Neumann algebra generated by certain family of unitaries  $\{u_j(s): 1 \leq j \leq n, s \in \mathbb{R}\}$  satisfying

$$u_{j}(s)u_{j}(t) = u_{j}(s+t),$$

$$u_{j}(s)u_{k}(t) = e^{2\pi i\Theta_{jk}st}u_{k}(t)u_{j}(s).$$
Set  $\lambda_{\Theta}(\xi) = u_{1}(\xi_{1})u_{2}(\xi_{2})\cdots u_{n}(\xi_{n})$  for  $\xi \in \mathbb{R}^{n}$  and
$$\lambda_{\Theta} : \mathcal{C}_{c}(\mathbb{R}^{n}) \ni f \longmapsto \int_{\mathbb{R}^{n}} f(\xi)\lambda_{\Theta}(\xi) d\xi \in \mathcal{R}_{\Theta}.$$

Consider the trace determined by  $\tau_{\Theta}(\lambda_{\Theta}(f)) = f(0)$  and the corresponding  $L_p$  spaces  $L_p(\mathcal{R}_{\Theta}, \tau_{\Theta})$  [64]. Of course,  $\Theta = 0$  yields the Euclidean  $L_p$ -space in  $\mathbb{R}^n$  with the Lebesgue measure and  $(\mathcal{R}_{\Theta}, \tau_{\Theta})$  should be understood as a noncommutative deformation of it. Chapter  $\mathbb{I}$  includes a careful presentation of  $(\mathcal{R}_{\Theta}, \tau_{\Theta})$  for those potential readers not familiar with them. Our approach also contains a key Poincaré type inequality and a few more crucial results, maybe some known to experts. The lack of appropriate literature justifies a self-contained presentation.

The algebraic structure of these operator (type I) algebras is quite simple, but the connection to Euclidean spaces make them indispensable in a great variety of scenarios. If  $\hbar$  stands for Planck's constant, the choice

$$\Theta = 2\pi\hbar \ id_{M_m} \otimes \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

yields the Heisenberg-Weyl algebra in quantum mechanics. Another description arises from the unbounded generators  $x_{\Theta,j}$  of  $u_j$  —a quantum analogue of the Euclidean variables— which satisfy  $2\pi i[x_{\Theta,j},x_{\Theta,k}] = \Theta_{jk}$  and provide additional insight in our kernel manipulations below. Considering a Fock space representation  $\mathcal{R}_{\Theta}$  becomes the CCR algebra associated to the symplectic form  $\Theta$ , thoroughly studied in quantum probability and quantum field theory. In this setting, it is simple to find a (nontracial) gaussian state with respect to which these  $x_{\Theta,j}$  admit a gaussian distribution. In the physics literature, higher dimensional deformations are usually referred to as Moyal deformations of  $\mathbb{R}^n$ . An important instance in string theory is given by the noncommutative deformation of  $\mathbb{R}^4$  associated to an invertible symbol  $\Theta$ , which leads to instantons on a noncommutative space in the influential papers [21,56,69]. In view of so many names for the same object, we have decided to rebaptize these algebras as quantum Euclidean spaces, in consonance with quantum tori  $\mathcal{A}_{\Theta}$  —also known in the literature as noncommutative tori or rotation algebras— which appear in turn as the subalgebra generated by  $\lambda_{\Theta}(\xi)$  with  $\xi$  running along  $\mathbb{Z}^n$  or any other lattice of  $\mathbb{R}^n$ . Our main results in this paper about pseudodifferential operators hold for  $\mathcal{A}_{\Theta}$  and  $\mathcal{R}_{\Theta}$ .

### Calderón-Zygmund extrapolation

In harmonic analysis, integral kernel representations play a central role to study the most relevant operators. In this particular form, pseudodifferential operators become well-behaved singular integrals, which admit a fruitful  $L_p$ -theory [68]. A singular integral operator in a Riemannian manifold  $(X, d, \mu)$  admits the kernel representation

$$T_k f(x) = \int_X k(x, y) f(y) d\mu(y)$$
 for  $x \notin \text{supp } f$ .

Namely,  $T_k$  is only assumed a priori to send test functions into distributions, so that it admits a distributional kernel in  $X \times X$  which coincides in turn with a locally integrable function k away from the diagonal x = y, where the kernel presents certain singularity. This already justifies the assumption  $x \notin \text{supp } f$  in the kernel representation. The paradigm of singular integral theory is the Hilbert transform in  $\mathbb{R}$ , paramount to study the convergence of Fourier series and integrals. The challenge in higher dimensions required new real variable methods which culminated in the celebrated theorem of Calderón and Zygmund [10], who established sufficient conditions on a singular integral operator in  $\mathbb{R}^n$  for its  $L_p$ -boundedness:

i) Cancellation

$$||T_k: L_2(\mathbb{R}^n) \to L_2(\mathbb{R}^n)|| \le A_1.$$

ii) Kernel smoothness

$$\left|\nabla_x k(x,y)\right| + \left|\nabla_y k(x,y)\right| \le \frac{A_2}{|x-y|^{n+1}}.$$

The same holds in Riemannian manifolds with nonnegative Ricci curvature 3.

Noncommutative  $L_p$  methods in harmonic analysis have gained a considerable momentum in recent years. The fast development of Fourier  $L_p$  multiplier theory on group von Neumann algebras [11]32]42]43]47]48]58] has been possible in part due to a deeper comprehension of the involved kernels. In spite of this, the validity of Calderón-Zygmund extrapolation principle over noncommutative manifolds is still widely open. Noncommutative martingale methods were used in [57] to establish endpoint estimates for singular integrals over tensor product von Neumann algebras with an Euclidean factor, which have been the key for the recent solution in [12] of the Nazarov-Peller conjecture. Other results in this direction include a CZ theory for group algebras over orthogonal crossed products  $\mathbb{R}^n \rtimes \mathbb{G}$ , operator-valued kernels acting by left/right or Schur multiplication, other BMO spaces in a new approach towards nondoubling CZ theory, Littlewood-Paley estimates, Hörmander-Mihlin multipliers or directional Hilbert transforms [15,16]37,42,55].

The Calderón-Zygmund theory presented below is the first form over a "fully noncommutative" von Neumann algebra. In other words, the singular integral acts on the whole algebra  $\mathcal{M}$ , not just over copies of  $\mathbb{R}^n$  as tensor or crossed product factors in  $\mathcal{M}$ . A major challenge for such a von Neumann algebra  $(\mathcal{M}, \tau)$  is to understand what it means to be a singular kernel. One has to identify the diagonal where the kernel singularity should be located, the quantum metric which measures the distance to it and its relation to the trace. A crucial point, undistinguishable in abelian algebras or the work cited so far, is to define kernels over  $\mathcal{M} \otimes \mathcal{M}_{op}$  with the op-structure (reversed product law) in the second copy, see also [44]. In the case of  $\mathcal{R}_{\Theta}$ , this is justified from the important map

$$\pi_{\Theta}: L_{\infty}(\mathbb{R}^n) \to \mathcal{R}_{\Theta} \bar{\otimes} \mathcal{R}_{\Theta}^{\mathrm{op}},$$

$$\exp(2\pi i \langle \xi, \cdot \rangle) \longmapsto \lambda_{\Theta}(\xi) \otimes \lambda_{\Theta}(\xi)^*,$$

which extends to a normal \*-homomorphism, for which the op-structure is strictly necessary. Note that  $\pi_{\Theta}(f)(x,y) = f(x-y)$  for  $\Theta = 0$ . In particular, if  $|\cdot|$  stands for the Euclidean distance to 0, the operator

$$d_{\Theta} = \pi_{\Theta}(|\cdot|)$$

is affiliated to the algebra  $\mathcal{R}_{\Theta} \bar{\otimes} \mathcal{R}_{\Theta}^{op}$  and implements the distance to the diagonal as an unbounded operator. Similarly, the diagonal bands  $b_{\Theta}(R) = \pi_{\Theta}(\chi_{|\cdot| \leq R})$  or smoothings of them will be indispensable to produce kernel truncations. An integral representation in  $\mathcal{R}_{\Theta}$  is formally given by

$$T_k(\lambda_{\Theta}(f)) = (id \otimes \tau_{\Theta}) (k(\mathbf{1} \otimes \lambda_{\Theta}(f)))$$

for some kernel k affiliated to  $\mathcal{R}_{\Theta} \bar{\otimes} \mathcal{R}_{\Theta}^{\mathrm{op}}$ . We shall work with more general singular kernels which lead to  $T_k \in \mathcal{L}(\mathcal{S}_{\Theta}, \mathcal{S}'_{\Theta})$ , a map which sends the quantum Schwartz class  $\mathcal{S}_{\Theta} = \lambda_{\Theta}(\mathcal{S}(\mathbb{R}^n))$  in  $\mathcal{R}_{\Theta}$  into its tempered distribution class  $\mathcal{S}'_{\Theta}$ . We shall also use the "free gradient"

$$\nabla_{\Theta} = \sum_{j=1}^{n} s_j \otimes \partial_{\Theta}^j$$

associated to the partial derivatives  $\partial_{\Theta}^{j}(\lambda_{\Theta}(\xi)) = 2\pi i \xi_{j} \lambda_{\Theta}(\xi)$  and a free family  $s_{1}, s_{2}, \ldots, s_{n}$  of semicircular random variables living in the free group algebra  $\mathcal{L}(\mathbb{F}_{n})$ .

THEOREM A. Let  $T_k \in \mathcal{L}(\mathcal{S}_{\Theta}, \mathcal{S}'_{\Theta})$  and assume:

i) Cancellation

$$||T_k: L_2(\mathcal{R}_{\Theta}) \to L_2(\mathcal{R}_{\Theta})|| \leq A_1.$$

ii) Kernel smoothness

$$\left| d_{\Theta}^{\alpha} \bullet (\nabla_{\Theta} \otimes id)(k) \bullet d_{\Theta}^{\beta} \right| + \left| d_{\Theta}^{\alpha} \bullet (id \otimes \nabla_{\Theta})(k) \bullet d_{\Theta}^{\beta} \right| \leq A_{2},$$

$$for \ (\alpha, \beta) = (n+1, 0), \ (\alpha, \beta) = (0, n+1) \ and \ (\alpha, \beta) = (\frac{n+1}{2}, \frac{n+1}{2}).$$

$$Then, \ T_{k} : L_{p}(\mathcal{R}_{\Theta}) \to L_{p}(\mathcal{R}_{\Theta}) \ is \ completely \ bounded \ for \ every \ 1$$

A more general statement is proved in Theorem 2.18. Our argument establishes  $L_{\infty} \to {\rm BMO}$  endpoint estimates for a suitable noncommutative BMO. Interpolation with  $L_p$  spaces is deduced in 41 from the theory of noncommutative martingales with continuous index set and a theory of Markov dilations. The convolution kernel case —in other words, quantum Fourier multipliers— is much easier to prove by transference methods 13.65. In the classical terminology of pseudodifferential operators, Fourier multipliers correspond to differential operators with constant coefficients. Of course, we aim to include nonconstant coefficients which leads to the analysis of the harder nonconvolution quantum kernels. Our statement above is very satisfactory and crucial for applications to pseudodifferential operator theory below. We shall also use other methods to justify that every CZ operator differs from its principal value by a left/right pointwise multiplier. This is fundamental in classical CZ theory and therefore of independent interest.

## The $L_p$ pseudodifferential calculus

The theory of pseudodifferential operators goes back to the mid 1960s with the work of Kohn, Nirenberg and Hörmander. The basic idea is to exploit properties of the Fourier transform to produce a suitable representation  $\Psi_L$  of partial differential operators  $L = \sum_{|\alpha| \le m} a_{\alpha}(x) \partial_x^{\alpha}$  which can be inverted up to a controllable error term. This representation looks like

$$\Psi_a f(x) = \int_{\mathbb{R}^n} a(x,\xi) \widehat{f}(\xi) e^{2\pi i \langle x,\xi \rangle} d\xi$$

for a smooth symbol  $a: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{C}$  satisfying

$$\left|\partial_x^{m}\partial_\xi^{\alpha}a(x,\xi)\right| \leq C_{\alpha\beta} \left(1+|\xi|\right)^{m-\rho|\alpha|+\delta|\beta|} \quad \text{for all} \quad \alpha,\beta \in \mathbb{Z}_+^n,$$

some  $m \in \mathbb{R}$  and some  $0 \le \delta \le \rho \le 1$ . The realization of  $\Psi_a$  as singular integral is given by partial Fourier inversion  $k(x,y) = (id \otimes \mathcal{F}^{-1})(a)(x,x-y)$ , which opens a door to CZ theory for Sobolev *p*-estimates of parametrices and error terms.

In the noncommutative setting, this line took off in 1980 with Connes' work on pseudodifferential calculus for C\*-dynamical systems [19], originally conceived to extend the Atiyah-Singer index theorem for Lie group actions on C\*-algebras, see also [1,2,50] for related results. Other applications in the context of quantum tori include a well-established elliptic operator theory [17], the Gauss-Bonnet theorem for 2D quantum tori [23,28] and recent results on the local differential geometry of non-flat noncommutative tori [6,22]. Unfortunately, the work of Connes and his collaborators does not include  $L_p$  estimates for parametrices and error terms, which are paramount in harmonic analysis and partial differential equations. On the other hand, the only approach [13,65,78] to harmonic  $L_p$ -analysis in quantum tori does not include pseudodifferential calculus, which requires Calderón-Zygmund

estimates in  $\mathcal{R}_{\Theta}$ . In comparison with Connes' work —which focuses on the smallest Hörmander class  $S^m_{\rho,\delta}$  with  $(\rho,\delta)=(1,0)$ — our main contributions in this direction include all classes of symbols and  $L_p$ -estimates:

- i) An  $L_2$ -theory for exotic and forbidden symbols  $0 < \delta = \rho \le 1$ .
- ii) An  $L_p$ -theory for arbitrary Hörmander classes and 1 .

We refer to [68,71,72] for applications of these results in the Euclidean context.

Pseudodifferential operators over quantum Euclidean spaces are easier to define than Calderón-Zygmund operators. The symbol  $a(x,\xi)$  is now understood as an smooth function  $a: \mathbb{R}^n \to \mathcal{R}_{\Theta}$  since  $\xi$  is still (dual) Euclidean, while x becomes its  $\Theta$ -deformed analog  $x_{\Theta} = (x_{\Theta,1}, x_{\Theta,2}, \ldots, x_{\Theta,n})$  as introduced above. We shall deal in this paper with two quantum forms of the Hörmander classes:

• We say that  $a \in S_{a,\delta}^m(\mathcal{R}_{\Theta})$  when

$$\left|\partial_{\Theta}^{\beta}\partial_{\xi}^{\alpha}a(\xi)\right| \leq C_{\alpha\beta} \left(1+|\xi|\right)^{m-\rho|\alpha|+\delta|\beta|}.$$

This is probably the most natural definition that comes to mind.

• We say that  $a \in \Sigma_{\rho,\delta}^m(\mathcal{R}_{\Theta})$  when

$$\left| \partial_{\Theta}^{\beta} \partial_{\Theta, \xi}^{\alpha_1} \partial_{\xi}^{\alpha_2} a(\xi) \right| \le C_{\alpha_1 \alpha_2 \beta} \left( 1 + |\xi| \right)^{m - \rho |\alpha_1 + \alpha_2| + \delta |\beta|}.$$

Here  $\partial_{\Theta,\xi}$  is a  $\Theta$ -deformation of  $\partial_{\xi}$  by  $\partial_{\Theta}$ 's. More precisely, we have

$$\begin{split} \partial_{\Theta,\xi}^{j} a(\xi) &= \partial_{\xi}^{j} a(\xi) + 2\pi i \big[ x_{\Theta,j}, a(\xi) \big] \\ &= \partial_{\xi}^{j} a(\xi) + \frac{1}{2\pi i} \sum_{k=1}^{n} \Theta_{jk} \partial_{\Theta}^{k} a(\xi) \\ &= \lambda_{\Theta}(\xi)^{*} \partial_{\xi}^{j} \big\{ \lambda_{\Theta}(\xi) a(\xi) \lambda_{\Theta}(\xi)^{*} \big\} \lambda_{\Theta}(\xi). \end{split}$$

We clearly have  $\Sigma_{\rho,\delta}^m(\mathcal{R}_\Theta)\subset S_{\rho,\delta}^m(\mathcal{R}_\Theta)$ . It is very important to recall that both classes collapse into Hörmander classical set of symbols  $S_{\rho,\delta}^m$  when  $\Theta=0$ , so that both definitions above are a priori valid to generalize the Euclidean theory. It turns out that the  $L_2$ -theory holds for  $S_{\rho,\delta}^m(\mathcal{R}_\Theta)$ , while the more involved class  $\Sigma_{\rho,\delta}^m(\mathcal{R}_\Theta)$  makes the  $L_p$ -theory valid. The reason has to do with the link to CZ theory and the two-sided nature of our Calderón-Zygmund conditions. Indeed, in all our past experiences with noncommutative Calderón-Zygmund theory certain amount of modularity is required. In this case, the bilateral form of our kernel conditions in Theorem A ultimately imposes the mixed quantum-classical derivatives  $\partial_{\Theta,\xi}$ . The pseudodifferential operator associated to  $a: \mathbb{R}^n \to \mathcal{R}_\Theta$  has the form

$$\Psi_{a}(\lambda_{\Theta}(f)) = \int_{\mathbb{R}^{n}} a(\xi) f(\xi) \lambda_{\Theta}(\xi) d\xi$$

$$= \left(id \otimes \tau_{\Theta}\right) \left[ \left( \underbrace{\int_{\mathbb{R}^{n}} (a(\xi) \otimes \mathbf{1}) (\lambda_{\Theta}(\xi) \otimes \lambda_{\Theta}(\xi)^{*}) d\xi}_{\text{The kernel } k} \right) \left(\mathbf{1} \otimes \lambda_{\Theta}(f)\right) \right].$$

The algebra of pseudodifferential operators is formally generated by the derivatives  $\partial_{\Theta}^{j}$  and the left multiplication maps  $\lambda_{\Theta}(f) \mapsto x_{\Theta,j}\lambda_{\Theta}(f)$ . The kernels affiliated to  $\pi_{\Theta}(L_{\infty}(\mathbb{R}^{n})) \subset \mathcal{R}_{\Theta} \bar{\otimes} \mathcal{R}_{\Theta}^{op}$  implement Fourier multipliers  $\lambda_{\Theta}(\xi) \mapsto m(\xi)\lambda_{\Theta}(\xi)$  in this setting, which correspond to the closure of pseudodifferential operators  $\sum_{\alpha} a_{\alpha} \partial^{\alpha}$  with constant coefficients  $a_{\alpha}$ . A very subtle transference method —which avoids

properly supported symbols— is required to obtain adjoint and product formulae in Section 3.11 Our main  $L_p$  results are collected in the following statement.

THEOREM B. Let  $a : \mathbb{R}^n \to \mathcal{R}_{\Theta}$  and 1 :

- i) If  $a \in S_{\rho,\rho}^0(\mathcal{R}_{\Theta})$  with  $0 \le \rho < 1$ ,  $\Psi_a : L_2(\mathcal{R}_{\Theta}) \to L_2(\mathcal{R}_{\Theta})$ .
- ii) If  $a \in S_{1,1}^0(\mathcal{R}_{\Theta}) \cap S_{1,1}^0(\mathcal{R}_{\Theta})^*$ , then  $\Psi_a : L_2(\mathcal{R}_{\Theta}) \to L_2(\mathcal{R}_{\Theta})$ .
- iii) If  $a \in \Sigma^0_{1,1}(\mathcal{R}_{\Theta}) \cap \Sigma^0_{1,1}(\mathcal{R}_{\Theta})^*$ , then  $\Psi_a : L_p(\mathcal{R}_{\Theta}) \to L_p(\mathcal{R}_{\Theta})$ .

Using  $S^m_{\rho,\delta}(\mathcal{R}_{\Theta}) \subset S^m_{\delta,\delta}(\mathcal{R}_{\Theta}) \cap S^m_{\rho,\rho}(\mathcal{R}_{\Theta})$  for  $0 \leq \delta \leq \rho \leq 1$ —same inclusions for  $\Sigma$ -classes— we get  $L_p$ -estimates for regular, exotic and forbidden symbols in the expected ranks and Theorem B opens the core of the pseudodifferential  $L_p$ -calculus [68,71] to the context of quantum Euclidean spaces:

- Theorem B i). Calderón-Vaillancourt theorem [9] on  $L_2$ -boundedness for exotic symbols quickly obtained a spectacular application [4] for  $\rho = 1/2$ . Our proof of its quantum form for  $\rho = 0$  requires a careful approach due to the presence of a  $\Theta$ -phase. The case  $\rho > 0$  also imposes an unexpected dilation argument among different deformed algebras  $\mathcal{R}_{\Theta}$ .
- Theorem B ii). Bourdaud's theorem [7] yields a form of the T(1)-theorem for pseudodifferential operators when  $\rho = \delta = 1$ :  $\Psi_a$  is  $L_2$ -bounded iff the symbol  $a_{\dagger}^*$  of  $\Psi_a^*$  remains in the same Hörmander class. Our proof follows the classical one by showing that  $\Psi_a$  is bounded in the Sobolev space  $W_{2,s}(\mathcal{R}_{\Theta})$  under a minimal amount of regularity s > 0.
- Theorem B iii). Our  $L_p$ -results follow by showing that any such symbol is a Calderón-Zygmund operator which fulfills all the hypotheses of Theorem A, the  $L_2$ -boundedness being assured by Theorem B ii). It is our CZ kernel condition what imposes the mixed quantum-classical derivatives  $\partial_{\Theta,\xi}$  and the corresponding "forbidden" Hörmander symbol classes  $\Sigma_{\rho,\delta}^m(\mathcal{R}_{\Theta})$ .
- Related estimates. Our L<sub>p</sub>-inequalities give rise to Sobolev p-estimates for symbols of arbitrary order m, we shall recollect these estimates in the body of the paper. On the other hand, the L<sub>p</sub>-theory for symbols with ρ < 1 requires a negative degree to compensate lack of regularity. Fefferman proved in [29] the L<sub>p</sub>-bounds for the critical index m = -(1 ρ)<sup>n</sup>/<sub>2</sub>. We shall obtain nonoptimal L<sub>p</sub>-estimates of this kind in R<sub>Θ</sub>. Interpolation yields even finer results for intermediate values of m.

The analogue of Theorem B for quantum tori  $\mathcal{A}_{\Theta}$  is proved by transference in Appendix A. The Hörmander classes  $S^m_{\rho,\delta}(\mathcal{A}_{\Theta})$  and  $\Sigma^m_{\rho,\delta}(\mathcal{A}_{\Theta})$  involve discrete derivations over  $\mathbb{Z}^n$  in the dual variable. In the line of Connes definition, we could also proceed by restriction to  $\mathbb{Z}^n$  of symbols  $\mathbb{R}^n \to \mathcal{A}_{\Theta} \subset \mathcal{R}_{\Theta}$  in the corresponding Hörmander classes. As in  $\mathbb{T}^n$  both definitions turn out to be equivalent and this will be the source of our transference approach. The discrete form of difference operators has the advantage of being easier to be calculated with computers.

#### An illustration for elliptic PDEs

Pseudodifferential operators are a very powerful tool for linear and nonlinear partial differential equations [71, [72]]. The existence, uniqueness and qualitative behavior of solutions for many PDEs are frequently understood by application of these methods. After the announced results so far, the potential applications for

PDEs over quantum Euclidean spaces and tori are vast and beyond the scope of this paper. As a small but basic illustration, we prove in Theorem 4.5 the  $L_p$  regularity for solutions of elliptic PDEs over quantum Euclidean spaces. We do not include this statement in the Introduction to avoid more terminology at this point. A profound analysis of partial differential equations over quantum spaces  $-A_{\Theta}$ ,  $\mathcal{R}_{\Theta}$  or even more general noncommutative manifolds— constitutes a long term program with conceivable implications for the geometry of such objects.

Acknowledgements. A. González-Pérez was partially supported by European Research Council Consolidator Grant 614195. M. Junge was partially supported by the NSF DMS-1501103. J. Parcet was partially supported by European Research Council Starting Grant 256997 and CSIC Grant PIE 201650E030. All authors are also supported in part by ICMAT Severo Ochoa Grant SEV-2015-0554 (Spain). M. Junge would like to thank Alain Connes for a very encouraging discussion on diagonals for noncommutative algebras at an Oberwolfach meeting. J. Parcet would like to express his gratitude to the Math Department of the University of Illinois at Urbana-Champaign for their hospitality along his visit in 2015, during which this paper was partially developed.

#### CHAPTER 1

## Quantum Euclidean spaces

Given an integer  $n \geq 1$ , fix an anti-symmetric  $\mathbb{R}$ -valued  $n \times n$  matrix  $\Theta$ . We shall write  $A_n(\mathbb{R})$  for this class of matrices. Intuitively, quantum Euclidean spaces can be thought as (the von Neumann algebra generated by) the universal C\*-algebra generated by a family  $u_1(s), u_2(s), \ldots, u_n(s)$  of strongly continuous one-parameter unitary groups in  $s \in \mathbb{R}$  satisfying the  $\Theta$ -commutation relations

$$u_j(s)u_k(t) = e^{2\pi i\Theta_{jk}st}u_k(t)u_j(s).$$

More precisely, consider any pair  $(\mathcal{H}_{\pi}, \pi)$  formed by a Hilbert space  $\mathcal{H}_{\pi}$  together with a family  $\pi = (\pi_1, \pi_2, \dots, \pi_n)$  of strongly continuous one-parameter unitary groups  $\pi_j : \mathbb{R} \to \mathcal{B}(\mathcal{H}_{\pi})$  satisfying the  $\Theta$ -commutation relations above. Call  $\pi$  cyclic when span $\{\pi_1(s_1)\pi_2(s_2)\dots\pi_n(s_n)v: s_j \in \mathbb{R}\}$  is dense in  $\mathcal{H}_{\pi}$  for some vector  $v \in \mathcal{H}_{\pi}$ . Notice that if  $\mathcal{H}_{\pi}$  is separable when  $\pi$  is cyclic. We define the universal unitaries  $u_j$  as

$$u_j(s) = \bigoplus_{\pi} \pi_j(s) \in \mathcal{B}\left(\bigoplus_{\pi} \mathcal{H}_{\pi}\right) = \mathcal{B}(\mathcal{H}_u),$$

where the direct sum runs over all cyclic  $\pi$  satisfying the  $\Theta$ -commutation relations. Given  $\xi = (\xi_1, \xi_2, \dots \xi_n) \in \mathbb{R}^n$ , we shall extensively use the unitaries  $\lambda_{\Theta}(\xi)$  given by  $u_1(\xi_1)u_2(\xi_2)\cdots u_n(\xi_n)$  and we set

$$\lambda_{\Theta}(f) = \int_{\mathbb{R}^n} f(\xi) \lambda_{\Theta}(\xi) d\xi \quad \text{for} \quad f \in L_1(\mathbb{R}^n).$$

Define  $E_{\Theta}$  as the norm-closure of  $\lambda_{\Theta}(L_1(\mathbb{R}^n))$ . It is not a unital C\*-algebra. If needed, we shall denote its multiplier algebra [49], Chapter 2] by  $A_{\Theta}$ . When  $\Theta = 0$  and by Stone's theorem we may take  $u_j(s) = \exp(2\pi i s \langle e_j, \cdot \rangle)$  and therefore  $E_{\Theta}$  is the space  $C_0(\mathbb{R}^n)$  of continuous functions  $\mathbb{R}^n \to \mathbb{C}$  that tend to 0 at infinity.  $A_{\Theta}$  is the multiplier algebra of  $C_0(\mathbb{R}^n)$ , which coincides with the space of bounded continuous functions over  $\mathbb{R}^n$ . Moreover, since  $\mathbb{R}^n$  is amenable  $A_{\Theta}$  may be described as an spatial crossed product  $\mathbb{C} \rtimes_{\Theta} \mathbb{R}^n \subset \mathcal{B}(L_2(\mathbb{R}^n))$  twisted by the 2-cocycle determined by  $\Theta$ , as introduced by Zeller-Meier [79]. Given any  $\Theta$ , we easily see that

- i)  $\lambda_{\Theta}(\xi)^* = e^{2\pi i \sum_{j>k} \Theta_{jk} \xi_j \xi_k} \lambda_{\Theta}(-\xi),$
- ii)  $\lambda_{\Theta}(\xi)\lambda_{\Theta}(\eta) = e^{2\pi i \langle \xi, \Theta \eta \rangle} \lambda_{\Theta}(\eta)\lambda_{\Theta}(\xi),$
- iii)  $\lambda_{\Theta}(\xi)\lambda_{\Theta}(\eta) = e^{2\pi i \sum_{j>k} \Theta_{jk}\xi_{j}\eta_{k}}\lambda_{\Theta}(\xi+\eta),$
- iv)  $\lambda_{\Theta}(f_1)\lambda_{\Theta}(f_2) = \lambda_{\Theta}(f_1 *_{\Theta} f_2)$  with  $\Theta$ -convolution given by

$$f_1 *_{\Theta} f_2(\xi) = \int_{\mathbb{R}^n} f_1(\xi - \eta) f_2(\eta) e^{2\pi i \sum_{j>k} \Theta_{jk}(\xi_j - \eta_j) \eta_k} d\eta.$$

Note that  $\sum_{j>k} \Theta_{jk} \xi_j \eta_k = \langle \xi, \Theta_{\downarrow} \eta \rangle$  for the lower triangular truncation  $\Theta_{\downarrow}$  of  $\Theta$ . It is also interesting to note that (i) and (iv) imply that  $\lambda_{\Theta}(L_1(\mathbb{R}^n))$  is a Banach \*-algebra for the  $L_1$ -norm.

#### 1.1. Crossed product form

In this section we are going to see that the natural integral in  $\mathbb{R}^n$  remains as a well-defined faithful tracial weight over  $E_{\Theta}$  that we shall denote by  $\tau_{\Theta}$ . Indeed, let us define

$$\tau_{\Theta}(\lambda_{\Theta}(f)) = \tau_{\Theta}\Big(\int_{\mathbb{R}^n} f(\xi)\lambda_{\Theta}(\xi) d\xi\Big) = f(0)$$

for  $f: \mathbb{R}^n \to \mathbb{C}$  smooth and integrable. As we shall see,  $\tau_{\Theta}$  extends uniquely to the positive cone of  $E_{\Theta}$ . We shall also construct  $\mathcal{R}_{\Theta} = A_{\Theta}'' = E_{\Theta}''$  as the von Neumann algebra generated by  $E_{\Theta}$  in the GNS representation associated to  $\tau_{\Theta}$  and we will prove that  $\tau_{\Theta}$  extends to a normal, semifinite and faithful trace over  $\mathcal{R}_{\Theta}$ . When  $\Theta = 0$  we get  $\mathcal{R}_{\Theta} = L_{\infty}(\mathbb{R}^n)$  and  $\tau_{\Theta}$  coincides with the Lebesgue integral. In general, we call the  $\Theta$ -deformation  $\mathcal{R}_{\Theta}$  a quantum Euclidean space.

**1.1.1. Crossed products and trace.** A C\*-dynamical system is a triple formed by a C\*-algebra A, a locally compact group G and a continuous action  $\beta: G \to \operatorname{Aut}(A)$  by \*-automorphisms. The reduced crossed product  $A \rtimes_{\beta,\operatorname{red}} G$  is the norm closure in  $A \bar{\otimes} \mathcal{B}(L_2(G))$  of the \*-algebra generated by the representations  $\rho: A \to L_{\infty}(G; A)$  and  $\lambda: G \to \mathcal{U}(L_2(G))$ , given by

$$\rho(a)(g) = \beta_{g^{-1}}(a),$$
  
$$(\lambda(g)f)(h) = f(g^{-1}h).$$

The full crossed product  $A \rtimes_{\beta,\text{full}} G$  is the C\*-algebra generated by all covariant representations  $\gamma: A \to \mathcal{B}(\mathcal{H})$  and  $u: G \to \mathcal{U}(\mathcal{H})$  over some Hilbert space  $\mathcal{H}$ :  $u(g)\gamma(a)u(g)^* = \gamma(\beta_g(a))$ . Given  $f: G \to A$  continuous and integrable

$$\left\| \int_{G} f_g \rtimes g \, d\mu(g) \right\|_{A \rtimes_{\beta, \text{full } G}} = \sup_{\substack{\gamma, u \\ \text{covariant}}} \left\| \int_{G} \gamma(f_g) u(g) \, d\mu(g) \right\|_{\mathcal{B}(\mathcal{H})}.$$

It is a very well-known result [8] that  $A \rtimes_{\beta,\text{full}} G = A \rtimes_{\beta,\text{red}} G$  when G is amenable. Given a pair  $(\mathcal{M}, \tau)$  formed by a von Neumann algebra  $\mathcal{M}$  equipped with a normal faithful semifinite trace  $\tau$  —noncommutative measure space— and a locally compact unimodular group G acting on  $(\mathcal{M}, \tau)$  by trace preserving automorphisms  $\beta: G \to \text{Aut}(\mathcal{M}, \tau)$ , the crossed product von Neumann algebra  $\mathcal{M} \rtimes_{\beta} G$  is the von Neumann subalgebra of  $\mathcal{M} \bar{\otimes} \mathcal{B}(L_2(G))$  generated by  $\rho(\mathcal{M})$  and  $\lambda(G)$ , defined as above. In other words,  $\mathcal{M} \rtimes_{\beta} G$  is the weak-\* closure of  $\mathcal{M} \rtimes_{\beta,\text{red}} G$ .

Given  $f: G \to \mathcal{M}$  continuous and integrable, set

$$\tau_{\bowtie} \Big( \int_{\mathcal{G}} f_g \bowtie \lambda(g) \, d\mu(g) \Big) = \tau(f_e)$$

where  $\mu$  and e stand for the Haar measure and the identity in the unimodular group G. This determines a normal faithful semifinite trace which extends to the crossed product von Neumann algebra  $\mathcal{M} \times_{\beta} G$ , see Takesaki [70]. In the following result, we provide an iterated crossed product characterization of quantum Euclidean spaces and construct a normal faithful semifinite trace on them.

Proposition 1.1. The following results hold:

i) If 
$$n = 2$$
 and  $\Theta \neq 0$ , we have

$$E_{\Theta} \simeq \mathcal{C}_0(\mathbb{R}) \rtimes \mathbb{R}$$
.

In this case, the crossed product action is given by  $\mathbb{R}$ -translations.

ii) If  $n \geq 2$ , let us define

$$\tau_{\Theta}(\lambda_{\Theta}(f)) = \tau_{\Theta}\left(\int_{\mathbb{R}^n} f(\xi)\lambda_{\Theta}(\xi) \, d\xi\right) = f(0)$$

for  $f: \mathbb{R}^n \to \mathbb{C}$  smooth and integrable. Then,  $\tau_{\Theta}$  extends to a normal faithful semifinite trace on  $E_{\Theta}$ . Moreover, let  $\Xi$  denote the  $(n-1) \times (n-1)$  upper left corner of  $\Theta \in A_n(\mathbb{R})$ . Then there exists a continuous group action  $\beta_{n-1}: \mathbb{R} \to \operatorname{Aut}(E_{\Xi})$  satisfying

$$E_{\Theta} \simeq E_{\Xi} \rtimes_{\beta_{n-1}} \mathbb{R}.$$

iii) Let  $\mathcal{R}_{\Theta} = \mathcal{E}''_{\Theta}$  be the von Neumann algebra generated by  $\mathcal{E}_{\Theta}$  in the GNS representation determined by  $\tau_{\Theta}$ . We have  $\mathcal{R}_{\Theta} \simeq L_{\infty}(\mathbb{R}) \rtimes \mathbb{R} \simeq \mathcal{B}(L_2(\mathbb{R}))$  when n=2 and  $\Theta \neq 0$ , with  $\rtimes$ -action given by  $\mathbb{R}$ -translations. Moreover  $\tau_{\Theta}$  extends to a n.f.s. trace on  $\mathcal{R}_{\Theta}$ , and the action  $\beta_{n-1}$  is trace preserving on  $(\mathcal{R}_{\Xi}, \tau_{\Xi})$ . Induction on n and iteration give

$$\mathcal{R}_{\Theta} \simeq \mathcal{R}_{\Xi} \rtimes_{\beta_{n-1}} \mathbb{R},$$

$$\mathcal{R}_{\Theta} \simeq \Big( \Big( L_{\infty}(\mathbb{R}) \rtimes_{\beta_{1}} \mathbb{R} \Big) \cdots \rtimes_{\beta_{n-1}} \mathbb{R} \Big).$$

**Proof.** Given  $\Theta \in A_n(\mathbb{R})$  and a Hilbert space  $\mathcal{H}_{\pi}$ , every set of one-parameter unitary groups  $\{\pi_j(s): 1 \leq j \leq n, s \in \mathbb{R}\}$  in  $\mathcal{B}(\mathcal{H}_{\pi})$  satisfying the  $\Theta$ -relations yields a \*-representation  $\pi: E_{\Theta} \to \mathcal{B}(\mathcal{H}_{\pi})$ . Consider again the universal representation u in  $\mathcal{H}_u$  as the direct sum of all the cyclic representations. We shall use in what follows —with no further reference—that  $\mathcal{C}_0(\mathbb{R})$  is the closure of  $\mathcal{F}(L_1(\mathbb{R}))$ , which can also be understood replacing the characters  $\exp_s = \exp(2\pi \langle s, \cdot \rangle)$  in the Fourier transform  $\mathcal{F}$  by  $u_j(s)$  for any fixed  $1 \leq j \leq n$ , since  $\{u_j(s): s \in \mathbb{R}\}$  forms a non-trivial one-parameter group of unitaries.

i) If n=2 and  $\Theta \neq 0$ , there must exist  $\delta \neq 0$  with  $\Theta = \delta(e_{12}-e_{21})$ . We may rescale  $u_1(s), u_2(t)$  and assume without loss of generality that  $\delta = 1$ . Now, consider the map

$$E_{\Theta} \ni z = \int_{\mathbb{R}^2} z(s, t) u_1(s) u_2(t) \, ds dt \mapsto \int_{\mathbb{R}} f_t \times t \, dt = f \in \mathcal{C}_0(\mathbb{R}) \times \mathbb{R}$$

with  $f_t \in \mathcal{C}_0(\mathbb{R})$  given by

$$f_t = \int_{\mathbb{R}} z(s,t)e^{2\pi is \cdot} ds \simeq \int_{\mathbb{R}} z(s,t)u_1(s) ds.$$

If we set  $\mathcal{H}_u = \bigoplus_{\pi} \mathcal{H}_{\pi}$ , define  $v : \mathbb{R} \to \mathcal{U}(\mathcal{H}_u)$  and  $\gamma : \mathcal{C}_0(\mathbb{R}) \to \mathcal{B}(\mathcal{H}_u)$  by

$$v(t) = u_2(t)$$
 and  $\gamma \left( \int_{\mathbb{R}} \widehat{a}(s) e^{2\pi i s \cdot} ds \right) = \int_{\mathbb{R}} \widehat{a}(s) u_1(s) ds.$ 

The pair  $(\gamma, v)$  forms a covariant representation since we have

$$v(t)\gamma(a)v(t)^* = \int_{\mathbb{R}} \widehat{a}(s)u_2(t)u_1(s)u_2(-t) ds$$
$$= \int_{\mathbb{R}} \widehat{a}(s)e^{-2\pi i s t}u_1(s) ds = \gamma \Big(\int_{\mathbb{R}} \widehat{a}(s)e^{2\pi i s (\cdot - t)} ds\Big) = \gamma(\beta_t(a))$$

where  $\beta_t(a) = \lambda(t)[a]$  is the left regular representation at t acting on a. This gives

$$||f||_{\mathcal{C}_0(\mathbb{R}) \times \mathbb{R}} \ge \left\| \int_{\mathbb{R}} \gamma(f_t) v(t) \, dt \right\|_{\mathcal{B}(\mathcal{H}_u)} = \left\| \int_{\mathbb{R}^2} z(s,t) u_1(s) u_2(t) \, ds dt \right\|_{\mathcal{B}(\mathcal{H}_u)} = ||z||_{\mathcal{E}_{\Theta}}.$$

The reverse inequality is proved similarly. Indeed, let us consider the following map

$$C_0(\mathbb{R}) \times \mathbb{R} \ni f = \int_{\mathbb{R}} f_t \times t \, dt \mapsto \int_{\mathbb{R}^2} z(s, t) u_1(s) u_2(t) \, ds dt = z \in \mathcal{E}_{\Theta}$$

with  $z(s,t) = \widehat{f}_t(s)$ . Fix a Hilbert space  $\mathcal{K}_{\gamma,v}$  and a covariant representation  $(\gamma,v)$  of the pair  $(\mathcal{C}_0(\mathbb{R}),\mathbb{R})$  in  $\mathcal{B}(\mathcal{K}_{\gamma,v})$ . Define  $w_1(s) = \gamma(e^{2\pi i s \cdot})$  and  $w_2(t) = v(t)$ . This shows that covariant representations of  $(\mathcal{C}_0(\mathbb{R}),\mathbb{R})$  with action given by translations are in one-to-one correspondence with \*-representations of  $\mathcal{E}_{\Theta}$  for the deformation  $\Theta = e_{12} - e_{21}$ . Indeed,  $w_1(s)$  and  $w_2(t)$  are one-parameter groups of unitaries since  $\gamma$  is a \*-representation and v a unitary representation. Moreover, the commutation relations hold as a consequence of the covariant property

$$w_1(s)w_2(t) = \gamma(\exp_s)v(t) = v(t)\gamma(\beta_{-t}(\exp_s)) = e^{2\pi i s t}w_2(t)w_1(s)$$

for  $\exp(s) = \exp(2\pi i s \cdot)$ . In particular

$$||z||_{\mathcal{E}_{\Theta}} \ge \left\| \int_{\mathbb{R}^2} z(s,t) w_1(s) w_2(t) \, ds dt \right\|_{\mathcal{B}(\mathcal{K}_{\gamma,v})} = \left\| \int_{\mathbb{R}} \gamma(f_t) v(t) \, dt \right\|_{\mathcal{B}(\mathcal{K}_{\gamma,v})}.$$

Taking the supremum over  $(\gamma, v)$  covariant, we see that  $||z||_{\mathbb{E}_{\Theta}} \geq ||f||_{\mathcal{C}_0(\mathbb{R}) \rtimes \mathbb{R}}$ .

ii) When  $n \geq 2$  we proceed by induction. To prove ii) for n = 2, it suffices from i) to justify that  $\tau_{\Theta}$  extends to a faithful and semifinite tracial weight on  $E_{\Theta}$ . Note that  $C_0(\mathbb{R}) \rtimes \mathbb{R}$  is generated by  $\exp_{\eta} \rtimes \lambda(\zeta)$  for  $(\eta, \zeta) \in \mathbb{R} \times \mathbb{R}$  where  $\exp_{\eta}(x) = \exp(2\pi i x \eta)$  and  $\lambda(\zeta) f(x) = f(x - \zeta)$ . According to i), this gives

$$\lambda_{\Theta}(f) = \int_{\mathbb{R}^2} f(\xi) \lambda_{\Theta}(\xi) d\xi = \int_{\mathbb{R}} \left[ \underbrace{\int_{\mathbb{R}} f(\eta, \zeta) \exp_{\eta} d\eta}_{\varphi_{\zeta}} \right] \rtimes \lambda(\zeta) d\zeta.$$

This means that the crossed product trace

$$\tau_{\rtimes} \left( \int_{\mathbb{R}} \varphi_{\zeta} \rtimes \lambda(\zeta) \, d\zeta \right) = \int_{\mathbb{R}} \varphi_{0}(x) \, dx = \int_{\mathbb{R}} \left[ \int_{\mathbb{R}} f(\eta, 0) \exp_{\eta}(x) \, d\eta \right] dx = f(0)$$

coincides with  $\tau_{\Theta}$  in  $E_{\Theta}$ . Since  $C_0(\mathbb{R}) \rtimes \mathbb{R}$  embeds faithfully in  $L_{\infty}(\mathbb{R}) \rtimes \mathbb{R}$  and  $\tau_{\rtimes}$  is n.s.f. it turns out that  $\tau_{\Theta}$  is a faithful and semifinite trace over  $E_{\Theta}$  and extends to a n.s.f. trace over  $\mathcal{R}_{\Theta}$ . That completes the argument in the case n=2. Once this is settled, consider  $\Theta \in A_n(\mathbb{R})$  whose upper left  $(n-1) \times (n-1)$  corner is denoted by  $\Xi$ . Assume ii) holds for any dimension smaller than n, and set

$$\beta_{n-1}(s) \Big( \int_{\mathbb{R}^{n-1}} \varphi(z) \lambda_{\Xi}(z) \, dz \Big) = \int_{\mathbb{R}^{n-1}} \varphi(z) e^{-2\pi i \sum_{j < n} \Theta_{jn} z_j s} \lambda_{\Xi}(z) \, dz.$$

Then,  $\beta_{n-1}$  trivially yields a  $\tau_{\Xi}$ -preserving action on  $(E_{\Xi}, \tau_{\Xi})$ . Moreover, the map  $\lambda_{\Theta}(\xi) \mapsto \lambda_{\Xi}(\xi_1, \xi_2, \dots, \xi_{n-1}) \rtimes \lambda(\xi_n)$  also gives rise to  $E_{\Theta} \simeq E_{\Xi} \rtimes_{\beta_{n-1}} \mathbb{R}$  and  $\tau_{\Theta} = \tau_{\rtimes}|_{E_{\Theta}}$  by arguing as above for n = 2, details are left to the reader.

iii) Now, for n=2 and  $\Theta\neq 0$  we get

$$\mathcal{R}_{\Theta} = \mathcal{E}''_{\Theta} = \left(\mathcal{C}_0(\mathbb{R}) \rtimes \mathbb{R}\right)'' = \mathcal{C}_0(\mathbb{R})'' \rtimes \mathbb{R} = L_{\infty}(\mathbb{R}) \rtimes \mathbb{R},$$

 $\tau_{\Theta} = \tau_{\rtimes}$  on  $\mathcal{R}_{\Theta}$  and  $\mathcal{E}_{\Theta}$  sits faithfully in  $\mathcal{R}_{\Theta}$ . Moreover,  $L_{\infty}(\mathbb{R}) \rtimes \mathbb{R} \subset \mathcal{B}(L_{2}(\mathbb{R}))$  acts on  $L_{2}(\mathbb{R})$  by modulation and translation, which implies  $\mathcal{R}_{\Theta} \simeq \mathcal{B}(L_{2}(\mathbb{R}))$  since only constant multiples of the identity map commute with all modulations and translations. When n > 2 we proceed by induction one more time to conclude that  $\beta_{n-1}$  is  $\tau_{\Xi}$ -preserving,  $\mathcal{R}_{\Theta} \simeq \mathcal{R}_{\Xi} \rtimes_{\beta_{n-1}} \mathbb{R}$ ,  $\tau_{\Theta} = \tau_{\rtimes}$  and  $\mathcal{E}_{\Theta} \subset \mathcal{R}_{\Theta}$  faithfully. The last assertion follows trivially by iteration. This completes the proof.

Remark 1.2. The map

$$\lambda_{\Theta}: L_2(\mathbb{R}^n) \to L_2(\mathcal{R}_{\Theta}, \tau_{\Theta})$$

is an isometric isomorphism, extending Plancherel theorem for  $\Theta = 0$ . Indeed, once we know  $\tau_{\Theta}$  is a trace, it follows from the density of the quantum Schwartz class  $S_{\Theta} = \lambda_{\Theta}(S(\mathbb{R}^n))$  in  $L_2(\mathcal{R}_{\Theta})$  and the identity  $\lambda_{\Theta}(f_1)\lambda_{\Theta}(f_2) = \lambda_{\Theta}(f_1 *_{\Theta} f_2)$ .

REMARK 1.3. When n=1,  $\mathcal{R}_{\Theta}=L_{\infty}(\mathbb{R})$  generated by  $u(s)=\exp(2\pi i s \cdot)$ . In the 2D case, we find one more time  $\mathcal{R}_{\Theta}=L_{\infty}(\mathbb{R}^2)$  for  $\Theta=0$ . Otherwise, there exists  $\delta \neq 0$  such that  $\Theta=\delta(e_{12}-e_{21})$ . Rescaling  $\delta=1$  and arguing as in Proposition I.I iii) gives

$$\Theta = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \Rightarrow \mathcal{R}_{\Theta} \simeq \mathcal{B}(L_2(\mathbb{R})) \simeq L_{\infty}(\mathbb{R}) \rtimes \mathbb{R}$$

generated by modulations  $\exp_{\eta} \times \mathbf{1}$  and translations  $\mathbf{1} \times \lambda(\zeta)$  for  $\eta, \zeta \in \mathbb{R}$ . These are the standard time/frequency unitaries in Fourier analysis. If we set  $\Xi$  to be the  $n \times n$  matrix with all its entries equal to 1, then the analogous space in dimension 2n is given by  $\Theta = \Xi \otimes (e_{12} - e_{21})$  with  $\mathcal{R}_{\Theta} \simeq \mathcal{B}(L_2(\mathbb{R}^n)) \simeq L_{\infty}(\mathbb{R}^n) \times \mathbb{R}^n$ . The 3D case admits other models. By Proposition  $\square$  iii)

• If 
$$\Theta = 0$$
, then  $\mathcal{R}_{\Theta} = L_{\infty}(\mathbb{R}^3) \simeq L_{\infty}(\mathbb{R}) \bar{\otimes} L_{\infty}(\mathbb{R}) \bar{\otimes} L_{\infty}(\mathbb{R})$ ,

• If 
$$\Theta = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & \alpha \\ 0 - \alpha & 0 \end{pmatrix} \Rightarrow \mathcal{R}_{\Theta} \simeq L_{\infty}(\mathbb{R}) \bar{\otimes} (L_{\infty}(\mathbb{R}) \rtimes \mathbb{R}),$$
• If  $\Theta = \begin{pmatrix} 0 & 0 & \beta \\ 0 & 0 & \alpha \\ -\beta - \alpha & 0 \end{pmatrix} \Rightarrow \mathcal{R}_{\Theta} \simeq (L_{\infty}(\mathbb{R}) \bar{\otimes} L_{\infty}(\mathbb{R})) \rtimes \mathbb{R},$ 
• If  $\Theta = \begin{pmatrix} 0 & \gamma & \beta \\ -\gamma & 0 & \alpha \\ -\beta - \alpha & 0 \end{pmatrix} \Rightarrow \mathcal{R}_{\Theta} \simeq (L_{\infty}(\mathbb{R}) \rtimes \mathbb{R}) \rtimes \mathbb{R},$ 

for  $\alpha, \beta, \gamma \neq 0$ . Higher dimensions are treated similarly. When  $\alpha \neq 0 = \beta = \gamma$ , the  $\bowtie$ -action is  $t \cdot f(s) = f(s - \alpha t)$ . In the second case  $\alpha, \beta \neq 0 = \gamma$ , the  $\bowtie$ -action in  $L_{\infty}(\mathbb{R}^2)$  is  $t \cdot f(x,y) = f(x-\beta t,y-\alpha t)$ . In the third case  $\alpha, \beta, \gamma \neq 0$ , both actions yield  $t \cdot_{\text{ext}} \left( \left( s \cdot_{\text{int}} f \right)(r) \right) = \left( \left( s - \alpha t \right) \cdot_{\text{int}} f \right)(r-\beta t) = f\left( r - \gamma s + (\alpha \gamma - \beta)t \right)$ . In the particular case  $\alpha = \beta = \gamma = 1$ , we have full symmetry under the action of the permutation group. In this case, the time/frequency dichotomy described above for n = 2 is replaced by three indistinguishable sets of unitaries. In Section 1.3.3 we will analyze how the structure of  $\mathcal{R}_{\Theta}$  depends on  $\Theta$  using a diagonalization of  $\Theta$  and extending the linear change of variable to  $\mathcal{R}_{\Theta}$  by a Baker-Campbell-Hausdorff type formula.

**1.1.2.** The corepresentation map. We now recall a useful consequence of the crossed product characterization of  $\mathcal{R}_{\Theta}$ , the normality (weak-\* continuity) of the corepresentation map  $\sigma_{\Theta}: \lambda_{\Theta}(\xi) \mapsto \exp_{\xi} \otimes \lambda_{\Theta}(\xi)$ , where  $\exp_{\xi}$  stands for the character  $x \mapsto \exp(2\pi i \langle x, \xi \rangle)$  in  $L_{\infty}(\mathbb{R}^n)$ . This will be the source of several metric and differentiability considerations over quantum Euclidean spaces.

COROLLARY 1.4. The above defined linear map  $\sigma_{\Theta}$  uniquely extends to a normal injective \*-homomorphism  $\sigma_{\Theta} : \mathcal{R}_{\Theta} \to L_{\infty}(\mathbb{R}^n) \bar{\otimes} \mathcal{R}_{\Theta}$  for every deformation  $\Theta \in A_n(\mathbb{R})$ 

**Proof.** The assertion is a simple exercise in the C\*-algebra level, so that we shall only justify normality. We proceed by induction on n, the case n=1 is nothing but comultiplication in  $L_{\infty}(\mathbb{R}^n)$ . In higher dimensions,  $\sigma_{\Theta}$  factorizes as follows

$$\mathcal{R}_{\Theta} \xrightarrow{\simeq} \mathcal{R}_{\Xi} \rtimes_{\beta_{n-1}} \mathbb{R}$$

$$\downarrow^{\sigma_{\Theta}} \qquad \qquad \downarrow^{\widetilde{\sigma}_{\Xi} = \sigma_{\Xi} \rtimes id_{\mathbb{R}}}$$

$$L_{\infty}(\mathbb{R}^{n}) \bar{\otimes} \mathcal{R}_{\Theta} \qquad \qquad L_{\infty}(\mathbb{R}^{n-1}) \bar{\otimes} \mathcal{R}_{\Xi} \rtimes_{\widehat{\beta}_{n-1}} \mathbb{R}$$

$$\stackrel{\simeq}{\longrightarrow} \qquad \qquad \downarrow^{\Omega}$$

$$L_{\infty}(\mathbb{R}) \bar{\otimes} \left( (L_{\infty}(\mathbb{R}^{n-1}) \bar{\otimes} \mathcal{R}_{\Xi}) \rtimes_{\widehat{\beta}_{n-1}} \mathbb{R} \right)$$

where  $\widehat{\beta}_{n-1} = id_{\mathbb{R}^{n-1}} \otimes \beta_{n-1}$  and the map  $\Omega$  is given by

$$\mathcal{M} \rtimes_{\beta} \mathbb{R} \ni \int_{\mathbb{R}} f_s \rtimes \lambda(s) \, ds \xrightarrow{\Omega} \int_{\mathbb{R}} \exp_s \otimes (f_s \rtimes \lambda(s)) \, ds \in L_{\infty}(\mathbb{R}) \bar{\otimes} (\mathcal{M} \rtimes_{\beta} \mathbb{R}).$$

By such factorization, it suffices to justify the normality of  $\tilde{\sigma}_{\Xi}$  and  $\Omega$ :

• The map  $\sigma_{\Xi}$  is equivariant

$$\sigma_{\Xi}(\beta_{n-1}(s)(a)) = \widehat{\beta}_{n-1}(s)(\sigma_{\Xi}(a)).$$

Let  $j = \rho \rtimes \lambda : \mathcal{R}_{\Xi} \rtimes \mathbb{R} \to \mathcal{R}_{\Xi} \bar{\otimes} \mathcal{B}(L_2(\mathbb{R}))$  be the natural injection. By the above equivariance, j intertwines  $\sigma_{\Xi} \rtimes id$  and  $\sigma_{\Xi} \otimes id$ 

$$\widetilde{\sigma}_{\Xi} = \sigma_{\Xi} \rtimes id = (id_{L_{\infty}(\mathbb{R}^{n-1})} \otimes j)^{-1} \circ (\sigma_{\Xi} \otimes id_{\mathcal{B}(L_{2}(\mathbb{R}))}) \circ j.$$

Since  $\sigma_{\Xi} \otimes id$  is normal by induction hypothesis, the same holds for  $\widetilde{\sigma}_{\Xi}$ .

• The fundamental unitary on  $\mathbb{R}^2$ 

$$W f(x, y) = f(x + y, y)$$

satisfies  $W^*(\mathbf{1} \otimes \lambda(s))W = \lambda(s) \otimes \lambda(s)$ . Using the isometric isomorphism  $\Lambda : \mathcal{L}(\mathbb{R}) \ni \lambda(s) \mapsto \exp_s \in L_{\infty}(\mathbb{R})$ , we get

$$\Omega(f) = \int_{\mathbb{R}} \exp_s \otimes (f_s \rtimes \lambda(s)) ds 
= (\Lambda \otimes id_{\mathcal{M} \rtimes \mathbb{R}}) (\mathbf{1} \rtimes W^*) \Big( \int_{\mathbb{R}} \mathbf{1} \otimes (f_s \rtimes \lambda(s)) ds \Big) (\mathbf{1} \rtimes W).$$

Thus  $\Omega(f) = (\Lambda \otimes id_{\mathcal{M} \rtimes \mathbb{R}})(\mathbf{1} \rtimes W^*)(\mathbf{1} \otimes f)(\mathbf{1} \rtimes W)$  and  $\Omega$  is normal.  $\square$ 

#### 1.2. Metrics and derivations

In this paragraph, we exploit the corepresentation  $\sigma_{\Theta}$  to introduce some other auxiliary operators which will help us to equip  $\mathcal{R}_{\Theta}$  with an induced metric, a natural BMO space and a differential structure.

**1.2.1.** A metric in  $\mathcal{R}_{\Theta}$  and BMO. Given a von Neumann algebra  $\mathcal{M}$ , its opposite algebra  $\mathcal{M}_{\mathrm{op}}$  is obtained by preserving linear and adjoint structures but reversing the product  $a_1 \cdot a_2 = a_2 a_1$ . Several reasons justify why noncommutative singular integral operators require to understand the singular kernels as operators affiliated to  $\mathcal{M} \bar{\otimes} \mathcal{M}_{\mathrm{op}}$ , see  $\boxed{44}$  and Section  $\boxed{2.1}$  below. We shall use from now on for the  $\mathcal{M}_{\mathrm{op}}$ -product, as well as  $\bullet$  for the product in  $\mathcal{M} \bar{\otimes} \mathcal{M}_{\mathrm{op}}$ , so that

$$(a_1 \otimes a_2) \bullet (a'_1 \otimes a'_2) = (a_1 a'_1) \otimes (a_2 \cdot a'_2) = (a_1 a'_1) \otimes (a'_2 a_2).$$

Let us consider the linear map  $\pi_{\Theta}$ , determined by

$$\exp_{\xi} \stackrel{\pi_{\Theta}}{\longmapsto} \lambda_{\Theta}(\xi) \otimes \lambda_{\Theta}(\xi)^*$$

where, as usual, we write  $\exp_{\xi}$  for the Fourier characters  $\exp(2\pi i \langle \xi, \cdot \rangle)$  in  $\mathbb{R}^n$ . As an illustration, recall that for  $\Theta = 0$  we may expect to get the following identity for any (say) Schwartz function  $f : \mathbb{R}^n \to \mathbb{C}$ 

$$\pi_0(f)(x,y) = \pi_0 \Big( \int_{\mathbb{R}^n} \widehat{f}(\xi) \exp_{\xi} d\xi \Big)(x,y) = \int_{\mathbb{R}^n} \widehat{f}(\xi) \exp_{\xi}(x-y) d\xi = f(x-y).$$

Of course, this requires to justify the continuity properties of the map  $\pi_{\Theta}$  which we shall do in Lemma [1.5] below. The quantum analogue of this map is particularly useful to identify the *diagonal* in  $\mathcal{R}_{\Theta} \bar{\otimes} \mathcal{R}_{\Theta}^{\text{op}}$ , where the kernel singularities of our operators are expected to live. Of particular relevance is the induced metric which we define by

$$d_{\Theta} = \pi_{\Theta}(|\cdot|)$$

for the Euclidean norm  $|\cdot|$  or the bands around the diagonal  $b_{\Theta}(R) = \pi_{\Theta}(\chi_{|\cdot| \leq R})$ . It is worth recalling that both  $\sigma_{\Theta}$  and  $\pi_{\Theta}$  take  $L_2(\mathbb{R}^n)$  into  $L_{\infty}(\mathbb{R}^n; L_2(\mathbb{R}^n))$  when  $\Theta = 0$ . The quantum analogue for  $\Theta \neq 0$  requires noncommutative forms of mixed-norm  $L_{\infty}(L_2)$ -spaces, whose construction we briefly recall. Given a Hilbert space  $\mathcal{H}$  and  $x = \sum_j m_j \otimes h_j \in \mathcal{M} \otimes_{\text{alg}} \mathcal{H}$ , we define

$$||x||_{\mathcal{M}\bar{\otimes}\mathcal{H}^{r}} = ||\langle x, x \rangle_{r}||_{\mathcal{M}}^{\frac{1}{2}} = ||\sum_{j,k} m_{j} m_{k}^{*} \langle h_{j}, h_{k} \rangle_{\mathcal{H}}||_{\mathcal{M}}^{\frac{1}{2}}$$
$$||x||_{\mathcal{M}\bar{\otimes}\mathcal{H}^{c}} = ||\langle x, x \rangle_{c}||_{\mathcal{M}}^{\frac{1}{2}} = ||\sum_{j,k} m_{j}^{*} m_{k} \langle h_{j}, h_{k} \rangle_{\mathcal{H}}||_{\mathcal{M}}^{\frac{1}{2}}.$$

Given  $\dagger \in \{r, c\}$ , the space  $\mathcal{M} \bar{\otimes} \mathcal{H}^{\dagger}$ —also denoted by  $\mathcal{H}^{\dagger} \bar{\otimes} \mathcal{M}$  or  $L_{\infty}(\mathcal{M}; \mathcal{H}^{\dagger})$ — is defined as the closure of  $\mathcal{M} \otimes_{\text{alg}} \mathcal{H}$  with respect to the weak topology generated by the functionals

$$p_{\omega}(x) = \omega(\langle x, x \rangle_{\dagger}^{\frac{1}{2}})$$
 for every  $\omega \in \mathcal{M}_*$ .

Alternatively,  $\mathcal{M} \bar{\otimes} \mathcal{H}^{\dagger}$  is the weak-\* closed tensor product of the dual operator spaces  $\mathcal{M}$  and  $\mathcal{H}^{\dagger}$ , the latter space representing the row or column operator space structure on  $\mathcal{H}$ . Indeed, if X and Y are dual operator spaces, there are completely isometric and weak-\* continuous injections  $\pi_X : X \to \mathcal{B}(\mathcal{H}_X), \, \pi_Y : Y \to \mathcal{B}(\mathcal{H}_Y)$  and we define  $X \bar{\otimes} Y$  as

$$\overline{\pi_{\mathrm{X}}[\mathrm{X}] \otimes_{\mathrm{alg}} \pi_{\mathrm{Y}}[\mathrm{Y}]^{\mathrm{w}^*}} \subset \mathcal{B}(\mathcal{H}_{\mathrm{X}} \otimes_{2} \mathcal{H}_{\mathrm{X}}).$$

It is well-known that such construction is representation-independent and when one of the tensor components is a von Neumann algebra, the predual is given by the projective tensor product  $X_*\widehat{\otimes} Y_*$ , see [26,62] for further details. Noncommutative mixed-norm spaces have also been studied in [45,61].

Lemma 1.5.  $\pi_{\Theta}$  extends to a normal \*-homomorphism

$$\pi_{\Theta}: L_{\infty}(\mathbb{R}^n) \to \mathcal{R}_{\Theta} \bar{\otimes} \mathcal{R}_{\Theta}^{\mathrm{op}} \quad \textit{satisfying} \quad (\sigma_{\Theta} \otimes id_{\mathcal{R}_{\Theta}^{\mathrm{op}}}) \circ \pi_{\Theta} = (id_{\mathbb{R}^n} \otimes \pi_{\Theta}) \circ \Delta_{\mathbb{R}^n}$$

where  $\Delta_{\mathbb{R}^n}(\exp_{\xi}) = \exp_{\xi} \otimes \exp_{\xi}$  is the comultiplication map in  $\mathbb{R}^n$ . This shows in particular that  $d_{\Theta} = \pi_{\Theta}(|\cdot|)$  is a well-defined operator affiliated to  $\mathcal{R}_{\Theta} \bar{\otimes} \mathcal{R}_{\Theta}^{op}$  as an increasing limit of the bounded operators  $d_{\Theta}(\mathbb{R}) = \pi_{\Theta}(\chi_{|\cdot| \leq \mathbb{R}} |\cdot|)$ . Moreover, the map  $\pi_{\Theta}$  also extends to a complete isometry  $\pi_{\Theta} : L_2^c(\mathbb{R}^n) \to L_2^c(\mathcal{R}_{\Theta}) \bar{\otimes} \mathcal{R}_{\Theta}^{op}$ .

**Proof.** That  $\pi_{\Theta} : \exp_{\xi} \mapsto \lambda_{\Theta}(\xi) \otimes \lambda_{\Theta}(\xi)^*$  extends to a \*-homomorphism is a simple consequence of the product in  $\mathcal{R}_{\Theta} \bar{\otimes} \mathcal{R}_{\Theta}^{op}$ , details are left to the reader. Let us then prove that  $\pi_{\Theta}$  is weak-\* continuous. It is tedious but straightforward to check that

$$\Lambda_{\Theta}: h \mapsto \int_{\mathbb{R}^n \times \mathbb{R}^n} h(\xi_1, \xi_2) \lambda_{\Theta}(\xi_1) \lambda_{\Theta}(\xi_2) \otimes \lambda_{\Theta}(\xi_1)^* d\xi_1 d\xi_2$$

yields an isometry  $L_2(\mathbb{R}^n) \otimes_2 L_2(\mathbb{R}^n) \to L_2(\mathcal{R}_{\Theta}) \otimes_2 L_2(\mathcal{R}_{\Theta}^{\text{op}})$ . Indeed, by density it suffices to expand  $\tau_{\Theta} \otimes \tau_{\Theta}(\Lambda_{\Theta}(h)^*\Lambda_{\Theta}(h))$  for h smooth, then calculate the trace applying twice the simple identity  $\tau_{\Theta}(\lambda_{\Theta}(f)\lambda_{\Theta}(\xi)^*) = f(\xi)$  for a smooth integrable function f in  $\mathbb{R}^n$ . Moreover, given any  $z = \Lambda_{\Theta}(h) \in L_2(\mathcal{R}_{\Theta}) \otimes_2 L_2(\mathcal{R}_{\Theta}^{\text{op}})$  it turns out that

$$\pi_{\Theta}(\exp_{\xi})(z) = \int_{\mathbb{R}^{n} \times \mathbb{R}^{n}} h(\xi_{1}, \xi_{2}) \, \lambda_{\Theta}(\xi) \lambda_{\Theta}(\xi_{1}) \lambda_{\Theta}(\xi_{2}) \otimes \lambda_{\Theta}(\xi)^{*} \cdot \lambda_{\Theta}(\xi_{1})^{*} \, d\xi_{1} d\xi_{2}$$

$$= \int_{\mathbb{R}^{n} \times \mathbb{R}^{n}} h(\xi_{1}, \xi_{2}) \, \lambda_{\Theta}(\xi_{1} + \xi) \lambda_{\Theta}(\xi_{2}) \otimes \lambda_{\Theta}(\xi_{1} + \xi)^{*} \, d\xi_{1} d\xi_{2}$$

$$= \int_{\mathbb{R}^{n} \times \mathbb{R}^{n}} h(\xi_{1} - \xi, \xi_{2}) \, \lambda_{\Theta}(\xi_{1}) \lambda_{\Theta}(\xi_{2}) \otimes \lambda_{\Theta}(\xi_{1})^{*} \, d\xi_{1} d\xi_{2}$$

$$= (\Lambda_{\Theta} \circ (\lambda_{\mathbb{R}^{n}}(\xi) \otimes id_{\mathbb{R}^{n}}) \circ \Lambda_{\Theta}^{-1})(z),$$

where  $\lambda_{\mathbb{R}^n}$  denotes the left regular representation on  $\mathbb{R}^n$ . This shows that  $\pi_{\Theta}$  is weak-\* continuous and satisfies the identity  $\pi_{\Theta}(f) = \Lambda_{\Theta} \circ (f \otimes id_{\mathbb{R}^n}) \circ \Lambda_{\Theta}^{-1}$  for all  $f \in L_{\infty}(\mathbb{R}^n)$ , after identifying  $\exp_{\xi}$  with  $\lambda_{\mathbb{R}^n}(\xi)$ . Once we have justified the weak-\* continuity, the relation  $(\sigma_{\Theta} \otimes id_{\mathcal{R}^{op}_{\Theta}}) \circ \pi_{\Theta} = (id_{\mathbb{R}^n} \otimes \pi_{\Theta}) \circ \Delta_{\mathbb{R}^n}$  follows since it trivially holds when acting on  $\exp_{\xi}$  for any  $\xi \in \mathbb{R}^n$ . Also, it implies that  $d_{\Theta}$  is affiliated to  $\mathcal{R}_{\Theta} \bar{\otimes} \mathcal{R}_{\Theta}^{op}$  and arises as an increasing limit of bounded operators  $d_{\Theta}(R)$  for R > 0. It remains to show that  $\pi_{\Theta} : L_2^c(\mathbb{R}^n) \to L_2^c(\mathcal{R}_{\Theta}) \bar{\otimes} \mathcal{R}_{\Theta}^{op}$ . Recall that the norm in  $L_2^c(\mathcal{M}) \bar{\otimes} \mathcal{M}_{op}$  is given by

$$a \mapsto \left\| \left( \tau \otimes id_{\mathcal{M}_{\mathrm{op}}} \right) (a^* a) \right\|_{\mathcal{M}_{\mathrm{op}}}^{\frac{1}{2}}.$$

When  $\mathcal{M} = \mathcal{R}_{\Theta}$  and  $f \in L_2(\mathbb{R}^n)$  is smooth we find

$$(\tau_{\Theta} \otimes id_{\mathcal{R}_{\Theta}^{\text{op}}})(\pi_{\Theta}(f)) = (\tau_{\Theta} \otimes id_{\mathcal{R}_{\Theta}^{\text{op}}}) \Big( \int_{\mathbb{R}^n} \widehat{f}(\xi) \, \lambda_{\Theta}(\xi) \otimes \lambda_{\Theta}(\xi)^* \, d\xi \Big) = \widehat{f}(0) \mathbf{1}_{\mathcal{R}_{\Theta}^{\text{op}}}.$$

Therefore, taking  $f = \sum_{jk} f_{jk} \otimes e_{jk} \in M_n(L_2^c(\mathbb{R}^n))$  smooth, we obtain

$$\begin{aligned} \left\| \left( \pi_{\Theta}(f_{jk}) \right)_{jk} \right\|_{M_{n}(L_{2}^{c}(\mathcal{R}_{\Theta})\bar{\otimes}\mathcal{R}_{\Theta})} &= \left\| \left( \left( \tau_{\Theta} \otimes id_{\mathcal{R}_{\Theta}^{\mathrm{op}}} \right) \left( \pi_{\Theta}(f^{*}f) \right) \right)_{jk} \right\|_{M_{n} \otimes_{\min} \mathcal{R}_{\Theta}^{\mathrm{op}}}^{\frac{1}{2}} \\ &= \left\| \left( \int_{\mathbb{R}^{n}} (f^{*}f)_{jk}(\xi) \, d\xi \right) \right\|_{M_{n}}^{\frac{1}{2}} &= \| f \|_{M_{n}(L_{2}^{c}(\mathbb{R}^{n}))}. \end{aligned}$$

By density, we see that  $\pi_{\Theta}: L_2^c(\mathbb{R}^n) \to L_2^c(\mathcal{R}_{\Theta}) \bar{\otimes} \mathcal{R}_{\Theta}^{op}$  is a complete isometry.  $\square$ 

Let

$$S_t f(x) = \int_{\mathbb{R}^n} \widehat{f}(\xi) e^{-t|\xi|^2} e^{2\pi i \langle x, \xi \rangle} d\xi$$

denote the heat semigroup acting on  $f: \mathbb{R}^n \to \mathbb{C}$ . Consider the induced semigroup  $S_{\Theta} = (S_{\Theta,t})_{t\geq 0}$  on  $\mathcal{R}_{\Theta}$  determined by  $\sigma_{\Theta} \circ S_{\Theta,t} = (S_t \otimes id_{\mathcal{R}_{\Theta}}) \circ \sigma_{\Theta}$ . This yields a Markov semigroup which formally acts as

$$S_{\Theta,t}(\lambda_{\Theta}(f)) = \int_{\mathbb{R}^n} f(\xi) e^{-t|\xi|^2} \lambda_{\Theta}(\xi) d\xi.$$

Consider the corresponding column BMO norm

$$||a||_{\mathrm{BMO}_{c}(\mathcal{R}_{\Theta})} = \sup_{t>0} \left\| \left( S_{\Theta,t}(a^{*}a) - S_{\Theta,t}(a)^{*} S_{\Theta,t}(a) \right)^{\frac{1}{2}} \right\|_{\mathcal{R}_{\Theta}}$$

$$\sim \sup_{Q \in \mathcal{Q}} \left\| \left( \int_{Q} \left| \sigma_{\Theta}(a) - \sigma_{\Theta}(a)_{Q} \right|^{2} d\mu \right)^{\frac{1}{2}} \right\|_{\mathcal{R}_{\Theta}} = ||\sigma_{\Theta}(a)||_{\mathrm{BMO}_{c}(\mathcal{Q}_{\Theta})}$$

where  $\mathcal{Q}$  denotes the set of all Euclidean balls in  $\mathbb{R}^n$ ,  $\mu$  stands for the Lebesgue measure and  $\sigma_{\Theta}(a)_{\mathcal{Q}}$  is the average of  $\sigma_{\Theta}(a)$  over the ball  $\mathcal{Q}$ . The norm equivalence above —which holds up to constants depending on the dimension n— is a simple consequence of the intertwining identity  $\sigma_{\Theta} \circ S_{\Theta,t} = (S_t \otimes id_{\mathcal{R}_{\Theta}}) \circ \sigma_{\Theta}$  and the equivalence between the BMO norms respectively associated to the heat semigroup and the Euclidean metric in  $\mathbb{R}^n$ , see [42], Section 1.2] for further details. The space [32] BMO $_c(\mathcal{Q}_{\Theta})$  is an illustration of the operator-valued spaces [32].

We may use these latter spaces to properly define the column space  $\mathrm{BMO}_c(\mathcal{R}_\Theta)$ . Indeed, we know from Corollary 1.4 that  $\sigma_\Theta(\mathcal{R}_\Theta)$  is a subalgebra of  $L_\infty(\mathbb{R}^n)\bar{\otimes}\mathcal{R}_\Theta$ , which in turn is included in  $\mathrm{BMO}_c(\mathcal{Q}_\Theta)$ . Since we know from 52 that  $\mathrm{BMO}_c(\mathcal{Q}_\Theta)$  admits a predual  $\mathrm{H}_1^c(\mathcal{Q}_\Theta)$ , we may define

$$BMO_c(\mathcal{R}_{\Theta}) = \overline{\sigma_{\Theta}(\mathcal{R}_{\Theta})^{w^*}}$$

where the weak-\* closure is taken with respect to the pair  $(H_1^c(\mathcal{Q}_{\Theta}), BMO_c(\mathcal{Q}_{\Theta}))$ . This kind of BMO spaces over Markov semigroups have been deeply investigated in [41] for finite von Neumann algebras. The semifinite case is more subtle and we shall give in Appendix B a self-contained argument for  $\mathcal{R}_{\Theta}$ .

#### 1.2.2. A Poincaré type inequality. Let

$$S_{\Theta} = \Big\{ \lambda_{\Theta}(f) : f \in S(\mathbb{R}^n) = \mathbb{R}^n\text{-Schwartz class} \Big\}.$$

Define  $\partial_{\Theta}^{j}$  as the linear extension of the map

$$\partial_{\Theta}^{j}(\lambda_{\Theta}(\xi)) = 2\pi i \xi_{j} \lambda_{\Theta}(\xi)$$

over the quantum Schwartz class  $\mathcal{S}_{\Theta}$  for  $1 \leq j \leq n$ . Recall that  $\mathcal{S}_{\Theta}$  is an \*-algebra since  $\lambda_{\Theta}(f_1)\lambda_{\Theta}(f_2) = \lambda_{\Theta}(f_1 *_{\Theta} f_2)$  and  $\lambda_{\Theta}(f)^* = \lambda_{\Theta}(f_{\Theta}^*)$  are stable in  $\mathcal{S}_{\Theta}$ . In what follows, we shall be working with this and other natural differential operators in  $\mathcal{R}_{\Theta}$ . The following one is a free analogue of the gradient operator associated to the partial derivatives considered above. Let  $\mathcal{L}(\mathbb{F}_n)$  denote the group von Neumann algebra associated to the free group over n generators  $\mathbb{F}_n$ . It is well-known from

(say) **[75]** that  $\mathcal{L}(\mathbb{F}_n)$  is generated by n semicircular random variables  $s_1, s_2, \ldots, s_n$ . Let us consider the map  $s : \mathbb{R}^n \to \mathcal{L}(\mathbb{F}_n)$  given by

$$s(\xi) = \sum_{j=1}^{n} \langle \xi, e_j \rangle s(e_j) = \sum_{j=1}^{n} \xi_j s_j.$$

Then we introduce the  $\Theta$ -deformed free gradient

$$\nabla_{\Theta} = \sum_{k=1}^{n} s_{k} \otimes \partial_{\Theta}^{k} : \mathcal{S}_{\Theta} \to \mathcal{L}(\mathbb{F}_{n}) \bar{\otimes} \mathcal{R}_{\Theta}.$$

If  $\nabla$  denotes the free gradient for  $\Theta = 0$ , is easily checked that

$$(id_{\mathcal{L}(\mathbb{F}_n)} \otimes \sigma_{\Theta}) \circ \nabla_{\Theta} = \sum_{k=1}^n s_k \otimes (\sigma_{\Theta} \circ \partial_{\Theta}^k) = \sum_{k=1}^n s_k \otimes (\partial_k \circ \sigma_{\Theta}) = (\nabla \otimes id_{\mathcal{R}_{\Theta}}) \circ \sigma_{\Theta}.$$

Moreover, let us recall that 
$$\nabla_{\Theta}(\lambda_{\Theta}(\xi)) = \sum_{k} s_{k} \otimes 2\pi i \xi_{k} \lambda_{\Theta}(\xi) = 2\pi i s(\xi) \otimes \lambda_{\Theta}(\xi)$$
.

PROPOSITION 1.6. Let  $B_R$  and  $q_R$  stand for any ball of radius R in  $\mathbb{R}^n$  and the characteristic function of it. Given a noncommutative measure space  $(\mathcal{M}, \tau)$  and  $\varphi: B_R \to \mathcal{M}$  smooth with  $B_R$ -average denoted by  $\varphi_{B_R}$ , the following inequality holds for the free gradient  $\nabla$  in  $\mathbb{R}^n$ 

$$\left\| \int_{\mathrm{B}_{\mathrm{R}}} \left| \varphi - \varphi_{\mathrm{B}_{\mathrm{R}}} \right|^{2} d\mu \right\|_{\mathcal{M}}^{\frac{1}{2}} \leq 2\sqrt{2} \mathrm{R} \left\| (\mathbf{1} \otimes q_{\mathrm{R}} \otimes \mathbf{1}) (\nabla \otimes i d_{\mathcal{M}}) (\varphi) \right\|_{\mathcal{L}(\mathbb{F}_{n}) \bar{\otimes} L_{\infty}(\mathbb{R}^{n}) \bar{\otimes} \mathcal{M}}.$$

**Proof.** Consider the derivation map  $\delta(f) = f \otimes \mathbf{1} - \mathbf{1} \otimes f$ . We shall use the following straightforward algebraic identity, which is valid for any normal state  $\phi$  on any von Neumann algebra

$$\phi((f - \phi(f))^*(f - \phi(f))) = \frac{1}{2}\phi \otimes \phi(\delta(f)^*\delta(f)).$$

Applying it for  $\varphi = \sum_{j} f_{j} \otimes y_{j}$  we obtain

$$(\phi \otimes id_{\mathcal{M}}) \Big( \big| \varphi - (\phi \otimes id_{\mathcal{M}})(\varphi) \big|^2 \Big) = \frac{1}{2} (\phi \otimes \phi \otimes id_{\mathcal{M}}) \Big( \big| (\delta \otimes id_{\mathcal{M}})(\varphi) \big|^2 \Big).$$

If  $c_{\rm R}$  denotes the center of  $B_{\rm R}$ , we observe that

$$(\delta \otimes id_{\mathcal{M}})(\varphi) = (\varphi - \varphi(c_{\mathbf{R}})) \otimes \mathbf{1}_{\mathbb{R}^n} - \mathbf{1}_{\mathbb{R}^n} \otimes (\varphi - \varphi(c_{\mathbf{R}})).$$

Then, letting  $\phi$  be the average over  $B_R$  we deduce the following inequality

$$\begin{split} \left\| \int_{\mathcal{B}_{\mathcal{R}}} \left| \varphi - \varphi_{\mathcal{B}_{\mathcal{R}}} \right|^{2} d\mu \right\|_{\mathcal{M}}^{\frac{1}{2}} &= \frac{1}{\sqrt{2}} \left\| (\phi \otimes \phi \otimes id_{\mathcal{M}}) \left( \left| (\delta \otimes id_{\mathcal{M}})(\varphi) \right|^{2} \right) \right\|_{\mathcal{M}}^{\frac{1}{2}} \\ &\leq \frac{1}{\sqrt{2}} \left\| (\phi \otimes id_{\mathbb{R}^{n}} \otimes id_{\mathcal{M}}) \left( \left| (\varphi - \varphi(c_{\mathcal{R}})) \otimes \mathbf{1}_{\mathbb{R}^{n}} \right|^{2} \right) \right\|_{\mathcal{M}}^{\frac{1}{2}} \\ &+ \frac{1}{\sqrt{2}} \left\| (id_{\mathbb{R}^{n}} \otimes \phi \otimes id_{\mathcal{M}}) \left( \left| \mathbf{1}_{\mathbb{R}^{n}} \otimes (\varphi - \varphi(c_{\mathcal{R}})) \right|^{2} \right) \right\|_{\mathcal{M}}^{\frac{1}{2}} \\ &= \sqrt{2} \left\| (\phi \otimes id_{\mathcal{M}}) \left( \left| \varphi - \varphi(c_{\mathcal{R}}) \right|^{2} \right) \right\|_{\mathcal{M}}^{\frac{1}{2}}. \end{split}$$

In order to estimate the latter term, we use integration by parts to obtain

$$\varphi(x) - \varphi(c_{\mathbf{R}}) = \int_{0}^{1} \sum_{k=1}^{n} \partial_{k} \varphi(t(x - c_{\mathbf{R}}) + c_{\mathbf{R}}) \langle x - c_{\mathbf{R}}, e_{k} \rangle dt$$

$$= \int_{0}^{1} (\underbrace{\tau_{\mathcal{L}(\mathbb{F}_{n})} \otimes id_{\mathbb{R}^{n}}}_{\mathsf{Epn}}) (\underbrace{q_{\mathbf{R}}(x) \nabla \varphi(t(x - c_{\mathbf{R}}) + c_{\mathbf{R}})}_{\mathsf{A}(t)} \underbrace{q_{\mathbf{R}}(x) s(x - c_{\mathbf{R}})}_{\mathsf{B}}) dt$$

for  $x \in B_R$ . By the operator-convexity of  $|\cdot|^2$ , we find the inequality below

$$\begin{split} \left\| \int_{\mathcal{B}_{\mathcal{R}}} \left| \varphi - \varphi_{\mathcal{B}_{\mathcal{R}}} \right|^{2} d\mu \right\|_{\mathcal{M}}^{\frac{1}{2}} &\leq \sqrt{2} \Big( \int_{0}^{1} \left\| (\phi \otimes i d_{\mathcal{M}}) \left( |\mathsf{E}_{\mathbb{R}^{n}}(\mathbf{A}(t)\mathbf{B})|^{2} \right) \right\|_{\mathcal{M}} dt \Big)^{\frac{1}{2}} \\ &\leq \sqrt{2} \Big( \int_{0}^{1} \left\| \mathbf{A}(t) \right\|_{\mathcal{L}(\mathbb{F}_{n}) \bar{\otimes} L_{\infty}(\mathbb{R}^{n}) \bar{\otimes} \mathcal{M}} dt \Big)^{\frac{1}{2}} \| \mathbf{B} \|_{\mathcal{L}(\mathbb{F}_{n}) \bar{\otimes} L_{\infty}(\mathbb{R}^{n})}. \end{split}$$

Now we observe that  $||A(t)|| \le ||A(1)||$  for all  $0 \le t \le 1$ , so we conclude that

$$\left\| \int_{\mathcal{B}_{\mathcal{R}}} \left| \varphi - \varphi_{\mathcal{B}_{\mathcal{R}}} \right|^2 d\mu \right\|_{\mathcal{M}}^{\frac{1}{2}} \leq \sqrt{2} \|\mathcal{B}\|_{\mathcal{L}(\mathbb{F}_n)} \left\| (\mathbf{1} \otimes q_{\mathcal{R}} \otimes \mathbf{1}) (\nabla \otimes id_{\mathcal{M}}) (\varphi) \right\|_{\mathcal{L}(\mathbb{F}_n) \bar{\otimes} L_{\infty}(\mathbb{R}^n) \bar{\otimes} \mathcal{M}}.$$

Finally, Voiculescu's inequality [75] claims

$$||s(h)||_{\mathcal{L}(\mathbb{F}_n)} = 2||h||_{\mathbb{R}^n},$$

so that  $\|\mathbf{B}\|_{\mathcal{L}(\mathbb{F}_n)} \leq 2 \sup_{x \in \mathbf{B}_{\mathbf{R}}} \|x - c_{\mathbf{R}}\| = 2\mathbf{R}$  and the proof is complete.  $\square$ 

Remark 1.7. Recall that

$$||a||_{\mathrm{BMO}_{c}(\mathcal{R}_{\Theta})} \sim ||\sigma_{\Theta}(a)||_{\mathrm{BMO}_{c}(\mathcal{Q}_{\Theta})}$$

$$= \sup_{\mathrm{R}>0} \left\| \left( \int_{\mathrm{B}_{\mathrm{R}}} \left| \sigma_{\Theta}(a) - \sigma_{\Theta}(a)_{\mathrm{B}_{\mathrm{R}}} \right|^{2} d\mu \right)^{\frac{1}{2}} \right\|_{\mathcal{R}_{\Theta}}.$$

According to Proposition 1.6 for  $\mathcal{M} = \mathcal{R}_{\Theta}$ , we deduce

$$\begin{aligned} \|a\|_{\mathrm{BMO}_{c}(\mathcal{R}_{\Theta})} &\lesssim \sup_{\mathrm{R}>0} \mathrm{R} \| (\mathbf{1} \otimes q_{\mathrm{R}} \otimes \mathbf{1}) (\nabla \otimes id_{\mathcal{R}_{\Theta}}) \circ \sigma_{\Theta}(a) \|_{\mathcal{L}(\mathbb{F}_{n}) \bar{\otimes} L_{\infty}(\mathbb{R}^{n}) \bar{\otimes} \mathcal{R}_{\Theta}} \\ &= \sup_{\mathrm{R}>0} \mathrm{R} \| (\mathbf{1} \otimes q_{\mathrm{R}} \otimes \mathbf{1}) (id_{\mathcal{L}(\mathbb{F}_{n})} \otimes \sigma_{\Theta}) \circ \nabla_{\Theta}(a) \|_{\mathcal{L}(\mathbb{F}_{n}) \bar{\otimes} L_{\infty}(\mathbb{R}^{n}) \bar{\otimes} \mathcal{R}_{\Theta}} \end{aligned}$$

Remark 1.8. Given  $2 \le p \le \infty$ , we have

$$\|\nabla_{\Theta}(a)\|_{L_{p}(\mathcal{L}(\mathbb{F}_{n})\bar{\otimes}\mathcal{R}_{\Theta})} \sim \|\left(\sum_{k=1}^{n} (\partial_{\Theta}^{k} a)(\partial_{\Theta}^{k} a)^{*}\right)^{\frac{1}{2}}\|_{L_{p}(\mathcal{R}_{\Theta})} + \left\|\left(\sum_{k=1}^{n} (\partial_{\Theta}^{k} a)^{*}(\partial_{\Theta}^{k} a)\right)^{\frac{1}{2}}\right\|_{L_{p}(\mathcal{R}_{\Theta})}$$

from the operator-valued form of Voiculescu's inequality [46,74]. Let us recall in passing that this norm equivalence holds in the category of operator spaces and moreover, the constants do not depend on the dimension n. This justifies our choice of free generators in the definition of  $\nabla_{\Theta}$ . An alternative choice would have been to work with Rademacher variables or matrix units, but the former does not lead to the same norm equivalences for  $p = \infty$ . If  $\Theta = 0$  we get

$$\left\|\nabla(f)\right\|_{L_p(\mathcal{L}(\mathbb{F}_n)\bar{\otimes}L_\infty(\mathbb{R}^n))} \sim \left\|\left(\sum_{k=1}^n |\partial_x^k f|^2\right)^{\frac{1}{2}}\right\|_{L_p(\mathbb{R}^n)}.$$

#### 1.3. Quantum Euclidean variables

Now we consider other characterizations of  $\mathcal{R}_{\Theta}$  in terms of the infinitesimal generators of  $u_j(s)$ . These (unbounded) operators play the same role in  $\mathcal{R}_{\Theta}$  as the Euclidean variables  $x_j$  do in  $\mathbb{R}^n$ . We will use them to study the quantum analogue of the Schwartz class, to give an intrinsic characterization of the quantum distance  $d_{\Theta}$  and to deduce the algebraic structure of  $\mathcal{R}_{\Theta}$ .

#### 1.3.1. Another approach towards $\mathcal{R}_{\Theta}$ . Define

$$x_{\Theta,j} = \frac{1}{2\pi i} \frac{d}{ds} \Big|_{s=0} (u_j(s)) \text{ for } 1 \le j \le n,$$

with  $u_j(s)$  the generating unitaries of the quantum Euclidean space  $\mathcal{R}_{\Theta}$ . These are the (self-adjoint) infinitesimal generators of the one-parameter groups of unitaries  $(u_j(s))_{s\in\mathbb{R}}$  given by Stone's theorem and may be regarded as quantum forms of the Euclidean variables. Namely, when  $\Theta=0$  the one-parameter unitary group  $u_j(s)$  is composed of multiplication operators by the Fourier characters  $x\mapsto \exp(2\pi i s x_j)$  and

$$2\pi i x_j = \partial_s (e^{2\pi i s x_j})_{|_{s=0}}.$$

The operators  $x_{\Theta,j}$  enjoy some fundamental properties of the Euclidean variables.

Proposition 1.9. The following results hold:

i) The generators  $x_{\Theta,i}$  satisfy

$$[x_{\Theta,j}, x_{\Theta,k}] = \frac{1}{2\pi i} \Theta_{jk} \quad \text{for} \quad 1 \le j, k \le n.$$

ii) Recall the definition of the quantum Schwartz class

$$S_{\Theta} = \Big\{ \lambda_{\Theta}(f) : f \in \mathcal{S}(\mathbb{R}^n) \Big\}.$$

The infinitesimal generators  $x_{\Theta,j}$  are densely defined unbounded operators affiliated to  $\mathcal{R}_{\Theta}$ . Moreover, in the GNS representation on  $L_2(\mathcal{R}_{\Theta})$  we find  $S_{\Theta} \subset \text{dom}(x_{\Theta,j})$  and  $x_{\Theta,j}S_{\Theta}, S_{\Theta}x_{\Theta,j} \subset S_{\Theta}$ . More precisely

$$x_{\Theta,j}\lambda_{\Theta}(f) = \lambda_{\Theta}(D_{\Theta,j}^{\ell}f) \quad where \quad D_{\Theta,j}^{\ell} = \sum_{k=1}^{j-1} \Theta_{jk} M_{\xi_k} - \frac{1}{2\pi i} \partial_{\xi}^{j},$$

$$\lambda_{\Theta}(f)x_{\Theta,j} = \lambda_{\Theta}(D_{\Theta,j}^r f) \quad where \quad D_{\Theta,j}^r = \sum_{i=j+1}^n \Theta_{ij}M_{\xi_i} - \frac{1}{2\pi i}\partial_{\xi}^j,$$

for 
$$f \in \mathcal{S}(\mathbb{R}^n)$$
 and  $M_{\xi_k}f(\xi) = \xi_k f(\xi)$ . In addition,  $[D_{\Theta,j}^{\ell}, D_{\Theta,k}^r] = 0$ .

iii) Let  $(x_{\Theta,j})_j$  and  $(y_{\Theta,j})_j$  be the infinitesimal generators associated to  $\mathcal{R}_{\Theta} \otimes \mathbf{1}$  and  $\mathbf{1} \otimes \mathcal{R}_{\Theta}^{\mathrm{op}}$  respectively. Then, we may relate the quantum distance  $d_{\Theta}$  with these quantum variables as follows

$$\mathbf{d}_{\Theta} = \left(\sum_{j=1}^{n} \left(x_{\Theta,j} - y_{\Theta,j}\right)^{2}\right)^{\frac{1}{2}}.$$

**Proof.** All the assertions are quite standard. Indeed

$$\begin{aligned} [x_{\Theta,j}, x_{\Theta,k}] &= \frac{1}{-4\pi^2} \frac{d^2}{dsdt} \Big|_{s=t=0} \left( u_j(s) u_k(t) - u_k(t) u_j(s) \right) \\ &= \frac{1}{-4\pi^2} \frac{d^2}{dsdt} \Big|_{s=t=0} \left( e^{2\pi i \Theta_{jk} st} - 1 \right) u_k(t) u_j(s) = \frac{2\pi i}{-4\pi^2} \Theta_{jk} = \frac{\Theta_{jk}}{2\pi i}. \end{aligned}$$

Regarding the second assertion ii), the first identity can be justified as follows

$$\begin{aligned} x_{\Theta,j}\lambda_{\Theta}(f) &= \frac{1}{2\pi i} \frac{d}{ds} \Big|_{s=0} (u_{j}(s))\lambda_{\Theta}(f) \\ &= \frac{1}{2\pi i} \frac{d}{ds} \Big|_{s=0} \int_{\mathbb{R}^{n}} f(\xi)u_{j}(s)\lambda_{\Theta}(\xi)d\xi \\ &= \frac{1}{2\pi i} \frac{d}{ds} \Big|_{s=0} \int_{\mathbb{R}^{n}} f(\xi)e^{2\pi i\sum_{k< j}\Theta_{jk}s\xi_{k}}\lambda_{\Theta}(\xi+se_{j})d\xi \\ &= \frac{1}{2\pi i} \frac{d}{ds} \Big|_{s=0} \int_{\mathbb{R}^{n}} f(\xi-se_{j})e^{2\pi i\sum_{k< j}\Theta_{jk}s\xi_{k}}\lambda_{\Theta}(\xi)d\xi \\ &= \frac{1}{2\pi i} \Big[\int_{\mathbb{R}^{n}} \Big(2\pi i\sum_{k< j}\Theta_{jk}\xi_{k}\Big)f(\xi)\lambda_{\Theta}(\xi)d\xi - \int_{\mathbb{R}^{n}} \partial_{\xi}^{j}f(\xi)\lambda_{\Theta}(\xi)d\xi\Big]. \end{aligned}$$

The second identity is proved similarly. This shows that  $\mathcal{S}_{\Theta}$  is a common core of the  $x_{\Theta,j}$  for  $1 \leq j \leq n$ . Thus, it just remains to show that  $[D_{\Theta,j}^{\ell}, D_{\Theta,k}^{r}] = 0$  to complete the proof of ii). This is clear for  $j \leq k$ , as for j > k

$$[D_{\Theta,j}^{\ell}, D_{\Theta,k}^{r}] = -\frac{\Theta_{jk}}{2\pi i} \left( [\partial_{\xi}^{j}, M_{\xi_{j}}] + [M_{\xi_{k}}, \partial_{\xi}^{k}] \right) = 0.$$

Finally, since  $d_{\Theta} = \pi_{\Theta}(|\cdot|)$  and  $\pi_{\Theta}$  is a \*-homomorphism, assertion iii) reduces to show that  $\pi_{\Theta}(x_j) = x_{\Theta,j} - y_{\Theta,j}$  for  $1 \leq j \leq n$ . This can be proved again with a differentiation argument as follows

$$\pi_{\Theta}(x_{j}) = \frac{1}{2\pi i} \frac{d}{ds} \Big|_{s=0} \pi_{\Theta} \left( e^{2\pi i s \langle \cdot, e_{j} \rangle} \right)$$

$$= \frac{1}{2\pi i} \frac{d}{ds} \Big|_{s=0} \left( \lambda_{\Theta}(se_{j}) \otimes \lambda_{\Theta}(se_{j})^{*} \right)$$

$$= \left( \frac{1}{2\pi i} \frac{d}{ds} \Big|_{s=0} u_{j}(s) \right) \otimes \mathbf{1} + \mathbf{1} \otimes \left( \frac{1}{2\pi i} \frac{d}{ds} \Big|_{s=0} u_{j}(-s) \right) = x_{\Theta,j} - y_{\Theta,j},$$

according to our definition of  $x_{\Theta,j}$  and  $y_{\Theta,j}$  in  $\mathcal{R}_{\Theta} \otimes \mathbf{1}$  and  $\mathbf{1} \otimes \mathcal{R}_{\Theta}^{\mathrm{op}}$  respectively.  $\square$ 

Remark 1.10. A few comments are in order:

• Assume that  $v_j(s)$  are one-parameter unitary groups for  $1 \le j \le n$ . By Stones's theorem,  $v_j(s) = \exp(2\pi i s x_j)$ , for some unbounded self-adjoint operators  $x_j$ . The point i) above can be generalized by stating that the following two conditions are equivalent

$$[x_j, x_k] = \frac{1}{2\pi i} \Theta_{jk} \Leftrightarrow v_j(s)v_k(t) = e^{2\pi i \Theta_{jk} st} v_k(t)v_j(s).$$

- $\mathcal{R}_{\Theta}$  is generated by the spectral projections of the quantum variables  $x_{\Theta,j}$ .
- The Euclidean Schwartz  $\mathcal{S}(\mathbb{R}^n)$  class is the space of infinitely differentiable functions  $f: \mathbb{R}^n \to \mathbb{C}$  which satisfy that f and its derivatives decay at

infinity faster than polynomials. In  $\mathcal{R}_{\Theta}$ , we find

$$\left(\prod_{1 \leq r \leq m_{\ell}} x_{\Theta, j_{r}}\right) \partial_{\Theta}^{\beta} \left(\lambda_{\Theta}(f)\right) \left(\prod_{1 \leq s \leq m_{r}} x_{\Theta, k_{s}}\right) \\
= \lambda_{\Theta} \left[\left(\prod_{1 \leq r \leq m_{\ell}} D_{\Theta, j_{r}}^{\ell}\right) \left(\prod_{1 \leq s \leq m_{r}} D_{\Theta, k_{s}}^{r}\right) M_{(2\pi i \xi)^{\beta}} f\right] \in \mathcal{S}_{\Theta},$$

which admits other representations since  $D_{\Theta,j_r}^{\ell}$  and  $D_{\Theta,k_s}^{r}$  commute. It shows that the quantum Schwartz class is also closed under differentiation and left/right multiplication by quantum polynomials.

- Proposition 1.9 iii) establishes a canonical Pythagorean formula for the quantum Euclidean distance  $d_{\Theta}$  in terms of quantum variables. This shows that the metric  $d_{\Theta}$  that we shall be using along the rest of the paper is not induced but somehow intrinsic to  $\mathcal{R}_{\Theta}$ . This gives some evidence that our main results in this paper are formulated in their most natural way.
- We also note in passing that the quantum variables  $z_{\Theta,j} = x_{\Theta,j} y_{\Theta,j}$ from Proposition 1.9 iii) are pairwise commuting for different values of  $1 \le j \le n \text{ since}$

$$\begin{aligned} [z_{\Theta,j}, z_{\Theta,k}] &= z_{\Theta,j} \bullet z_{\Theta,k} - z_{\Theta,k} \bullet z_{\Theta,j} \\ &= [x_{\Theta,j}, x_{\Theta,k}]_{\mathcal{R}_{\Theta}} \otimes \mathbf{1} + \mathbf{1} \otimes [y_{\Theta,j}, y_{\Theta,k}]_{\mathcal{R}_{\Theta}^{\mathrm{op}}} &= 0. \end{aligned}$$

1.3.2. On the quantum Schwartz class. Using quantum variables, we are ready to prove some fundamental properties of the quantum Schwartz class. The analogues in the commutative case  $\Theta = 0$  are rather easy to prove. Let us consider the map  $j_{\Theta}: \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}_{\Theta}$  given by

$$j_{\Theta} \Big( \int_{\mathbb{R}^n} f(\xi) e^{2\pi i \langle \cdot, \xi \rangle} d\xi \Big) = \int_{\mathbb{R}^n} f(\xi) \lambda_{\Theta}(\xi) d\xi,$$

so that  $j_{\Theta}(f) = \lambda_{\Theta}(\widehat{f})$ . By Remark 1.2 and Plancherel theorem,  $j_{\Theta}$  extends to an isometric isomorphism  $L_2(\mathbb{R}^n) \to L_2(\mathcal{R}_{\Theta})$ . We shall also need the space  $\mathcal{S}'_{\Theta}$ of continuous linear functionals on  $S_{\Theta}$ , tempered quantum distributions. Finally recalling that the quantum variables  $x_{\Theta,j}$  are affiliated to  $\mathcal{R}_{\Theta}$ , we set for  $1 \leq j \leq n$ 

$$\mathcal{R}_{\Theta,j} = \left\langle \text{spectral projections of } x_{\Theta,j} \right\rangle'' \subset \mathcal{R}_{\Theta}.$$

We write  $\mathcal{R}_j$  for  $\mathcal{R}_{\Theta,j}$  with  $\Theta = 0$ . We begin with an elementary auxiliary result.

Lemma 1.11. We have:

- i)  $j_{\Theta}(x_j^k) = x_{\Theta,j}^k$  in the sense of distributions. ii)  $j_{\Theta} : \mathcal{R}_j \to \mathcal{R}_{\Theta,j}$  is a normal \*-homomorphism.

**Proof.** Every element in  $\mathcal{S}_{\Theta}$  may be represented in the form  $j_{\Theta}(f)$  for some f in the Schwartz class of  $\mathbb{R}^n$ . On the other hand, since  $j_{\Theta}: L_2(\mathbb{R}^n) \to L_2(\mathcal{R}_{\Theta})$  is an isometric isomorphism, we define  $j_{\Theta}(x_i^k) \in \mathcal{S}'_{\Theta}$  by

$$\langle j_{\Theta}(x_j^k), j_{\Theta}(f) \rangle = \int_{\mathbb{R}^n} x_j^k f(x) dx.$$

Thus, it suffices to see that this quantity coincides with

$$\tau_{\Theta}\left(x_{\Theta,j}^{k}j_{\Theta}(f)\right) = \tau_{\Theta}\left(x_{\Theta,j}^{k}\lambda_{\Theta}(\widehat{f})\right) = \tau_{\Theta}\left(\lambda_{\Theta}\left((D_{\Theta,j}^{\ell})^{k}\widehat{f}\right)\right) = (D_{\Theta,j}^{\ell})^{k}\widehat{f}(0)$$

for  $D_{\Theta,j}^{\ell} = \sum_{s < j} \Theta_{js} M_{\xi_s} - \frac{1}{2\pi i} \partial_j^{\xi}$ , by Proposition I.9. A simple computation shows that this is indeed the case. Next, assertion ii) follows from the fact that  $\mathcal{R}_{\Theta,j} \simeq L_{\infty}(\mathbb{R})$  for  $1 \leq j \leq n$  no matter which is the deformation  $\Theta$ . Indeed, in order to use the same terminology as in the proof of Proposition I.1, we shall assume for convenience that j = n. Then, we may identify  $\mathcal{R}_{\Theta,n}$  with the subalgebra  $\mathbf{1} \rtimes_{\beta_{n-1}} \mathbb{R}$  of the von Neumann algebra  $\mathcal{R}_\Xi \rtimes_{\beta_{n-1}} \mathbb{R}$ , which in turn is isomorphic to  $\mathcal{R}_\Theta$ . Then, it is a well-known fact that we have  $\mathbf{1} \rtimes_{\beta_{n-1}} \mathbb{R} \simeq L_{\infty}(\mathbb{R})$ .

PROPOSITION 1.12. If  $\Theta \in A_n(\mathbb{R})$  and  $\gamma > \frac{1}{2}$ , we find

$$\prod_{1 \le j \le n} \left( 1 + |x_{\Theta,j}|^{\gamma} \right)^{-1} \in L_2(\mathcal{R}_{\Theta}).$$

In particular, the quantum Schwartz class  $S_{\Theta} \subset L_p(\mathcal{R}_{\Theta})$  for all p > 0.

**Proof.** According to Lemma 1.11

$$\left(\mathbf{1} + |x_{\Theta,j}|^{\gamma}\right)^{-1} = j_{\Theta}\left(\frac{1}{1 + |x_j|^{\gamma}}\right).$$

Let us proceed by induction on n, the case n=1 being trivial. According to Proposition  $\square$   $\tau_{\Theta}$  coincides with the crossed product trace  $\tau_{\rtimes}$  in  $\mathcal{R}_{\Xi} \rtimes \mathbb{R}$  which in turn factorizes for operators with separated variables. This means that

$$\tau_{\Theta}\left(\left|\prod_{1 \le j \le n} \left(\mathbf{1} + |x_{\Theta,j}|^{\gamma}\right)^{-1}\right|^{2}\right)$$

$$= \tau_{\Xi}\left(\left|\prod_{1 \le j \le n-1} \left(\mathbf{1} + |x_{\Theta,j}|^{\gamma}\right)^{-1}\right|^{2}\right) \int_{\mathbb{R}} \frac{dx}{(1+|x|^{\gamma})^{2}}$$

and we conclude by induction. To prove the last assertion, since  $\mathcal{S}_{\Theta} \subset \mathcal{R}_{\Theta}$  it clearly suffices to show that  $\mathcal{S}_{\Theta} \subset L_p(\mathcal{R}_{\Theta})$  for p small. Assume p = 1/m for  $m \in \mathbb{Z}_+$  and let

$$Q = \Big| \prod_{1 \le j \le n}^{\rightarrow} \left( 1 + |x_{\Theta,j}|^{\gamma} \right) \Big|^{2m}.$$

According to Hölder's inequality, we find for  $f \in \mathcal{S}(\mathbb{R}^n)$ 

$$\begin{aligned} \left\| \lambda_{\Theta}(f) \right\|_{p} & \leq & \left\| Q^{-1} \right\|_{p} \left\| Q \lambda_{\Theta}(f) \right\|_{\infty} \\ & = & \tau_{\Theta} \left[ \left| \prod_{1 \leq j \leq n}^{\rightarrow} \left( \mathbf{1} + |x_{\Theta,j}|^{\gamma} \right)^{-1} \right|^{2} \right]^{\frac{1}{p}} \left\| \lambda_{\Theta}(Q[D_{\Theta,j}^{\ell}]f) \right\|_{\infty} \end{aligned}$$

where  $Q[D_{\Theta,j}^{\ell}]$  is the differential operator associated to Q according to the second point of Remark  $\square$ . Since  $Q[D_{\Theta,j}^{\ell}]f \in \mathcal{S}(\mathbb{R}^n)$ , the finiteness of the quantity in the right hand side is guaranteed by the first assertion in the statement.

Proposition 1.13. We have:

- i)  $S_{\Theta}$  is weak-\* dense in  $\mathcal{R}_{\Theta}$ .
- ii)  $S_{\Theta}$  is dense in  $L_p(\mathcal{R}_{\Theta})$  for all p > 0.

In particular, the same density results hold for  $\lambda_{\Theta}(L_1(\mathbb{R}^n)) \subset \mathcal{R}_{\Theta}$ .

**Proof.** Since finite sums of the elementary frequencies  $\lambda_{\Theta}(\xi)$  are weak-\* dense in  $\mathcal{R}_{\Theta}$  by construction, it suffices to approximate  $\lambda_{\Theta}(\xi)$  by elements of  $\mathcal{S}_{\Theta}$  in the weak-\* topology. In other words, we need to find a family of functions  $\phi_{\xi,\varepsilon} \in \mathcal{S}(\mathbb{R}^n)$  so that

$$\lim_{\varepsilon \to 0} \tau_{\Theta} ((\lambda_{\Theta}(\phi_{\xi,\varepsilon}) - \lambda_{\Theta}(\xi))a) = 0 \quad \text{for all} \quad a \in L_1(\mathcal{R}_{\Theta}).$$

If  $B_{\varepsilon}(\xi)$  denotes the Euclidean ball around  $\xi$  of radius  $\varepsilon$ , let  $\phi_{\xi,\varepsilon}$  be a smoothing of the function  $|B_{\varepsilon}(\xi)|^{-1}\chi_{B_{\varepsilon}(\xi)}$ , so that Lebesgue differentiation theorem holds for the family  $\{\phi_{\xi,\varepsilon}: \varepsilon > 0\}$ . Now, since  $S_{\Theta}$  is dense in  $L_2(\mathcal{R}_{\Theta})$ , the same holds for  $S_{\Theta}S_{\Theta} \subset L_2(\mathcal{R}_{\Theta})L_2(\mathcal{R}_{\Theta}) = L_1(\mathcal{R}_{\Theta})$  and we may approximate a by a sequence  $\lambda_{\Theta}(f_i) \in S_{\Theta}$ . Recall that

$$\left\|\lambda_{\Theta}(\phi_{\xi,\varepsilon}) - \lambda_{\Theta}(\xi)\right\|_{\mathcal{R}_{\Theta}} \le 1 + \int_{\mathbb{R}^n} \phi_{\xi,\varepsilon}(\zeta) d\zeta = 2.$$

Given  $\delta > 0$ , there exists  $j_{\delta} \geq 1$  so that  $||a - \lambda_{\Theta}(f_{j_{\delta}})||_{1} < \delta/2$ . Thus

$$\left| \lim_{\varepsilon \to 0} \tau_{\Theta} \left( (\lambda_{\Theta}(\phi_{\xi,\varepsilon}) - \lambda_{\Theta}(\xi)) a \right) \right| \le \delta + \left| \lim_{\varepsilon \to 0} \tau_{\Theta} \left( (\lambda_{\Theta}(\phi_{\xi,\varepsilon}) - \lambda_{\Theta}(\xi)) \lambda_{\Theta}(f_{j_{\delta}}) \right) \right|.$$

On the other hand, since  $\lambda_{\Theta}(\xi)^* = e^{2\pi i \langle \xi, \Theta_{\downarrow} \xi \rangle} \lambda_{\Theta}(-\xi)$  we find

$$\tau_{\Theta}((\lambda_{\Theta}(\phi_{\xi,\varepsilon}) - \lambda_{\Theta}(\xi))\lambda_{\Theta}(f_{j_{\delta}}))$$

$$= \phi_{\xi,\varepsilon} *_{\Theta} f_{j_{\delta}}(0) - e^{-2\pi i \langle \xi,\Theta_{\downarrow}\xi \rangle} f_{j_{\delta}}(-\xi)$$

$$= \int_{\mathbb{P}^{n}} \phi_{\xi,\varepsilon}(\zeta) e^{-2\pi i \langle \xi,\Theta_{\downarrow}\zeta \rangle} f_{j_{\delta}}(-\zeta) d\zeta - e^{-2\pi i \langle \xi,\Theta_{\downarrow}\xi \rangle} f_{j_{\delta}}(-\xi),$$

where  $\Theta_{\downarrow}$  is the lower triangular part of  $\Theta$ . The expression above converges to 0 as  $\varepsilon \to 0$ . Letting  $\delta \to 0$  we conclude that  $\mathcal{S}_{\Theta}$  is weak-\* dense in  $\mathcal{R}_{\Theta}$ . Let us now prove that  $\mathcal{S}_{\Theta}$  is norm dense in  $L_p(\mathcal{R}_{\Theta})$  for all p > 0. Since  $\mathcal{S}_{\Theta}\mathcal{S}_{\Theta} \subset \mathcal{S}_{\Theta}$ , it suffices from Hölder inequality to prove norm density in the case p > 2. Given  $a \in L_p(\mathcal{R}_{\Theta})$  for some p > 2, we may approximate it in the  $L_p$ -norm by another element in  $\mathcal{R}_{\Theta}$  which is left/right supported by a finite projection. In other words, we may assume that a itself belongs to  $\mathcal{R}_{\Theta}$  and a = qaq for some projection q satisfying  $\tau_{\Theta}(q) < \infty$ . Pick two sequences  $f_j, g_k \in \mathcal{S}(\mathbb{R}^n)$  satisfying that

$$\mathbf{w}^*$$
- $\lim_{j \to \infty} \lambda_{\Theta}(f_j) = a$  and  $\mathbf{w}^*$ - $\lim_{k \to \infty} \lambda_{\Theta}(g_k) = q$ .

By Kaplanski density theorem, we may also assume that

$$\sup_{i,k\geq 1} \left( \|\lambda_{\Theta}(f_j)\|_{\mathcal{R}_{\Theta}} + \|\lambda_{\Theta}(g_k)\|_{\mathcal{R}_{\Theta}} \right) \leq 1 + \|a\|_{\mathcal{R}_{\Theta}} < \infty$$

and both convergences hold strongly. Therefore, since  $a \in L_2(\mathcal{R}_{\Theta})$ , given  $\delta > 0$  there must exists  $k_{\delta}$  satisfying  $\|a(q - \lambda_{\Theta}(g_{k_{\delta}}))\|_2 < \frac{\delta}{2}$ . Moreover, once the index  $k_{\delta}$  is fixed and since  $\lambda_{\Theta}(g_{k_{\delta}}) \in L_2(\mathcal{R}_{\Theta})$  there must exists an index  $j_{\delta}$  satisfying the inequality  $\|(a - \lambda_{\Theta}(f_{j_{\delta}}))\lambda_{\Theta}(g_{k_{\delta}})\|_2 < \frac{\delta}{2}$ . Combining these estimates

$$\|a - \lambda_{\Theta}(f_{j_{\delta}})\lambda_{\Theta}(g_{k_{\delta}})\|_{2} \leq \|a(q - \lambda_{\Theta}(g_{k_{\delta}}))\|_{2} + \|(a - \lambda_{\Theta}(f_{j_{\delta}}))\lambda_{\Theta}(g_{k_{\delta}})\|_{2} < \delta.$$

On the other hand, by the three lines lemma

$$\begin{aligned} \left\| a - \lambda_{\Theta}(f_{j_{\delta}}) \lambda_{\Theta}(g_{k_{\delta}}) \right\|_{p} & \leq \left\| a - \lambda_{\Theta}(f_{j_{\delta}}) \lambda_{\Theta}(g_{k_{\delta}}) \right\|_{\infty}^{1 - \frac{2}{p}} \left\| a - \lambda_{\Theta}(f_{j_{\delta}}) \lambda_{\Theta}(g_{k_{\delta}}) \right\|_{2}^{\frac{2}{p}} \\ & \leq \delta^{\frac{2}{p}} \left\| a - \lambda_{\Theta}(f_{j_{\delta}}) \lambda_{\Theta}(g_{k_{\delta}}) \right\|_{\infty}^{1 - \frac{2}{p}} \leq \left( 2 \|a\|_{\mathcal{R}_{\Theta}} \right)^{1 - \frac{2}{p}} \delta^{\frac{2}{p}}. \end{aligned}$$

Taking  $\delta \to 0$  we see that  $\mathcal{S}_{\Theta}$  is norm dense in  $L_p(\mathcal{R}_{\Theta})$  for p > 2.

**1.3.3.** Structure of  $\mathcal{R}_{\Theta}$ . We start by showing the very simple algebraic structure of quantum Euclidean spaces  $\mathcal{R}_{\Theta}$ . Indeed, given  $\Theta \in A_n(\mathbb{R})$  and according to the spectral theorem, there exist  $d_1, d_2 \in \mathbb{Z}_+$  with  $d_1 + 2d_2 = n$  and  $\kappa_1, \kappa_2, \ldots \kappa_{d_2} \in \mathbb{R} \setminus \{0\}$  satisfying the following relation for some orthogonal matrix  $B \in SO(n)$  and for  $\Phi$  the  $d_1 \times d_1$  0-matrix

$$\Theta = \mathbf{B} \left[ \underbrace{\Phi \oplus \bigoplus_{j=1}^{d_2} \kappa_j \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}}_{\Delta} \right] \mathbf{B}^* = \mathbf{B} \Delta \mathbf{B}^*.$$

Arguing as in Proposition  $\square$  iii) for n=2, we find that

$$\mathcal{R}_{\Delta} \simeq L_{\infty}(\mathbb{R}^{d_1}) \bar{\otimes} \Big( \bigotimes_{j=1}^{d_2} \mathcal{B}(L_2(\mathbb{R})) \Big) \simeq L_{\infty} \big( \mathbb{R}^{d_1}; \mathcal{B}(L_2(\mathbb{R}^{d_2})) \big)$$

$$\simeq L_{\infty}(\mathbb{R}^{d_1}) \bar{\otimes} \Big( \bigotimes_{j=1}^{d_2} L_{\infty}(\mathbb{R}) \rtimes \mathbb{R} \Big) \simeq L_{\infty} \big( \mathbb{R}^{d_1}; L_{\infty}(\mathbb{R}^{d_2}) \rtimes \mathbb{R}^{d_2} \big)$$

is a type I von Neumann algebra. Since the commutation relations are determined by  $\lambda_{\Theta}(\xi)\lambda_{\Theta}(\eta) = \exp(2\pi i \langle \xi,\Theta\eta\rangle)\lambda_{\Theta}(\eta)\lambda_{\Theta}(\xi)$  it is tempting to set  $\lambda_{\Delta}(\xi) = \lambda_{\Theta}(B\xi)$  to conclude that  $\mathcal{R}_{\Theta} \simeq \mathcal{R}_{\Delta}$  is also a type I von Neumann algebra. This choice of unitaries do not arise however from a family of one-parameter groups of unitaries as expected. The right change of variables is  $x_{\Theta} \mapsto Bx_{\Theta}$ , where  $x_{\Theta}$  stands for  $(x_{\Theta,1},x_{\Theta,2},...,x_{\Theta,n})$ , at the level of infinitesimal generators. If we want to take exponentials to generate one-parameter groups of unitaries  $s \mapsto \exp(2\pi i s(Bx_{\Theta})_j)$  new extra terms appear due to nonvanishing commutators.

Proposition 1.14. The unitaries

$$\lambda_{\Delta}(\xi) = \exp\left(\pi i \sum_{j \le k} \left(\xi_{j} \xi_{k} \Delta_{jk} - (\mathbf{B}\xi)_{j} (\mathbf{B}\xi)_{k} \Theta_{jk}\right)\right) \lambda_{\Theta}(\mathbf{B}\xi)$$

generate  $\mathcal{R}_{\Delta}$ . In particular,  $\mathcal{R}_{\Theta} \simeq \mathcal{R}_{\Delta}$  so that quantum Euclidean spaces  $\mathcal{R}_{\Theta}$  are always type I von Neumann algebras which are invariant under conjugation by SO(n). Moreover, the traces coincide  $\tau_{\Theta} = \tau_{\Delta}$  and the one-parameter unitary groups  $w_j(s) = \exp(2\pi i s x_{\Delta,j}) = \lambda_{\Delta}(se_j)$  have the form

$$w_j(s) = \exp\left(-\pi i s^2 \sum_{\alpha < \beta} B_{j\alpha}^* \Theta_{\alpha\beta} B_{\beta j}\right) \lambda_{\Theta}(s B e_j).$$

**Proof.** Consider the self-adjoint operators

$$x_{\Delta,j} = \sum_{k=1}^{n} B_{jk}^{*} x_{\Theta,k} = \sum_{k=1}^{n} B_{kj} x_{\Theta,k}.$$

It follows from Proposition 1.9 that the quantum Schwartz class  $\mathcal{S}_{\Theta}$  is a common core for the family  $x_{\Delta,j}$  with  $1 \leq j \leq n$ . In particular, these operators are densely defined in the Hilbert space  $L_2(\mathcal{R}_{\Theta}) \simeq L_2(\mathbb{R}^n) \simeq L_2(\mathcal{R}_{\Delta})$ . On the other hand, the commutators are

$$[x_{\Delta,j}, x_{\Delta,k}] = \sum_{1 \le \alpha, \beta \le n} \mathbf{B}_{j\alpha}^* [x_{\Theta,\alpha}, x_{\Theta,\beta}] \mathbf{B}_{\beta k} = \frac{1}{2\pi i} \sum_{1 \le \alpha, \beta \le n} \mathbf{B}_{j\alpha}^* \Theta_{\alpha\beta} \mathbf{B}_{\beta k} = \frac{1}{2\pi i} \Delta_{jk}.$$

Therefore, Proposition 1.9 implies that  $\mathcal{R}_{\Delta}$  is the weak-\* closure of the C\*-algebra generated by the one-parameter unitary groups  $w_j(s) = \exp(2\pi i s x_{\Delta,j})$  for  $j \leq n$  or equivalently by the products

$$w_1(\xi_1)w_2(\xi_2)\cdots w_n(\xi_n) = \prod_{1\leq j\leq n}^{\rightarrow} \exp(2\pi i \xi_j x_{\Delta,j}).$$

Consequently, if we can justify the equality

$$\prod_{1 \le j \le n} \exp(2\pi i \xi_j x_{\Delta,j}) = \exp\left(\pi i \sum_{j \le k} \left(\xi_j \xi_k \Delta_{jk} - (B\xi)_j (B\xi)_k \Theta_{jk}\right)\right) \lambda_{\Theta}(B\xi)$$

it will follow automatically that  $\mathcal{R}_{\Theta} \simeq \mathcal{R}_{\Delta}$  as expected. The identity  $\tau_{\Theta} = \tau_{\Delta}$  and the expression given for  $w_j(s)$  also follow easily from the above equality. This is proved from the Baker-Campbell-Hausdorff formula. Namely, since we know that  $[x_{\Delta,j},x_{\Delta,k}] = \frac{1}{2\pi i} \Delta_{jk}$  we may use the simple identity below for operators X, Y with vanishing iterated brackets

$$\log \left(\exp X \exp Y\right) = X + Y + \frac{1}{2}[X, Y].$$

Taking  $X_j = 2\pi i \xi_j x_{\Delta,j}$  we have  $[X_j,X_k] = 2\pi i \xi_j \xi_k \Delta_{jk}$ , so that

$$\prod_{1 \le j \le n}^{\rightarrow} \exp(2\pi i \xi_j x_{\Delta,j}) = \prod_{1 \le j \le n}^{\rightarrow} \exp X_j$$

$$= \exp\left(\frac{1}{2} \sum_{j < k} [X_j, X_k]\right) \exp\left(\sum_{j=1}^n X_j\right)$$

$$= \exp\left(\pi i \sum_{j < k} \xi_j \xi_k \Delta_{jk}\right) \exp\left(2\pi i \sum_{j=1}^n \xi_j x_{\Delta,j}\right)$$

$$= \exp\left(\pi i \sum_{j < k} \xi_j \xi_k \Delta_{jk}\right) \exp\left(2\pi i \sum_{k=1}^n (B\xi)_k x_{\Theta,k}\right).$$

Using the same formula for the family  $Z_j = 2\pi i(B\xi)_j x_{\Theta,j}$  we may conclude.  $\Box$ 

It is important to recall that, although the technique that we have used here is somewhat similar to the discussion in Remark 1.3, here we care strictly about the isomorphism class of  $\mathcal{R}_{\Theta}$ . On the contrary the discussion around Remark 1.3 gave information on the presentation of  $\mathcal{R}_{\Theta}$  as a crossed product.

**1.3.4.** A  $\Theta$ -deformation of  $\partial_{\xi}$ . We finish this section with another local operator acting on a given symbol  $a: \mathbb{R}^n \to \mathcal{R}_{\Theta}$ . It plays a crucial role in the Hörmander classes  $\Sigma_{\rho,\delta}^m(\mathcal{R}_{\Theta})$  from the Introduction. The *mixed classical-quantized derivative* is given by

$$\partial_{\Theta,\xi}^{j} a(\xi) = \lambda_{\Theta}(\xi)^{*} \partial_{\xi}^{j} \left\{ \lambda_{\Theta}(\xi) a(\xi) \lambda_{\Theta}(\xi)^{*} \right\} \lambda_{\Theta}(\xi).$$

Lemma 1.15. We have

$$\partial_{\Theta,\xi}^{j}a(\xi) = \partial_{\xi}^{j}a(\xi) + 2\pi i \big[x_{\Theta,j}, a(\xi)\big].$$

**Proof.** Note that

$$\frac{d}{ds}\Big|_{s=0}\lambda_{\Theta}(\xi+se_{j}) = \lambda_{\Theta}(\xi)\Big(\frac{d}{ds}\Big|_{s=0}e^{-2\pi is\langle\xi,\Theta_{\downarrow}e_{j}\rangle}\lambda_{\Theta}(se_{j})\Big),$$

$$\frac{d}{ds}\Big|_{s=0}\lambda_{\Theta}(\xi+se_{j})^{*} = \Big(\frac{d}{ds}\Big|_{s=0}e^{2\pi is\langle\xi,\Theta_{\downarrow}e_{j}\rangle}\lambda_{\Theta}(-se_{j})\Big)\lambda_{\Theta}(\xi)^{*}.$$

A simple calculation then yields that

$$\begin{split} \partial_{\Theta,\xi}^{j} a(\xi) &= \lambda_{\Theta}(\xi)^{*} \left( \frac{d}{ds} \Big|_{s=0} \lambda_{\Theta}(\xi + se_{j}) a(\xi + se_{j}) \lambda_{\Theta}(\xi + se_{j})^{*} \right) \lambda_{\Theta}(\xi) \\ &= \left( 2\pi i x_{\Theta,j} - 2\pi i \langle \xi, \Theta_{\downarrow} e_{j} \rangle \right) a(\xi) + \partial_{\xi}^{j} a(\xi) + a(\xi) \left( 2\pi i \langle \xi, \Theta_{\downarrow} e_{j} \rangle - 2\pi i x_{\Theta,j} \right). \end{split}$$

Eliminating vanishing terms and rearranging gives the desired identity.

The commutator vanishes in the Euclidean setting  $\Theta = 0$ . Therefore, we should understand  $\partial_{\Theta,\xi}$  as a  $\Theta$ -deformation of the classical derivative  $\partial_{\xi}$  which —as it is indicated by the result below— is also very much related to the quantum derivatives  $\partial_{\Theta}$ . Thus, we get a  $\Theta$ -deformation of  $\partial_{\xi}$  by  $\partial_{\Theta}$ .

LEMMA 1.16. Given  $\varphi \in \mathcal{S}_{\Theta} \subset \mathcal{R}_{\Theta}$  we have

$$[x_{\Theta,j},\varphi] = \frac{1}{2\pi i} \sum_{k=1}^{n} \Theta_{jk} \partial_{\Theta}^{k} \varphi.$$

In particular, we obtain the following estimate

$$\left\| \left[ x_{\Theta,j}, \varphi \right] \right\|_{\mathcal{R}_{\Theta}} \leq \frac{1}{2\pi} \left( \sum_{k=1}^{n} |\Theta_{jk}|^{2} \right)^{\frac{1}{2}} \left\| \left( \sum_{k=1}^{n} |\partial_{\Theta}^{k} \varphi|^{2} \right)^{\frac{1}{2}} \right\|_{\mathcal{R}_{\Theta}}.$$

**Proof.** Observe that

$$\left[x_{\Theta,j},\varphi\right] = \int_{\mathbb{R}^n} \widehat{\varphi}(\xi) \left[x_{\Theta,j},\lambda_{\Theta}(\xi)\right] d\xi = \int_{\mathbb{R}^n} \widehat{\varphi}(\xi) \frac{1}{2\pi i} \frac{d}{ds} \bigg|_{s=0} \left[\lambda_{\Theta}(se_j),\lambda_{\Theta}(\xi)\right] d\xi.$$

Using  $[\lambda_{\Theta}(se_j), \lambda_{\Theta}(\xi)] = \lambda_{\Theta}(se_j)\lambda_{\Theta}(\xi)(1 - e^{2\pi i s \langle \xi, \Theta e_j \rangle})$  and applying the Leibniz rule, we easily deduce the first assertion. The second one is straightforward.

The last estimate above provides a uniform and linear bound that explicitly gives the convergence  $\partial_{\Theta,\xi}^j \to \partial_{\xi}^j$  in the point-operator norm when  $\Theta \to 0^+$ . We also recall that the assumption  $\varphi \in \mathcal{S}_{\Theta}$  is just needed a priori and can be extended to any  $\varphi$  in the weak-\* closed domain of  $\nabla_{\Theta}$ .

Remark 1.17. As indicated in the Introduction, quantum Euclidean spaces can also be regarded as CCR algebras by means of a Fock space representation. We shall not explain this connection in further detail. The interested reader may find more information in [51,59,73].

#### CHAPTER 2

## Calderón-Zygmund $L_p$ theory

We now introduce kernel representations of linear operators acting on a von Neumann algebra and develop a very satisfactory Calderón-Zygmund theory over quantum Euclidean spaces. We shall prove  $L_p$ -boundedness from  $L_2$ -boundedness and Calderón-Zygmund conditions for the kernel.  $L_2$ -boundedness will be analyzed below in this paper for pseudodifferential operators. Our kernel conditions are given in terms of the intrinsic metric and gradient introduced above and resemble very neatly the classical conditions. This is the first form of Calderón-Zygmund theory over a fully noncommutative von Neumann algebra. We refer to  $\boxed{42,57}$  for related results over tensor product and crossed product algebras containing an abelian factor. An algebraic/probabilistic approach —lacking the geometric aspects of the present one— will be presented in  $\boxed{44}$  for more general von Neumann algebras.

### 2.1. Kernels and symbols

Given a measure space  $(\Omega, \mu)$  and a linear map T acting on certain function space X over  $\Omega$ , a kernel representation has the following form for functions f living in some dense domain in X

$$T_k f(x) = \int_{\Omega} k(x, y) f(y) d\mu(y),$$

where the kernel  $k: \Omega \times \Omega \to \mathbb{C}$  is only assumed a priori to be defined almost everywhere and measurable. Now, given a noncommutative measure space  $(\mathcal{M}, \tau)$  composed by a semifinite von Neumann algebra  $\mathcal{M}$  and normal faithful semifinite trace  $\tau$ , the kernel representation takes the analogous form

$$T_k \varphi = (id \otimes \tau)(k(\mathbf{1} \otimes \varphi)) = (id \otimes \tau)((\mathbf{1} \otimes \varphi)k)$$

with the only difference that k is now an operator affiliated to  $\mathcal{M} \bar{\otimes} \mathcal{M}_{\mathrm{op}}$ , instead of  $\mathcal{M} \bar{\otimes} \mathcal{M}$  as one could have expected. This novelty —undistinguishable in the abelian case, where  $\mathcal{M} = \mathcal{M}_{\mathrm{op}}$ — is crucial to develop a consistent theory. Let us begin by showing the fundamental properties of these kernel representations. This will simplify the task of justifying our choice of  $\mathcal{M} \bar{\otimes} \mathcal{M}_{\mathrm{op}}$ . Recall the products  $\cdot$  and  $\bullet$  in  $\mathcal{M}_{\mathrm{op}}$  and  $\mathcal{M} \bar{\otimes} \mathcal{M}_{\mathrm{op}}$  respectively from Section [1.2.1] above.

REMARK 2.1. Rigorously speaking, the map  $T_k$  so defined should send operators  $\varphi$  affiliated to  $\mathcal{M}_{op}$  to another operator  $T_k\varphi$  affiliated to  $\mathcal{M}$ . Of course, this is not an obstruction since the set of affiliated operators coincides for  $\mathcal{M}$  and  $\mathcal{M}_{op}$  and  $\tau_{\mathcal{M}} = \tau_{\mathcal{M}_{op}}$ . We will regard  $\varphi$  as affiliated to  $\mathcal{M}$ , so that  $T_k$  becomes a linear map over the noncommutative measure space  $(\mathcal{M}, \tau)$ .

Lemma 2.2. The following properties hold:

i) Adjoints and composition

$$T_k^* = T_{\mathrm{flip}(k)^*} \quad \text{with} \quad \mathrm{flip}(a \otimes b) = b \otimes a,$$

$$T_{k_1} \circ T_{k_2} = T_k \quad \text{with} \quad k = (id \otimes \tau \otimes id) ((k_1 \otimes \mathbf{1})(\mathbf{1} \otimes k_2)).$$

ii) Schur lemma and factorization

$$T_{k_{\mathrm{A}}\bullet k_{\mathrm{B}}}\varphi = (id \otimes \tau)(k_{\mathrm{A}}(\mathbf{1} \otimes \varphi)k_{\mathrm{B}}),$$

$$\|T_{k_{\mathrm{A}}\bullet k_{\mathrm{B}}} : L_{2}(\mathcal{M}) \to L_{2}(\mathcal{M})\| \leq \|(id \otimes \tau)(k_{\mathrm{A}}k_{\mathrm{A}}^{*})\|_{\mathcal{M}}^{\frac{1}{2}}\|(\tau \otimes id)(k_{\mathrm{B}}k_{\mathrm{B}}^{*})\|_{\mathcal{M}}^{\frac{1}{2}},$$

$$\|T_{k_{\mathrm{A}}\bullet k_{\mathrm{B}}} : L_{\infty}(\mathcal{M}) \to L_{\infty}(\mathcal{M})\| \leq \|(id \otimes \tau)(k_{\mathrm{A}}k_{\mathrm{A}}^{*})\|_{\mathcal{M}}^{\frac{1}{2}}\|(id \otimes \tau)(k_{\mathrm{B}}^{*}k_{\mathrm{B}})\|_{\mathcal{M}}^{\frac{1}{2}}.$$

iii)  $T_k$  is completely positive if and only if k is positive as affiliated to  $\mathcal{M} \bar{\otimes} \mathcal{M}_{op}$ .

### **Proof.** We have

$$\langle T_k \varphi_1, \varphi_2 \rangle = \tau \Big( (id \otimes \tau) \big( k(\mathbf{1} \otimes \varphi_1) \big)^* \varphi_2 \Big)$$

$$= \tau \Big( (\tau \otimes id) \big( (\mathbf{1} \otimes \varphi_1^*) k^* (\varphi_2 \otimes \mathbf{1}) \big) \Big)$$

$$= \tau \Big( \varphi_1^* (id \otimes \tau) \big( \text{flip}(k)^* (\mathbf{1} \otimes \varphi_2) \big) \Big) = \langle \varphi_1, T_k^* \varphi_2 \rangle,$$

which proves the kernel formula for the adjoint. Regarding the composition

$$T_{k_1}(T_{k_2}\varphi) = (id \otimes \tau) \Big( k_1 \big( \mathbf{1} \otimes (id \otimes \tau) (k_2(\mathbf{1} \otimes \varphi)) \big)$$

$$= (id \otimes \tau \otimes \tau) \Big( (k_1 \otimes \mathbf{1}) (\mathbf{1} \otimes k_2) (\mathbf{1} \otimes \mathbf{1} \otimes \varphi) \Big)$$

$$= (id \otimes \tau) \Big( \big[ (id \otimes \tau \otimes id) (k_1 \otimes \mathbf{1}) (\mathbf{1} \otimes k_2) \big] (\mathbf{1} \otimes \varphi) \Big).$$

In both cases —adjoints and compositions— we have regarded one more time the involved operators as affiliated to  $\mathcal{M}$  or  $\mathcal{M}_{op}$  according to the context, as we explain in Remark [2.1] Next, the factorization identity in ii) uses in a fundamental way the product  $\bullet$  in  $\mathcal{M} \bar{\otimes} \mathcal{M}_{op}$ 

$$T_{k_{\mathbf{A}} \bullet k_{\mathbf{B}}} \varphi = (id \otimes \tau) (k_{\mathbf{A}} \bullet k_{\mathbf{B}} (\mathbf{1} \otimes \varphi)) = (id \otimes \tau) (k_{\mathbf{A}} (\mathbf{1} \otimes \varphi) k_{\mathbf{B}}).$$

Namely, in the last identity above the first coordinate remains unchanged since  $\mathbf{1} \otimes \varphi$  does not affect the product in  $\mathcal{M} \otimes \mathbf{1}$ , whereas the second coordinate in  $\mathbf{1} \otimes \mathcal{M}_{op}$  is explained using its product  $\cdot$  as follows

$$\tau(\alpha \cdot \beta \cdot \varphi) = \tau(\alpha \cdot \varphi \beta) = \tau(\alpha \varphi \beta).$$

Let us now prove the announced inequalities. By the Cauchy-Schwarz inequality for the operator-valued inner product  $(x, y) = (id \otimes \tau)(x^*y)$  over the von Neumann algebra  $\mathcal{M} \bar{\otimes} \mathcal{M}_{op}$  we note that

$$\left|(id \otimes \tau)(x^*y)\right|^2 \le \left\|(id \otimes \tau)(x^*x)\right\|_{\mathcal{M}}(id \otimes \tau)(y^*y),$$

see for instance [49, Proposition 1.1]. In particular

$$\begin{aligned} \left| T_{k_{\mathbf{A}} \bullet k_{\mathbf{B}}} \varphi \right|^{2} &= \left| \left( id \otimes \tau \right) \left( k_{\mathbf{A}} (\mathbf{1} \otimes \varphi) k_{\mathbf{B}} \right) \right|^{2} \\ &\leq \left\| \left( id \otimes \tau \right) \left( k_{\mathbf{A}} k_{\mathbf{A}}^{*} \right) \right\|_{\mathcal{M}} \left( id \otimes \tau \right) \left( k_{\mathbf{B}}^{*} (\mathbf{1} \otimes \varphi^{*} \varphi) k_{\mathbf{B}} \right). \end{aligned}$$

The  $L_{\infty}$ -estimate announced for  $T_{k_{\rm A} \bullet k_{\rm B}} \varphi$  follows immediately from the inequality above. In order to prove the  $L_2$ -estimate, pick a unit vector  $\varphi \in L_2(\mathcal{M})$ . We just need to take the trace and apply Fubini

$$\tau(\left|T_{k_{\mathbf{A}}\bullet k_{\mathbf{B}}}\varphi\right|^{2}) \leq \|(id\otimes\tau)(k_{\mathbf{A}}k_{\mathbf{A}}^{*})\|_{\mathcal{M}}(\tau\otimes\tau)\left(k_{\mathbf{B}}^{*}\bullet k_{\mathbf{B}}(\mathbf{1}\otimes\varphi^{*}\varphi)\right)$$

$$= \|(id\otimes\tau)(k_{\mathbf{A}}k_{\mathbf{A}}^{*})\|_{\mathcal{M}}\tau\left((\tau\otimes id)(k_{\mathbf{B}}^{*}\bullet k_{\mathbf{B}})\varphi^{*}\varphi\right)$$

$$= \|(id\otimes\tau)(k_{\mathbf{A}}k_{\mathbf{A}}^{*})\|_{\mathcal{M}}\tau\left((\tau\otimes id)(k_{\mathbf{B}}k_{\mathbf{B}}^{*})\varphi^{*}\varphi\right)$$

$$\leq \|(id\otimes\tau)(k_{\mathbf{A}}k_{\mathbf{A}}^{*})\|_{\mathcal{M}}\|(\tau\otimes id)(k_{\mathbf{B}}k_{\mathbf{B}}^{*})\|_{\mathcal{M}}.$$

It remains to prove the last assertion iii). As an operator affiliated to  $\mathcal{M} \bar{\otimes} \mathcal{M}_{op}$ , the kernel k is positive iff there exists  $\kappa$  also affiliated to  $\mathcal{M} \bar{\otimes} \mathcal{M}_{op}$  so that  $k = \kappa^* \bullet \kappa$  and the factorization identity above gives in that case

$$T_k f = (id \otimes \tau) (\kappa^* (\mathbf{1} \otimes \varphi) \kappa)$$

which is clearly a completely positive map. Reciprocally, let  $T_k$  be completely positive. Assume for simplicity that  $T_k$  is well-defined over projections in  $\mathcal{M}$ . Then, given any pair of projections  $p, q \in \mathcal{M}$  we know from positivity of  $T_k$  that  $\tau(T_k(q)p) \geq 0$ . However

$$\tau(T_k(q)p) = \tau\Big((id\otimes\tau)\big(k(\mathbf{1}\otimes q)\big)p\Big) 
= \tau\Big((id\otimes\tau)\big(k\bullet(\mathbf{1}\otimes q)\big)p\Big) 
= \tau\Big((id\otimes\tau)\big(k\bullet(p\otimes q)\big)\Big) = \tau\otimes\tau\big(k\bullet(p\otimes q)\big).$$

The positivity of the last term for arbitrary projections implies the assertion.  $\Box$ 

Remark 2.3. Lemma 2.2 i) also holds for kernels affiliated to  $\mathcal{M} \bar{\otimes} \mathcal{M}$ , contrary to points ii) and iii). On the other hand, recall that the norm of a completely positive map is determined by its value at 1. The  $L_{\infty}$ -estimate in Lemma 2.2 ii) rephrases it in terms of kernels when  $k \geq 0$  and  $k_A = k_B = \sqrt{k}$ , so this estimate provides a generalization for nonpositive maps. Also, the  $L_2$ -estimate generalizes a classical result for integral kernels known as Schur lemma [68], Lemma in page 284]. Finally, the use of kernels k affiliated to  $\mathcal{M} \bar{\otimes} \mathcal{M}_{\text{op}}$ —essential for the properties in Lemma 2.2 ii) and iii) above— is consistent with the duality

$$L_1(\mathcal{M})^* = \mathcal{M}_{\mathrm{op}}$$

via the pairing  $\langle x, y \rangle = \tau(xy)$ , we refer to Pisier's book **62** for further details.

Remark 2.4. Ignoring for the moment more general kernels which will arise as tempered distributions, let us assume that k is affiliated to  $\mathcal{R}_{\Theta} \bar{\otimes} \mathcal{R}_{\Theta}^{\text{op}}$  and admits an expression

$$k = \int_{\mathbb{R}^n \times \mathbb{R}^n} \widehat{k}(\xi, \eta) \lambda_{\Theta}(\xi) \otimes \lambda_{\Theta}(\eta)^* d\mu(\xi, \eta)$$

for some measure  $\mu$  on  $\mathbb{R}^n \times \mathbb{R}^n$ . Noticing that  $\tau_{\Theta}(\lambda_{\Theta}(f)\lambda_{\Theta}(\xi)^*) = f(\xi)$  for f smooth we may interpret the kernel k as a bilinear form where —regardless  $\lambda_{\Theta}(\xi)$ ,  $\lambda_{\Theta}(\eta)$  are not in  $L_2(\mathcal{R}_{\Theta})$ — we put  $\lambda_{\Theta}(\xi) \otimes \lambda_{\Theta}(\eta)^* \sim |\lambda_{\Theta}(\xi)\rangle \langle \lambda_{\Theta}(\eta)|$  following the bra-ket notation. This is easily checked for Dirac measures  $\mu = \delta_{\xi_0,\eta_0}$ 

$$\langle T_k(\lambda_{\Theta}(f_1)), \lambda_{\Theta}(f_2) \rangle = \tau_{\Theta} \big( T_k(\lambda_{\Theta}(f_1))^* \lambda_{\Theta}(f_2) \big) = \widehat{k}(\xi_0, \eta_0) \overline{f_1(\eta_0)} f_2(\xi_0).$$

We will approximate general measures as limits of finite sums of Dirac measures.

This paper is devoted to investigate singular integral operators over quantum Euclidean spaces, both in terms of Calderón-Zygmund conditions for the kernel and Hörmander smoothness for the associated symbol. Let us therefore briefly describe the kernels and symbols we will be working with. There exists a very well-known relation between kernels and symbols of classical pseudodifferential operators, the reader can look for instance in [68,71] or almost any textbook on pseudodifferential operators. Indeed, given

$$\Psi_a f(x) = \int_{\mathbb{R}^n} a(x,\xi) \widehat{f}(\xi) e^{2\pi i \langle x,\xi \rangle} d\xi,$$

it turns out that  $\Psi_a f = T_k f$  for

$$k = (id \otimes \mathcal{F}^{-1})(a)(x, x - y) = \int_{\mathbb{R}^n} a(x, \xi) e^{2\pi i \langle x - y, \xi \rangle} d\xi.$$

Given  $n \geq 2$ , let us know consider a  $n \times n$  deformation  $\Theta$ . As explained in the Introduction, noncommutative symbols over quantum Euclidean spaces are smooth functions  $a : \mathbb{R}^n \to \mathcal{S}_{\Theta}$  and pseudodifferential operators look like

$$\Psi_{a}(\lambda_{\Theta}(f)) = \int_{\mathbb{R}^{n}} a(\xi) f(\xi) \lambda_{\Theta}(\xi) d\xi 
= \int_{\mathbb{R}^{n}} a(\xi) \tau_{\Theta} (\lambda_{\Theta}(f) \lambda_{\Theta}(\xi)^{*}) \lambda_{\Theta}(\xi) d\xi 
= (id \otimes \tau_{\Theta}) \Big[ \Big( \underbrace{\int_{\mathbb{R}^{n}} (a(\xi) \otimes \mathbf{1}) (\lambda_{\Theta}(\xi) \otimes \lambda_{\Theta}(\xi)^{*}) d\xi}_{\text{The kernel } k} \Big) \Big( \mathbf{1} \otimes \lambda_{\Theta}(f) \Big) \Big].$$

Thus, we find formally that  $\Psi_a(\lambda_{\Theta}(f)) = T_k(\lambda_{\Theta}(f))$  for

$$k = \int_{\mathbb{R}^n \times \mathbb{R}^n} \widehat{k}(\xi, \eta) \lambda_{\Theta}(\xi) \otimes \lambda_{\Theta}(\eta)^* d\mu(\xi, \eta) = \int_{\mathbb{R}^n} a(\xi) \lambda_{\Theta}(\xi) \otimes \lambda_{\Theta}(\xi)^* d\xi.$$

Reciprocally, we also have the following expression for a

$$a(\xi) = \int_{\mathbb{R}^n} \widehat{k}(\xi, \eta) \big( \mathbf{1} \otimes \lambda_{\Theta}(\eta)^* \lambda_{\Theta}(\xi) \big) d\eta$$

when  $\mu$  is the Lebesgue measure in  $\mathbb{R}^n \times \mathbb{R}^n$ . The algebra of pseudodifferential operators is formally generated by the derivatives  $\partial_{\Theta}^j$  and the left multiplication maps  $\lambda_{\Theta}(f) \mapsto x_{\Theta,j} \lambda_{\Theta}(f)$ .

Remark 2.5. Pseudodifferential operators can be understood (intuitively) as the algebra generated by Fourier multipliers  $\lambda_{\Theta}(f) \mapsto \lambda_{\Theta}(mf)$ , for some function  $m: \mathbb{R}^n \to \mathbb{C}$ , as well as left multiplication operators  $x \mapsto ax$ , for  $a \in \mathcal{R}_{\Theta}$ . The choice of left multiplication operators can be changed to right ones. That gives rise to a different, but highly related, notion of pseudodifferential operator that we describe here. Let  $a: \mathbb{R}^n \to \mathcal{S}_{\Theta}$  be a smooth symbol, we define the right pseudodifferential operator  $\Psi_a^{\text{right}}$  as

$$\Psi_a^{\text{right}}(\lambda_{\Theta}(f)) = \int_{\mathbb{R}^n} f(\xi) \lambda_{\Theta}(\xi) a(\xi) d\xi.$$

Similarly, its associated integral kernel is given by

$$\Psi_a^{\text{right}}(x) = \left(id \otimes \tau_{\Theta}\right) \left[ \left( \underbrace{\int_{\mathbb{R}^n} (\lambda_{\Theta}(\xi) \otimes \lambda_{\Theta}(\xi)^*) (a(\xi) \otimes \mathbf{1}) d\xi}_{k} \right) \left(\mathbf{1} \otimes x\right) \right].$$

It is natural to ask in which sense the operator above is defined. In Chapter  $\square$  we shall see that  $\Psi_a: \mathcal{S}_{\Theta} \to \mathcal{S}_{\Theta}$ , for every symbol a in the classes  $S^m_{\rho,\delta}(\mathcal{R}_{\Theta})$  defined in the Introduction, see Lemma  $\square$ . The same proof carries over without difficulty to  $\Psi_a^{\text{right}}$ . A more elegant approach is to notice that it is possible to transfer results between the left and the right pseudodifferential operators. Indeed, if we denote by S the isometric operator in  $L_p(\mathcal{R}_{\Theta})$  given by extension of  $S(x) = x^*$  we have that

$$S\Psi_a^{\text{left}} = \Psi_b^{\text{right}} S$$
 where  $b(\xi) = a(-\xi)^*$ .

The proof of such intertwining identity amounts to a straightforward calculation. As a consequence we have that if  $\Psi_a^{\text{left}}: L_p(\mathcal{R}_{\Theta}) \to L_p(\mathcal{R}_{\Theta})$  is bounded the same bound hold for  $\Psi_b^{\text{right}}: L_p(\mathcal{R}_{\Theta}) \to L_p(\mathcal{R}_{\Theta})$ . In particular, since the classes  $S_{\rho,\delta}^m(\mathcal{R}_{\Theta})$  are closed under the involution  $a(\xi) \mapsto a(-\xi)^*$  their left/right boundedness is equivalent and thus we will work only with the left ones.

# 2.2. CZ extrapolation: Model case

We are ready to prove  $L_p$ -boundedness of operators associated to elementary kernels satisfying cancellation and smoothness conditions of Calderón-Zygmund type. Our kernels will belong along this paragraph to  $\mathcal{S}_{\Theta} \otimes_{\text{alg}} \mathcal{S}_{\Theta}^{\text{op}}$ , so that

$$k = \sum_{j} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \kappa_{1j}(\xi) \kappa_{2j}(\eta) \lambda_{\Theta}(\xi) \otimes \lambda_{\Theta}(\eta)^* d\xi d\eta,$$

where the sum above is finite and  $\kappa_{ij} \in \mathcal{S}(\mathbb{R}^n)$ . We will temporarily refer to these kernels as algebraic kernels. Of course, in this case  $T_k$  is  $L_p$ -bounded for  $1 \leq p \leq \infty$  with constants a priori depending on the family  $\kappa_{ij}$ . Our goal is to provide  $L_{\infty} \to \text{BMO}$  estimates with constants which only depend on structural properties of the whose k since this will allow us to include general singular kernels below. The following result is the basic core of this paper. We shall use the quantum metric  $d_{\Theta}$  defined in Section 1.2.1, the notation  $\nabla_{\Theta} k$  to denote the operator

$$\left(\nabla_{\Theta} \otimes id_{\mathcal{R}_{\Theta}^{\mathrm{op}}}\right)(k) \in \mathcal{L}(\mathbb{F}_n) \bar{\otimes} \mathcal{R}_{\Theta} \bar{\otimes} \mathcal{R}_{\Theta}^{\mathrm{op}}$$

for  $k \in \mathcal{S}_{\Theta} \otimes_{\text{alg}} \mathcal{S}_{\Theta}^{\text{op}}$  and the dimensional constant  $K_n = \frac{1}{2}(n+1)$ .

THEOREM 2.6. Let  $k \in \mathcal{S}_{\Theta} \otimes_{\text{alg}} \mathcal{S}_{\Theta}^{\text{op}}$  and assume:

i) Cancellation

$$||T_k: L_2(\mathcal{R}_{\Theta}) \to L_2(\mathcal{R}_{\Theta})|| \le A_1.$$

ii) Kernel smoothness. There exists

$$\alpha < \mathcal{K}_n - \frac{1}{2} < \beta < \mathcal{K}_n + \frac{1}{2}$$

satisfying the gradient conditions below for  $\rho = \alpha, \beta$ 

$$\left| d_{\Theta}^{\rho} \bullet (\nabla_{\Theta} \otimes id_{\mathcal{R}_{\Theta}^{\text{op}}})(k) \bullet d_{\Theta}^{n+1-\rho} \right| \leq A_{2}.$$

Then, we find the following  $L_{\infty} \to BMO_c$  estimate

$$||T_k: L_{\infty}(\mathcal{R}_{\Theta}) \to BMO_c(\mathcal{R}_{\Theta})||_{cb} \le C_n(\alpha, \beta)(A_1 + A_2).$$

**Proof.** Since k is an algebraic kernel,  $T_k$  is bounded on  $\mathcal{R}_{\Theta}$ . Moreover,  $T_k^*$  is also bounded on  $L_1(\mathcal{R}_{\Theta}^{\text{op}})$  and  $T_k$  is a normal operator. On the other hand, the weak-\* topology in  $\mathcal{R}_{\Theta}$  is stronger than the inherited one from the weak-\* topology in  $BMO_c(\mathcal{R}_{\Theta})$ . Therefore, by Kaplansky density theorem, it suffices to estimate the norm of  $T_k$  on the weak-\* dense subalgebra  $\mathcal{S}_{\Theta}$ . Given  $\varphi = \lambda_{\Theta}(f) \in \mathcal{S}_{\Theta}$ 

$$\|T_k\varphi\|_{\mathrm{BMO}_c(\mathcal{R}_{\Theta})} \sim \sup_{\mathrm{R}>0} \sup_{\mathrm{B}_{\mathrm{R}}\in\mathcal{Q}_{\mathrm{R}}} \left\| \left( \int_{\mathrm{B}_{\mathrm{R}}} \left| \sigma_{\Theta}(T_k\varphi) - \sigma_{\Theta}(T_k\varphi)_{\mathrm{B}_{\mathrm{R}}} \right|^2 d\mu \right)^{\frac{1}{2}} \right\|_{\mathcal{R}_{\Theta}}$$

where the second supremum runs over the set  $\mathcal{Q}_{R}$  of Euclidean balls  $B_{R}$  of radius R and center  $c_{B_{R}}$ . Recall that  $\sigma_{\Theta}(T_{k}\varphi) = T_{k_{\sigma}}\varphi$  for  $k_{\sigma} = (\sigma_{\Theta} \otimes id)(k)$ . Now let  $\psi : \mathbb{R}^{n} \to [0,1]$  be a Schwartz function which is identically 1 over the unit ball  $B_{1}(0)$  and identically 0 outside its concentric 2-dilation  $B_{2}(0)$ . Define

$$\psi_{\rm R}(x) = \psi\left(\frac{x + c_{\rm B_R}}{2\rm R}\right)$$

to decompose the kernel  $k_{\sigma} = (\sigma_{\Theta} \otimes id)(k)$  as follows

$$k_{\sigma} = \underbrace{k_{\sigma} \bullet \pi_{\Theta}(\psi_{\mathbf{R}})}_{k_{\sigma^{1}}(\mathbf{R})} + \underbrace{k_{\sigma} \bullet (\mathbf{1} - \pi_{\Theta}(\psi_{\mathbf{R}}))}_{k_{\sigma^{2}}(\mathbf{R})}.$$

Note here that  $\pi_{\Theta}(\psi_{R}) \simeq \mathbf{1} \otimes \pi_{\Theta}(\psi_{R})$  is an element of  $\mathcal{R}_{\Theta} \bar{\otimes} \mathcal{R}_{\Theta}^{op}$  and only  $k_{\sigma}$  has a component in  $L_{\infty}(\mathbb{R}^{n})$ . We claim that the following inequality for  $k_{\sigma 1}(R)$  holds up to constants independent of the ball  $B_{R} \in \mathcal{Q}_{R}$  and the radius R

Before proving this first claim, let us continue with the argument. Of course, it would suffice to give a similar estimate for  $k_{\sigma 2}(R)$ . To do so and according to the Poincaré type inequality in Proposition I.6 and its relation to  $BMO_c(\mathcal{R}_{\Theta})$  outlined in Remark I.7, it suffices to estimate

$$\mathbf{R} \left\| \underbrace{(\mathbf{1} \otimes q_{\mathbf{R}} \otimes \mathbf{1})(\nabla \otimes id_{\mathcal{R}_{\Theta}})(T_{k_{\sigma^{2}}(\mathbf{R})}\varphi)}_{T_{\mathbf{K}}(\varphi)} \right\|_{\mathcal{L}(\mathbb{F}_{n})\bar{\otimes}L_{\infty}(\mathbb{R}^{n})\bar{\otimes}\mathcal{R}_{\Theta}}$$

for  $q_{\rm R}=1_{\rm B_R}$  with constants independent of R. Since

$$(\nabla \otimes id_{\mathcal{R}_{\Theta}}) \circ \sigma_{\Theta} = (id_{\mathcal{L}(\mathbb{F}_n)} \otimes \sigma_{\Theta}) \circ \nabla_{\Theta}$$

we may rewrite  $T_{\mathbf{K}}(\varphi)$  as follows

$$T_{\mathbf{K}}(\varphi) = (\mathbf{1} \otimes q_{\mathbf{R}} \otimes \mathbf{1})(\nabla \otimes id) \Big( (id^{\otimes 2} \otimes \tau_{\Theta}) \big( k_{\sigma 2}(\mathbf{R}) (\mathbf{1}^{\otimes 2} \otimes \varphi) \big) \Big)$$

$$= (\mathbf{1} \otimes q_{\mathbf{R}} \otimes \mathbf{1}) \big( id^{\otimes 3} \otimes \tau_{\Theta} \big) \Big( (\nabla \otimes id^{\otimes 2}) (\sigma_{\Theta} \otimes id) [k] \bullet (\mathbf{1} - \Psi_{\mathbf{R}}) (\mathbf{1}^{\otimes 3} \otimes \varphi) \Big)$$

$$= (id^{\otimes 3} \otimes \tau_{\Theta}) \Big( \underbrace{(\mathbf{1} \otimes q_{\mathbf{R}} \otimes \mathbf{1}^{\otimes 2}) (id \otimes \sigma_{\Theta} \otimes id) [\nabla_{\Theta} k] \bullet (\mathbf{1} - \Psi_{\mathbf{R}})}_{\mathbf{K}} (\mathbf{1}^{\otimes 3} \otimes \varphi) \Big)$$

with  $\mathbf{K} \in \mathcal{L}(\mathbb{F}_n) \bar{\otimes} L_{\infty}(\mathbb{R}^n) \bar{\otimes} \mathcal{R}_{\Theta} \bar{\otimes} \mathcal{R}_{\Theta}^{\text{op}}$  and  $\Psi_{\mathbf{R}} = \pi_{\Theta}(\psi_{\mathbf{R}})$ . For simplicity, we shall use a more compact terminology and write  $\mathbf{K} = q_{\mathbf{R}} \nabla_{\Theta}^{\sigma} k \bullet (\mathbf{1} - \Psi_{\mathbf{R}})$ . We may now decompose  $\mathbf{K}$  as follows

$$\mathbf{K} = \underbrace{q_{\mathrm{R}}\Psi_{\mathrm{R}} \bullet \nabla_{\Theta}^{\sigma} k \bullet (\mathbf{1} - \Psi_{\mathrm{R}})}_{\mathbf{K}_{1}} + \underbrace{q_{\mathrm{R}}(\mathbf{1} - \Psi_{\mathrm{R}}) \bullet \nabla_{\Theta}^{\sigma} k \bullet (\mathbf{1} - \Psi_{\mathrm{R}})}_{\mathbf{K}_{2}}.$$

We claim that the following inequality holds for j = 1, 2

Our discussion so far has reduced the proof to justifying (2.2.1) and (2.2.2): **Proof of (2.2.1).** It is clear that

$$\left\| \left( \int_{\mathbb{R}_{n}} \left| T_{k_{\sigma 1}(\mathbf{R})} \varphi - \left( T_{k_{\sigma 1}(\mathbf{R})} \varphi \right)_{\mathbf{B}_{\mathbf{R}}} \right|^{2} d\mu \right)^{\frac{1}{2}} \right\|_{\mathcal{R}_{\mathbf{Q}}} \leq C_{n} \mathbf{R}^{-\frac{n}{2}} \left\| \left( \int_{\mathbb{R}^{n}} \left| T_{k_{\sigma 1}(\mathbf{R})} \varphi \right|^{2} d\mu \right)^{\frac{1}{2}} \right\|_{\mathcal{R}_{\mathbf{Q}}}.$$

On the other hand, given  $T: \mathcal{S}_{\Theta} \to L_2^c(\mathbb{R}^n) \bar{\otimes} \mathcal{R}_{\Theta}$  we need to introduce its module extension  $T': \mathcal{S}_{\Theta} \bar{\otimes} \mathcal{R}_{\Theta} \ni \lambda_{\Theta}(f) \otimes \varphi \mapsto T(\lambda_{\Theta}(f))(\mathbf{1} \otimes \varphi) \in L_2^c(\mathbb{R}^n) \bar{\otimes} \mathcal{R}_{\Theta}$ . Recall the following (elementary) algebraic identity

$$(id \otimes \tau_{\Theta})(k_{\sigma} \bullet (a \otimes b) \bullet (\mathbf{1} \otimes \varphi)) = T_{k_{\sigma}}(\varphi b)(\mathbf{1} \otimes a) = T'_{k_{\sigma}}((\varphi \otimes \mathbf{1}) \operatorname{flip}(a \otimes b)).$$

Then, noticing that k is assumed to be an algebraic kernel in  $\mathcal{S}_{\Theta} \otimes_{\text{alg}} \mathcal{S}_{\Theta}^{\text{op}}$ , it is not difficult to check that the above formula extends from elementary tensors  $a \otimes b$  to arbitrary elements in  $\mathcal{R}_{\Theta} \bar{\otimes} \mathcal{R}_{\Theta}^{\text{op}}$ . This yields

$$T_{k_{\sigma 1}(\mathbf{R})}\varphi = T_{k_{\sigma} \bullet \Psi_{\mathbf{R}}}\varphi = T'_{k_{\sigma}}((\varphi \otimes \mathbf{1})\operatorname{flip}(\pi_{\Theta}(\psi_{\mathbf{R}}))).$$

In particular, we easily obtain the following estimate

$$\left\| \left( \int_{\mathbb{R}^n} \left| T_{k_{\sigma_1}(\mathbf{R})} \varphi \right|^2 d\mu \right)^{\frac{1}{2}} \right\|_{\mathcal{R}_{\Theta}}$$

$$\leq \left\| T'_{k_{\sigma}} : L_2^c(\mathcal{R}_{\Theta}) \bar{\otimes} \mathcal{R}_{\Theta} \to L_2^c(\mathbb{R}^n) \bar{\otimes} \mathcal{R}_{\Theta} \right\|_{\mathrm{cb}} \left\| \mathrm{flip}(\pi_{\Theta}(\psi_{\mathbf{R}})) \right\|_{L_2^c(\mathcal{R}_{\Theta}) \bar{\otimes} \mathcal{R}_{\Theta}} \|\varphi\|_{\mathcal{R}_{\Theta}}.$$

According to Lemma 1.5

$$\|\operatorname{flip}(\pi_{\Theta}(\psi_{\mathbf{R}}))\|_{L_{c}^{c}(\mathcal{R}_{\Theta})\bar{\otimes}\mathcal{R}_{\Theta}} \leq \|\psi_{\mathbf{R}}\|_{L_{c}(\mathbb{R}^{n})} \leq C_{n} \mathbf{R}^{\frac{n}{2}}$$

since the argument given there for  $\pi_{\Theta}$  also holds for flip  $\circ \pi_{\Theta}$ . Therefore, it remains to estimate the cb-norm of  $T'_{k_{\sigma}}$ . We claim that it is bounded by  $A_1$ , the  $L_2$ -norm of  $T_k$ . To justify it, we introduce the map

$$W: L_2^c(\mathbb{R}^n) \bar{\otimes} \mathcal{R}_{\Theta} \ni \int_{\mathbb{R}^n} \exp_{\xi} \otimes a(\xi) \, d\xi \mapsto \int_{\mathbb{R}^n} \exp_{\xi} \otimes \lambda_{\Theta}(\xi) a(\xi) \, d\xi \in L_2^c(\mathbb{R}^n) \bar{\otimes} \mathcal{R}_{\Theta}.$$

It is straightforward to show that W extends to an isometry. On the other hand, letting  $j_{\Theta}: \exp_{\xi} \mapsto \lambda_{\Theta}(\xi)$  be the  $L_2$ -isometry introduced in Section 1.3.2, we observe that

$$W(j_{\Theta}^* \otimes id)(\lambda_{\Theta}(f) \otimes a) = W\left(\int_{\mathbb{R}^n} f(\xi) \exp_{\xi} \otimes a \, d\xi\right)$$
$$= \int_{\mathbb{R}^n} f(\xi) \exp_{\xi} \otimes \lambda_{\Theta}(\xi) a \, d\xi = \sigma_{\Theta}(\lambda_{\Theta}(f))(\mathbf{1} \otimes a).$$

Identifying  $T_k \varphi$  with  $\lambda_{\Theta}(f)$  for some smooth  $f: \mathbb{R}^n \to \mathbb{C}$  we obtain the identity  $W(j_{\Theta}^* T_k \otimes id)(\varphi \otimes a) = T'_{k_{\sigma}}(\varphi \otimes a)$ . This a fortiori implies that the cb-norm of the map  $T'_{k_{\sigma}}: L_2^c(\mathcal{R}_{\Theta}) \bar{\otimes} \mathcal{R}_{\Theta} \to L_2^c(\mathbb{R}^n) \bar{\otimes} \mathcal{R}_{\Theta}$  is dominated by the  $L_2(\mathcal{R}_{\Theta}) \to L_2(\mathcal{R}_{\Theta})$  norm of  $T_k$ , as desired. This completes the proof of claim (2.2.1).

**Proof of** (2.2.2). Let

$$D_{\Theta} = (\sigma_{\Theta} \otimes id)(d_{\Theta})$$

and decompose the kernels  $\mathbf{K}_{i}$  for j=1,2 as follows

$$\mathbf{K}_{1} = \left(q_{\mathrm{R}} \, \Psi_{\mathrm{R}} \bullet \mathrm{D}_{\Theta}^{-\alpha}\right) \bullet \left(\mathrm{D}_{\Theta}^{\alpha} \bullet \nabla_{\Theta}^{\sigma} k \bullet \mathrm{D}_{\Theta}^{\alpha'}\right) \bullet \left(\mathrm{D}_{\Theta}^{-\alpha'} \bullet (\mathbf{1} - \Psi_{\mathrm{R}}) q_{\mathrm{R}}\right),$$

$$\mathbf{K}_{2} = \left(q_{\mathrm{R}}\left(\mathbf{1} - \Psi_{\mathrm{R}}\right) \bullet \mathbf{D}_{\Theta}^{-\beta}\right) \bullet \left(\mathbf{D}_{\Theta}^{\beta} \bullet \nabla_{\Theta}^{\sigma} k \bullet \mathbf{D}_{\Theta}^{\beta'}\right) \bullet \left(\mathbf{D}_{\Theta}^{-\beta'} \bullet (\mathbf{1} - \Psi_{\mathrm{R}})q_{\mathrm{R}}\right),$$

with  $\alpha' = n + 1 - \alpha$  and  $\beta' = n + 1 - \beta$ . Using the terminology  $\mathbf{K}_j = \mathbf{A}_j \bullet \mathbf{B}_j \bullet \mathbf{C}_j$  for the brackets above and according to the operator-valued (trivial) extension of Lemma 2.2, we find for  $\mathcal{B}_{\Theta} = \mathcal{L}(\mathbb{F}_n) \bar{\otimes} L_{\infty}(\mathbb{R}^n) \bar{\otimes} \mathcal{R}_{\Theta}$  that

$$\|T_{\mathbf{K}_{j}}: \mathcal{R}_{\Theta} \to \mathcal{B}_{\Theta}\| \leq \|(id \otimes \tau_{\Theta})(\mathbf{A}_{j}\mathbf{A}_{j}^{*})\|_{\mathcal{B}_{\Theta}}^{\frac{1}{2}} \|\mathbf{B}_{j}\|_{\mathcal{B}_{\Theta}\bar{\otimes}\mathcal{R}_{\Theta}^{\mathrm{op}}} \|(id \otimes \tau_{\Theta})(\mathbf{C}_{j}^{*}\mathbf{C}_{j})\|_{\mathcal{B}_{\Theta}}^{\frac{1}{2}}.$$

Since  $\mathbf{B}_j = (\sigma_{\Theta} \otimes id)(\mathbf{d}_{\Theta}^{\rho} \bullet \nabla_{\Theta} k \bullet \mathbf{d}_{\Theta}^{n+1-\rho})$  for  $\rho = \alpha, \beta$  and  $\sigma_{\Theta}$  is a \*-homomorphism we deduce from the hypotheses that  $\|\mathbf{B}_1\| + \|\mathbf{B}_2\| \leq \mathbf{A}_2$ . Therefore, recalling that we have  $\alpha + \alpha' = \beta + \beta' = n + 1$ , it suffices to prove the following inequalities for the terms associated to  $\mathbf{A}_j$  and  $\mathbf{C}_j$ 

$$\begin{aligned} & \left\| (id \otimes \tau_{\Theta})(\mathbf{A}_{1}\mathbf{A}_{1}^{*}) \right\|_{\mathcal{B}_{\Theta}}^{\frac{1}{2}} & \leq & C_{n}(\alpha) \mathbf{R}^{\frac{n}{2} - \alpha}, \\ & \left\| (id \otimes \tau_{\Theta})(\mathbf{C}_{1}^{*}\mathbf{C}_{1}) \right\|_{\mathcal{B}_{\Theta}}^{\frac{1}{2}} & \leq & C_{n}(\alpha') \mathbf{R}^{\frac{n}{2} - \alpha'}, \\ & \left\| (id \otimes \tau_{\Theta})(\mathbf{A}_{2}\mathbf{A}_{2}^{*}) \right\|_{\mathcal{B}_{\Theta}}^{\frac{1}{2}} & \leq & C_{n}(\beta) \mathbf{R}^{\frac{n}{2} - \beta}, \\ & \left\| (id \otimes \tau_{\Theta})(\mathbf{C}_{2}^{*}\mathbf{C}_{2}) \right\|_{\mathcal{B}_{\Theta}}^{\frac{1}{2}} & \leq & C_{n}(\beta') \mathbf{R}^{\frac{n}{2} - \beta'}, \end{aligned}$$

for any  $\alpha < K_n - \frac{1}{2} < \beta < K_n + \frac{1}{2}$ . We will justify the above estimates for  $\mathbf{A}_1$  and  $\mathbf{C}_1$ , the proof of the others is very similar. Let  $\Delta_{\mathbb{R}^n} f(x,y) = f(x+y)$  be the comultiplication map on  $\mathbb{R}^n$ . According to Lemma 1.5

$$(\sigma_{\Theta} \otimes id) \circ \pi_{\Theta} = (id \otimes \pi_{\Theta}) \circ \Delta_{\mathbb{R}^n}.$$

In particular,  $\mathbf{A}_1^* = (id \otimes \pi_{\Theta}) (\Delta_{\mathbb{R}^n}(|\cdot|^{-\alpha})q_{\mathrm{R}}(\mathbf{1} \otimes \psi_{\mathrm{R}}))$  and we find

$$\begin{aligned} \left\| (id \otimes \tau_{\Theta})(\mathbf{A}_{1}\mathbf{A}_{1}^{*}) \right\|_{\mathcal{B}_{\Theta}}^{\frac{1}{2}} &= \left\| \mathbf{A}_{1}^{*} \right\|_{L_{\infty}(\mathbb{R}^{n})\bar{\otimes}\mathcal{R}_{\Theta}\bar{\otimes}L_{2}^{c}(\mathcal{R}_{\Theta}^{\text{op}})} \\ &\leq \left\| id \otimes \pi_{\Theta} \right\| \left\| \Delta_{\mathbb{R}^{n}} (|\cdot|^{-\alpha}) q_{\mathbf{R}} (\mathbf{1} \otimes \psi_{\mathbf{R}}) \right\|_{L_{\infty}(\mathbb{R}^{n})\bar{\otimes}L_{2}^{c}(\mathbb{R}^{n})}, \end{aligned}$$

where  $id \otimes \pi_{\Theta} : L_{\infty}(\mathbb{R}^n) \bar{\otimes} L_2^c(\mathbb{R}^n) \to L_{\infty}(\mathbb{R}^n) \bar{\otimes} \mathcal{R}_{\Theta} \bar{\otimes} L_2^c(\mathcal{R}_{\Theta}^{\mathrm{op}})$ . Its norm is dominated by the cb-norm of  $\pi_{\Theta} : L_2^c(\mathbb{R}^n) \to \mathcal{R}_{\Theta} \bar{\otimes} L_2^c(\mathcal{R}_{\Theta}^{\mathrm{op}})$ . We already proved in Lemma 1.5 the cb-contractivity of  $\pi_{\Theta} : L_2^c(\mathbb{R}^n) \to L_2^c(\mathcal{R}_{\Theta}) \bar{\otimes} \mathcal{R}_{\Theta}^{\mathrm{op}}$  and the exact same argument can be trivially adapted to show that  $\|id \otimes \pi_{\Theta}\| \leq 1$  in the right hand side of the above inequality. It then remains to estimate

$$\sup_{x \in \mathbb{R}^n} q_{\mathbf{R}}(x) \left( \int_{\mathbb{R}^n} |x+y|^{-2\alpha} \psi_{\mathbf{R}}^2(y) \, dy \right)^{\frac{1}{2}} \le \left( \int_{\mathbf{B}_{5\mathbf{R}}(0)} |y|^{-2\alpha} dy \right)^{\frac{1}{2}} \lesssim \mathbf{R}^{\frac{n}{2} - \alpha}$$

for  $\alpha < \frac{n}{2}$ . In the case of  $\mathbf{C}_1 = (id \otimes \pi_{\Theta}) (\Delta_{\mathbb{R}^n}(|\cdot|^{-\alpha'})q_{\mathbb{R}} \otimes (1-\psi_{\mathbb{R}}))$  we get

$$\sup_{x \in \mathbb{R}^n} q_{\mathbf{R}}(x) \left( \int_{\mathbb{R}^n} |x+y|^{-2\alpha'} (1-\psi_{\mathbf{R}}(y))^2 \, dy \right)^{\frac{1}{2}} \leq \left( \int_{\mathrm{B}^c_{\mathbf{R}}(0)} |y|^{-2\alpha'} \, dy \right)^{\frac{1}{2}} \lesssim \mathbf{R}^{\frac{n}{2} - \alpha'}$$

for  $\alpha' > \frac{n}{2}$ . The same argument applies for  $\mathbf{A}_2$  and  $\mathbf{C}_2$ . This proves claim (2.2.2). **Conclusion.** The argument above proves that  $T_k : L_{\infty}(\mathcal{R}_{\Theta}) \to \mathrm{BMO}_c(\mathcal{R}_{\Theta})$  defines a bounded operator with norm dominated by  $C_n(\alpha, \beta)(\mathbf{A}_1 + \mathbf{A}_2)$ . The exact same argument can be used after matrix amplification to prove that the cb-norm of  $T_k$  satisfies the same upper bound. This completes the proof of the theorem.

REMARK 2.7. Our kernel conditions in Theorem 2.6 are natural extensions of the classical ones 34.68. The price for noncommutativity is a concrete and balanced left/right location of the exponents  $\alpha, \beta$ , which of course is meaningless in the commutative setting. These surprisingly transparent Calderón-Zygmund kernel conditions are possible due to the very precise geometric information on  $\mathcal{R}_{\Theta}$  that we collected in Chapter  $\mathbb{I}$  Our results below for pseudodifferential operators crucially rely on these conditions. For more general von Neumann algebras, the resulting conditions are necessarily less transparent 44.

## 2.3. CZ extrapolation: General case

If  $\mathcal{S}'_{\Theta}$  denotes the space of continuous linear functionals on  $\mathcal{S}_{\Theta}$  —tempered distributions— our aim now is to generalize our  $L_{\infty} \to \mathrm{BMO}_c$  estimate in Theorem [2.6] for continuous linear maps  $T \in \mathcal{L}(\mathcal{S}_{\Theta}, \mathcal{S}'_{\Theta})$  to incorporate Calderón-Zygmund kernels. This imposes a careful analysis of tempered  $\Theta$ -distributions and how this affects our former kernel manipulations. By symmetrization, interpolation and duality, we shall obtain  $L_p$ -boundedness of quantum CZOs.

**2.3.1. Tempered distributions.** The Schwartz class  $\mathcal{S}(\mathbb{R}^n)$  of Euclidean smooth functions with rapid decay is equipped with the locally convex topology determined by the seminorms  $p_{\alpha,\beta}(f) = \sup_{x \in \mathbb{R}^n} |x^{\alpha} \partial_x^{\beta} f(x)|$  for  $f : \mathbb{R}^n \to \mathbb{C}$  and all  $\alpha, \beta \in \mathbb{N}^n$ . The quantum analogue for  $\varphi = \lambda_{\Theta}(f)$  in  $\mathcal{S}_{\Theta}$  was described in Remark [1.10] In particular,  $\varphi_j = \lambda_{\Theta}(f_j)$  converges to 0 in  $\mathcal{S}_{\Theta}$  when

$$\lim_{i \to \infty} \|P(x_{\Theta})\partial_{\Theta}^{\beta} (\lambda_{\Theta}(f_j))Q(x_{\Theta})\|_{\mathcal{R}_{\Theta}} = 0$$

for all  $\beta \in \mathbb{N}^n$  and all quantum monomials

$$P(x_{\Theta}) = \prod_{1 \leq r \leq m_{\ell}}^{\rightarrow} x_{\Theta, j_r} \quad \text{and} \quad Q(x_{\Theta}) = \prod_{1 \leq s \leq m_r}^{\rightarrow} x_{\Theta, k_s}.$$

By Remark 1.10, this holds iff

$$\lim_{j \to \infty} \left\| \lambda_{\Theta} \left[ \left( \prod_{1 \le r \le m_{\ell}}^{\rightarrow} D_{\Theta, j_r}^{\ell} \right) \left( \prod_{1 \le s \le m_r}^{\rightarrow} D_{\Theta, k_s}^{r} \right) M_{(2\pi i \xi)^{\beta}} f_j \right] \right\|_{\mathcal{R}_{\Theta}} = 0.$$

LEMMA 2.8. If  $\Theta_1, \Theta_2 \in A_n(\mathbb{R})$  we find that

$$\lim_{j \to \infty} \lambda_{\Theta_1}(f_j) = 0 \text{ in } \mathcal{S}_{\Theta_1} \iff \lim_{j \to \infty} \lambda_{\Theta_2}(f_j) = 0 \text{ in } \mathcal{S}_{\Theta_2}.$$

**Proof.** Let us set

$$p_{P,Q,\beta}^{\Theta}(\lambda_{\Theta}(f)) = \|P(x_{\Theta})\partial_{\Theta}^{\beta}(\lambda_{\Theta}(f))Q(x_{\Theta})\|_{\mathcal{R}_{\Theta}}$$

and assume that  $\lim_{j\to\infty} p_{P_1,Q_1,\beta_1}^{\Theta_1}(\lambda_{\Theta_1}(f_j)) = 0$  for all  $\beta_1 \in \mathbb{N}^n$  and all quantum  $\Theta_1$ -monomials  $P_1,Q_1$ . Given  $\beta_2 \in \mathbb{N}^n$  and quantum  $\Theta_2$ -monomials  $P_2,Q_2$  it then suffices to show that

$$\lim_{j \to \infty} p_{P_2, Q_2, \beta_2}^{\Theta_2} (\lambda_{\Theta_2}(f_j)) = 0.$$

According to Remark [1.10], we may find two commuting operators  $P_2[D_{\Theta_2,j}^\ell]$  and  $Q_2[D_{\Theta_2,j}^r]$ —sums of modulations and derivations— satisfying the following identity

$$p_{P_2,Q_2,\beta_2}^{\Theta_2}(\lambda_{\Theta_2}(f_j)) = \left\| \lambda_{\Theta_2} \left( P_2[D_{\Theta_2,j}^{\ell}] Q_2[D_{\Theta_2,j}^{r}] M_{(2\pi i \xi)^{\beta_2}} f_j \right) \right\|_{\mathcal{R}_{\Theta_2}}.$$

Applying Riemann-Lebesgue and Cauchy-Schwartz with  $B(\xi) = 1 + |\xi|^n$  and  $B^{-1}(\xi)$ 

$$\begin{split} p_{P_2,Q_2,\beta_2}^{\Theta_2}(\lambda_{\Theta_2}(f_j)) & \leq & \left\| P_2[D_{\Theta_2,j}^\ell] Q_2[D_{\Theta_2,j}^r] M_{(2\pi i \xi)^{\beta_2}} f_j \right\|_{L_1(\mathbb{R}^n)} \\ & \lesssim & \left\| M_{B(\xi)} P_2[D_{\Theta_2,j}^\ell] Q_2[D_{\Theta_2,j}^r] M_{(2\pi i \xi)^{\beta_2}} f_j \right\|_{L_2(\mathbb{R}^n)} \\ & = & \left\| \lambda_{\Theta_1} \left( M_{B(\xi)} P_2[D_{\Theta_2,j}^\ell] Q_2[D_{\Theta_2,j}^r] M_{(2\pi i \xi)^{\beta_2}} f_j \right) \right\|_{L_2(\mathcal{R}_{\Theta_1})} \end{split}$$

By Proposition 1.12, there exists a quantum  $\Theta_1$ -polynomial  $R_1(x_{\Theta_1})$ , whose inverse lives in  $L_2(\mathcal{R}_{\Theta_1})$ . Therefore, multiplying and dividing by it on the left hand side yields

$$p_{P_{2},Q_{2},\beta_{2}}^{\Theta_{2}}(\lambda_{\Theta_{2}}(f_{j})) \lesssim \left\| R_{1}(x_{\Theta_{1}})\lambda_{\Theta_{1}} \left( M_{B(\xi)} \mathbf{D}_{\Theta_{2}}(P_{2}) \mathbf{D}_{\Theta_{2}}(Q_{2}) M_{(2\pi i \xi)^{\beta_{2}}} f_{j} \right) \right\|_{\mathcal{R}_{\Theta_{1}}}$$

$$= \left\| \lambda_{\Theta_{1}} \left( \underbrace{R_{1}[D_{\Theta_{1},j}^{\ell}] M_{B(\xi)} P_{2}[D_{\Theta_{2},j}^{\ell}] Q_{2}[D_{\Theta_{2},j}^{r}] M_{(2\pi i \xi)^{\beta_{2}}} f_{j}}_{\mathbf{A}(f_{j})} \right) \right\|_{\mathcal{R}_{\Theta_{1}}}.$$

Using standard commutation relations,  $\mathbf{A}(f_i)$  may be written as

$$\mathbf{A}(f_j) = \sum_{k} P_{1k}[D_{\Theta_1,j}^{\ell}] Q_{1k}[D_{\Theta_1,j}^{r}] M_{(2\pi i \xi)^{\beta_{1k}}} f_j$$

for finitely many  $\beta_{1k} \in \mathbb{N}^n$  and quantum  $\Theta_1$ -monomials  $P_{1k}$  and  $Q_{1k}$ .

A linear functional  $L: \mathcal{S}_{\Theta} \to \mathbb{C}$  is in  $\mathcal{S}'_{\Theta}$  when it satisfies that  $\lim_{j \to \infty} \langle L, \varphi_j \rangle = 0$  for any sequence  $\varphi_j \in \mathcal{S}_{\Theta}$  converging to 0. Using the unitaries  $j_{\Theta} : \exp_{\xi} \mapsto \lambda_{\Theta}(\xi)$  we construct  $j_{\Theta_1\Theta_2} = j_{\Theta_2} \circ j_{\Theta_1}^* : \lambda_{\Theta_1}(\xi) \mapsto \lambda_{\Theta_2}(\xi)$ . According to Lemma 2.8 and given  $L \in \mathcal{S}'_{\Theta_1}$ , this means that  $\langle j_{\Theta_1\Theta_2}L, \lambda_{\Theta_2}(f) \rangle := \langle L, \lambda_{\Theta_1}(f) \rangle$  defines a tempered distribution in  $\mathcal{S}'_{\Theta_2}$ . Since this process is invertible, it turns out that the theory of tempered distributions in  $\mathcal{R}_{\Theta}$  is formally equivalent to the classical theory.

Let us now consider continuous linear operators  $T \in \mathcal{L}(\mathcal{S}_{\Theta}, \mathcal{S}'_{\Theta})$ . Of course, since the topology in  $\mathcal{S}'_{\Theta}$  is that of pointwise convergence, a linear map  $T : \mathcal{S}_{\Theta} \to \mathcal{S}'_{\Theta}$  is continuous whenever  $\lim_{j} \langle T(\lambda_{\Theta}(f_{j})), \lambda_{\Theta}(g) \rangle = 0$  for any family  $\lambda_{\Theta}(f_{j})$  which converges to 0 in  $\mathcal{S}_{\Theta}$  and any  $\lambda_{\Theta}(g) \in \mathcal{S}_{\Theta}$ . To identify the kernel of  $T \in \mathcal{L}(\mathcal{S}_{\Theta}, \mathcal{S}'_{\Theta})$  consider  $j_{\Theta}^{*}Tj_{\Theta} \in \mathcal{L}(\mathcal{S}(\mathbb{R}^{n}), \mathcal{S}(\mathbb{R}^{n})')$  where  $j_{\Theta} : \mathcal{S}(\mathbb{R}^{n}) \to \mathcal{S}_{\Theta}$  and  $j_{\Theta}^{*} : \mathcal{S}'_{\Theta} \to \mathcal{S}(\mathbb{R}^{n})'$  by our discussion above. Then, by a well-known result of Schwartz, there exists a unique kernel  $m \in \mathcal{S}'(\mathbb{R}^{2n}) = (\mathcal{S}(\mathbb{R}^{n}) \otimes_{\pi} \mathcal{S}(\mathbb{R}^{n}))'$  satisfying

$$\langle j_{\Theta}^* T j_{\Theta} f, g \rangle = \langle m, g \otimes f \rangle$$
 for all  $f, g \in \mathcal{S}(\mathbb{R}^n)$ .

Therefore, given  $T \in \mathcal{L}(\mathcal{S}_{\Theta}, \mathcal{S}'_{\Theta})$  we find its associated kernel

$$k = j_{\Theta} \otimes j_{\Theta}(m) \in \mathcal{S}'_{\Theta \oplus \Theta} \simeq (\mathcal{S}_{\Theta} \otimes_{\pi} \mathcal{S}_{\Theta})'$$

such that

$$\langle T(\lambda_{\Theta}(f)), \lambda_{\Theta}(g) \rangle = \langle j_{\Theta}^* T j_{\Theta}(\lambda_0(f)), \lambda_0(g) \rangle = \langle m, \lambda_0(g) \otimes \lambda_0(f) \rangle = \langle k, \lambda_{\Theta}(g) \otimes \lambda_{\Theta}(f) \rangle.$$

Now, according to the density of the quantum Schwartz class  $\mathcal{S}_{\Theta\oplus\Theta}$  in  $\mathcal{S}'_{\Theta\oplus\Theta}$  —since the same result also holds in the commutative case—we easily conclude the density of the algebraic tensor product  $\mathcal{S}_{\Theta} \otimes_{\text{alg}} \mathcal{S}_{\Theta}$  in  $\mathcal{S}'_{\Theta\oplus\Theta}$ . This proves that the family of algebraic kernels we considered for the proof of Theorem [2.6] are dense in the space  $\mathcal{S}'_{\Theta\oplus\Theta}$  of arbitrary kernels for maps in  $\mathcal{L}(\mathcal{S}_{\Theta}, \mathcal{S}'_{\Theta})$ . Moreover, by the weak-\* density

of trigonometric polynomials in  $\mathcal{R}_{\Theta \oplus \Theta}$ , we may also approximate  $\mathcal{S}'_{\Theta \oplus \Theta}$  by finite sums of the form

$$k = \sum_{j} w(\xi_j, \eta_j) \lambda_{\Theta}(\xi_j)^* \otimes \lambda_{\Theta}(\eta_j)^*.$$

According to our expression above —Section 2.1— for kernels affiliated to  $\mathcal{R}_{\Theta} \bar{\otimes} \mathcal{R}_{\Theta}^{\mathrm{op}}$ 

$$k = \int_{\mathbb{R}^n \times \mathbb{R}^n} \widehat{k}(\xi, \eta) \lambda_{\Theta}(\xi) \otimes \lambda_{\Theta}(\eta)^* d\mu(\xi, \eta),$$

this result amounts to say (not surprising) that kernels associated to finite sums of Dirac deltas are dense. Note that identity  $\langle T(\lambda_{\Theta}(f)), \lambda_{\Theta}(g) \rangle = \langle k, \lambda_{\Theta}(g) \otimes \lambda_{\Theta}(f) \rangle$  takes the following form for finite sums of Dirac deltas

$$\langle T(\lambda_{\Theta}(f)), \lambda_{\Theta}(g) \rangle = \sum_{j} w(\xi_{j}, \eta_{j}) f(\eta_{j}) g(\xi_{j}) = \langle k, \lambda_{\Theta}(g) \otimes \lambda_{\Theta}(f) \rangle.$$

**2.3.2.** Kernel manipulations and derivations. In our model case we have decomposed the kernel  $k_{\sigma} = (\sigma_{\Theta} \otimes id)(k)$  as  $k_{\sigma} \bullet \pi_{\Theta}(\psi_{R}) + k_{\sigma} \bullet (\mathbf{1} - \pi_{\Theta}(\psi_{R}))$  and, after applying our Poincaré type inequality to the second term, we further decomposed the resulting kernel  $\mathbf{K}$  as  $\pi_{\Theta}(\psi_{R}) \bullet \mathbf{K} + (\mathbf{1} - \pi_{\Theta}(\psi_{R})) \bullet \mathbf{K}$ . This leads us to understand the same operation for general kernels in  $\mathcal{S}'_{\Theta \oplus \Theta}$ . To that end, we introduce the following operations for  $L \in \mathcal{S}'_{\Theta}$ 

$$\langle \lambda_{\Theta}(\xi)L, \varphi \rangle = \langle L, \varphi \lambda_{\Theta}(\xi) \rangle$$
 and  $\langle L\lambda_{\Theta}(\xi), \varphi \rangle = \langle L, \lambda_{\Theta}(\xi)\varphi \rangle$ .

LEMMA 2.9. Given  $\psi \in \mathcal{S}(\mathbb{R}^n)$  and  $T \in \mathcal{L}(\mathcal{S}_{\Theta}, \mathcal{S}'_{\Theta})$ , the maps

$$M_{\psi}^{\ell}(T)(\lambda_{\Theta}(f)) = \int_{\mathbb{R}^{n}} \widehat{\psi}(\xi) \lambda_{\Theta}(\xi) T(\lambda_{\Theta}(\xi)^{*} \lambda_{\Theta}(f)) d\xi,$$
  
$$M_{\psi}^{r}(T)(\lambda_{\Theta}(f)) = \int_{\mathbb{R}^{n}} \widehat{\psi}(\xi) T(\lambda_{\Theta}(f) \lambda_{\Theta}(\xi)^{*}) \lambda_{\Theta}(\xi) d\xi,$$

belong to  $\mathcal{L}(\mathcal{S}_{\Theta}, \mathcal{S}'_{\Theta})$  and their kernels extend  $\pi_{\Theta}(\psi) \bullet k$  and  $k \bullet \pi_{\Theta}(\psi)$  respectively.

**Proof.** We shall prove the assertion only for  $M_{\psi}^{\ell}(T)$ , since both operators can be handled similarly. In order to prove continuity, assume that  $\lambda_{\Theta}(f_j) \to 0$  in  $\mathcal{S}_{\Theta}$  as  $j \to \infty$ . Then we need to show that

$$\lim_{j \to \infty} \left\langle M_{\psi}^{\ell}(T)(\lambda_{\Theta}(f_{j})), \lambda_{\Theta}(g) \right\rangle = \lim_{j \to \infty} \int_{\mathbb{R}^{n}} \widehat{\psi}(\xi) \left\langle T(\lambda_{\Theta}(\xi)^{*}\lambda_{\Theta}(f_{j})), \lambda_{\Theta}(g)\lambda_{\Theta}(\xi) \right\rangle d\xi$$

$$= \lim_{j \to \infty} \int_{\mathbb{R}^{n}} \widehat{\psi}(\xi) \left\langle k, \lambda_{\Theta}(g)\lambda_{\Theta}(\xi) \otimes \lambda_{\Theta}(\xi)^{*}\lambda_{\Theta}(f_{j}) \right\rangle d\xi$$

vanishes for all  $g \in \mathcal{S}(\mathbb{R}^n)$ . We first note that

$$\lim_{i \to \infty} \left\langle T(\lambda_{\Theta}(\xi)^* \lambda_{\Theta}(f_j)), \lambda_{\Theta}(g) \lambda_{\Theta}(\xi) \right\rangle = 0$$

for all  $\xi \in \mathbb{R}^n$ , since  $\lambda_{\Theta}(\xi)^* \lambda_{\Theta}(f_j) \to 0$  in  $\mathcal{S}_{\Theta}$  as  $j \to \infty$ . Indeed, we have  $\lambda_{\Theta}(\xi)^* \lambda_{\Theta}(f_j) = \lambda_{\Theta}(f_{j\xi})$  for  $f_{j\xi}(\eta) = f_j(\eta + \xi)e^{-2\pi i \langle \xi, \Theta_{\downarrow} \eta \rangle}$  and we then use Lemma 2.8 with  $(\Theta_1, \Theta_2) = (\Theta, 0)$ . Once this is known, we use the dominated convergence theorem, for which we need an integrable upper bound of

$$\Phi(\xi) = \sup_{j \ge 1} |\widehat{\psi}(\xi) \langle k, \lambda_{\Theta}(g) \lambda_{\Theta}(\xi) \otimes \lambda_{\Theta}(\xi)^* \lambda_{\Theta}(f_j) \rangle |.$$

Since 
$$\lambda_{\Theta}(g)\lambda_{\Theta}(\xi) = \lambda_{\Theta}(g_{\xi})$$
 for  $g_{\xi}(\eta) = g(\eta - \xi)e^{2\pi i \langle \eta - \xi, \Theta_{\downarrow} \xi \rangle}$ , we have

$$\langle k, \lambda_{\Theta}(g) \lambda_{\Theta}(\xi) \otimes \lambda_{\Theta}(\xi)^* \lambda_{\Theta}(f_j) \rangle = \langle j_{\Theta}^* \otimes j_{\Theta}^*(k), \widehat{g}_{\xi} \otimes \widehat{f}_{j\xi} \rangle$$

with  $j_{\Theta}^* \otimes j_{\Theta}^*(k) \in \mathcal{S}(\mathbb{R}^{2n})'$ . According to [33], Proposition 2.3.4], there exists an absolute constant C and positive integers k, m such that the following inequality holds

$$\begin{split} \Phi(\xi) & \leq & C|\widehat{\psi}(\xi)| \sup_{j \geq 1} \sum_{\substack{|\alpha| \leq k \\ |\beta| \leq m}} p_{\alpha,\beta} \big(\widehat{g}_{\xi} \otimes \widehat{f}_{j\xi}\big) \\ & \leq & C|\widehat{\psi}(\xi)P(\xi)| \sup_{j \geq 1} \sum_{\substack{|\alpha| \leq k \\ |\beta| \leq m}} p_{\alpha,\beta} \big(\widehat{g} \otimes \widehat{f}_{j}\big) \lesssim |\widehat{\psi}(\xi)P(\xi)| \in \mathcal{S}(\mathbb{R}^{n}) \end{split}$$

for certain polynomial P. On the other hand, for integrable kernels

$$M_{\psi}^{\ell}(T)(\lambda_{\Theta}(f)) = \int_{\mathbb{R}^{n}} \widehat{\psi}(\xi)\lambda_{\Theta}(\xi)(id \otimes \tau_{\Theta}) ((\mathbf{1} \otimes \lambda_{\Theta}(\xi)^{*}\lambda_{\Theta}(f)) \bullet k) d\xi$$

$$= \int_{\mathbb{R}^{n}} \widehat{\psi}(\xi)(id \otimes \tau_{\Theta}) ((\mathbf{1} \otimes \lambda_{\Theta}(f)) \bullet (\lambda_{\Theta}(\xi) \otimes \lambda_{\Theta}(\xi)^{*}) \bullet k) d\xi$$

$$= (id \otimes \tau_{\Theta}) ((\mathbf{1} \otimes \lambda_{\Theta}(f)) \bullet \pi_{\Theta}(\psi) \bullet k) = T_{\pi_{\Theta}(\psi) \bullet k}(\lambda_{\Theta}(f)).$$

Interchanging trace and integral is justified for finite tensors by evaluation against a test function, and a fortiori by density of these kernels in  $\mathcal{L}(\mathcal{S}_{\Theta}, \mathcal{S}'_{\Theta}) \simeq \mathcal{S}'_{\Theta \oplus \Theta}$ .  $\square$ 

Remark 2.10. Given  $\dagger \in \{\ell, r\}$ , it is also clear that

$$\left\| M_{\psi}^{\dagger}(T) : L_{2}(\mathcal{R}_{\Theta}) \to L_{2}(\mathcal{R}_{\Theta}) \right\| \leq \left( \int_{\mathbb{R}^{n}} \left| \widehat{\psi}(\xi) \right| d\xi \right) \|T : L_{2}(\mathcal{R}_{\Theta}) \to L_{2}(\mathcal{R}_{\Theta}) \right\|.$$

Remark 2.11. It will also be relevant to observe that

$$\left\langle M_{\psi}^{\ell}(T)(\lambda_{\Theta}(f)), \lambda_{\Theta}(g) \right\rangle = \left\langle k, \left( \lambda_{\Theta}(g) \otimes \lambda_{\Theta}(f) \right) \bullet \pi_{\Theta}(\psi) \right\rangle,$$

$$\left\langle M_{\psi}^{r}(T)(\lambda_{\Theta}(f)), \lambda_{\Theta}(g) \right\rangle = \left\langle k, \pi_{\Theta}(\psi) \bullet \left( \lambda_{\Theta}(g) \otimes \lambda_{\Theta}(f) \right) \right\rangle,$$

for the kernel  $k \in \mathcal{S}'_{\Theta \oplus \Theta}$  associated to T and any  $\psi \in \mathcal{S}(\mathbb{R}^n)$ . Indeed, we have

$$\left\langle M_{\psi}^{\ell}(T)(\lambda_{\Theta}(f)), \lambda_{\Theta}(g) \right\rangle = \int_{\mathbb{R}^{n}} \widehat{\psi}(\xi) \left\langle T(\lambda_{\Theta}(\xi)^{*}\lambda_{\Theta}(f)), \lambda_{\Theta}(g)\lambda_{\Theta}(\xi) \right\rangle d\xi 
= \int_{\mathbb{R}^{n}} \widehat{\psi}(\xi) \left\langle k, \lambda_{\Theta}(g)\lambda_{\Theta}(\xi) \otimes \lambda_{\Theta}(\xi)^{*}\lambda_{\Theta}(f) \right\rangle d\xi 
= \int_{\mathbb{R}^{n}} \widehat{\psi}(\xi) \left\langle k, \left(\lambda_{\Theta}(g) \otimes \lambda_{\Theta}(f)\right) \bullet \left(\lambda_{\Theta}(\xi) \otimes \lambda_{\Theta}(\xi)^{*}\right) \right\rangle d\xi$$

which gives the desired identity. Moreover, these identities hold for any function  $\psi$  for which both  $(\lambda_{\Theta}(g) \otimes \lambda_{\Theta}(f)) \bullet \pi_{\Theta}(\psi)$  and  $\pi_{\Theta}(\psi) \bullet (\lambda_{\Theta}(g) \otimes \lambda_{\Theta}(f))$  stay in  $\mathcal{S}_{\Theta \oplus \Theta}$ .

Again as we did in the model case above, we shall need to operate with module extensions. Given a linear map  $T: \mathcal{S}_{\Theta} \to (\mathcal{S}(\mathbb{R}^n) \otimes_{\pi} \mathcal{S}_{\Theta})'$  we will use its module extension  $T': \mathcal{S}_{\Theta} \otimes_{\pi} \mathcal{S}_{\Theta} \to (\mathcal{S}(\mathbb{R}^n) \otimes_{\pi} \mathcal{S}_{\Theta})'$  given by

$$T': \lambda_{\Theta}(f) \otimes \lambda_{\Theta}(g) \mapsto T(\lambda_{\Theta}(f))(\mathbf{1} \otimes \lambda_{\Theta}(g)),$$
 where  $\langle T(\lambda_{\Theta}(f))(\mathbf{1} \otimes \lambda_{\Theta}(g)), (a \otimes b) \rangle = \langle T(\lambda_{\Theta}(f)), (\mathbf{1} \otimes \lambda_{\Theta}(g))(a \otimes b) \rangle.$ 

LEMMA 2.12. There exists a continuous map  $\sigma_{\Theta}: \mathcal{S}'_{\Theta} \to (\mathcal{S}(\mathbb{R}^n) \otimes_{\pi} \mathcal{S}_{\Theta})'$  which extends the corepresentation  $\sigma_{\Theta}: \mathcal{R}_{\Theta} \ni \lambda_{\Theta}(\xi) \mapsto \exp_{\xi} \otimes \lambda_{\Theta}(\xi) \in L_{\infty}(\mathbb{R}^n) \bar{\otimes} \mathcal{R}_{\Theta}$ . In particular, given  $T_k \in \mathcal{L}(\mathcal{S}_{\Theta}, \mathcal{S}'_{\Theta})$  with kernel  $k \in \mathcal{S}'_{\Theta \oplus \Theta}$  the composition  $T_{k_{\sigma}} = \sigma_{\Theta} T_k$ 

belongs to  $\mathcal{L}(\mathcal{S}_{\Theta}, (\mathcal{S}(\mathbb{R}^n) \otimes_{\pi} \mathcal{S}_{\Theta})')$  with kernel  $k_{\sigma} = (\sigma_{\Theta} \otimes id)k$ . Moreover,  $T'_{k_{\sigma}}$  extends to a continuous right modular map  $\mathcal{S}_{\Theta} \otimes_{\pi} \mathcal{S}_{\Theta} \to (\mathcal{S}(\mathbb{R}^n) \otimes_{\pi} \mathcal{S}_{\Theta})'$  with

$$T'_{k_{\sigma}}((\lambda_{\Theta}(f)\otimes \mathbf{1})\mathrm{flip}(\pi_{\Theta}(\psi))) = M^{r}_{\psi}(T_{k_{\sigma}})(\lambda_{\Theta}(f)).$$

**Proof.** The map  $q(\widehat{f},\widehat{g}) = \widehat{fg}$  arises as the conjugation of the multiplication map  $(f,g) \mapsto fg$  by the Fourier transform. It thus follows from the Leibniz rule that it defines a continuous map  $\mathcal{S}(\mathbb{R}^n) \otimes_{\pi} \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}^n)$ . Letting  $q_{\Theta} = j_{\Theta} \circ q \circ (id \otimes j_{\Theta}^*)$  we define for  $L \in \mathcal{S}'_{\Theta}$ 

$$\langle \sigma_{\Theta} L, \lambda_0(f) \otimes \lambda_{\Theta}(g) \rangle = \langle L, q_{\Theta}(\lambda_0(f) \otimes \lambda_{\Theta}(g)) \rangle.$$

It is clear that  $\sigma_{\Theta}: \mathcal{S}'_{\Theta} \to (\mathcal{S}(\mathbb{R}^n) \otimes_{\pi} \mathcal{S}_{\Theta})'$  is continuous and we find

$$\langle \sigma_{\Theta}(\lambda_{\Theta}(\xi)^{*}), \lambda_{0}(f) \otimes \lambda_{\Theta}(g) \rangle = \tau_{\Theta}(\lambda_{\Theta}(\xi)^{*}\lambda_{\Theta}(fg)) = f(\xi)g(\xi)$$
$$= \langle \exp_{-\xi} \otimes \lambda_{\Theta}(\xi)^{*}, \lambda_{0}(f) \otimes \lambda_{\Theta}(g) \rangle$$

and thus  $\sigma_{\Theta}$  so defined extends the corepresentation  $\sigma_{\Theta}$  introduced in Section [1.12]. This immediately implies that  $T_{k_{\sigma}} = \sigma_{\Theta} T_k$  belongs to  $\mathcal{L}(\mathcal{S}_{\Theta}, (\mathcal{S}(\mathbb{R}^n) \otimes_{\pi} \mathcal{S}_{\Theta})')$  and its kernel  $k_{\sigma} = (\sigma_{\Theta} \otimes id)(k)$ . Let us now justify the continuity of the module extension  $T'_{k_{\sigma}}$ . Indeed, the module extension of  $\sigma_{\Theta} j_{\Theta}$ , defines a continuous linear map

$$W: \mathcal{S}(\mathbb{R}^n)' \otimes \mathcal{S}_{\Theta} \to (\mathcal{S}(\mathbb{R}^n) \otimes \mathcal{S}_{\Theta})'$$

satisfying  $W(\exp_{\xi} \otimes \lambda_{\Theta}(\eta)) = \exp_{\xi} \otimes \lambda_{\Theta}(\xi) \lambda_{\Theta}(\eta)$ . Its continuity follows easily from the continuity of  $\sigma_{\Theta}$ . Next, observe that  $T'_{k_{\sigma}} = W \circ (j_{\Theta}^* T_k \otimes id)$  since it trivially holds for the dense class of finite sums  $k = \sum_j w(\xi_j, \eta_j) \lambda_{\Theta}(\xi_j)^* \otimes \lambda_{\Theta}(\eta_j)^*$ . This automatically implies the continuity of the module extension  $T'_{k_{\sigma}}$ . It remains to justify the given identity for  $T'_{k_{\sigma}}$ 

$$T'_{k_{\sigma}}((\lambda_{\Theta}(f) \otimes \mathbf{1}) \operatorname{flip}(\pi_{\Theta}(\psi))) = \int_{\mathbb{R}^{n}} \widehat{\psi}(\xi) T'_{k_{\sigma}}(\lambda_{\Theta}(f) \lambda_{\Theta}(\xi)^{*} \otimes \lambda_{\Theta}(\xi)) d\xi$$
$$= \int_{\mathbb{R}^{n}} \widehat{\psi}(\xi) T_{k_{\sigma}}(\lambda_{\Theta}(f) \lambda_{\Theta}(\xi)^{*}) (\mathbf{1} \otimes \lambda_{\Theta}(\xi)) d\xi,$$

which is the definition of  $M_{\psi}^{r}(T_{k_{\sigma}})(\lambda_{\Theta}(f))$ . This completes the proof.

Our next goal is to generalize the Poincaré type inequality in Proposition L6 to the context of tempered distributions. Of course, the free  $\Theta$ -gradient can be understood as a map  $\nabla_{\Theta}: \mathcal{S}'_{\Theta} \to \mathcal{L}(\mathbb{F}_n) \otimes \mathcal{S}'_{\Theta}$  in the canonical way

$$\nabla_{\Theta} L = \sum_{k=1}^{n} s_k \otimes \partial_{\Theta}^k L \quad \text{for} \quad L \in \mathcal{S}'_{\Theta},$$

where  $\langle \partial_{\Theta}^k L, \lambda_{\Theta}(f) \rangle = -\langle L, \partial_{\Theta}^k \lambda_{\Theta}(f) \rangle = -2\pi i \langle L, \lambda_{\Theta}(f_{[k]}) \rangle$  and  $f_{[k]}(\xi) = \xi_k f(\xi)$ . Now, given a  $\mathbb{R}^n$ -ball  $B_R$  of radius R with characteristic function  $q_R$ , Proposition [1.6] gives an upper bound for

$$\left\|\varphi - \varphi_{\mathrm{B}_{\mathrm{R}}}\right\|_{\mathcal{R}_{\Theta} \bar{\otimes} L_{2}^{c}(\phi)} = \left\|\left(\int_{\mathrm{B}_{\mathrm{R}}} \left(\varphi - \varphi_{\mathrm{B}_{\mathrm{R}}}\right)^{*} \left(\varphi - \varphi_{\mathrm{B}_{\mathrm{R}}}\right) d\mu\right)^{\frac{1}{2}}\right\|_{\mathcal{R}_{\Theta}}$$

in terms of the operator norm of the gradient of  $\varphi$  localized at  $B_R$ . Let us recall that the predual of  $\mathcal{R}_{\Theta} \bar{\otimes} L_2^c(\phi)$  with respect to the linear bracket is given by the

space  $\mathcal{A}_{\Theta}(B_R) = L_1(\mathcal{R}_{\Theta}^{op}) \widehat{\otimes} L_2^r(\phi)$ , whose norm is

$$\left\|\psi - \psi_{\mathrm{B}_{\mathrm{R}}}\right\|_{L_{1}(\mathcal{R}_{\Theta}^{\mathrm{op}})\widehat{\otimes}L_{2}^{r}(\phi)} = \left\|\left(\int_{\mathrm{B}_{\mathrm{R}}} \left(\psi - \psi_{\mathrm{B}_{\mathrm{R}}}\right) \left(\psi - \psi_{\mathrm{B}_{\mathrm{R}}}\right)^{*} d\mu\right)^{\frac{1}{2}}\right\|_{L_{1}(\mathcal{R}_{\Theta})}.$$

It is a simple exercise to show that  $\mathcal{S}(\mathbb{R}^n) \otimes_{\pi} \mathcal{S}_{\Theta}$  is norm dense in  $L_1(\mathcal{R}_{\Theta}^{\text{op}}) \widehat{\otimes} L_2^r(\phi)$ . In particular, the following result gives an extension of our Poincaré type inequality.

PROPOSITION 2.13. Given  $L \in (\mathcal{S}(\mathbb{R}^n) \otimes_{\pi} \mathcal{S}_{\Theta})'$ , assume

$$(\partial_k \otimes id_{\mathcal{R}_{\Theta}})(L) \in L_{\infty}(B_R) \bar{\otimes} \mathcal{R}_{\Theta}$$

for  $1 \le k \le n$ . Then, the following Poincaré type inequality holds

$$\sup_{\substack{\psi \in \mathcal{S}(\mathbb{R}^n) \otimes_{\pi} \mathcal{S}_{\Theta} \\ \|\psi - \psi_{\mathsf{B}_{\mathsf{R}}}\|_{\mathcal{A}_{\Theta}(\mathsf{B}_{\mathsf{R}})} \le 1}} \left| \langle q_{\mathsf{R}} L, \psi - \psi_{\mathsf{B}_{\mathsf{R}}} \rangle \right|$$

$$\leq 2\sqrt{2} \mathsf{R} \left\| (\mathbf{1} \otimes q_{\mathsf{R}} \otimes \mathbf{1}) (\nabla \otimes id_{\mathcal{R}_{\Theta}}) (L) \right\|_{\mathcal{L}(\mathbb{F}_n) \bar{\otimes} L_{\infty}(\mathbb{R}^n) \bar{\otimes} \mathcal{R}_{\Theta}}.$$

**Proof.** Assume for clarity that  $B_R$  is centered at the origin, see Proposition 1.6 for the standard modifications in the general case. Since  $\partial_k L \in L_\infty(\mathbb{R}^n) \bar{\otimes} \mathcal{R}_\Theta$ , we may define

$$\widetilde{L}(x) = \int_{0}^{1} \sum_{k=1}^{n} \partial_{k} L(tx) x_{k} dt$$

$$= \int_{0}^{1} \underbrace{\left(\tau_{\mathcal{L}(\mathbb{F}_{n})} \otimes id_{\mathbb{R}^{n}}\right)}_{\mathsf{E}_{\mathbb{R}^{n}}} \underbrace{\left(q_{\mathsf{R}}(x) \nabla L(tx) \underbrace{q_{\mathsf{R}}(x) s(x)}_{\mathsf{B}}\right) dt}_{\mathsf{B}}$$

for  $x \in B_R$ . Now let  $\varphi_j \in \mathcal{S}(\mathbb{R}^n) \otimes_{\pi} \mathcal{S}_{\Theta}$  be an approximating sequence for L and define the functions  $\widetilde{\varphi}_j(x) = \varphi_j(x) - \varphi_j(0)$  accordingly. In particular, the following identity holds for every test function  $\psi \in \mathcal{S}(\mathbb{R}^n) \otimes_{\pi} \mathcal{S}_{\Theta}$ 

$$\int_{B_{R}} \tau_{\Theta} (\widetilde{\varphi}_{j}(x)(\psi(x) - \psi_{B_{R}})) dx = \int_{B_{R}} \tau_{\Theta} (\varphi_{j}(x)(\psi(x) - \psi_{B_{R}})) dx.$$

By approximation we get

$$\begin{aligned} \left| \left\langle q_{\mathrm{R}} L, \psi - \psi_{\mathrm{B}_{\mathrm{R}}} \right\rangle \right| &= \left| \left\langle q_{\mathrm{R}} \widetilde{L}, \psi - \psi_{\mathrm{B}_{\mathrm{R}}} \right\rangle \right| \\ &= \left| \int_{0}^{1} \left\langle \mathsf{E}_{\mathbb{R}^{n}}(\mathbf{A}(t)\mathbf{B}), \psi - \psi_{\mathrm{B}_{\mathrm{R}}} \right\rangle dt \right| \\ &\leq \left( \int_{0}^{1} \left\| \mathsf{E}_{\mathbb{R}^{n}}(\mathbf{A}(t)\mathbf{B}) \right\|_{\mathcal{R}_{\Theta} \bar{\otimes} L_{2}^{c}(\phi)} dt \right) \left\| \psi - \psi_{\mathrm{B}_{\mathrm{R}}} \right\|_{\mathcal{A}_{\Theta}(\mathrm{B}_{\mathrm{R}})}. \end{aligned}$$

Now we may complete the argument as we did in the proof of Proposition  $\Box$ .

- **2.3.3.** A Calderón-Zygmund extrapolation theorem. We are ready to prove an estimate for general Calderón-Zygmund operators  $T_k$ . According to the classical theory, we impose cancellation and smoothness conditions on the kernel. To be more precise, let  $T_k \in \mathcal{L}(\mathcal{S}_{\Theta}, \mathcal{S}'_{\Theta})$  admit a kernel  $k \in \mathcal{S}'_{\Theta \oplus \Theta}$  with gradient  $(\nabla_{\Theta} \otimes id_{\mathcal{R}^{op}_{\Theta}})(k)$  affiliated to  $\mathcal{L}(\mathbb{F}_n)\bar{\otimes}\mathcal{R}_{\Theta}\bar{\otimes}\mathcal{R}^{op}_{\Theta}$ . Then, we shall call  $T_k$  a column Calderón-Zygmund operator with parameters  $(A_j, \alpha_j, \beta_j)$  when:
  - i) Cancellation

$$||T_k: L_2(\mathcal{R}_{\Theta}) \to L_2(\mathcal{R}_{\Theta})|| \leq A_1.$$

ii) Kernel smoothness. If  $K_n = \frac{1}{2}(n+1)$ , there exists

$$\alpha < K_n - \frac{1}{2} < \beta < K_n + \frac{1}{2}$$

satisfying the gradient conditions below for  $\rho = \alpha, \beta$ 

$$\left| \mathrm{d}_{\Theta}^{\rho} \bullet (\nabla_{\Theta} \otimes id_{\mathcal{R}_{\Theta}^{\mathrm{op}}})(k) \bullet \mathrm{d}_{\Theta}^{n+1-\rho} \right| \leq \mathrm{A}_{2}.$$

Remark 2.14. We implicitly use that

$$\left\langle \mathbf{d}_{\Theta}^{\gamma} \bullet \nabla_{\Theta} k \bullet \mathbf{d}_{\Theta}^{\eta}, z \right\rangle = \left\langle \nabla_{\Theta} k, \mathbf{d}_{\Theta}^{\eta} \bullet z \bullet \mathbf{d}_{\Theta}^{\gamma} \right\rangle,$$

$$\left\| \mathbf{d}_{\Theta}^{\gamma} \bullet \nabla_{\Theta} k \bullet \mathbf{d}_{\Theta}^{\eta} \right\|_{\mathcal{R}_{\Theta} \bar{\otimes} \mathcal{R}_{\Theta}^{\mathrm{op}}} = \sup_{\substack{z \in \mathcal{L}(\mathbb{F}_{n}) \bar{\otimes} \mathcal{S}_{\Theta \oplus \Theta} \\ \|z\|_{L_{1}(\mathcal{L}(\mathbb{F}_{n})} \bar{\otimes} \mathcal{R}_{\Theta} \bar{\otimes} \mathcal{R}_{\Theta}^{\mathrm{op}}) \leq 1}} \left\langle \nabla_{\Theta} k, \mathbf{d}_{\Theta}^{\eta} \bullet z \bullet \mathbf{d}_{\Theta}^{\gamma} \right\rangle.$$

As explained in Remark [2.11], this is justified for any tempered distribution when  $\gamma, \eta \in 2\mathbb{Z}$ , but not for  $\gamma, \eta < 2$  since  $d_{\Theta}^{\eta} \bullet z \bullet d_{\Theta}^{\gamma}$  does not stay in the test space  $S_{\Theta \oplus \Theta}$ . The necessity of using these values —only for n=2 in the simpler statement of Theorem A— forces us to impose that  $\nabla_{\Theta}k$  is, in addition, affiliated to the algebra. Although our assumption is admissible in view of the classical theory we could have alternatively used an approximation argument  $d_{\Theta}^{\gamma} = \lim_{\varepsilon} (d_{\Theta}^2 + \varepsilon \mathbf{1})^{\gamma/2}$  to avoid it. On the other hand, the kernel k—not its gradient—should be treated as a distribution since this allows certain Dirac deltas which do appear in the classical theory, see Section [2.3.4] below for further details.

PROPOSITION 2.15. If  $T_k$  is a column CZO and  $\varphi \in \mathcal{S}_{\Theta}$ 

$$||T_k(\varphi)||_{\mathrm{BMO}_c(\mathcal{R}_{\Theta})} \le C_n(\alpha,\beta) (A_1 + A_2) ||\varphi||_{\mathcal{R}_{\Theta}}.$$

**Proof.** We shall adapt our argument in the model case of Theorem 2.6 Given  $\varphi = \lambda_{\Theta}(f) \in \mathcal{S}_{\Theta}$ , this means that we need to control the operator-valued BMO norm of  $\sigma_{\Theta}(T_k\varphi)$ . According to Lemma 2.12, we have  $\sigma_{\Theta}T_k = T_{k_{\sigma}}$  for  $k_{\sigma} = (\sigma_{\Theta} \otimes id)(k)$  and we may decompose it as follows

$$k_{\sigma} = \underbrace{k_{\sigma} \bullet \pi_{\Theta}(\psi_{R})}_{k_{\sigma_{1}}(R)} + \underbrace{k_{\sigma} \bullet (1 - \pi_{\Theta}(\psi_{R}))}_{k_{\sigma_{2}}(R)},$$

where the decomposition uses Lemma 2.9 and Remark 2.11 Next, we need to show the validity of (2.2.1). To that end we follow the argument in Theorem 2.6 by recalling the crucial identity

$$T'_{k_{\sigma}}((\lambda_{\Theta}(f)\otimes \mathbf{1})\text{flip}(\pi_{\Theta}(\psi))) = M^{r}_{\psi}(T_{k_{\sigma}})(\lambda_{\Theta}(f)),$$

which was justified in Lemma 2.12 for general kernels. This is the part of the proof which requires  $L_2$ -boundedness of  $T_k$ . Once we have completed our argument for  $k_{\sigma_1}(\mathbf{R})$ , we apply the Poincaré type inequality in Proposition 2.13 to the term associated to  $k_{\sigma_2}(\mathbf{R})$ . This gives

$$\begin{split} & \left\| \left( \int_{\mathcal{B}_{\mathcal{R}}} \left| T_{k_{\sigma_{2}(\mathcal{R})}} \varphi - (T_{k_{\sigma_{2}(\mathcal{R})}} \varphi)_{\mathcal{B}_{\mathcal{R}}} \right|^{2} d\mu \right)^{\frac{1}{2}} \right\|_{\mathcal{R}_{\Theta}} \\ & \lesssim & \mathcal{R} \left\| \underbrace{ (\mathbf{1} \otimes q_{\mathcal{R}} \otimes \mathbf{1}) (\nabla \otimes id_{\mathcal{R}_{\Theta}}) (T_{k_{\sigma_{2}}(\mathcal{R})} \varphi)}_{T_{\mathbf{K}}(\varphi)} \right\|_{\mathcal{L}(\mathbb{F}_{n}) \bar{\otimes} L_{\infty}(\mathbb{R}^{n}) \bar{\otimes} \mathcal{R}_{\Theta}}. \end{split}$$

As in Theorem 2.6, the goal is to show that **K** is the distribution

$$\mathbf{K} = q_{\mathrm{R}} \nabla_{\Theta}^{\sigma} k \bullet (\mathbf{1} - \Psi_{\mathrm{R}}) \in \mathcal{L}(\mathbb{F}_n) \bar{\otimes} (\mathcal{S}(\mathbb{R}^n) \otimes_{\pi} \mathcal{S}_{\Theta} \otimes_{\pi} \mathcal{S}_{\Theta})'$$

with  $q_{\rm R}\nabla_{\Theta}^{\sigma}k = (\mathbf{1}\otimes q_{\rm R}\otimes \mathbf{1}^{\otimes 2})(id\otimes \sigma_{\Theta}\otimes id)(\nabla_{\Theta}\otimes id)[k]$  and  $\Psi_{\rm R} = \pi_{\Theta}(\psi_{\rm R})$ . By density, it suffices to justify it for elementary kernels  $k = \lambda_{\Theta}(\xi)\otimes \lambda_{\Theta}(\eta)$ . This is possible via the identity  $(\nabla\otimes id_{\mathcal{R}_{\Theta}})\circ\sigma_{\Theta} = (id_{\mathcal{L}(\mathbb{F}_n)}\otimes\sigma_{\Theta})\circ\nabla_{\Theta}$  due to our extensions of the maps  $\sigma_{\Theta}$  and  $\nabla_{\Theta}$  for tempered distributions above. We may now decompose **K** by means of Lemma 2.9 as follows

$$\mathbf{K} = \underbrace{q_{\mathrm{R}}\Psi_{\mathrm{R}} \bullet \nabla_{\Theta}^{\sigma} k \bullet (\mathbf{1} - \Psi_{\mathrm{R}})}_{\mathbf{K}_{\mathrm{L}}} + \underbrace{q_{\mathrm{R}}(\mathbf{1} - \Psi_{\mathrm{R}}) \bullet \nabla_{\Theta}^{\sigma} k \bullet (\mathbf{1} - \Psi_{\mathrm{R}})}_{\mathbf{K}_{\mathrm{R}}}.$$

At this point, the argument follows verbatim the proof of Theorem [2.6] Indeed, we further decompose  $\mathbf{K}_j = \mathbf{A}_j \bullet \mathbf{B}_j \bullet \mathbf{C}_j$  as we did there and apply Lemma [2.2]—valid for affiliated kernels, as we assume for  $\mathbf{K}_j$ — to obtain

with  $\mathcal{B}_{\Theta} = \mathcal{L}(\mathbb{F}_n) \bar{\otimes} L_{\infty}(\mathbb{R}^n) \bar{\otimes} \mathcal{R}_{\Theta}$ . The estimates for  $\mathbf{A}_j, \mathbf{B}_j, \mathbf{C}_j$  also apply here.  $\square$ 

Remark 2.16. Alternatively, if we do not want to assume that  $\nabla_{\Theta} k$  is affiliated to  $\mathcal{L}(\mathbb{F}_n) \bar{\otimes} \mathcal{R}_{\Theta} \bar{\otimes} \mathcal{R}_{\Theta}^{\text{op}}$  and use the approximation argument indicated in Remark 2.14, we should be able to generalize the inequality (2.3.1) for tempered distributions. Recall that the norm of  $T_{\mathbf{K}_j} : \mathcal{R}_{\Theta} \to \mathcal{B}_{\Theta}$  can be expressed as the supremum —over Schwartz elements  $\varphi, \phi$  respectively in the unit ball of  $\mathcal{R}_{\Theta}^{\text{op}}$  and  $L_1(\mathcal{B}_{\Theta})$ — of the linear brackets

$$\begin{aligned} \left| \left\langle T_{\mathbf{K}_{j}} \varphi, \phi \right\rangle \right| &= \left| \left\langle \mathbf{A}_{j} \bullet \mathbf{B}_{j} \bullet \mathbf{C}_{j}, \phi \otimes \varphi \right\rangle \right| \\ &\leq \left\| \mathbf{A}_{j} \bullet \mathbf{B}_{j} \bullet \mathbf{C}_{j} \right\|_{\mathcal{B}_{\Theta} \bar{\otimes} L_{1}(\mathcal{R}_{\Theta}^{\mathrm{op}})} \|\phi\|_{L_{1}(\mathcal{B}_{\Theta})} \|\varphi\|_{\mathcal{R}_{\Theta}^{\mathrm{op}}}. \end{aligned}$$

Now we use the following characterization of the norm in  $\mathcal{M} \bar{\otimes} X$ 

$$\left\|\mathbf{A}\right\|_{\mathcal{M}\bar{\otimes}\mathbf{X}} = \sup_{\alpha,\beta\in\mathbf{B}_1(L_2(\mathcal{M}))} \left\|(\alpha\otimes\mathbf{1})\mathbf{A}(\beta\otimes\mathbf{1})\right\|_{L_1(\mathcal{M};\mathbf{X})},$$

which is due to Pisier **61** when  $\mathcal{M}$  is hyperfinite and X is any operator space. It is also well-known that Pisier's identity still holds for non-hyperfinite von Neumann algebras —as in our case with  $\mathcal{M} = \mathcal{B}_{\Theta}$ — as long as X is a noncommutative  $L_p$  space. In fact, Pisier's identity generalizes to arbitrary mixed  $L_p(L_q)$ -norms. In our case

$$\begin{aligned} & \left\| \mathbf{A}_{j} \bullet \mathbf{B}_{j} \bullet \mathbf{C}_{j} \right\|_{\mathcal{B}_{\Theta} \bar{\otimes} L_{1}(\mathcal{R}_{\Theta}^{\mathrm{op}})} \\ &= \sup_{\mathbf{a}, \mathbf{c} \in \mathcal{B}_{1}(L_{2}(\mathcal{B}_{\Theta}))} \left\| (\mathbf{a} \otimes \mathbf{1}) \bullet \mathbf{A}_{j} \bullet \mathbf{B}_{j} \bullet \mathbf{C}_{j} \bullet (\mathbf{c} \otimes \mathbf{1}) \right\|_{L_{1}(\mathcal{B}_{\Theta} \bar{\otimes} \mathcal{R}_{\Theta}^{\mathrm{op}})}. \end{aligned}$$

In particular, we find

$$\left\| (\mathbf{a} \otimes \mathbf{1}) \bullet \mathbf{A}_{j} \bullet \mathbf{B}_{j} \bullet \mathbf{C}_{j} \bullet (\mathbf{c} \otimes \mathbf{1}) \right\|_{1} \leq \left\| (\mathbf{a} \otimes \mathbf{1}) \bullet \mathbf{A}_{j} \right\|_{2} \left\| \mathbf{B}_{j} \right\|_{\infty} \left\| \mathbf{C}_{j} \bullet (\mathbf{c} \otimes \mathbf{1}) \right\|_{2}$$

and the elementary inequalities below complete the proof of (2.3.1)

$$\begin{aligned} & \left\| (\mathbf{a} \otimes \mathbf{1}) \bullet \mathbf{A}_j \right\|_2 & \leq & \|\mathbf{a}\|_2 \left\| (id \otimes \tau_{\Theta}) (\mathbf{A}_j \mathbf{A}_j^*) \right\|_{\mathcal{B}_{\Theta}}^{\frac{1}{2}}, \\ & \left\| \mathbf{C}_j \bullet (\mathbf{c} \otimes \mathbf{1}) \right\|_2 & \leq & \|\mathbf{c}\|_2 \left\| (id \otimes \tau_{\Theta}) (\mathbf{C}_j^* \mathbf{C}_j) \right\|_{\mathcal{B}_{\Theta}}^{\frac{1}{2}}. \end{aligned}$$

Proposition 2.17. Every column CZO is normal. In particular

$$||T_k: \mathcal{R}_{\Theta} \to \mathrm{BMO}_c(\mathcal{R}_{\Theta})||_{\mathrm{ch}} \leq C_n(\alpha, \beta) (\mathrm{A}_1 + \mathrm{A}_2).$$

**Proof.** Let  $T_k^*: L_2(\mathcal{R}_{\Theta}) \to L_2(\mathcal{R}_{\Theta})$  denote the adjoint of  $T_k$ , so that

$$\begin{aligned} \left| \tau_{\Theta} \left( T_{k}^{*}(\lambda_{\Theta}(f)) \lambda_{\Theta}(g)^{*} \right) \right| &= \left| \tau_{\Theta} \left( \lambda_{\Theta}(f) T_{k}(\lambda_{\Theta}(g))^{*} \right) \right| \\ &\leq C_{n}(\alpha, \beta) \left( A_{1} + A_{2} \right) \left\| \lambda_{\Theta}(f) \right\|_{H_{c}^{1}(\mathcal{R}_{\Theta})} \left\| \lambda_{\Theta}(g) \right\|_{\mathcal{R}_{\Theta}} \end{aligned}$$

for all  $\lambda_{\Theta}(f), \lambda_{\Theta}(g) \in \mathcal{S}_{\Theta}$ . Indeed, here  $\mathrm{H}^1_c(\mathcal{R}_{\Theta})$  denotes the predual of  $\mathrm{BMO}_c(\mathcal{R}_{\Theta})$  with respect to the antilinear duality bracket above, as described in Appendix B below. In particular, this inequality directly follows from Proposition 2.15. Now we claim that this implies

$$||T_k^*(\varphi)||_{L_1(\mathcal{R}_{\Theta})} \le C_n(\alpha,\beta) (A_1 + A_2) ||\varphi||_{H_c^1(\mathcal{R}_{\Theta})}$$

for all  $\varphi = \lambda_{\Theta}(f) \in \mathcal{S}_{\Theta}$ . Indeed, let us prove that

$$z = \frac{T_k^*(\varphi)}{C_n(\alpha, \beta) (\mathbf{A}_1 + \mathbf{A}_2) \|\varphi\|_{\mathbf{H}_c^1(\mathcal{R}_\Theta)}}$$

belongs to the unit ball of  $L_1(\mathcal{R}_{\Theta})$ . To that end, it clearly suffices to prove that  $|\tau_{\Theta}(qzqa)| \leq 1$  for every contraction a in  $\mathcal{R}_{\Theta}$  and every  $\tau_{\Theta}$ -finite projection q. Since  $z \in L_2(\mathcal{R}_{\Theta})$ , we have  $zq \in L_1(\mathcal{R}_{\Theta})$  and Kaplansky density theorem provides a sequence  $u_j \in \mathcal{S}_{\Theta}$  in the unit ball of  $\mathcal{R}_{\Theta}$  so that

$$|\tau_{\Theta}(qzqa)| = \lim_{j \to \infty} |\tau_{\Theta}(u_jzq)|.$$

Moreover, since  $u_j z \in L_1(\mathcal{R}_{\Theta})$ , we also find  $v_k \in \mathcal{S}_{\Theta}$  in the unit ball of  $\mathcal{R}_{\Theta}$  with

$$|\tau_{\Theta}(qzqa)| \, = \, \lim_{j \to \infty} |\tau_{\Theta}(u_{j}zq)| \, = \, \lim_{j \to \infty} \lim_{k \to \infty} |\tau_{\Theta}(u_{j}zv_{k})|.$$

Finally, since  $|\tau_{\Theta}(zw)| \leq 1$  for every  $w \in \mathcal{S}_{\Theta}$  in the unit ball of  $\mathcal{R}_{\Theta}$  —as we recalled at the beginning of the proof— and the Schwartz class  $\mathcal{S}_{\Theta}$  is a \*-algebra we obtain that  $|\tau_{\Theta}(qzqa)| \leq 1$  as expected. This proves our claim. Next, we use the norm density of  $\mathcal{S}_{\Theta}$  in  $H_c^1(\mathcal{R}_{\Theta})$  from Corollary B.10 in Appendix B below to conclude that  $T_k^* : H_c^1(\mathcal{R}_{\Theta}) \to L_1(\mathcal{R}_{\Theta})$  is bounded. The operator  $T_k^*$  is the antilinear adjoint corresponding to the duality

$$\overline{L_1(\mathcal{R}_{\Theta})}^* = \mathcal{R}_{\Theta}$$

with respect to the antilinear duality bracket. Thus

$$T_k: \mathcal{R}_{\Theta} \to \overline{\mathrm{H}_c^1(\mathcal{R}_{\Theta})}^* \simeq \mathrm{BMO}_c(\mathcal{R}_{\Theta})$$

with the same constants, see Appendix B for further details on the duality  $H_1$ -BMO in this setting. This proves the  $L_{\infty} \to \text{BMO}_c$  boundedness of  $T_k$ . As in the model case proved in Theorem [2.6], the cb-boundedness follows similarly and it just requires a more involved notation to incorporate matrix amplifications.

Once we have proved the complete  $L_{\infty} \to \mathrm{BMO}_c$  boundedness of column CZOs, the general extrapolation theorem follows from additional assumptions of the same kind on the kernel, which makes them more symmetric. More precisely, we know that  $T_k: \mathcal{R}_{\Theta} \to \mathrm{BMO}_r(\mathcal{R}_{\Theta})$  is cb-bounded iff the operator

$$T_k^{\dagger}(\lambda_{\Theta}(f)) = T_k(\lambda_{\Theta}(f)^*)^*$$

defines a completely bounded map from  $\mathcal{R}_{\Theta} \to \mathrm{BMO}_c(\mathcal{R}_{\Theta})$ . When this is the case we get a cb-map  $T_k : \mathcal{R}_{\Theta} \to \mathrm{BMO}(\mathcal{R}_{\Theta})$ . Of course, the same assumptions for the

adjoint  $T_k^*$  trivially imply that  $T_k$  also defines a cb-map  $T_k: H_1(\mathcal{R}_{\Theta}) \to L_1(\mathcal{R}_{\Theta})$  and interpolation—see Appendix B for details—yields complete  $L_p$ -boundedness for  $1 . This means that we should impose that the maps <math>T_k^{\dagger}, T_k^*, T_k^{*\dagger}$  are column Calderón-Zygmund operators. It is clear that  $L_2$ -boundedness follows automatically from  $T_k$ . Therefore, we just need to impose new kernel smoothness conditions. We have

$$\operatorname{kernel}(T_k^{\dagger}) = k^*, \quad \operatorname{kernel}(T_k^*) = \operatorname{flip}(k)^*, \quad \operatorname{kernel}(T_k^{*\dagger}) = \operatorname{flip}(k).$$

Therefore, the results so far imply the following extrapolation theorem for CZOs.

THEOREM 2.18. Let  $T_k \in \mathcal{L}(\mathcal{S}_{\Theta}, \mathcal{S}'_{\Theta})$  and assume:

i) Cancellation

$$||T_k: L_2(\mathcal{R}_{\Theta}) \to L_2(\mathcal{R}_{\Theta})|| \le A_1.$$

ii) Kernel smoothness. There exists

$$\alpha < \mathcal{K}_n - \frac{1}{2} < \beta < \mathcal{K}_n + \frac{1}{2} < \gamma$$

satisfying the gradient conditions below for  $\rho = \alpha, \beta, \gamma$ 

$$\left| d_{\Theta}^{\rho} \bullet (\nabla_{\Theta} \otimes id)(k) \bullet d_{\Theta}^{n+1-\rho} \right| + \left| d_{\Theta}^{\rho} \bullet (id \otimes \nabla_{\Theta})(k) \bullet d_{\Theta}^{n+1-\rho} \right| \leq A_{2}.$$

Then, we find the following endpoint estimates for  $T_k$ 

$$\begin{aligned} & \left\| T_k : \mathrm{H}_1(\mathcal{R}_{\Theta}) \to L_1(\mathcal{R}_{\Theta}) \right\|_{\mathrm{cb}} & \leq & C_n(\alpha, \beta, \gamma) \big( \mathrm{A}_1 + \mathrm{A}_2 \big), \\ & \left\| T_k : L_{\infty}(\mathcal{R}_{\Theta}) \to \mathrm{BMO}(\mathcal{R}_{\Theta}) \right\|_{\mathrm{cb}} & \leq & C_n(\alpha, \beta, \gamma) \big( \mathrm{A}_1 + \mathrm{A}_2 \big). \end{aligned}$$

In particular,  $T_k: L_p(\mathcal{R}_{\Theta}) \to L_p(\mathcal{R}_{\Theta})$  is completely bounded for every 1 .

In what follows, a Calderón-Zygmund operator over the quantum Euclidean space  $\mathcal{R}_{\Theta}$  associated to the parameters  $(A_j, \alpha_j, \beta_j)$  will be any linear map  $T_k \in \mathcal{L}(\mathcal{S}_{\Theta}, \mathcal{S}'_{\Theta})$  satisfying the hypotheses in Theorem 2.18. The kernel considerations for the adjoint also appear in commutative Calderón-Zygmund theory, whereas the †-operation is standard and arises from noncommutativity.

**2.3.4.** The principal value of kernel truncations. As it is customary in classical Calderón-Zygmund theory, we want to understand how far is an operator  $T_k \in \mathcal{B}(L_2(\mathcal{R}_\Theta))$  from the principal value singular integral determined by its kernel truncations. Our aim is to show that the difference is a left/right multiplier. Let us be more precise. Consider a smooth function  $\psi \in \mathcal{S}(\mathbb{R}^n)$  which is identically 1 over  $B_1(0)$  and vanishes over  $\mathbb{R}^n \setminus B_2(0)$ . Define

$$\Psi_{\Delta,\delta} = \pi_{\Theta}(\psi_{\Delta,\delta})$$
 with  $\psi_{\Delta,\delta}(x) = \psi(\frac{x}{\Delta}) - \psi(\frac{x}{\delta}) = \psi_{\Delta}(x) - \psi_{\delta}(x)$ 

for  $0 < \delta << \Delta < \infty$ . We shall study the kernel truncations  $\Psi_{\Delta,\delta} \bullet k$  and  $k \bullet \Psi_{\Delta,\delta}$  and how their limits are related to  $T_k$ . To that end, we introduce the notion of admissible projection. A projection  $p \in \mathcal{R}_{\Theta}$  will be called admissible when the function  $\mathbb{R}^n \to \operatorname{Proj}(\mathcal{R}_{\Theta})$  defined as

$$\delta \longmapsto \bigvee_{s \in \mathcal{B}_{\delta}(0)} \sigma_{\Theta}^{s}(p)$$

is weak-\* continuous around  $\delta = 0$ . Here  $\sigma_{\Theta}^{s}(\lambda_{\Theta}(\xi)) = \exp(2\pi i \langle s, \xi \rangle) \lambda_{\Theta}(\xi)$ .

Remark 2.19. Even in the Euclidean setting with  $\Theta = 0$ , not all projections are admissible. In that case, the projection-valued function defined above associates a measurable set A with  $B_{\delta}[A]$ , the union of all the balls of radius  $\delta$  with center in A. If we take, for instance, a dense open subset of  $[0,1]^n$  with measure strictly less than 1, we will have that  $[0,1] \subset B_{\delta}[A]$  for every  $\delta > 0$ , which poses an obstruction to admissibility. This can be easily fixed in the Euclidean setting by considering measurable sets which are closed up to a null set.

Lemma 2.20. The bicommutant of admissible projections is the whole algebra  $\mathcal{R}_{\Theta}$ .

**Proof.** It suffices to observe that one-dimensional spectral projections of the form  $\chi_{[a,b]}(x_{\Theta,j})$  are admissible for each of the quantum variables  $x_{\Theta,j}$  by Remark 2.19 and also that this family trivially generates  $\mathcal{R}_{\Theta}$ . This completes the proof.

REMARK 2.21. Define a closed projection  $p \in \mathcal{R}_{\Theta}$  as those whose complement 1-p is the left support of certain element  $\varphi \in \mathcal{E}_{\Theta}$  as defined at beginning of Chapter  $\square$  By the \*-stability of  $\mathcal{S}_{\Theta}$  we could have replaced the left support  $\ell(\varphi)$  by the right one  $r(\varphi)$  or even by the full support  $s(\varphi)$  of self-adjoint elements. We conjecture that all closed projections so defined are indeed admissible. At the time of this writing we have not been able to confirm this conjecture, but this will have no consequence in Theorem [2.23] below.

LEMMA 2.22. Given  $\varphi \in \mathcal{R}_{\Theta}$ , there exist projections  $p_{\delta}, q_{\delta}$  such that

$$\pi_{\Theta}(\psi_{\delta}) \bullet (\mathbf{1} \otimes \varphi) = \pi_{\Theta}(\psi_{\delta}) \bullet (p_{\delta} \otimes \varphi),$$
  
$$\pi_{\Theta}(\psi_{\delta}) \bullet (\varphi \otimes \mathbf{1}) = \pi_{\Theta}(\psi_{\delta}) \bullet (\varphi \otimes q_{\delta}).$$

If  $r(\varphi)$  is admissible  $w^*$ - $\lim_{\delta \to 0} p_{\delta} = r(\varphi)$ , if  $\ell(\varphi)$  is admissible  $w^*$ - $\lim_{\delta \to 0} q_{\delta} = \ell(\varphi)$ .

**Proof.** The assertions concerning  $q_{\delta}$  follow from those for  $p_{\delta}$  after applying the map flip\*:  $a \otimes b \mapsto b^* \otimes a^*$ , details are left to the reader. Now, let us recall that the map  $T : \mathcal{R}_{\Theta} \bar{\otimes} \mathcal{R}_{\Theta}^{\text{op}} \to \mathcal{CB}(L_1(\mathcal{R}_{\Theta}), \mathcal{R}_{\Theta})$  sending a kernel k to the corresponding map  $T_k$  is a complete isometry. Moreover, observe that

$$T_{k \bullet (\mathbf{1} \otimes \varphi)}(\phi) = T_k(\phi \varphi)$$
 and  $T_{k \bullet (\varphi \otimes \mathbf{1})}(\phi) = T_k(\phi) \varphi$ .

Since we clearly have

$$\|\pi_{\Theta}(\psi_{\delta})\|_{\mathcal{R}_{\Theta}\bar{\otimes}\mathcal{R}_{\Theta}^{\mathrm{op}}} \leq \|\widehat{\psi}_{\delta}\|_{L_{1}(\mathbb{R}^{n})} = \|\widehat{\psi}\|_{L_{1}(\mathbb{R}^{n})} < \infty,$$

we know that  $T_{\pi_{\Theta}(\psi_{\delta})}$  is uniformly in  $\mathcal{CB}(L_1(\mathcal{R}_{\Theta}), \mathcal{R}_{\Theta})$ . Let us define

$$\mathcal{N}_{\delta} = \overline{\operatorname{span}^{w^*}} \big\{ \varpi \, T_{\pi_{\Theta}(\psi_{\delta})}(\phi \varphi) : \phi \in L_1(\mathcal{R}_{\Theta}), \, \varpi \in \mathcal{R}_{\Theta} \big\} \subset \mathcal{R}_{\Theta}.$$

Clearly  $\mathcal{N}_{\delta}$  is a weak-\* closed left module. In particular, there must exist certain projection  $p_{\delta} \in \mathcal{R}_{\Theta}$  satisfying  $\mathcal{N}_{\delta} = \mathcal{R}_{\Theta} p_{\delta}$  and the following identity holds for every element  $\phi \in L_1(\mathcal{R}_{\Theta})$ 

$$T_{\pi_{\Theta}(\psi_{\delta})\bullet(\mathbf{1}\otimes\varphi)}(\phi) = T_{\pi_{\Theta}(\psi_{\delta})}(\phi\varphi) = T_{\pi_{\Theta}(\psi_{\delta})}(\phi\varphi) \, p_{\delta} = T_{\pi_{\Theta}(\psi_{\delta})\bullet(p_{\delta}\otimes\varphi)}(\phi).$$

Since T is (completely) isometric,  $\pi_{\Theta}(\psi_{\delta}) \bullet (\mathbf{1} \otimes \varphi) = \pi_{\Theta}(\psi_{\delta}) \bullet (p_{\delta} \otimes \varphi)$ . It remains to show that the projections  $p_{\delta}$  so defined converges weakly to  $r(\varphi)$  as  $\delta \to 0^+$ . Given any  $\phi \in L_1(\mathcal{R}_{\Theta})$ , notice that

$$T_{\pi_{\Theta}(\psi_{\delta})}(\phi\varphi) = \int_{\mathbb{R}^{n}} \widehat{\psi}_{\delta}(\xi) \, \tau_{\Theta} \big( \lambda_{\Theta}(\xi)^{*} \phi \varphi \big) \lambda_{\Theta}(\xi) \, d\xi = \int_{\mathcal{B}_{2\delta}(0)} \psi_{\delta}(s) \sigma_{\Theta}^{s}(\phi\varphi) \, ds.$$

Therefore, its right support satisfies

$$r(T_{\pi_{\Theta}(\psi_{\delta})}(\phi\varphi)) \le \bigvee_{s \in \mathcal{B}_{2\delta}(0)} \sigma_{\Theta}^{s}(r(\varphi)) \quad \Rightarrow \quad p_{\delta} \le \bigvee_{s \in \mathcal{B}_{2\delta}(0)} \sigma_{\Theta}^{s}(r(\varphi)).$$

Hence, since  $p_{\delta} \geq r(\varphi)$ , we conclude by admissibility that  $w^*$ -  $\lim_{\delta \to 0} p_{\delta} = r(\varphi)$ .

Given  $T_k \in \mathcal{B}(L_2(\mathcal{R}_{\Theta})) \subset \mathcal{L}(\mathcal{S}_{\Theta}, \mathcal{S}'_{\Theta})$ , we truncate it as follows

$$T_{\Delta,\delta}^{\ell} = M_{\Psi_{\Delta,\delta}}^{\ell}(T_k)$$
 and  $T_{\Delta,\delta}^{r} = M_{\Psi_{\Delta,\delta}}^{r}(T_k)$ .

According to Remark 2.10 both truncations  $T_{\Delta,\delta}^{\dagger}$  satisfy the  $L_2$ -estimate

$$\left\|T_{\Delta,\delta}^{\dagger}: L_{2}(\mathcal{R}_{\Theta}) \to L_{2}(\mathcal{R}_{\Theta})\right\| \leq 2 \left\|\widehat{\psi}\right\|_{1} \left\|T_{k}: L_{2}(\mathcal{R}_{\Theta}) \to L_{2}(\mathcal{R}_{\Theta})\right\|.$$

In particular, the Banach-Alaoglu theorem confirms that certain subfamily of our truncations  $T_{\Delta,\delta}^{\dagger}$  converges to some  $L_2$ -bounded operator  $S_k^{\dagger}: L_2(\mathcal{R}_{\Theta}) \to L_2(\mathcal{R}_{\Theta})$  for  $\dagger \in \{\ell, r\}$ . We shall assume for simplicity of notation that the whole family of truncations converges to  $S_k^{\dagger}$  as  $\Delta \to \infty$  and  $\delta \to 0$ .

THEOREM 2.23. There exist  $z_{\dagger} \in \mathcal{R}_{\Theta}$  such that

$$(T_k - S_k^{\ell})(a) = az_{\ell}$$
 and  $(T_k - S_k^r)(a) = z_r a$ .

**Proof.** Given an admissible projection p and by Remark 2.11

$$\langle T_{\Delta,\delta}^r(\lambda_{\Theta}(f)p), \lambda_{\Theta}(g) \rangle = \langle k, \pi_{\Theta}(\Psi_{\Delta,\delta}) \bullet (\lambda_{\Theta}(g) \otimes \lambda_{\Theta}(f)p) \rangle.$$

Since  $\pi_{\Theta}(\chi_{B_{R}(0)})$  converges to **1** in the strong operator topology, we can safely assume that  $\lambda_{\Theta}(g) \otimes \lambda_{\Theta}(f)p = (\lambda_{\Theta}(g) \otimes p) \bullet (\mathbf{1} \otimes \lambda_{\Theta}(f))$  is left supported by  $\pi_{\Theta}(\chi_{B_{R}(0)})$  for R large enough. Then we have

$$\left\langle (T_k - T_{\Delta,\delta}^r)(\lambda_{\Theta}(f)p), \lambda_{\Theta}(g) \right\rangle 
= \left\langle k, \pi_{\Theta}(\mathbf{1} - \psi_{\Delta,\delta}) \bullet \left( \lambda_{\Theta}(g) \otimes \lambda_{\Theta}(f)p \right) \right\rangle 
= \left\langle k, \pi_{\Theta}(\psi_{\delta}) \bullet \left( \lambda_{\Theta}(g) \otimes \lambda_{\Theta}(f)p \right) \right\rangle + \left\langle k, \pi_{\Theta}(\mathbf{1} - \psi_{\Delta}) \bullet \left( \lambda_{\Theta}(g) \otimes \lambda_{\Theta}(f) \right) \right\rangle.$$

Since  $\ell(\lambda_{\Theta}(g) \otimes \lambda_{\Theta}(f)p) \leq \pi_{\Theta}(\psi_{\Delta})$  for large  $\Delta$ , the second term vanishes when  $\Delta$  is large. The identity  $\lambda_{\Theta}(g) \otimes \lambda_{\Theta}(f)p = (\mathbf{1} \otimes p) \bullet (\lambda_{\Theta}(g) \otimes \lambda_{\Theta}(f))$  allows to apply Lemma 2.22 to get

$$\pi_{\Theta}(\psi_{\delta}) \bullet (\lambda_{\Theta}(g) \otimes \lambda_{\Theta}(f)p) = \pi_{\Theta}(\psi_{\delta}) \bullet (p_{\delta}\lambda_{\Theta}(g) \otimes \lambda_{\Theta}(f)p)$$

for some projection  $p_{\delta}$  converging to p in the weak-\* topology. This gives

$$\left\langle (T_k - T_{\Delta,\delta}^r)(\lambda_{\Theta}(f)p), \lambda_{\Theta}(g) \right\rangle$$

$$= \left\langle k, \pi_{\Theta}(\psi_{\delta}) \bullet \left( p_{\delta} \lambda_{\Theta}(g) \otimes \lambda_{\Theta}(f)p \right) \right\rangle = \left\langle (T_k - T_{\Delta,\delta}^r)(\lambda_{\Theta}(f)p) p_{\delta}, \lambda_{\Theta}(g) \right\rangle.$$

Taking limits in  $\Delta \to \infty$  and  $\delta \to 0$ , we get  $(T_k - S_k^r)(\lambda_{\Theta}(f)p) = (T_k - S_k^r)(\lambda_{\Theta}(f))p$  for any admissible projection  $p \in \mathcal{R}_{\Theta}$ . This readily implies that  $T_k - S_k^r$  commutes with the von Neumann algebra generated by right multiplication with admissible projections and, by Lemma [2.20], we conclude that  $T_k - S_k^r$  belongs to the commutant in  $\mathcal{B}(L_2(\mathcal{R}_{\Theta}))$  of  $\mathcal{R}_{\Theta}$  acting by right multiplication. Such algebra is given by  $\mathcal{R}_{\Theta}$  acting on the left and so, there is a unique  $z_r \in \mathcal{R}_{\Theta}$  such that  $(T_k - S_k^r)(a) = z_r a$ . A symmetric argument works for  $S_k^{\ell}$ , which also satisfies the assertion.

REMARK 2.24. We may also consider two-sided principal values  $T_{\Delta,\delta}^{\ell}T_{\Delta',\delta'}^{r}$ . Taking first a weak-\* accumulation point in  $(\Delta,\delta)$  and then another in  $(\Delta',\delta')$  gives an element  $S_k$  such that  $S_k(\lambda_{\Theta}(f)) = z_r \lambda_{\Theta}(f) + \lambda_{\Theta}(f) z_{\ell}$ , for certain  $z_{\dagger} \in \mathcal{R}_{\Theta}$ . This is the quantum analogue of a basic result in Calderón-Zygmund theory, further details can be found in [34]. Proposition 8.1.11].

### CHAPTER 3

# Pseudodifferential $L_p$ calculus

The aim of this section is to establish sufficient smoothness conditions on a given symbol  $a: \mathbb{R}^n \to \mathcal{R}_{\Theta}$  for the  $L_p$ -boundedness of the pseudodifferential operator  $\Psi_a$  associated to it. This is the content of Theorem B in the Introduction. Sobolev p-estimates naturally follow from this analysis. Before that, subtle transference methods will be needed to extend the classical composition and adjoint formulae to the context of quantum Euclidean spaces. The proof of Theorem B is divided into several blocks. We begin with an analysis of  $L_2$ -boundedness, which includes the quantum forms of Calderón-Vaillancourt theorem and Bourdaud's condition stated in Theorem B i) and ii) respectively. Theorem B iii) follows from it and Theorem A, once we prove that  $\Psi_a$  is a Calderón-Zygmund operator.

# 3.1. Adjoint and product formulae

Recall that a symbol over  $\mathcal{R}_{\Theta}$  must be understood as a smooth function  $a: \mathbb{R}^n \to \mathcal{R}_{\Theta}$  whose associated pseudodifferential operator takes the form

$$\Psi_a(\lambda_{\Theta}(f)) = \int_{\mathbb{R}^n} a(\xi) f(\xi) \lambda_{\Theta}(\xi) d\xi.$$

Given  $m \in \mathbb{R}$  and  $0 \le \delta \le \rho \le 1$ , the Hörmander classes  $S^m_{\rho,\delta}(\mathcal{R}_{\Theta})$  are

$$S_{\rho,\delta}^m(\mathcal{R}_{\Theta}) = \Big\{ a : \mathbb{R}^n \to \mathcal{R}_{\Theta} : \left| \partial_{\Theta}^{\beta} \partial_{\xi}^{\alpha} a(\xi) \right| \le C_{\alpha,\beta} \langle \xi \rangle^{m-\rho|\alpha|+\delta|\beta|} \text{ for all } \alpha, \beta \in \mathbb{Z}_+^n \Big\}.$$

Here we follow standard notation  $\langle \xi \rangle = (1 + |\xi|^2)^{1/2}$ . Pseudodifferential operators are formally generated by Fourier multipliers and left multiplication operators. It is easy to see that these families of operators generate in turn the whole  $\mathcal{B}(L_2(\mathcal{R}_{\Theta}))$  as a von Neumann algebra. It is therefore reasonable to think that adjoints and composition of pseudodifferential operators are pseudodifferential operators. Our first goal is to develop asymptotic formulae for adjoints and compositions to justify that the adjoint of a regular  $(\delta < \rho)$  pseudodifferential operator of degree m is again a pseudodifferential operator of degree m and that the composition of operators of degrees  $m_1$  and  $m_2$  yields a pseudodifferential operator of degree  $m_1 + m_2$ .

We start by defining  $\Psi_a$  in the distributional sense. First,  $\Psi_a: \mathcal{S}_{\Theta} \to \mathcal{S}_{\Theta}$  continuously whenever  $a \in \mathcal{S}(\mathbb{R}^n; \mathcal{S}_{\Theta})$  is a Schwartz function itself. Indeed, recall that  $a \in \mathcal{S}(\mathbb{R}^n; \mathcal{S}_{\Theta})$  means that

(3.1.1) 
$$a(\xi) = \int_{\mathbb{R}^n} \widehat{a}(z,\xi) \lambda_{\Theta}(z) dz$$

for some  $\widehat{a} \in \mathcal{S}(\mathbb{R}^n \times \mathbb{R}^n)$ . This immediately gives

$$\Psi_a(\lambda_{\Theta}(f)) = \int_{\mathbb{R}^n} \underbrace{\int_{\mathbb{R}^n} \widehat{a}(z-\xi,\xi) f(\xi) e^{2\pi i \langle z-\xi,\Theta_{\downarrow}\xi \rangle} d\xi}_{F(z)} \lambda_{\Theta}(z) dz$$

with  $F \in \mathcal{S}(\mathbb{R}^n)$ , which implies the assertion. The following lemma refines it.

LEMMA 3.1. Given  $a \in S^m_{\rho,\delta}(\mathcal{R}_{\Theta})$ , we have that  $\Psi_a : \mathcal{S}_{\Theta} \to \mathcal{S}_{\Theta}$  continuously.

## **Proof.** Note that

$$\|\Psi_{a}(\lambda_{\Theta}(f))\|_{\mathcal{R}_{\Theta}} = \|\int_{\mathbb{R}^{n}} a(\xi) \langle \xi \rangle^{n+1} f(\xi) \lambda_{\Theta}(\xi) \frac{d\xi}{\langle \xi \rangle^{n+1}} \|_{\mathcal{R}_{\Theta}}$$

$$\lesssim \sup_{\xi \in \mathbb{R}^{n}} \Big\{ \|\langle \xi \rangle^{-m} a(\xi) \|_{\mathcal{R}_{\Theta}} |\langle \xi \rangle^{n+m+1} f(\xi)| \Big\}.$$

The term  $\langle \xi \rangle^{-m} a(\xi)$  is bounded by the Hörmander condition with  $\alpha = \beta = 0$  while the term  $\langle \xi \rangle^{n+m+1} f(\xi)$  is bounded since  $f \in \mathcal{S}(\mathbb{R}^n)$ . According to Remark 1.10 and Lemma 2.8, it suffices to see that the operators

$$P(x_{\Theta})\partial_{\Theta}^{\beta}\Psi_{a}(\lambda_{\Theta}(f))Q(x_{\Theta})$$

satisfy similar inequalities for arbitrary monomials P, Q and  $\beta \in \mathbb{Z}_+^n$ . Recall that

$$\partial_{\Theta}^{j} \Psi_{a}(\lambda_{\Theta}(f)) = \Psi_{\partial_{\Theta}^{j} a}(\lambda_{\Theta}(f)) + \Psi_{a}(\partial_{\Theta}^{j}(\lambda_{\Theta}(f))),$$

but  $\partial_{\Theta}^{j}a \in S_{\rho,\delta}^{m+\delta}(\mathcal{R}_{\Theta})$  and  $\partial_{\Theta}^{j}(\lambda_{\Theta}(f)) = \lambda_{\Theta}(2\pi i \xi_{j} f)$ . In particular,  $\partial_{\Theta}^{\beta}\Psi_{a}(\lambda_{\Theta}(f))$  behaves as  $\Psi_{a}(\lambda_{\Theta}(f))$  and we may ignore  $\beta$ . Thus, it will be enough to illustrate the argument for  $(P,Q,\beta)=(1,x_{\Theta,j},0)$  and  $(P,Q,\beta)=(x_{\Theta,j},1,0)$ . In the first case, since our pseudodifferential operators act by left multiplication of the symbol a, the exact same argument given in the proof of Proposition 1.9 gives the identity below, even for a taking values in  $\mathcal{R}_{\Theta}$  as it is the case

$$\Psi_{a}(\lambda_{\Theta}(f))x_{\Theta,j} = \int_{\mathbb{R}^{n}} D_{\Theta,j}^{r}(af)(\xi)\lambda_{\Theta}(\xi) d\xi$$
$$= \int_{\mathbb{R}^{n}} \left( a(\xi)D_{\Theta,j}^{r}(f)(\xi) - \frac{1}{2\pi i}\partial_{\xi}^{j}a(\xi)f(\xi) \right)\lambda_{\Theta}(\xi) d\xi.$$

Clearly  $D^r_{\Theta,j} f \in \mathcal{S}(\mathbb{R}^n)$  and  $\partial_{\xi}^j a \in S^{m-\rho}_{\rho,\delta}(\mathcal{R}_{\Theta})$ , so we may proceed as above. We need a similar expression when  $x_{\Theta,j}$  acts by left multiplication. In this second case we need to be a bit more careful

$$\begin{split} x_{\Theta,j} \Psi_{a}(\lambda_{\Theta}(f)) &= x_{\Theta,j} \int_{\mathbb{R}^{n}} \left( \int_{\mathbb{R}^{n}} \widehat{a}(z,\xi) \lambda_{\Theta}(z) \, dz \right) f(\xi) \lambda_{\Theta}(\xi) \, d\xi \\ &= \frac{1}{2\pi i} \frac{d}{ds} \Big|_{s=0} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \widehat{a}(z,\xi) f(\xi) \lambda_{\Theta}(se_{j}) \lambda_{\Theta}(z) \lambda_{\Theta}(\xi) \, dz d\xi \\ &= \frac{1}{2\pi i} \frac{d}{ds} \Big|_{s=0} \int_{\mathbb{R}^{n}} \underbrace{\left[ \int_{\mathbb{R}^{n}} \widehat{a}(z,\xi) e^{2\pi i s \langle e_{j},\Theta z \rangle} \lambda_{\Theta}(z) dz \right]}_{a_{js}(\xi)} f(\xi) e^{2\pi i s \langle e_{j},\Theta_{\downarrow} \xi \rangle} \lambda_{\Theta}(\xi + se_{j}) d\xi. \end{split}$$

Equivalently, we may write it as follows

$$x_{\Theta,j}\Psi_a(\lambda_{\Theta}(f)) = \frac{1}{2\pi i} \frac{d}{ds} \Big|_{s=0} \int_{\mathbb{R}^n} a_{js}(\xi - se_j) f(\xi - se_j) e^{2\pi i s \langle e_j, \Theta_{\downarrow} \xi \rangle} \lambda_{\Theta}(\xi) d\xi.$$

In particular, Leibniz rule and the argument in Proposition 1.9 give

$$x_{\Theta,j}\Psi_{a}(\lambda_{\Theta}(f)) = \frac{1}{2\pi i} \int_{\mathbb{R}^{n}} \frac{d}{ds} \Big|_{s=0} a_{js}(\xi) f(\xi) \lambda_{\Theta}(\xi) d\xi$$

$$+ \frac{1}{2\pi i} \int_{\mathbb{R}^{n}} \frac{d}{ds} \Big|_{s=0} \Big( a(\xi - se_{j}) f(\xi - se_{j}) e^{2\pi i s \langle e_{j}, \Theta_{\downarrow} \xi \rangle} \Big) \lambda_{\Theta}(\xi) d\xi$$

$$= \frac{1}{2\pi i} \int_{\mathbb{R}^{n}} \Big\{ \Big( \sum_{k=1}^{n} \Theta_{jk} \partial_{\Theta}^{k} a(\xi) \Big) f(\xi) + 2\pi i D_{\Theta,j}^{\ell}(af)(\xi) \Big\} \lambda_{\Theta}(\xi) d\xi.$$

Since the new terms  $\partial_{\Theta}^k a \in S_{a,\delta}^{m+\delta}(\mathcal{R}_{\Theta})$ , we may proceed as above once more.  $\square$ 

Consider a pair of symbols  $a_1, a_2 : \mathbb{R}^n \to \mathcal{R}_{\Theta}$ . In order to properly identify  $\Psi_{a_j}$  with  $a_j$ , we need to confirm that  $\Psi_{a_1} = \Psi_{a_2}$  implies that  $a_1 = a_2$ . This is the case when the symbols  $a_j$  are of polynomial growth —there exists  $k \geq 0$  such that  $|a_j(\xi)| \leq C_j \langle \xi \rangle^k$ —and  $\Psi_{a_1} = \Psi_{a_2}$  holds as operators in  $\mathcal{B}(\mathcal{S}_{\Theta}, \mathcal{S}_{\Theta})$ . This result will be enough for our purposes and it follows by an elementary application of Fourier inversion for distributions, which we omit.

LEMMA 3.2. Given  $a, a_1, a_2 \in \mathcal{S}(\mathbb{R}^n; \mathcal{R}_{\Theta})$ , we find:

i) 
$$\Psi_a^* = \Psi_{a_{\perp}^*}$$
 where

$$a_{\dagger}(\xi) = \int_{\mathbb{R}^n} \widehat{a}(z, \xi - z) \lambda_{\Theta}(z) dz.$$

ii) 
$$\Psi_{a_1} \circ \Psi_{a_2} = \Psi_{a_1 \diamond a_2}$$
 where

$$(a_1 \diamond a_2)(\xi) = \int_{\mathbb{D}_n} a_1(z) \widehat{a}_2(z - \xi, \xi) \lambda_{\Theta}(z - \xi) dz.$$

**Proof.** By Lemma 2.2 i)  $\Psi_a^* = T_{k_a}^* = T_{\mathrm{flip}(k_a)^*}$ . By (8.1.1)

$$\begin{aligned}
\text{flip}(k_a)^* &= \int_{\mathbb{R}^n} \lambda_{\Theta}(\xi) \otimes \lambda_{\Theta}(\xi)^* a(\xi)^* d\xi \\
&= \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \overline{\widehat{a}(z,\xi)} e^{-2\pi i \langle z,\Theta_{\downarrow}\xi \rangle} \lambda_{\Theta}(\xi) \otimes \lambda_{\Theta}(z+\xi)^* dz d\xi \\
&= \int_{\mathbb{R}^n} \left( \int_{\mathbb{R}^n} \widehat{a}(z,\xi-z) \lambda_{\Theta}(z) dz \right)^* \lambda_{\Theta}(\xi) \otimes \lambda_{\Theta}(\xi)^* d\xi = k_{a_{\dagger}^*},
\end{aligned}$$

which implies  $\Psi_a^* = \Psi_{a_*^*}$ . The composition formula is obtained similarly.

The formulas above are difficult to treat directly. Following the classical setting we introduce double pseudodifferential operators. Namely, if  $A: \mathbb{R}^n \to \mathcal{R}_{\Theta} \bar{\otimes} \mathcal{R}_{\Theta}^{\text{op}}$  is a double symbol, its associated operator is given by

$$\mathcal{D}_A(\varphi) = (id \otimes \tau_{\Theta}) \Big\{ \Big( \int_{\mathbb{R}^n} A(\xi) \bullet \big( \lambda_{\Theta}(\xi) \otimes \lambda_{\Theta}(\xi)^* \big) \, d\xi \Big) \, (\mathbf{1} \otimes \varphi) \Big\}.$$

Observe that if the double symbol is of the form  $A(\xi) = a(\xi) \otimes \mathbf{1}$  then  $\mathcal{D}_A = \Psi_a$ . The advantage of the above class of operators is that they admit simpler expressions for adjoints  $\mathcal{D}_{a\otimes 1}^* = \mathcal{D}_{1\otimes a^*}$  and products  $\mathcal{D}_{a_1\otimes 1} \circ \mathcal{D}_{1\otimes a_2} = \mathcal{D}_{a_1\otimes a_2}$ . We now introduce extended Hörmander classes for double symbols. To that end, we recall the definition of the Haagerup tensor product. Given  $z \in \mathcal{R}_{\Theta} \otimes_{\text{alg}} \mathcal{R}_{\Theta}$ , let us define

$$||z||_{\mathcal{R}_{\Theta} \otimes_h \mathcal{R}_{\Theta}} = \inf \Big\{ \Big\| \sum_j x_j x_j^* \Big\|_{\mathcal{R}_{\Theta}}^{\frac{1}{2}} \Big\| \sum_j y_j^* y_j \Big\|_{\mathcal{R}_{\Theta}}^{\frac{1}{2}} : \ z = \sum_j x_j \otimes y_j \Big\}.$$

The Haagerup tensor product  $\mathcal{R}_{\Theta} \otimes_h \mathcal{R}_{\Theta}$  is defined by completion and also admits a natural operator space structure [62]. We will say that  $A : \mathbb{R}^n \to \mathcal{R}_{\Theta} \bar{\otimes} \mathcal{R}_{\Theta}^{\text{op}}$  belongs to  $S_{\rho,\delta_1,\delta_2}^m(\mathcal{R}_{\Theta})$  when

$$\left\| \left( \partial_{\Theta}^{\beta_1} \otimes \partial_{\Theta}^{\beta_2} \right) \partial_{\xi}^{\alpha} A(\xi) \right\|_{\mathcal{R}_{\Theta} \otimes_{b} \mathcal{R}_{\Theta}} \leq C_{\alpha, \beta_1, \beta_2} \left\langle \xi \right\rangle^{m - \rho |\alpha| + \delta_1 |\beta_1| + \delta_2 |\beta_2|},$$

for all multindices  $\alpha, \beta_1, \beta_2$ . Our next result provides a compression map

$$\mathfrak{B}: \mathcal{S}(\mathbb{R}^n; \mathcal{S}_{\Theta} \otimes_{\pi} \mathcal{S}_{\Theta}) \to \mathcal{S}(\mathbb{R}^n; \mathcal{S}_{\Theta}),$$

$$\mathfrak{B}(A)(\xi) = (id \otimes \tau_{\Theta}) \int_{\mathbb{R}^n} A(\eta) \bullet (\lambda_{\Theta}(\eta) \otimes \lambda_{\Theta}(\eta)^*) \bullet (\lambda_{\Theta}(\xi)^* \otimes \lambda_{\Theta}(\xi)) d\eta,$$

which sends double symbols into symbols inducing the same operators. This map involves in turn the map  $m: \mathcal{S}_{\Theta} \otimes_{\pi} \mathcal{S}_{\Theta} \to \mathcal{S}_{\Theta}$  defined by linear extension of  $\varphi_1 \otimes \varphi_2 \mapsto \varphi_1 \varphi_2$ . If  $\Theta = 0$ , m is the restriction to the diagonal  $\varphi(x, y) \mapsto \varphi(x, x)$  which extends to a positive preserving contraction with the C\*-norm. This fails in general for nonabelian algebras. Instead, the Haagerup tensor product can be understood as the smallest (operator space) tensor product making the operation m continuous. This justifies our use of the Haagerup tensor product in the above definition of double Hörmander classes. Define

$$L_{\Theta,\xi} = \exp\left(\frac{1}{2\pi i} \sum_{j=1}^{n} \partial_{\xi}^{j} \otimes id_{\mathcal{R}_{\Theta}} \otimes \partial_{\Theta}^{j}\right) \in \mathcal{B}\left(\mathcal{S}(\mathbb{R}^{n}; \mathcal{S}_{\Theta} \otimes_{\pi} \mathcal{S}_{\Theta})\right).$$

THEOREM 3.3. The compression map  $\mathfrak{B}: \mathcal{S}(\mathbb{R}^n; \mathcal{S}_{\Theta} \otimes_{\pi} \mathcal{S}_{\Theta}) \to \mathcal{S}(\mathbb{R}^n; \mathcal{S}_{\Theta})$  above satisfies the identity  $\mathcal{D}_A = \Psi_{\mathfrak{B}(A)}$  as operators in  $\mathcal{B}(\mathcal{S}_{\Theta}, \mathcal{S}'_{\Theta})$ . In addition, the following identities hold

$$\mathfrak{B}(A)(\xi) = \mathcal{D}_A(\lambda_{\Theta}(\xi))\lambda_{\Theta}(\xi)^* = m(L_{\Theta,\xi}A(\xi)).$$

Moreover, given  $A \in S^m_{\rho,\delta_1,\delta_2}(\mathcal{R}_\Theta)$ , the formal series expansion

$$\mathfrak{B}(A)(\xi) \sim \sum_{\gamma \in \mathbb{Z}_+^n} \frac{m\left( (\partial_{\xi}^{\gamma} \otimes id_{\mathcal{R}_{\Theta}} \otimes \partial_{\Theta}^{\gamma}) A(\xi) \right)}{(2\pi i)^{|\gamma|} \gamma!}.$$

is justified in the sense of the inequality below for  $\delta_2 < \rho$  and  $N \in \mathbb{Z}_+$  large

$$\left\| \mathfrak{B}(A)(\xi) - \sum_{|\gamma| < \mathcal{N}} \frac{m\left( (\partial_{\xi}^{\gamma} \otimes id \otimes \partial_{\Theta}^{\gamma}) A(\xi) \right)}{(2\pi i)^{|\gamma|} \gamma!} \right\|_{\mathcal{R}_{\Theta}} \leq C_{\mathcal{N}} \langle \xi \rangle^{m+n-(\rho-\delta_{2})\mathcal{N}},$$

In particular,  $\mathfrak{B}: S^m_{\rho,\delta_1,\delta_2}(\mathcal{R}_{\Theta}) \to S^m_{\rho,\delta}(\mathcal{R}_{\Theta})$  for  $\delta = \max\{\delta_1,\delta_2\}$  whenever  $\delta_2 < \rho$ .

**Proof.** The proof is divided into three blocks:

**A. Expressions for \mathfrak{B}(A).** Clearly  $\mathfrak{B}(A)(\xi) = \mathcal{D}_A(\lambda_{\Theta}(\xi))\lambda_{\Theta}(\xi)^*$ , so

$$\mathcal{D}_{A}(\varphi) = \mathcal{D}_{A}\left(\int_{\mathbb{R}^{n}} \widehat{\varphi}(\xi) \lambda_{\Theta}(\xi) d\xi\right) = \int_{\mathbb{R}^{n}} \widehat{\varphi}(\xi) \mathfrak{B}(A)(\xi) \lambda_{\Theta}(\xi) d\xi = \Psi_{\mathfrak{B}(A)}(\varphi)$$

for any  $\varphi \in \mathcal{S}_{\Theta}$ . To prove the identity  $\mathfrak{B}(A)(\xi) = m(L_{\Theta,\xi}A(\xi))$ , we write

$$A(\xi) = \int_{\mathbb{R}^n} \widehat{A}(u) e^{2\pi i \langle u, \xi \rangle} du = \int_{\mathbb{R}^n} \left( \int_{\mathbb{R}^n} \widetilde{A}(u, v) \otimes \lambda_{\Theta}(v) \, dv \right) e^{2\pi i \langle u, \xi \rangle} \, du$$

where  $\widehat{A}$  is the Euclidean Fourier transform of  $A: \mathbb{R}^n \to \mathcal{R}_{\Theta} \otimes \mathcal{R}_{\Theta}^{\text{op}}$  and  $\widetilde{A}$  is the quantum (partial) Fourier transform of it in the second tensor. In other words, we have

$$\widetilde{A}(u,v) = (id \otimes \tau_{\Theta}) \Big( \widehat{A}(u) \bullet (\mathbf{1} \otimes \lambda_{\Theta}(v)^{*}) \Big) 
= \int_{\mathbb{R}^{n}} (id \otimes \tau_{\Theta}) \Big( A(s) \bullet (\mathbf{1} \otimes \lambda_{\Theta}(v)^{*}) \Big) e^{-2\pi i \langle u, s \rangle} ds.$$

Now, using the Taylor series expansion

$$L_{\Theta,\xi} = \sum_{k=0}^{\infty} \frac{(2\pi i)^k}{k!} \sum_{j_1,j_2,\dots,j_k=1}^n \left( \prod_{s=1}^k \frac{\partial_{\xi}^{j_s}}{2\pi i} \right) \otimes id \otimes \left( \prod_{s=1}^k \frac{\partial_{\Theta}^{j_s}}{2\pi i} \right)$$

we easily get the following identity for  $L_{\Theta,\xi}A$ 

$$L_{\Theta,\xi}A = \int_{\mathbb{R}^n} \left( \int_{\mathbb{R}^n} \widetilde{A}(u,v) \otimes \lambda_{\Theta}(v) \, dv \right) e^{2\pi i \langle u,\xi+v \rangle} \, du.$$

Applying m to this expression and writing  $\widetilde{A}$  in terms of A, we get

$$m(L_{\Theta,\xi}A) = (id \otimes \tau_{\Theta}) \int_{\mathbb{R}^n \times \mathbb{R}^n} A(s) \bullet \pi_{\Theta}(\exp_v) e^{2\pi i \langle u, \xi + v - s \rangle} ds du dv$$

$$= (id \otimes \tau_{\Theta}) \int_{\mathbb{R}^n \times \mathbb{R}^n} A(s) \bullet \pi_{\Theta}(\exp_v) \delta_{\xi}(s - v) ds dv$$

$$= (id \otimes \tau_{\Theta}) \int_{\mathbb{R}^n} A(s) \bullet \pi_{\Theta}(\exp_{s - \xi}) ds.$$

This proves  $\mathfrak{B}(A) = m(L_{\Theta,\xi}A)$ . On the other hand

$$L_{\Theta,\xi} = \sum_{\gamma \in \mathbb{Z}_+^n} \frac{\partial_{\xi}^{\gamma} \otimes id_{\mathcal{R}_{\Theta}} \otimes \partial_{\Theta}^{\gamma}}{(2\pi i)^{|\gamma|} \gamma!}$$

by standard modification of the Taylor series. This gives the formal series expansion. **B. Estimate for the remainder.** Thus, our next goal is to justify the Taylor remainder estimate in the statement. This requires yet another expression for  $\mathfrak{B}(A)$ . We begin by noticing that

$$\mathfrak{B}(A)(\xi) = m \Big\{ (id \otimes \tau_{\Theta}) \Big( \int_{\mathbb{R}^{n}} A(\eta) \bullet \pi_{\Theta}(\exp_{\eta - \xi}) d\eta \Big) \otimes \mathbf{1} \Big\}$$

$$= m \Big\{ \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} (id \otimes \sigma_{\Theta}^{z}) \Big( A(\eta) \bullet \pi_{\Theta}(\exp_{\eta - \xi}) \Big) d\eta dz \Big\}$$

$$= m \Big\{ \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} (id \otimes \sigma_{\Theta}^{z}) \Big( A(\eta) \Big) \bullet \pi_{\Theta}(\exp_{\eta - \xi}) e^{-2\pi i \langle z, \eta - \xi \rangle} d\eta dz \Big\}.$$

The first identity follows from A above. The second identity reduces to

$$\int_{\mathbb{R}^n} \sigma_{\Theta}^z(\varphi) \, dz = \tau_{\Theta}(\varphi) \, \mathbf{1} \quad \text{with} \quad \sigma_{\Theta}^z(\lambda_{\Theta}(\zeta)) = e^{2\pi i \langle z, \zeta \rangle} \lambda_{\Theta}(\zeta)$$

and the last one since  $\sigma_{\Theta}^z$  is a \*-homomorphism. Using  $m(A \bullet \pi_{\Theta}(\exp_{\zeta})) = m(A)$  we get

(3.1.2) 
$$\mathfrak{B}(A)(\xi) = \int_{\mathbb{R}^n} \underbrace{\left(\int_{\mathbb{R}^n} m\left((id \otimes \sigma_{\Theta}^z)A(\xi + \eta)\right) e^{-2\pi i \langle z, \eta \rangle} dz\right)}_{Q_{\sigma}(\xi + \eta)} d\eta.$$

On the other hand, we use  $\partial_y^{\gamma} \sigma_{\Theta}^y = \sigma_{\Theta}^y \partial_{\Theta}^{\gamma}$  to deduce

$$\begin{split} m \Big( \big( \partial_{\xi}^{\gamma} \otimes id \otimes \partial_{\Theta}^{\gamma} \big) A(\xi) \Big) \\ &= \left. \partial_{\xi}^{\gamma} \partial_{y}^{\gamma} \right|_{y=0} m \Big( (id \otimes \sigma_{\Theta}^{y}) A(\xi) \Big) \\ &= \left. \partial_{\xi}^{\gamma} \partial_{y}^{\gamma} \right|_{y=0} \Big( \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} m \Big( (id \otimes \sigma_{\Theta}^{z}) A(\xi) \Big) e^{2\pi i \langle y-z, \eta \rangle} \, dz d\eta \Big) \\ &= \left. \partial_{\xi}^{\gamma} \Big( \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} m \Big( (id \otimes \sigma_{\Theta}^{z}) A(\xi) \Big) e^{-2\pi i \langle z, \eta \rangle} (2\pi i \eta)^{\gamma} \, dz d\eta \Big) \\ &= \partial_{\xi}^{\gamma} \int_{\mathbb{R}^{n}} \Omega_{\eta}(\xi) (2\pi i \eta)^{\gamma} \, d\eta. \end{split}$$

This implies that

$$\mathfrak{B}(A)(\xi) - \sum_{|\gamma| < \mathcal{N}} \frac{m\left( (\partial_{\xi}^{\gamma} \otimes id \otimes \partial_{\Theta}^{\gamma}) A(\xi) \right)}{(2\pi i)^{|\gamma|} \gamma!} = \int_{\mathbb{R}^{n}} \underbrace{\Omega_{\eta}(\xi + \eta) - \sum_{|\gamma| < \mathcal{N}} \frac{1}{\gamma!} \partial_{\xi}^{\gamma} \Omega_{\eta}(\xi) \eta^{\gamma}}_{\mathbf{R}_{\xi}(\eta)} d\eta.$$

By Taylor remainder formula

$$R_{\xi}(\eta) = \sum_{|\gamma|=N} \frac{N}{\gamma!} \left( \int_0^1 (1-t)^{N-1} \partial_s^{\gamma} \Big|_{s=\eta+t\xi} \Omega_{\eta}(s) dt \right) \eta^{\gamma}.$$

In particular, we obtain the following estimate

$$\left\| \int_{\mathbb{R}^n} \mathbf{R}_{\xi}(\eta) \, d\eta \right\|_{\mathcal{R}_{\Theta}} \leq C_{\mathbf{N}} \sup_{\substack{|\gamma| = \mathbf{N} \\ 0 < t < 1}} \left\| \int_{\mathbb{R}^n} \eta^{\gamma} \partial_s^{\gamma} \Omega_{\eta}(\eta + t\xi) \, d\eta \right\|_{\mathcal{R}_{\Theta}}.$$

Since  $\partial_{\xi}^{\gamma}$  commutes with m, we get the identity

$$\partial_s^{\gamma} \Omega_{\eta}(s) = \int_{\mathbb{R}^n} m((id \otimes \sigma_{\Theta}^z) \partial_s^{\gamma} A(s)) e^{-2\pi i \langle z, \eta \rangle} dz.$$

Next, we use the standard oscillatory integral trick

$$e^{-2\pi i \langle z, \eta \rangle} = \frac{(-\Delta_{\eta})^n}{(4\pi^2 |z|^2)^n} e^{-2\pi i \langle z, \eta \rangle},$$

$$e^{-2\pi i \langle z, \eta \rangle} = \frac{(1 - \Delta_z)^{\frac{N}{2}}}{(1 + 4\pi^2 |\eta|^2)^{\frac{N}{2}}} e^{-2\pi i \langle z, \eta \rangle}.$$

Taking  $M(\xi,\eta,z,t)=m\big((id\otimes\sigma^z_\Theta)\partial^\gamma_sA(\eta+t\xi)\big)$  and integrating by parts

$$\begin{split} &\int_{\mathbb{R}^n} \eta^{\gamma} \partial_s^{\gamma} \Omega_{\eta} (\eta + t\xi) \, d\eta \\ &= \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{\eta^{\gamma} (\mathbf{1} - \Delta_z)^{\frac{N}{2}}}{(1 + 4\pi^2 |\eta|^2)^{\frac{N}{2}}} \Big( M(\xi, \eta, z, t) \Big) e^{-2\pi i \langle z, \eta \rangle} \, dz d\eta \\ &= \int_{\mathcal{B}_1(0)} \Big( \int_{\mathbb{R}^n} \frac{\eta^{\gamma} (\mathbf{1} - \Delta_z)^{\frac{N}{2}}}{(1 + 4\pi^2 |\eta|^2)^{\frac{N}{2}}} \Big( M(\xi, \eta, z, t) \Big) e^{-2\pi i \langle z, \eta \rangle} \, d\eta \Big) \, dz \\ &+ \int_{\mathcal{B}_1^c(0)} \Big( \int_{\mathbb{R}^n} \frac{(-\Delta_{\eta})^n}{(4\pi^2 |z|^2)^n} \Big[ \frac{\eta^{\gamma} (\mathbf{1} - \Delta_z)^{\frac{N}{2}}}{(1 + 4\pi^2 |\eta|^2)^{\frac{N}{2}}} \Big( M(\xi, \eta, z, t) \Big) \Big] e^{-2\pi i \langle z, \eta \rangle} \, d\eta \Big) \, dz. \end{split}$$

Let us write  $\Pi_1$  and  $\Pi_2$  for the two terms in the right hand side. Then, we use one more time the identity  $\partial_z^\gamma \sigma_\Theta^z = \sigma_\Theta^z \partial_\Theta^\gamma$  together with the contractivity of the map  $m: \mathcal{R}_\Theta \otimes_h \mathcal{R}_\Theta \to \mathcal{R}_\Theta$  and the  $S_{\rho,\delta_1,\delta_2}^m$ - condition. This yields the following inequality for any  $|\gamma| = N$  and  $0 \le t \le 1$ 

$$\|\Pi_{1}\|_{\mathcal{R}_{\Theta}} \lesssim \int_{\mathbb{R}^{n}} \left\| \left( id \otimes (\mathbf{1} - \Delta_{\Theta})^{\frac{N}{2}} \right) \partial_{s}^{\gamma} A(\eta + t\xi) \right\|_{\mathcal{R}_{\Theta} \otimes_{h} \mathcal{R}_{\Theta}} d\eta$$
$$\lesssim \int_{\mathbb{R}^{n}} \max \left\{ \langle \xi \rangle, \langle \eta \rangle \right\}^{m - (\rho - \delta_{2})N} d\eta \lesssim \langle \xi \rangle^{m + n - (\rho - \delta_{2})N}.$$

Similarly,  $\Pi_2$  is dominated by

$$\sum_{|\nu_1+\nu_2|=2n} \int_{\mathrm{B}_1^c(0)\times\mathbb{R}^n} \left| \partial_{\eta}^{\nu_1} \left( \frac{\eta^{\gamma}}{\langle \eta \rangle^{\mathrm{N}}} \right) \right| \left\| \left( id \otimes (\mathbf{1} - \Delta_{\Theta})^{\frac{\mathrm{N}}{2}} \right) \partial_s^{\gamma+\nu_2} A(\eta + t\xi) \right\|_{\mathcal{R}_{\Theta} \otimes_h \mathcal{R}_{\Theta}} \frac{dz d\eta}{|z|^{2n}}$$

which is bounded by  $\langle \xi \rangle^{m+n-(\rho-\delta_2)N}$ . This completes the estimate of the remainder. C.  $\mathfrak{B}$  respects the Hörmander classes. It remains to show that  $\mathfrak{B}(A)$  belongs to the Hörmander class  $S^m_{\rho,\delta}(\mathcal{R}_{\Theta})$  for  $\delta = \max\{\delta_1, \delta_2\}$  whenever  $A \in S^m_{\rho,\delta_1,\delta_2}(\mathcal{R}_{\Theta})$  and  $\delta_2 < \rho$ . Since we have

$$\partial_{\Theta}^{\beta} \circ m = \sum_{\beta_1 + \beta_2 = \beta} \frac{\beta!}{\beta_1! \beta_2!} \, m \circ \left( \partial_{\Theta}^{\beta_1} \otimes \partial_{\Theta}^{\beta_2} \right),$$

it turns out that the following inequality holds for any  $\gamma \in \mathbb{Z}_+^n$ 

$$\begin{split} & \left\| \partial_{\Theta}^{\beta} \partial_{\xi}^{\alpha} m \left( (\partial_{\xi}^{\gamma} \otimes id \otimes \partial_{\Theta}^{\gamma}) A(\xi) \right) \right\|_{\mathcal{R}_{\Theta}} \\ & \leq \sum_{\beta_{1} + \beta_{2} = \beta} \frac{\beta!}{\beta_{1}! \beta_{2}!} \left\| \left( \partial_{\Theta}^{\beta_{1}} \otimes \partial_{\Theta}^{\gamma + \beta_{2}} \right) \partial_{\xi}^{\gamma + \alpha} A(\xi) \right\|_{\mathcal{R}_{\Theta} \otimes_{h} \mathcal{R}_{\Theta}}. \end{split}$$

Since the Hörmander classes are nested in the degree m, this implies that

$$\sum_{|\gamma| < \mathcal{N}} m \left( (\partial_{\xi}^{\gamma} \otimes id \otimes \partial_{\Theta}^{\gamma}) A(\xi) \right) \in \bigcup_{|\gamma| < \mathcal{N}} S_{\rho, \delta}^{m - (\rho - \delta_2)|\gamma|} (\mathcal{R}_{\Theta}) = S_{\rho, \delta}^{m} (\mathcal{R}_{\Theta})$$

as a consequence of  $A \in S^m_{\rho,\delta_1,\delta_2}(\mathcal{R}_{\Theta})$ ,  $\delta = \max\{\delta_1,\delta_2\}$  and  $\delta_2 < \rho$ . Therefore, the inclusion  $\mathfrak{B}(A) \in S^m_{\rho,\delta}(\mathcal{R}_{\Theta})$  will follow if there exists a large enough  $N \in \mathbb{Z}_+$  satisfying the inequality

$$\left\|\partial_{\Theta}^{\beta}\partial_{\xi}^{\alpha}\Big(\mathfrak{B}(A)(\xi)-\sum_{|\gamma|<\mathcal{N}}m\big((\partial_{\xi}^{\gamma}\otimes id\otimes\partial_{\Theta}^{\gamma})A(\xi)\big)\Big)\right\|_{\mathcal{R}_{\Theta}}\leq C_{\mathcal{N},\alpha,\beta}\langle\xi\rangle^{m-\rho|\alpha|+\delta|\beta|}.$$

Our estimate for the Taylor remainder above shows that this is indeed the case when  $\alpha = \beta = 0$ . Using  $\partial_{\xi}^{\alpha} m = m \partial_{\xi}^{\alpha}$  and the commutation formula for  $\partial_{\Theta}^{\beta} \circ m$  given above, the exact same argument applies for general  $\alpha, \beta$ . This gives that any  $N \geq n/(\rho - \delta_2)$  works, details are left to the reader.

COROLLARY 3.4. The following stability results hold:

i) If 
$$a \in S^m_{\rho,\delta}(\mathcal{R}_{\Theta})$$
 and  $\rho < \delta$ , then  $\Psi^*_a = \Psi_{a^*_{\dagger}}$  with

$$a_{\dagger}^* \sim \sum_{\gamma \in \mathbb{Z}_+^n} \frac{\partial_{\Theta}^{\gamma} \partial_{\xi}^{\gamma} a^*(\xi)}{(2\pi i)^{|\gamma|} |\gamma|} \in S_{\rho,\delta}^m(\mathcal{R}_{\Theta}).$$

ii) If 
$$a_j \in S_{\rho_j,\delta_j}^{m_j}$$
, then  $\Psi_{a_1} \circ \Psi_{a_2} = \Psi_{a_1 \diamond a_2}$  with
$$a_1 \diamond a_2 \sim \sum_{\gamma \in \mathbb{Z}_+^n} \frac{\partial_{\xi}^{\gamma} a_1(\xi) \partial_{\Theta}^{\gamma} a_2(\xi)}{(2\pi i)^{|\gamma|} \gamma!} \in S_{\rho,\delta}^m(\mathcal{R}_{\Theta})$$

for  $m = m_1 + m_2$ ,  $\rho = \min\{\rho_1, \rho_2\}$  and  $\delta = \max\{\delta_1, \delta_2\}$  when  $\delta_2 < \rho$ .

## **Proof.** Recall that

$$\Psi_a^* = \mathcal{D}_{a\otimes \mathbf{1}}^* = \mathcal{D}_{\mathbf{1}\otimes a^*} = \Psi_{\mathfrak{B}(\mathbf{1}\otimes a^*)}.$$

If  $a \in S^m_{\rho,\delta}(\mathcal{R}_{\Theta})$  then  $a \otimes \mathbf{1} \in S^m_{\rho,\delta,0}(\mathcal{R}_{\Theta})$  and  $\mathbf{1} \otimes a^* \in S^m_{\rho,0,\delta}(\mathcal{R}_{\Theta})$ . By Theorem 3.3 we have that  $a^*_{\dagger} = \mathfrak{B}(\mathbf{1} \otimes a^*) \in S^m_{\rho,\delta}(\mathcal{R}_{\Theta})$ . The second assertion follows similarly by recalling that

$$\begin{array}{rcl} \Psi_{a_{1} \diamond a_{2}} & = & \Psi_{a_{1}} \circ \Psi_{a_{2}}^{**} = & \Psi_{a_{1}} \circ \Psi_{a_{2\uparrow}^{*}}^{*} \\ & = & \mathcal{D}_{a_{1} \otimes 1} \circ \mathcal{D}_{1 \otimes a_{2\uparrow}} = \mathcal{D}_{a_{1} \otimes a_{2\uparrow}} = & \Psi_{\mathfrak{B}(a_{1} \otimes a_{2\uparrow})}. \end{array}$$

Indeed, according to the first assertion, we know that  $a_1 \otimes a_{2\dagger} \in S^m_{\rho,\delta_1,\delta_2}(\mathcal{R}_{\Theta})$ . The asymptotic expansions also follow easily from Theorem 3.3 using the identities  $a_{\dagger}^* = \mathfrak{B}(1 \otimes a^*)$  and  $a_1 \diamond a_2 = \mathfrak{B}(a_1 \otimes a_{2\dagger})$ , see e.g. [71] for a similar approach.  $\square$ 

Remark 3.5. A natural question is whether the classes  $\Sigma^m_{\rho,\delta}(\mathcal{R}_{\Theta})$  are closed under products and adjoints for  $\delta < \rho$ . This question is still open. Indeed, proceeding as for  $S^m_{\rho,\delta}(\mathcal{R}_{\Theta})$  we may define a new class  $\Sigma^m_{\rho,\delta_1,\delta_2}(\mathcal{R}_{\Theta})$  of mixed double symbols  $A: \mathbb{R}^n \to \mathcal{R}_{\Theta} \otimes_h \mathcal{R}_{\Theta}$  satisfying the condition

$$\left\| (\partial_{\Theta}^{\beta_1} \otimes \partial_{\Theta}^{\beta_2}) \, \partial_{\Theta,\xi}^{\alpha_1} \, \partial_{\xi}^{\alpha_2} A(\xi) \right\|_{\mathcal{R}_{\Theta} \otimes_h \mathcal{R}_{\Theta}} \leq C_{\alpha_1,\alpha_2,\beta_1,\beta_2} \, \langle \xi \rangle^{m-\rho|\alpha_1+\alpha_2|+\delta_1|\beta_1|+\delta_2|\beta_2|},$$

where, abusing of notation,  $\partial_{\Theta,\xi}^{j}$  acts on  $\mathcal{S}(\mathbb{R}^{n}; S(\mathcal{R}_{\Theta}) \otimes_{\pi} \mathcal{S}(\mathcal{R}_{\Theta}))$  as follows

$$\begin{aligned} (\partial_{\Theta,\xi}^{j}A)(\xi) &= \partial_{\xi}^{j}A(\xi) + 2\pi i \big[A(\xi),\mathrm{d}_{\Theta,j}\big] \\ &= \pi_{\Theta}(\exp_{\xi})^{*} \bullet \partial_{\xi}^{j} \big\{\pi_{\Theta}(\exp_{\xi}) \bullet A(\xi) \bullet \pi_{\Theta}(\exp_{\xi})^{*}\big\} \bullet \pi_{\Theta}(\exp_{\xi}). \end{aligned}$$

The operator  $d_{\Theta,j}$  is just  $x_{\Theta,j} \otimes \mathbf{1} - \mathbf{1} \otimes x_{\Theta,j}$ . We shall identify the first term with  $x_{\Theta,j}$  and the second with  $y_{\Theta,j}$ . Of course, we expect that our contraction map satisfies  $\mathfrak{B}: \Sigma^m_{\rho,\delta_1,\delta_2}(\mathcal{R}_\Theta) \to \Sigma^m_{\rho,\delta_1\vee\delta_2}(\mathcal{R}_\Theta)$  for  $\delta_2 < \rho$ . Unfortunately, our argument above does not admit a direct generalization. The problem arises since the automorphism  $\sigma_\Theta$  in the oscillatory integral (3.1.2) for  $\mathfrak{B}$  does not commute with  $\partial^j_{\Theta,\xi}$ . We refer to Lemmas 4.1 and 4.2 and Remark 4.4 for the calculus of parametrices in this setting. On the other hand, a minimum stability for products —necessary for our Sobolev p-estimates, see the proof of Corollary 3.26—does hold. Namely, if  $a_1 \in \Sigma^{m_1}_{\rho_1,0}(\mathcal{R}_\Theta)$  takes values in  $\mathbb{C}\mathbf{1}$  or, more generally, in the center of  $\mathcal{R}_\Theta$ , we have that

$$a_1 \diamond a_2 \in \Sigma^{m_1 + m_2}_{\rho_1 \wedge \rho_2, \delta}(\mathcal{R}_{\Theta})$$
 whenever  $a_2 \in \Sigma^{m_2}_{\rho_2, \delta}(\mathcal{R}_{\Theta})$ .

In particular, composition with polynomials of  $\partial_{\Theta}^{j}$ 's transforms degrees as expected.

### 3.2. $L_2$ -boundedness: Sufficient conditions

We now explore  $L_2$ -boundedness of pseudodifferential operators in  $S^0_{\rho,\delta}(\mathcal{R}_{\Theta})$ . Since  $S^0_{\rho,\delta}(\mathcal{R}_{\Theta}) \subset S^0_{\delta,\delta}(\mathcal{R}_{\Theta}) \cap S^0_{\rho,\rho}(\mathcal{R}_{\Theta})$  it suffices to study  $L_2$ -boundedness for exotic  $0 \leq \delta = \rho < 1$  and forbidden  $\delta = \rho = 1$  symbols. The first case  $\rho < 1$  requires a quantum analogue of the celebrated Calderón-Vaillancourt theorem  $[\mathfrak{Q}]$ . The second one also requires an additional assumption extending Bourdaud's condition  $[\mathbf{Z}]$ , which can be regarded as a form of the T(1) theorem for pseudodifferential operators.

**3.2.1.** The Calderón-Vaillancourt theorem in  $\mathcal{R}_{\Theta}$ . As in the Euclidean setting, the hardest point for a quantum form of Calderón-Vaillancourt theorem is still the case  $\rho = 0$ . Our argument follows from a combination of [24,71] adapted to  $\mathcal{R}_{\Theta}$  which demands a careful argument due to the presence of a  $\Theta$ -phase. Given  $a \in S_{0,0}^0(\mathcal{R}_{\Theta})$ , the first step consists in decomposing the symbol as follows. The double Fourier transform of a in the quantum and classical variables  $(x_{\Theta}, \xi)$  is given by

$$\widehat{\widehat{a}}(z,\zeta) = \int_{\mathbb{R}^n} \tau_{\Theta} \left( a(\xi) \lambda_{\Theta}(z)^* \right) e^{-2\pi i \langle \xi, \zeta \rangle} d\xi 
= \underbrace{\left( 1 + 4\pi^2 |z|^2 \right)^{\mathcal{N}} \left( 1 + 4\pi^2 |\zeta|^2 \right)^{\mathcal{N}} \widehat{\widehat{a}}(z,\zeta)}_{\widehat{\widehat{b}}(z,\zeta)} \underbrace{\left( 1 + 4\pi^2 |z|^2 \right)^{-\mathcal{N}} \left( 1 + 4\pi^2 |\zeta|^2 \right)^{-\mathcal{N}}}_{\widehat{\widehat{g}}(z,\zeta)}.$$

Here we fix N large enough. We shall also use the terminology

$$\widehat{a}(z,\xi) = \tau_{\Theta} (a(\xi)\lambda_{\Theta}(z)^*) = \int_{\mathbb{R}^n} \widehat{\widehat{a}}(z,\zeta) e^{2\pi i \langle \xi,\zeta \rangle} d\zeta$$

for a, b and g. In order to express  $\Psi_a$  in terms of b and g we need to introduce two auxiliary maps. The first one is a left-module extension  $\Pi_{\Theta} : \mathcal{R}_{\Theta} \bar{\otimes} \mathcal{R}_{\Theta}^{\text{op}} \to \mathcal{R}_{\Theta} \bar{\otimes} \mathcal{R}_{\Theta}^{\text{op}}$  of the \*-homomorphism  $\pi_{\Theta}$  defined as follows

$$\Pi_{\Theta}(\lambda_{\Theta}(\xi) \otimes \lambda_{\Theta}(\eta)) = \lambda_{\Theta}(\xi) \otimes \lambda_{\Theta}(\xi)^* \lambda_{\Theta}(\eta) = (\mathbf{1} \otimes \lambda_{\Theta}(\eta)) \bullet \pi_{\Theta}(\exp_{\xi}).$$

 $\Pi_{\Theta}^*(\lambda_{\Theta}(\xi) \otimes \lambda_{\Theta}(\eta)) = \lambda_{\Theta}(\xi) \otimes \lambda_{\Theta}(\xi)\lambda_{\Theta}(\eta) = (\mathbf{1} \otimes \lambda_{\Theta}(\eta)) \bullet (\lambda_{\Theta}(\xi) \otimes \lambda_{\Theta}(\xi))$  gives the adjoint with respect to the module bracket  $\langle \langle \alpha, \beta \rangle \rangle = (\tau_{\Theta} \otimes id)(\alpha \bullet \beta^*)$ . The second one is the left-modulation map  $M_{\eta}(\varphi_1 \otimes \varphi_2) = \lambda_{\Theta}(\eta)\varphi_1 \otimes \varphi_2$  with adjoint  $M_{\eta}^*(\varphi_1 \otimes \varphi_2) = \lambda_{\Theta}(\eta)^*\varphi_1 \otimes \varphi_2$  with respect to the same bracket above. In the next result we shall use the following symbol

$$g_{\eta}(\xi) = \int_{\mathbb{R}^{n}} \widehat{g}_{\eta}(z,\xi) \lambda_{\Theta}(z) dz$$
$$= \int_{\mathbb{R}^{n}} \widehat{g}(z,\xi) e^{-2\pi i \langle \xi, \Theta_{\downarrow} z \rangle} e^{2\pi i \langle \Theta \eta, z \rangle} \lambda_{\Theta}(z) dz.$$

LEMMA 3.6. If  $\Phi_{\eta} = \Pi_{\Theta}^* \circ M_{\eta}^*$ , the following identity holds

$$\Psi_a(\varphi) = (id \otimes \tau_{\Theta}) \int_{\mathbb{R}^n} (\mathbf{1} \otimes b(\eta)) \Big( \Phi_{\eta}^* \circ \big( \Psi_{g_{\eta}} \otimes id \big) \circ \Phi_{\eta} \Big) (\varphi \otimes \mathbf{1}) \, d\eta.$$

**Proof.** We first claim that

$$a(\xi) = (id \otimes \tau_{\Theta}) \int_{\mathbb{R}^n} (\mathbf{1} \otimes b(\eta)) \left( \underbrace{\int_{\mathbb{R}^n} \widehat{g}(z, \xi - \eta) \pi_{\Theta}(\exp_z) dz}_{\Gamma(\xi - \eta)} \right) d\eta.$$

Indeed, writing the symbol a in terms of b and g we obtain

$$a(\xi) = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \widehat{\widehat{b}}(z,\zeta) \widehat{\widehat{g}}(z,\zeta) e^{2\pi i \langle \xi,\zeta \rangle} \lambda_{\Theta}(z) \, dz d\zeta$$
$$= \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \widehat{b}(z,\eta) \widehat{g}(z,\xi-\eta) \lambda_{\Theta}(z) \, dz d\eta.$$

Now the claim follows from the quantum form of convolution via the identity

$$\int_{\mathbb{R}^n} f_1(z) f_2(z) \lambda_{\Theta}(z) dz = (id \otimes \tau_{\Theta}) \Big\{ \Big( \mathbf{1} \otimes \lambda_{\Theta}(f_1) \Big) \Big( \int_{\mathbb{R}^n} f_2(z) \pi_{\Theta}(\exp_z) dz \Big) \Big\}.$$

Next we use the claim to produce an expression for  $\Psi_a(\varphi)$ . Namely, we have

$$\begin{split} \Psi_{a}(\varphi) &= (id \otimes \tau_{\Theta}) \int_{\mathbb{R}^{n}} (a(\xi) \otimes \varphi) \pi_{\Theta}(\exp_{\xi}) \, d\xi \\ &= (id \otimes \tau_{\Theta} \otimes \tau_{\Theta}) \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \left[ (\mathbf{1} \otimes b(\eta)) \Gamma(\xi - \eta) \otimes \varphi \right] \pi_{\Theta}(\exp_{\xi})_{[13]} \, d\xi d\eta \\ &= (id \otimes \tau_{\Theta}) \int_{\mathbb{R}^{n}} (\mathbf{1} \otimes b(\eta)) \Big\{ (id \otimes id \otimes \tau_{\Theta}) \int_{\mathbb{R}^{n}} (\Gamma(\xi - \eta) \otimes \varphi) \pi_{\Theta}(\exp_{\xi})_{[13]} \, d\xi \Big\} \, d\eta \\ \text{with } (a \otimes b)_{[13]} &= a \otimes \mathbf{1} \otimes b. \text{ The assertion reduces to prove the following identity} \\ \mathbf{A} &:= (id \otimes id \otimes \tau_{\Theta}) \int_{\mathbb{R}^{n}} (\Gamma(\xi - \eta) \otimes \varphi) \pi_{\Theta}(\exp_{\xi})_{[13]} \, d\xi = \Big(\Phi_{\eta}^{*} \circ (\Psi_{g_{\eta}} \otimes id) \circ \Phi_{\eta}\Big) (\varphi \otimes \mathbf{1}) =: \mathbf{B}. \end{split}$$

Expanding  $\Gamma(\xi - \eta)$  it is clear that

$$A = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \widehat{\varphi}(\xi) \widehat{g}(z, \xi - \eta) \lambda_{\Theta}(z) \lambda_{\Theta}(\xi) \otimes \lambda_{\Theta}(z)^* dz d\xi.$$

On the other hand, we have the identity

$$B = (\lambda_{\Theta}(\eta) \otimes \mathbf{1}) \Pi_{\Theta} \left\{ \int_{\mathbb{R}^n} \left( g_{\eta}(\xi) \otimes \underbrace{(\tau_{\Theta} \otimes id) \left( \Phi_{\eta}(\varphi \otimes \mathbf{1}) (\lambda_{\Theta}(\xi)^* \otimes \mathbf{1}) \right)}_{\beta_n(\xi)} \right) (\lambda_{\Theta}(\xi) \otimes \mathbf{1}) d\xi \right\}$$

where it is easily checked that

$$\Phi_{\eta}(\varphi \otimes \mathbf{1}) = \Pi_{\Theta}^{*} \Big( \int_{\mathbb{R}^{n}} \widehat{\varphi}(s) \lambda_{\Theta}(\eta)^{*} \lambda_{\Theta}(s) \otimes \mathbf{1} \, ds \Big) 
= \int_{\mathbb{R}^{n}} \widehat{\varphi}(s) e^{2\pi i \langle \eta, \Theta_{\downarrow}(\eta - s) \rangle} \lambda_{\Theta}(s - \eta) \otimes \lambda_{\Theta}(s - \eta) \, ds,$$

so that  $\beta_{\eta}(\xi) = \widehat{\varphi}(\xi + \eta)e^{-2\pi i \langle \eta, \Theta_{\downarrow} \xi \rangle} \lambda_{\Theta}(\xi)$ . This yields

$$B = (\lambda_{\Theta}(\eta) \otimes \mathbf{1}) \Pi_{\Theta} \Big\{ \int_{\mathbb{R}^{n}} \Big( g_{\eta}(\xi) \otimes \beta_{\eta}(\xi) \Big) (\lambda_{\Theta}(\xi) \otimes \mathbf{1}) \, d\xi \Big\}$$

$$= (\lambda_{\Theta}(\eta) \otimes \mathbf{1}) \Pi_{\Theta} \Big\{ \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \Big( \widehat{g}_{\eta}(z, \xi) \lambda_{\Theta}(z) \otimes \beta_{\eta}(\xi) \Big) (\lambda_{\Theta}(\xi) \otimes \mathbf{1}) \, dz d\xi \Big\}$$

$$= (\lambda_{\Theta}(\eta) \otimes \mathbf{1}) \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} e^{2\pi i \langle z, \Theta_{\downarrow} \xi \rangle} \widehat{g}_{\eta}(z, \xi) \lambda_{\Theta}(z + \xi) \otimes \lambda_{\Theta}(z + \xi)^{*} \beta_{\eta}(\xi) \, dz d\xi$$

$$= \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \widehat{\varphi}(\xi + \eta) e^{2\pi i \langle z - \eta, \Theta_{\downarrow} \xi \rangle} \widehat{g}_{\eta}(z, \xi) \lambda_{\Theta}(\eta) \lambda_{\Theta}(z + \xi) \otimes \lambda_{\Theta}(z + \xi)^{*} \lambda_{\Theta}(\xi) \, dz d\xi.$$

Rearranging and using 
$$\widehat{g}_{\eta}(z,\xi) = \widehat{g}(z,\xi)e^{-2\pi i\langle\xi,\Theta_{\downarrow}z\rangle}e^{2\pi i\langle\Theta\eta,z\rangle}$$
 yields  $A = B$ .

REMARK 3.7. The above lemma may be regarded as the quantum analogue of the identity in [71], Lemma XIII.1.1], whose Euclidean proof is trivial. The quantum analogue gives unfortunately an extra  $\Theta$ -phase which vanishes for  $\Theta = 0$ . It is this phase what forces us to be very careful in adapting Cordes argument [24] below.

Lemma 3.8.  $\Psi_{g_{\eta}}$  admits the factorization

$$\Psi_{g_{\eta}} = A_{\eta}^* \circ B \circ A_{\eta} \quad with \quad \sup_{\eta \in \mathbb{R}^n} \left\| A_{\eta} : L_2(\mathcal{R}_{\Theta}) \to L_2(\mathcal{R}_{\Theta}) \right\| \left\| B \right\|_{S_1(L_2(\mathcal{R}_{\Theta}))} < \infty.$$

**Proof.** Let  $w_{\eta}(z,\xi) = e^{-2\pi i \langle \xi,\Theta_{\downarrow}z\rangle} e^{2\pi i \langle \Theta\eta,z\rangle}$ , so that

$$\begin{split} \Psi_{g_{\eta}}(\varphi) &= \int_{\mathbb{R}^{n}} g_{\eta}(\xi) \widehat{\varphi}(\xi) \lambda_{\Theta}(\xi) \, d\xi \\ &= \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \widehat{g}(z,\xi) w_{\eta}(z,\xi) \widehat{\varphi}(\xi) \lambda_{\Theta}(z) \lambda_{\Theta}(\xi) \, dz d\xi \\ &= \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \widehat{\widehat{g}}(z,\zeta) w_{\eta}(z,\xi) e^{2\pi i \langle \xi,\zeta \rangle} \widehat{\varphi}(\xi) \lambda_{\Theta}(z) \lambda_{\Theta}(\xi) \, dz d\zeta d\xi. \end{split}$$

Let us define  $j_{\xi\eta}:\mathbb{R}^n\to\mathbb{C}$  and  $m_{\mathrm{N}}:\mathbb{R}^n\to\mathbb{C}$  as follows

$$j_{\xi\eta}(z) = \frac{w_{\eta}(z,\xi)}{(1+4\pi^2|z|^2)^{N}},$$

$$m_{N}(\xi) = \int_{\mathbb{R}^{n}} \frac{e^{2\pi i \langle \xi,\zeta \rangle}}{(1+4\pi^2|\zeta|^2)^{N}} d\zeta = \hat{j}_{00}(\xi),$$

where  $\hat{j}_{00}$  stands for the Euclidean Fourier transform of  $j_{\xi\eta}$  when  $(\xi,\eta) = (0,0)$ . Inserting our definition of  $\hat{g}(z,\zeta)$ , we finally end up with the following factorization

$$\begin{split} \Psi_{g_{\eta}}(\varphi) &= \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} j_{\xi\eta}(z) m_{\mathcal{N}}(\xi) \widehat{\varphi}(\xi) \lambda_{\Theta}(z) \lambda_{\Theta}(\xi) \, dz d\xi \\ &= \int_{\mathbb{R}^{n}} \left( \int_{\mathbb{R}^{n}} j_{\xi\eta}(z) m_{\mathcal{N}}(\xi - z) \widehat{\varphi}(\xi - z) e^{2\pi i \langle z, \Theta_{\downarrow}(\xi - z) \rangle} \, dz \right) \lambda_{\Theta}(\xi) \, d\xi \\ &= \int_{\mathbb{R}^{n}} \left( \int_{\mathbb{R}^{n}} \underbrace{\left( j_{\xi\eta}(\xi - z) e^{2\pi i \langle \xi - z, \Theta_{\downarrow} z \rangle} \right) m_{\mathcal{N}}(z)}_{k_{\eta}(\xi, z)} \widehat{\varphi}(z) \, dz \right) \lambda_{\Theta}(\xi) \, d\xi. \end{split}$$

This gives  $\Psi_{g_{\eta}} = \lambda_{\Theta} \circ T_{k_{\eta}} \circ \lambda_{\Theta}^{-1}$ , which reduces our goal to justify the assertion for  $T_{k_{\eta}}$  instead of  $\Psi_{g_{\eta}}$ . Indeed, assume  $T_{k_{\eta}} = \mathsf{A}_{\eta}^* \circ \mathsf{B} \circ \mathsf{A}_{\eta}$  with  $\mathsf{A}_{\eta}$  uniformly bounded in  $\mathcal{B}(L_2(\mathbb{R}^n))$  and  $\mathsf{B}$  a trace class operator on the Hilbert space  $L_2(\mathbb{R}^n)$ . Then we consider the maps

$$A_n = \lambda_{\Theta} \circ \mathsf{A}_n \circ \lambda_{\Theta}^{-1}$$
 and  $B = \lambda_{\Theta} \circ \mathsf{B} \circ \lambda_{\Theta}^{-1}$ ,

which factorize  $\Psi_{q_n}$  and satisfy

$$||A_{\eta}||_{\mathcal{B}(L_{2}(\mathcal{R}_{\Theta}))} = ||A_{\eta}||_{\mathcal{B}(L_{2}(\mathbb{R}^{n}))},$$
  
$$||B||_{S_{1}(L_{2}(\mathcal{R}_{\Theta}))} = ||B||_{S_{1}(L_{2}(\mathbb{R}^{n}))}.$$

The kernel  $k_{\eta}$  can be written as follows

$$k_{\eta}(x,y) = e^{2\pi i \langle x-y, \Theta \eta + \Theta_{\downarrow} y + \Theta_{\uparrow} x \rangle} j_{00}(x-y) \, m_{\mathrm{N}}(y) = e^{2\pi i \langle x-y, \Theta \eta \rangle} k(x,y).$$

If  $A_{\eta}f(x) = e^{-2\pi i \langle x,\Theta\eta\rangle}f(x)$ , we see that  $T_{k_{\eta}} = A_{\eta}^* \circ B \circ A_{\eta}$  with  $B = T_k$  and  $A_{\eta}$  unitaries. Thus, it suffices to show that B is trace class on  $L_2(\mathbb{R}^n)$ . Composing it with the Euclidean Fourier transform  $\mathcal{F} = \lambda_0^{-1}$  as in the proof of [24, Lemma 1] we end up with  $L = \mathcal{F} \circ T_k$ , whose kernel is given by

$$\ell(x,y) = e^{-2\pi i \langle x,y \rangle} \widehat{\alpha}(x - \Theta y) m_{N}(y),$$

where  $\widehat{\alpha}$  is the Euclidean Fourier transform of  $\alpha(z) = j_{00}(z)e^{-2\pi i\langle z,\Theta_{\downarrow}z\rangle} = j_{z0}(z)$ . This is very similar to the kernel in [24], Lemma 1 - (1.25)], in fact we recover the same kernel for  $\Theta = 0$ . Unfortunately, due to the  $\Theta$ -phase we are carrying, we do not have separated variables as in [24]. However, a detailed analysis of Cordes argument shows that what really matters is that the x-factor of the kernel  $-\psi_{\tau}(x)$ 

in [24]— yields a pointwise multiplier by  $m_N$ . We only have that in the y-variable. Taking the adjoint  $L^* = T_{k_n}^* \circ \mathcal{F}^{-1}$  we get the kernel

$$\ell^*(x,y) = \overline{\ell(y,x)} = e^{2\pi i \langle x,y \rangle} \overline{m_N(x)\widehat{\alpha}(y - \Theta x)}$$

Then, Cordes factorization  $m_N(x) = \zeta(x)\kappa(x)$  with  $\zeta(x) = \exp(-\frac{1}{2}\langle x \rangle)$  implies in turn that  $L^* = R \circ S$  where their respective kernels r(x, z) and s(z, y) are given by

$$r(x,z) = \frac{\overline{\kappa(x)}}{(1+4\pi^2|z|^2)^{\mathcal{M}}} \int_{\mathbb{R}^n} \frac{e^{2\pi i \langle x-z,s\rangle}}{(1+4\pi^2|s|^2)^{\mathcal{M}}} ds,$$

$$s(z,y) = (1+4\pi^2|z|^2)^{\mathcal{M}} (\mathbf{1}-\Delta_z)^{\mathcal{M}} \Big(\zeta(z)e^{2\pi i \langle z,y\rangle} \overline{\widehat{\alpha}(y-\Theta z)}\Big).$$

By [24], R is Hilbert-Schmidt for M large enough. Since  $\widehat{\alpha}$  is as smooth as  $\widehat{j}_{00}$ , it is  $\mathcal{C}^k(\mathbb{R}^n)$  for  $\mathbb{N} > \frac{1}{2}(n+k)$  and exponentially decreasing at  $\infty$ . In particular, S is also Hilbert-Schmidt for  $\mathbb{N}$  large enough. Thus  $\mathbb{B} = \mathcal{F}^{-1}S^*R^* \in S_1(L_2(\mathbb{R}^n))$ .

THEOREM 3.9. If  $a \in S_{0,0}^0(\mathcal{R}_{\Theta})$ , then  $\Psi_a: L_2(\mathcal{R}_{\Theta}) \to L_2(\mathcal{R}_{\Theta})$  is bounded.

**Proof.** According to Lemmas 3.6 and 3.8 we find

$$\Psi_a(\varphi) = (id \otimes \tau_{\Theta}) \int_{\mathbb{R}^n} (\mathbf{1} \otimes b(\eta)) \Big( \Phi_{\eta}^* \Big( \underbrace{A_{\eta}^* B A_{\eta} \otimes id}_{\mathbf{A}_{n}^* \mathbf{B} \mathbf{A}_{\eta}} \Big) \Phi_{\eta} \Big) (\varphi \otimes \mathbf{1}) \, d\eta.$$

Given  $\varphi_1, \varphi_2$  in the unit ball of  $L_2(\mathcal{R}_{\Theta})$ , it suffices to get a uniform bound for

$$\langle \Psi_{a}(\varphi_{1}), \varphi_{2} \rangle = \int_{\mathbb{R}^{n}} (\tau_{\Theta} \otimes \tau_{\Theta}) \Big\{ \Phi_{\eta}^{*} \mathbf{A}_{\eta}^{*} \mathbf{B} \mathbf{A}_{\eta} \Phi_{\eta}(\varphi_{1} \otimes \mathbf{1}) (\varphi_{2} \otimes b(\eta)^{*})^{*} \Big\} d\eta$$
$$= \int_{\mathbb{R}^{n}} (\tau_{\Theta} \otimes \tau_{\Theta}) \Big\{ \mathbf{B}_{1} \mathbf{A}_{\eta} \Phi_{\eta}(\varphi_{1} \otimes \mathbf{1}) \mathbf{B}_{2} \mathbf{A}_{\eta} \Phi_{\eta}(\varphi_{2} \otimes b(\eta)^{*})^{*} \Big\} d\eta,$$

where  $\mathbf{B} = (u|\mathbf{B}|^{\frac{1}{2}})|\mathbf{B}|^{\frac{1}{2}} = \mathbf{B}_2^*\mathbf{B}_1$  from polar decomposition. By Cauchy-Schwarz

$$\begin{aligned} \left| \left\langle \Psi_{a}(\varphi_{1}), \varphi_{2} \right\rangle \right| &\leq \left( \int_{\mathbb{R}^{n}} (\tau_{\Theta} \otimes \tau_{\Theta}) \left\{ |\mathbf{B}_{1}|^{2} \mathbf{A}_{\eta} \Phi_{\eta}(\varphi_{1} \otimes \mathbf{1}) \mathbf{A}_{\eta} \Phi_{\eta}(\varphi_{1} \otimes \mathbf{1})^{*} \right\} d\eta \right)^{\frac{1}{2}} \\ &\times \left( \int_{\mathbb{R}^{n}} (\tau_{\Theta} \otimes \tau_{\Theta}) \left\{ |\mathbf{B}_{2}|^{2} \mathbf{A}_{\eta} \Phi_{\eta}(\varphi_{2} \otimes b(\eta)^{*}) \mathbf{A}_{\eta} \Phi_{\eta}(\varphi_{2} \otimes b(\eta)^{*})^{*} \right\} d\eta \right)^{\frac{1}{2}} = \alpha \beta. \end{aligned}$$

Writing  $\mathbf{B}_2 = B_2 \otimes id$ , we claim that the second term above  $\beta$  is dominated by

$$\sup_{\eta \in \mathbb{R}^n} \left\| b(\eta) : L_2(\mathcal{R}_{\Theta}) \to L_2(\mathcal{R}_{\Theta}) \right\| \left\| |B_2|^2 \right\|_{S_1(L_2(\mathcal{R}_{\Theta}))}^{\frac{1}{2}}.$$

Note that the same estimate applies to the first term with  $b(\eta) = \mathbf{1}$  and  $(\varphi_2, \mathbf{B}_2)$  replaced by  $(\varphi_1, \mathbf{B}_1)$ . Moreover, since  $|B_j|^2 \leq |B| + u|B|u^*$  and B is trace class, it suffices to check that  $b(\xi) = (\mathbf{1} - \Delta_{\Theta})^{\mathrm{N}}(\mathbf{1} - \Delta_{\xi})^{\mathrm{N}}a(\xi)$  is uniformly bounded in  $\mathcal{R}_{\Theta}$  which follows from the fact that  $a \in S_{00}^0(\mathcal{R}_{\Theta})$ . Therefore, it only remains to justify our claim above. Since  $|B_2|^2$  is trace class, let  $s_j$  denote its singular numbers and consider the corresponding set  $u_j$  of unit eigenvectors. This gives

$$|\mathbf{B}_2|^2(h) = \sum_j s_j(\tau_{\Theta} \otimes id) (h(u_j \otimes \mathbf{1})^*) (u_j \otimes \mathbf{1}).$$

In particular, using the module bracket  $\langle \langle h_1, h_2 \rangle \rangle = (\tau_{\Theta} \otimes id)(h_1 \bullet h_2^*)$ , we get

$$\beta^{2} = \sum_{j} s_{j} \int_{\mathbb{R}^{n}} \tau_{\Theta} \left\{ \left| \left\langle \left\langle \mathbf{A}_{\eta} \Phi_{\eta} (\varphi_{2} \otimes b(\eta)^{*}), u_{j} \otimes \mathbf{1} \right\rangle \right\rangle \right|^{2} \right\} d\eta$$

$$= \sum_{j} s_{j} \int_{\mathbb{R}^{n}} \tau_{\Theta} \left\{ \left| \left\langle \left\langle M_{\eta}^{*} (\varphi_{2} \otimes b(\eta)^{*}), \Pi_{\Theta} \mathbf{A}_{\eta}^{*} (u_{j} \otimes \mathbf{1}) \right\rangle \right\rangle \right|^{2} \right\} d\eta.$$

Now, recalling that  $\mathbf{A}_{\eta}^*(u_j \otimes \mathbf{1}) = A_{\eta}^*(u_j) \otimes \mathbf{1} = \lambda_{\Theta} \circ \mathsf{A}_{\eta}^* \circ \lambda_{\Theta}^{-1}(u_j) \otimes \mathbf{1}$ , we get

$$\left\langle \left\langle M_{\eta}^{*}(\varphi_{2} \otimes b(\eta)^{*}), \Pi_{\Theta} \mathbf{A}_{\eta}^{*}(u_{j} \otimes \mathbf{1}) \right\rangle \right\rangle \\
= \left\langle \left\langle \lambda_{\Theta}(\eta)^{*} \varphi_{2} \otimes b(\eta)^{*}, \int_{\mathbb{R}^{n}} e^{2\pi i \langle \xi, \Theta \eta \rangle} \widehat{u}_{j}(\xi) \pi_{\Theta}(\exp_{\xi}) d\xi \right\rangle \right\rangle \\
= \left( \int_{\mathbb{R}^{n}} e^{-2\pi i \langle \xi, \Theta \eta \rangle} \overline{\widehat{u}_{j}(\xi)} (\tau_{\Theta} \otimes id) \left( \left( \lambda_{\Theta}(\eta)^{*} \varphi_{2} \otimes \mathbf{1} \right) \pi_{\Theta}(\exp_{\xi})^{*} \right) d\xi \right) b(\eta)^{*} \\
= \left( \int_{\mathbb{R}^{n}} \underbrace{e^{-2\pi i \langle \xi, \Theta \eta \rangle} e^{-2\pi i \langle \eta, \Theta_{\downarrow} \xi \rangle} \widehat{u}_{j}(\xi)} \widehat{u}_{j}(\xi) \widehat{\varphi}_{2}(\xi + \eta) \lambda_{\Theta}(\xi) d\xi \right) b(\eta)^{*}.$$

This gives

$$\beta^{2} \leq \sup_{\eta \in \mathbb{R}^{n}} \|b(\eta)\|_{\mathcal{R}_{\Theta}}^{2} \sum_{j} s_{j} \int_{\mathbb{R}^{n}} \|\lambda_{\Theta}(\phi_{\eta_{j}})\|_{L_{2}(\mathcal{R}_{\Theta})}^{2} d\eta$$
  
$$\leq \sup_{\eta \in \mathbb{R}^{n}} \|b(\eta)\|_{\mathcal{R}_{\Theta}}^{2} \sum_{j} s_{j} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} |\widehat{u}_{j}(\xi)\widehat{\varphi}_{2}(\xi + \eta)|^{2} d\eta d\xi,$$

which is exactly the estimate we were looking for. This completes the proof.  $\Box$ 

REMARK 3.10. A careful analysis of the function  $\widehat{\alpha}$  in the proof of Lemma 3.8 could lead as in [24] to the sharp condition N > n/4. This would imply that Theorem 3.9 holds under the optimal assumption

$$\left|\partial_{\Theta}^{\beta}\partial_{\xi}^{\alpha}a(\xi)\right| \leq C_{\alpha\beta} \quad for \quad |\alpha|, |\beta| \leq \left\lceil \frac{n}{2} \right\rceil + 1.$$

Now we are ready to study the  $L_2$ -boundedness for exotic symbols in  $S^0_{\rho,\rho}(\mathcal{R}_{\Theta})$  with  $0 < \rho < 1$ . A weak form of Cotlar's almost orthogonality lemma naturally plays a crucial role. Namely, given a family of operators  $(T_j)_{j\geq 0} \subset \mathcal{B}(\mathcal{H})$  and a summable sequence  $(c_j)_{j\geq 0} \subset \mathbb{R}_+$  we find

$$\left\| \sum_{j>0} T_j \right\|_{\mathcal{B}(\mathcal{H})} \lesssim \sum_{j>0} c_j$$

provided that the following conditions hold for  $j \neq k$ 

$$\sup_{j>0} \|T_j\|_{\mathcal{B}(\mathcal{H})} < \infty, \qquad \|T_j T_k^*\|_{\mathcal{B}(\mathcal{H})} = 0, \qquad \|T_j^* T_k\|_{\mathcal{B}(\mathcal{H})} \le c_j c_k.$$

The other ingredient is a dilation argument among different deformations  $\mathcal{R}_{\Theta}$ .

Lemma 3.11. Given R > 0, the map

$$D_R: \mathcal{R}_\Theta \ni \lambda_\Theta(\xi) \mapsto \lambda_{R^2\Theta}\Big(\frac{\xi}{R}\Big) \in \mathcal{R}_{R^2\Theta}$$

is a \*-homomorphism. Moreover,  $\Psi_a = D_R^{-1} \Psi_{\widetilde{a}_R} D_R$  for

$$a: \mathbb{R}^n \to \mathcal{R}_{\Theta} \quad and \quad \widetilde{a}_{\mathcal{R}}(\xi) = \int_{\mathbb{R}^n} \widehat{a}(z, \mathcal{R}\xi) \lambda_{\mathcal{R}^2\Theta}(z/\mathcal{R}) \, dz = \mathcal{D}_{\mathcal{R}}(a(\mathcal{R}\xi)) \in \mathcal{R}_{\mathcal{R}^2\Theta}.$$

**Proof.** To prove that D<sub>R</sub> is a \*-homomorphism is straightforward. Now

$$\begin{split} & D_{\mathrm{R}}\Psi_{a}D_{\mathrm{R}}^{-1}(\varphi) = \int_{\mathbb{R}^{n}} (\widehat{\Psi_{a}D_{\mathrm{R}}^{-1}}\varphi)(\xi)\lambda_{\mathrm{R}^{2}\Theta}(\xi/\mathrm{R})\,d\xi \\ & = \int_{\mathbb{R}^{n}} \tau_{\Theta} \Big\{ \Big( \int_{\mathbb{R}^{n}} a(\eta)\widehat{D_{\mathrm{R}}^{-1}}\varphi(\eta)\lambda_{\Theta}(\eta)\,d\eta \Big)\lambda_{\Theta}(\xi)^{*} \Big\} \lambda_{\mathrm{R}^{2}\Theta}(\xi/\mathrm{R})\,d\xi \\ & = \int_{\mathbb{R}^{n}} \tau_{\Theta} \Big\{ \Big( \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \widehat{a}(z,\eta)\lambda_{\Theta}(z)\mathrm{R}^{-n}\widehat{\varphi}(\eta/\mathrm{R})\lambda_{\Theta}(\eta)\,dzd\eta \Big)\lambda_{\Theta}(\xi)^{*} \Big\} \lambda_{\mathrm{R}^{2}\Theta}(\xi/\mathrm{R})\,d\xi \\ & = \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} e^{2\pi i \langle \xi - \eta, \Theta_{\downarrow} \eta \rangle} \widehat{a}(\xi-\eta,\eta)\mathrm{R}^{-n}\widehat{\varphi}(\eta/\mathrm{R})\lambda_{\mathrm{R}^{2}\Theta}(\xi/\mathrm{R})\,d\eta d\xi \\ & = \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \widehat{a}(\xi,\eta)\mathrm{R}^{-n}\widehat{\varphi}(\eta/\mathrm{R})\lambda_{\mathrm{R}^{2}\Theta}(\xi/\mathrm{R})\lambda_{\mathrm{R}^{2}\Theta}(\eta/\mathrm{R})\,d\eta d\xi \\ & = \int_{\mathbb{R}^{n}} \Big( \int_{\mathbb{R}^{n}} \widehat{a}(\xi,\mathrm{R}\eta)\lambda_{\mathrm{R}^{2}\Theta}(\xi/\mathrm{R})\,d\xi \Big) \widehat{\varphi}(\eta)\lambda_{\mathrm{R}^{2}\Theta}(\eta)\,d\eta \\ & = \int_{\mathbb{R}^{n}} \widetilde{a}_{\mathrm{R}}(\eta)\widehat{\varphi}(\eta)\lambda_{\mathrm{R}^{2}\Theta}(\eta)\,d\eta \,=\, \Psi_{\widetilde{a}_{\mathrm{R}}}(\varphi). \end{split}$$

THEOREM 3.12. If  $a \in S_{\rho,\rho}^0(\mathcal{R}_{\Theta})$  and  $\rho < 1$ ,  $\Psi_a: L_2(\mathcal{R}_{\Theta}) \to L_2(\mathcal{R}_{\Theta})$  is bounded.

**Proof.** Let  $\phi_0 \in \mathcal{C}^{\infty}(\mathbb{R}^n)$  radial, identically 1 in  $B_1(0)$  and zero outside  $B_2(0)$ . Using the partition of unity  $\phi_0 + \sum_{j \geq 1} \phi_j \equiv 1$  with  $\phi_j(\xi) = \phi_0(2^{-j}\xi) - \phi_0(2^{-(j-1)}\xi)$  we decompose  $\Psi_a$  as follows

$$\Psi_a = \sum_{j=0}^{\infty} \Psi_{a_j} = \sum_{j=0}^{\infty} \Psi_{a_{2j}} + \sum_{j=0}^{\infty} \Psi_{a_{2j+1}} = \Psi_{\text{even}} + \Psi_{\text{odd}},$$

where  $a_j(\xi) = a(\xi)\phi_j(\xi)$ . We shall only bound the even part, since both are treated in a similar way. To do so, we apply Cotlar's lemma as stated above. Given j,k distinct even numbers, we clearly have  $\Psi_{a_j}\Psi_{a_k}^* = 0$  since  $\phi_j$  and  $\phi_k$  have disjoint supports. Therefore, it suffices to prove that

i) 
$$\sup_{j\geq 0} \|\Psi_{a_j}\|_{\mathcal{B}(L_2(\mathcal{R}_\Theta))} < \infty$$
,

ii) 
$$\|\Psi_{a_j}^*\Psi_{a_k}\|_{\mathcal{B}(L_2(\mathcal{R}_\Theta))} \le c_j c_k$$
,

for some summable sequence  $(c_j)_{j\geq 0}\subset \mathbb{R}_+$  and any pair of distinct even integers j,k. The first condition follows from our form of Calderón-Vaillancourt theorem in  $S_{00}^0(\mathcal{R}_{\Theta})$  and Lemma 3.11 Indeed, pick  $R_j=2^{j\rho}$  and let

$$a_{[j]} = \widetilde{(a_j)}_{\mathbf{R}_j} = \mathbf{D}_{\mathbf{R}_j} (a_j(\mathbf{R}_j \cdot)).$$

Then

$$\|\Psi_{a_j}\|_{\mathcal{B}(L_2(\mathcal{R}_{\Theta}))} \le \|\Psi_{a_{[j]}}\|_{\mathcal{B}(L_2(\mathcal{R}_{\mathbb{R}_2^2\Theta}))}$$

since  $\Psi_{a_j} = D_{R_j}^{-1} \Psi_{a_{[j]}} D_{R_j}$  and

$$\left\|D_{R_j}^{-1}\right\|_{\mathcal{B}(L_2(\mathcal{R}_{R_j^2\Theta}),L_2(\mathcal{R}_\Theta))}\left\|D_{R_j}\right\|_{\mathcal{B}(L_2(\mathcal{R}_\Theta),L_2(\mathcal{R}_{R_j^2\Theta}))}=1.$$

The  $L_2$ -boundedness of  $\Psi_{a_{[j]}}$  follows from Theorem 3.9 since  $a_{[j]} \in S^0_{00}(\mathcal{R}_{\mathbf{R}^2_j\Theta})$ . The proof of this fact follows essentially as in the Euclidean setting. Indeed, write  $a_{[j]}$  in terms of  $\widehat{a}_j$ —Lemma 3.11— and use that  $D_{\mathbf{R}_j}$  is a \*-homomorphism. In conjunction with the  $\xi$ -localization of  $a_j$  in the annulus of radii  $\sim 2^j$ , this easily

gives  $a_{[j]} \in S_{00}^0(\mathcal{R}_{\mathbf{R}_j^2\Theta})$ , we leave details to the reader. It remains to estimate the norm of  $\Psi_{a_j}^* \Psi_{a_k}$  for even  $j \neq k$ . After a calculation we obtain that the kernel  $k_{jk}$  of such operator is given by

$$k_{jk} = (id \otimes \tau_{\Theta} \otimes id) \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} (\pi_{\Theta}(\exp_{\xi}) \otimes \mathbf{1}) \left(\mathbf{1} \otimes a_j(\xi)^* a_k(\eta) \otimes \mathbf{1}\right) \left(\mathbf{1} \otimes \pi_{\Theta}(\exp_{\eta})\right) d\xi d\eta,$$

where, in an abuse of notation, the element  $\pi_{\Theta}(\exp_{\xi}) = \lambda_{\Theta}(\xi) \otimes \lambda_{\Theta}(\xi)^*$  is seen as belonging to  $\mathcal{R}_{\Theta} \bar{\otimes} \mathcal{R}_{\Theta}$  instead of  $\mathcal{R}_{\Theta} \bar{\otimes} \mathcal{R}_{\Theta}^{op}$ . We are also going to shorten  $a \otimes b \otimes 1$  by  $(a \otimes b)_{[12]}$  where the leg numbers just mean that the tensor components are placed in the first and second places respectively. Now, we use

$$\frac{(\mathbf{1} - \Delta_{\Theta})^{N}}{(1 + 4\pi^{2}|\xi - \eta|^{2})^{N}} \lambda_{\Theta}(\eta) \lambda_{\Theta}(\xi)^{*} = \lambda_{\Theta}(\eta) \lambda_{\Theta}(\xi)^{*},$$

$$\pi_{\Theta} \left(\frac{1}{(1 + 4\pi^{2}d^{2})^{n}}\right) (\mathbf{1} - \Delta_{\eta})^{n} \lambda_{\Theta}(\eta) \otimes \lambda_{\Theta}(\eta)^{*} = \lambda_{\Theta}(\eta) \otimes \lambda_{\Theta}(\eta)^{*},$$

$$\pi_{\Theta} \left(\frac{1}{(1 + 4\pi^{2}d^{2})^{n}}\right) (\mathbf{1} - \Delta_{\xi})^{n} \lambda_{\Theta}(\xi) \otimes \lambda_{\Theta}(\xi)^{*} = \lambda_{\Theta}(\xi) \otimes \lambda_{\Theta}(\xi)^{*},$$

where d(x) = |x| is the Euclidean distance. Integration by parts yields

$$k_{jk} = (id \otimes \tau_{\Theta} \otimes id) \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \pi_{\Theta}(\varphi_{\xi})_{[12]} B(\xi, \eta)_{[2]} \pi_{\Theta}(\varphi_{\eta})_{[23]} d\eta d\xi,$$

where

$$B(\xi, \eta) = (\mathbf{1} - \Delta_{\eta})^{n} (\mathbf{1} - \Delta_{\xi})^{n} \left\{ \frac{(\mathbf{1} - \Delta_{\Theta})^{N}}{(1 + 4\pi^{2} |\eta - \xi|^{2})^{N}} a_{j}(\xi)^{*} a_{k}(\eta) \right\}$$

and the function  $\varphi_{\zeta}$  is given by  $\exp_{\zeta}(1+4\pi^2d^2)^{-n}$ . After expanding the derivatives using the Leibniz rule, we obtain that B is a finite sum of simple terms of the form

$$B_s(\xi,\eta) = \partial_\xi^{\alpha_1} \partial_\eta^{\beta_1} \left( \frac{1}{(1+4\pi^2|\xi-\eta|^2)^{\mathrm{N}}} \right) \underbrace{\partial_\xi^{\alpha_2} \partial_\Theta^{\sigma_1} a_j(\xi)^*}_{b_i^s(\xi)^*} \underbrace{\partial_\eta^{\beta_2} \partial_\Theta^{\sigma_2} a_k(\eta)}_{b_k^s(\eta)},$$

where  $\alpha_i, \beta_i, \sigma_i \in \mathbb{Z}_+^n$  satisfy  $|\alpha_1 + \alpha_2| \leq 2n$ ,  $|\beta_1 + \beta_2| \leq 2n$ ,  $|\sigma_1 + \sigma_2| \leq 2N$  and s is the combination of the involved multindices. We can bound each of the above summands in s independently

$$\|\Psi_{a_j}^*\Psi_{a_k}\| \leq \sum_{s} \left\| \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} T_{(id\otimes \tau_{\Theta}\otimes id)\{\pi_{\Theta}(\varphi_{\xi})_{[12]}B_s(\xi,\eta)_{[2]}\pi_{\Theta}(\varphi_{\eta})_{[23]}\}} d\eta d\xi \right\| = \sum_{s} A_s.$$

Using  $\left|\partial_{\xi}^{\alpha_1}\partial_{\eta}^{\beta_1}\langle\xi-\eta\rangle^{-2N}\right|\lesssim \langle\xi-\eta\rangle^{-2N}$  we obtain

$$A_s \lesssim \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \langle \xi - \eta \rangle^{-2N} \left\| \underbrace{T_{(id \otimes \tau_{\Theta} \otimes id)} \{\pi_{\Theta}(\varphi_{\xi})_{[12]} b_j^s(\xi)_{[2]}^* b_k^s(\eta)_{[2]} \pi_{\Theta}(\varphi_{\eta})_{[23]} \}}_{T_{i\xi k\eta}} \right\| d\eta d\xi.$$

 $T_{j\xi k\eta}$  can be factorized as  $T_{(b_i^s\otimes 1)\bullet\pi_\Theta(\varphi_\xi)}\circ T_{(b_k^s(\eta)\otimes 1)\bullet\pi_\Theta(\varphi_\eta)}$ , so that

$$||T_{j\xi k\eta}||_{\mathcal{B}(L_2(\mathcal{R}_{\Theta}))} \leq ||b_j^s(\xi)||_{\mathcal{R}_{\Theta}} ||b_k^s(\eta)||_{\mathcal{R}_{\Theta}} ||T_{\pi_{\Theta}(\varphi_{\xi})}||_{\mathcal{B}(L_2(\mathcal{R}_{\Theta}))} ||T_{\pi_{\Theta}(\varphi_{\eta})}||_{\mathcal{B}(L_2(\mathcal{R}_{\Theta}))}.$$

Recall that  $||T_{\pi_{\Theta}(\varphi_{\zeta})}||_{\mathcal{B}(L_{2}(\mathcal{R}_{\Theta}))} \leq ||\varphi_{\zeta}||_{L_{1}(\mathbb{R}^{n})} \lesssim 1$ . Moreover, using that  $\xi \sim 2^{j}$  and  $\eta \sim 2^{k}$  from the supports of  $a_{j}(\xi)$  and  $a_{k}(\eta)$  as well as the Hörmander condition

for a, we deduce the following bound

$$A_s \lesssim \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{\|b_j^s(\xi)\|_{\mathcal{R}_{\Theta}} \|b_k^s(\eta)\|_{\mathcal{R}_{\Theta}}}{\langle \xi - \eta \rangle^{2N}} d\xi d\eta \lesssim 2^{-2N \max\{j,k\}} 2^{2N\rho \max\{j,k\}} 2^{n(j+k)}.$$

Summing all the terms indexed by s we obtain

$$\left\|\Psi_{a_j}^*\Psi_{a_k}\right\|_{\mathcal{B}(L_2(\mathcal{R}_\Theta))} \lesssim 4^{-\max\{j,k\}((1-\rho)\mathcal{N}-n)} \leq 2^{-j((1-\rho)\mathcal{N}-n)}2^{-k((1-\rho)\mathcal{N}-n)} = c_jc_k,$$

which arises from  $(c_j)_{j\geq 0}$  summable for N large enough. The proof is complete.  $\square$ 

Remark 3.13. Let  $0 \le \delta \le \rho \le 1$ , since

$$S_{\rho,\delta}^0(\mathcal{R}_{\Theta}) \subset S_{\delta,\delta}^0(\mathcal{R}_{\Theta}) \cap S_{\rho,\rho}^0(\mathcal{R}_{\Theta}),$$

we deduce  $\Psi_a: L_2(\mathcal{R}_{\Theta}) \to L_2(\mathcal{R}_{\Theta})$  for  $a \in S^0_{\rho,\delta}(\mathcal{R}_{\Theta})$  as long as  $(\rho, \delta) \neq (1, 1)$ .

REMARK 3.14. A standard (nonoptimal) proof of Calderón-Vaillancourt theorem for  $S_{00}^0$  in the Euclidean setting [68] follows from a suitable partition of unity in the variables  $(x,\xi) \in \mathbb{R}^n \times \mathbb{R}^n$  with no known analogue for  $x_{\Theta} \in \mathcal{R}_{\Theta}$  and  $\xi \in \mathbb{R}^n$ . An alternative way to proceed is the following. Given  $a \in S_{00}^0(\mathcal{R}_{\Theta})$ , let

$$\mathbf{a}(x,\xi) = \sigma_{\Theta}^x a(\xi) = \int_{\mathbb{R}^n} \widehat{a}(z,\xi) \sigma_{\Theta}^x (\lambda_{\Theta}(z)) \, dz = \int_{\mathbb{R}^n} \widehat{a}(z,\xi) e^{2\pi i \langle x,z \rangle} \lambda_{\Theta}(z) \, dz.$$

Using the intertwining identity  $\Psi_{\mathbf{a}} \circ \sigma_{\Theta} = \sigma_{\Theta} \circ \Psi_{a}$  and recalling from Appendix B that  $\sigma_{\Theta} : L_{2}^{c}(\mathcal{R}_{\Theta}) \to L_{2}^{c}(\mathbb{R}^{n}) \bar{\otimes} \mathcal{R}_{\Theta}$  is a complete isometry, it turns our that the  $L_{2}$ -boundedness of  $\Psi_{a}$  is equivalent to the boundedness of the operator-valued map  $\Psi_{\mathbf{a}} : L_{2}^{c}(\mathbb{R}^{n}) \bar{\otimes} \mathcal{R}_{\Theta} \to L_{2}^{c}(\mathbb{R}^{n}) \bar{\otimes} \mathcal{R}_{\Theta}$ . Now, since  $\Psi_{\mathbf{a}}$  is a right  $\mathcal{R}_{\Theta}$ -module map, it follows from [42], Remark 2.4] that this will hold as long as  $\Psi_{\mathbf{a}}$  is bounded over the Hilbert space  $L_{2}(\mathbb{R}^{n}; L_{2}(\mathcal{R}_{\Theta}))$ .  $\Psi_{\mathbf{a}}$  comes equipped with an operator-valued kernel acting by left multiplication. This kind of maps are generally bad behaved [37] but we know from our proof above that  $L_{2}$ -boundedness must hold in this case. Thus this also opens the door to prove Calderón-Vaillancourt using a partition of unity in the x-component, which mirrors the behavior of its quantum analogue  $x_{\Theta}$ .

**3.2.2.** Bourdaud's condition for forbidden symbols in  $\mathcal{R}_{\Theta}$ . We have justified that all symbols in  $S^0_{\rho,\delta}(\mathcal{R}_{\Theta})$  yield  $L_2$ -bounded pseudodifferential operators except for the class of so-called forbidden symbols with  $\rho = \delta = 1$ , which is known to fail it even in the Euclidean setting. Bourdaud established a sufficient condition in  $\boxed{\mathbf{7}}$  playing the role of the T(1)-theorem for pseudodifferential operators and which we now study in  $\mathcal{R}_{\Theta}$ . Given  $p \geq 1$  and  $s \in \mathbb{R}$ , let  $W_{2,s}(\mathcal{R}_{\Theta})$  be the Sobolev space defined as the closure of  $\mathcal{S}_{\Theta}$  with respect to the norm

$$\|\varphi\|_{W_{2,s}(\mathcal{R}_{\Theta})} = \|(\mathbf{1} - \Delta_{\Theta})^{\frac{s}{2}}\varphi\|_{2}.$$

LEMMA 3.15. Let  $\phi: \mathbb{R}^n \to \mathbb{R}_+$  be a radial smooth function identically 1 in  $B_1(0)$  and vanishing outside  $B_2(0)$ . Let  $\psi_j(\xi) = \phi(2^{-j}\xi) - \phi(2^{-j+1}\xi)$  for any integer  $j \in \mathbb{Z}$ . Then, we have a norm equivalence

$$\|\lambda_{\Theta}(f)\|_{2,s}^2 \sim \sum_{j \in \mathbb{Z}} 2^{2sj} \|\lambda_{\Theta}(\psi_j f)\|_2^2 = \sum_{j \in \mathbb{Z}} 2^{2sj} \|\psi_j f\|_2^2.$$

In particular, the following properties hold:

- i)  $W_{2,-s}(\mathcal{R}_{\Theta})^* = W_{2,s}(\mathcal{R}_{\Theta})$  under the pairing  $\langle x,y \rangle = \tau_{\Theta}(x^*y)$ .
- ii)  $\left[W_{2,s}(\mathcal{R}_{\Theta}), W_{2,-s}(\mathcal{R}_{\Theta})\right]_{\frac{1}{2}} = L_2(\mathcal{R}_{\Theta})$  by complex interpolation.

The proofs of all assertions above are straightforward. Properties i) and ii) above hold isomorphically from the first assertion, but also isometrically. We shall use the following terminology for the rest of this section. Let us consider a function  $\phi: \mathbb{R}^n \to \mathbb{R}_+$  which is identically 1 in  $B_{1/8}(0)$  and vanishing outside  $B_{1/4}(0)$ . Set  $\psi_0 = \phi$  and construct  $\psi_j(\xi) = \phi(2^{-j}\xi) - \phi(2^{-j+1}\xi)$  for  $j \geq 1$ . We shall also use the partition of unity  $\rho_0 = \psi_0 + \psi_1$  and  $\rho_j = \psi_{j-1} + \psi_j + \psi_{j+1}$  for  $j \geq 1$ , so that

LEMMA 3.16. If  $a \in S_{1,1}^0(\mathcal{R}_{\Theta})$  and N > n, we have

$$a(\xi) = \sum_{k \in \mathbb{Z}^n} \langle k \rangle^{-N} \sum_{j > 0} c_{j,k} \rho_j(\xi) e^{2\pi i \langle 2^{-j} \xi, k \rangle}$$

where the coefficients  $c_{j,k} \in \mathcal{R}_{\Theta}$  satisfy the following estimate

$$\sup_{j\geq 0} \sup_{k\in\mathbb{Z}^n} \left( \|c_{j,k}\|_{\mathcal{R}_{\Theta}} + 2^{-j} \left\| \left( \sum_{i=1}^n |\partial_{\Theta}^i c_{j,k}|^2 \right)^{\frac{1}{2}} \right\|_{\mathcal{R}_{\Theta}} \right) < \infty.$$

**Proof.** Let  $a_j(\xi) = a(\xi)\psi_j(\xi)$  and  $b_j(\xi) = a_j(2^j\xi)$ , so that

$$a(\xi) = \sum_{j \ge 0} a_j(\xi) = \sum_{j \ge 0} b_j(2^{-j}\xi) = \sum_{j \ge 0} b_j(2^{-j}\xi)\rho_j(\xi).$$

According to this and recalling that supp  $\rho_j(2^j\xi) \subset [-\frac{1}{2},\frac{1}{2}]^n = Q$ , it suffices to see that  $b_j(\xi) = \sum_{k \in \mathbb{Z}^n} \langle k \rangle^{-N} c_{j,k} e^{2\pi i \langle \xi,k \rangle} \chi_Q(\xi)$  for some  $c_{j,k}$  satisfying the estimates in the statement. Now, since  $b_j$  is also supported by Q, we find that  $b_j(\xi) = d_j(\xi) \chi_Q(\xi)$  where  $d_j$  is the  $\mathbb{Z}^n$ -periodization of  $b_j$ . This gives rise to the identity

$$b_{j}(\xi) = \sum_{k \in \mathbb{Z}^{n}} \widehat{b}_{j}(k) e^{2\pi i \langle \xi, k \rangle} \chi_{Q}(\xi)$$

$$= \sum_{k \in \mathbb{Z}^{n}} \left( \int_{\mathbb{T}^{n}} b_{j}(s) e^{-2\pi i \langle s, k \rangle} ds \right) e^{2\pi i \langle \xi, k \rangle} \chi_{Q}(\xi).$$

Integrating by parts, we obtain

$$\widehat{b}_{j}(k) = \frac{1}{(1 + 4\pi^{2}|k|^{2})^{\frac{N}{2}}} \int_{\mathbb{T}^{n}} (\mathbf{1} - \Delta_{s})^{\frac{N}{2}} (b_{j}(s)) e^{-2\pi i \langle s, k \rangle} ds = \langle k \rangle^{-N} c_{j,k}.$$

To estimate  $(1 - \Delta_{\xi})^{\frac{N}{2}} b_i(\xi)$  we notice that  $|\xi| \sim 1$ , so

$$\left\|\partial_{\xi}^{\alpha}b_{j}(\xi)\right\|_{\mathcal{R}_{\Theta}}=2^{j|\alpha|}\left\|(\partial_{\xi}^{\alpha}a_{j})(2^{j}\xi)\right\|_{\mathcal{R}_{\Theta}}\lesssim2^{j|\alpha|}\left\langle2^{j}\xi\right\rangle^{-|\alpha|}\lesssim1$$

by the Hörmander condition and therefore  $(\mathbf{1} - \Delta_{\xi})^{\frac{N}{2}}b_{j}(\xi)$  is uniformly bounded in norm. The second inequality uses a similar calculation for  $\nabla_{\Theta}(\mathbf{1} - \Delta_{\xi})^{\frac{N}{2}}b(\xi)$ .

Lemma 3.17. We have

$$\|\lambda_{\Theta}(\psi_j f)\|_{\mathcal{R}_{\Theta}} \lesssim 2^{-j} \|\left(\sum_{k=1}^n \left|\partial_{\Theta}^k \lambda_{\Theta}(f)\right|^2\right)^{\frac{1}{2}} \|_{\mathcal{R}_{\Theta}} \quad for \quad j > 0.$$

**Proof.** Given  $g \in \mathcal{S}(\mathbb{R}^n)$ 

$$(\sigma_{\Theta}(\lambda_{\Theta}(f)) * g)(x) = \int_{\mathbb{R}^n} \sigma_{\Theta}^{x-y}(\lambda_{\Theta}(f))g(y) dy = \sigma_{\Theta}^x(\lambda_{\Theta}(\widehat{g}f)).$$

We also have  $\|\lambda_{\Theta}(\psi_j f)\|_{\mathcal{R}_{\Theta}} = \|\sigma_{\Theta}\lambda_{\Theta}(\psi_j f)\|_{\mathcal{R}_{\Theta}\bar{\otimes}L_{\infty}(\mathbb{R}^n)}$  and

$$\sigma_{\Theta} \lambda_{\Theta}(\psi_{j} f) = \sigma_{\Theta} \lambda_{\Theta}(f) * \widehat{\psi}_{j} 
= \int_{\mathbb{R}^{n}} \sigma_{\Theta}^{x-y} (\lambda_{\Theta}(f)) \widehat{\psi}_{j}(y) dy 
= \int_{\mathbb{R}^{n}} \left( \sigma_{\Theta}^{x-y} (\lambda_{\Theta}(f)) - \sigma_{\Theta}^{x} (\lambda_{\Theta}(f)) \right) \widehat{\psi}_{j}(y) dy 
= \int_{\mathbb{R}^{n}} \left( \int_{0}^{1} \sum_{k=1}^{n} y_{k} \sigma_{\Theta}^{x-ty} (\partial_{\Theta}^{k} \lambda_{\Theta}(f)) dt \right) \widehat{\psi}_{j}(y) dy.$$

We have used that the integral of  $\widehat{\psi}_j$  is 0 for any j>0. Taking norms gives

$$\|\sigma_{\Theta}\lambda_{\Theta}(\psi_j f)\|_{\mathcal{R}_{\Theta}\bar{\otimes}L_{\infty}(\mathbb{R}^n)}$$

$$\leq \int_{\mathbb{R}^{n}} \left\| \sum_{k=1}^{n} y_{k} \left( \partial_{\Theta}^{k} \lambda_{\Theta}(f) \right) \right\|_{\mathcal{R}_{\Theta}} |\widehat{\psi}_{j}(y)| \, dy$$

$$\leq \left( \int_{\mathbb{R}^{n}} |y| |\widehat{\psi}_{j}(y)| \, dy \right) \left\| \left( \sum_{k=1}^{n} \left| \partial_{\Theta}^{k} \lambda_{\Theta}(f) \right|^{2} \right)^{\frac{1}{2}} \right\|_{\mathcal{R}_{\Theta}}$$

$$\lesssim 2^{-j} \int_{\mathbb{R}^{n}} |y| |\widehat{\phi}(y)| \, dy \left\| \left( \sum_{k=1}^{n} \left| \partial_{\Theta}^{k} \lambda_{\Theta}(f) \right|^{2} \right)^{\frac{1}{2}} \right\|_{\mathcal{R}_{\Theta}} \lesssim 2^{-j} \left\| \left( \sum_{k=1}^{n} \left| \partial_{\Theta}^{k} \lambda_{\Theta}(f) \right|^{2} \right)^{\frac{1}{2}} \right\|_{\mathcal{R}_{\Theta}}$$

THEOREM 3.18. If  $a \in S_{1,1}^0(\mathcal{R}_{\Theta})$ 

$$\Psi_a : W_{2,s}(\mathcal{R}_{\Theta}) \to W_{2,s}(\mathcal{R}_{\Theta})$$
 is bounded for  $0 < s < 1$ .

**Proof.** By Lemma 3.16 we have that

$$a(\xi) = \sum_{k \in \mathbb{Z}^n} \langle k \rangle^{-N} \underbrace{\sum_{j \ge 0} c_{j,k} \rho_j(\xi) e^{2\pi i \langle 2^{-j} \xi, k \rangle}}_{a_k(\xi)}.$$

By taking N > n we obtain that the symbol a is just a summable combination of terms  $a_k$  and we can concentrate on studying such terms. If  $\lambda_{\Theta}(f) \in W_{2,s}(\mathcal{R}_{\Theta})$ , we have that

$$\Psi_{a_k}(\lambda_{\Theta}(f)) = \sum_{j \geq 0} c_{j,k} \lambda_{\Theta}(\rho_j \exp_{2^{-j}k} f) = \sum_{j \geq 0} c_{j,k} b_{j,k}.$$

Taking another partition of unity  $(\psi_{\ell})_{\ell>0}$  we get

$$c_{j,k} = \sum_{\ell > 0} \int_{\mathbb{R}^n} \psi_{\ell}(\xi) \widehat{c}_{j,k}(\xi) \lambda_{\Theta}(\xi) d\xi = \sum_{\ell > 0} c_{j,k}^{\ell}$$

and Lemmas 3.16 and 3.17 give  $\|c_{j,k}^{\ell}\|_{\mathcal{R}_{\Theta}} \lesssim 2^{j-\ell}$  for  $\ell > 0$ . Now decompose

$$\Psi_{a_k}(\lambda_{\Theta}(f)) = \sum_{\ell \leq j-4} c_{j,k}^{\ell} b_{j,k} + \sum_{j-4 < \ell < j+4} c_{j,k}^{\ell} b_{j,k} + \sum_{\ell \geq j+4} c_{j,k}^{\ell} b_{j,k} = \mathbf{L} + \mathbf{D} + \mathbf{U}.$$

Let us begin with the estimate of the upper term U. The Fourier support of  $\lambda_{\Theta}(f)\lambda_{\Theta}(g) = \lambda_{\Theta}(f *_{\Theta} g)$  is contained in the sum of the Fourier supports of  $\lambda_{\Theta}(f)$  and  $\lambda_{\Theta}(g)$  respectively. In particular, the Fourier support of  $c_{j,k}^{\ell}b_{j,k}$  is contained in supp  $\psi_{\ell} + \text{supp } \rho_{j} \subset [B_{2^{\ell-2}}(0) \setminus B_{2^{\ell-4}}(0)] + B_{2^{j-1}}(0) \subset B_{2^{\ell-1}}(0) \setminus B_{2^{\ell-5}}(0)$ . Now we apply Lemma 3.15 to obtain

$$\|\mathbf{U}\|_{\mathbf{W}_{2,s}(\mathcal{R}_{\Theta})}^{2} \lesssim \sum_{\ell \geq 4} 2^{2\ell s} \left\| \sum_{j \leq \ell-4} c_{j,k}^{\ell} b_{j,k} \right\|_{2}^{2} \lesssim \sum_{\ell \geq 4} 2^{2\ell s} \left( \sum_{j \leq \ell-4} \|c_{j,k}^{\ell}\|_{\mathcal{R}_{\Theta}} \|b_{j,k}\|_{2} \right)^{2}$$

$$\lesssim \sum_{\ell \geq 4} 2^{2\ell s} \left( \sum_{j \leq \ell-4} 2^{j-\ell} \|b_{j,k}\|_{2} \right)^{2} \lesssim \sum_{\ell \geq 4} 2^{2\ell(s-1)} \left( \sum_{j \leq \ell-4} 2^{j} \|b_{j,k}\|_{2} \right)^{2}.$$

On the other hand, given  $0 < \delta < 1 - s$  we have that

$$\left(\sum_{j\leq\ell-4} 2^j \|b_{j,k}\|_2\right)^2 \leq C_\delta 2^{\ell\delta} \sum_{j\leq\ell-4} 4^{j(1-\delta)} \|b_{j,k}\|_2^2.$$

In particular, we finally obtain the expected estimate

$$\begin{aligned} \|\mathbf{U}\|_{\mathbf{W}_{2,s}(\mathcal{R}_{\Theta})}^{2} &\lesssim & \sum_{\ell \geq 0} \sum_{j \leq \ell-4} 2^{2\ell(s-1+\delta)} 4^{j(1-\delta)} \|b_{j,k}\|_{2}^{2} \\ &= & \sum_{j \geq 0} \left( \sum_{\ell \geq j+4} 2^{2\ell(s-1+\delta)} \right) 4^{j(1-\delta)} \|b_{j,k}\|_{2}^{2} \\ &\lesssim & \sum_{j \geq 0} 4^{j(s-1+\delta)} 4^{j(1-\delta)} \|b_{j,k}\|_{2}^{2} \lesssim \|\lambda_{\Theta}(f)\|_{\mathbf{W}_{2,s}(\mathcal{R}_{\Theta})}^{2}. \end{aligned}$$

For the lower part L, a similar argument yields that the Fourier support of  $c_{j,k}^{\ell}b_{j,k}$  is contained inside  $B_{2^{j}}(0) \setminus B_{2^{j-6}}(0)$ . Then we can apply the same principle so that

$$\begin{split} \|\mathbf{L}\|_{\mathbf{W}_{2,s}(\mathcal{R}_{\Theta})}^{2} &\lesssim \sum_{j\geq 4} 2^{2js} \left\| \sum_{\ell\leq j-4} c_{j,k}^{\ell} \, b_{j,k} \right\|_{2}^{2} \\ &\leq \sum_{j\geq 4} 2^{2js} \left\| \sum_{\ell\leq j-4} c_{j,k}^{\ell} \right\|_{\mathcal{R}_{\Theta}} \|b_{j,k}\|_{2}^{2} \\ &\lesssim \sum_{j\geq 4} 2^{2js} \|b_{j,k}\|_{2}^{2} \lesssim \|\lambda_{\Theta}(f)\|_{\mathbf{W}_{2,s}(\mathcal{R}_{\Theta})}^{2}. \end{split}$$

In the third inequality we have used that  $\sum_{\ell} c_{j,k}^{\ell} = c_{j,k}$  and therefore

$$\left\| \sum_{\ell \le j-4} c_{j,k}^{\ell} \right\|_{\mathcal{R}_{\Theta}} = \left\| c_{j,k} - \sum_{\ell=j-3}^{\infty} c_{j,k}^{\ell} \right\|_{\mathcal{R}_{\Theta}} = \| c_{j,k} \|_{\mathcal{R}_{\Theta}} + \sum_{\ell=j-3}^{\infty} \| c_{j,k}^{\ell} \|_{\mathcal{R}_{\Theta}} \lesssim 1.$$

The diagonal part D is easier to bound. Assume for simplicity that  $j = \ell$ . The Fourier support of  $c_{j,k}^j b_{j,k}$  is comparable this time to a fixed dilation of  $B_{2^j}(0)$ , not an annulus. Nevertheless, although we do not have a norm equivalence, the norm in  $W_{2,s}(\mathcal{R}_{\Theta})$  is still dominated by the corresponding weighted  $L_2$ -sum, and we get

$$\|\mathbf{D}\|_{\mathbf{W}_{2,s}(\mathcal{R}_{\Theta})}^{2} \leq \sum_{j>0} 2^{2js} \|c_{j,k}^{j} b_{j,k}\|_{2}^{2} \lesssim \sum_{j>0} 2^{2js} \|b_{j,k}\|_{2}^{2} \sim \|\lambda_{\Theta}(f)\|_{\mathbf{W}_{2,s}(\mathcal{R}_{\Theta})}^{2}. \qquad \Box$$

THEOREM 3.19. If  $a, a_{\dagger}^* \in S_{1,1}^0(\mathcal{R}_{\Theta})$ , then  $\Psi_a : L_2(\mathcal{R}_{\Theta}) \to L_2(\mathcal{R}_{\Theta})$  is bounded.

**Proof.** By Theorem 3.18,  $\Psi_a$  and its adjoint are bounded in  $W_{2,s}(\mathcal{R}_{\Theta})$ . By Lemma 3.15, taking duals gives  $\Psi_a: W_{2,-s}(\mathcal{R}_{\Theta}) \to W_{2,-s}(\mathcal{R}_{\Theta})$  and interpolating both inequalities for  $\Psi_a$  yields the assertion.

Remark 3.20. A careful examination yields that

$$\left\|\partial_{\Theta}^{\beta}\partial_{\xi}^{\alpha}a(\xi)\right\|_{\mathcal{R}_{\Theta}}\lesssim \langle\xi\rangle^{-|\alpha|+|\beta|}\quad\text{for}\quad |\alpha|\leq n+1\quad\text{and}\quad |\beta|\leq 1$$

for a and its dual symbol  $a_{\dagger}^*$  suffices to deduce the  $L_2$ -boundedness of  $\Psi_a$ .

## 3.3. $L_p$ -boundedness and Sobolev p-estimates

Our  $L_2$ -boundedness results together with our Calderón-Zygmund theory for  $\mathcal{R}_{\Theta}$  are the tools to find sufficient smoothness conditions on a given symbol for the  $L_p$ -boundedness of its pseudodifferential operator. As pointed in the Introduction, this naturally requires to work with a different quantum form of the Hörmander classes, which is more demanding, but still recovers the classical definition for  $\Theta = 0$ . Given  $a: \mathbb{R}^n \to \mathcal{R}_{\Theta}$  we say that it belongs to  $\Sigma_{\rho,\delta}^m(\mathcal{R}_{\Theta})$  when

$$\left|\partial_{\Theta}^{\beta}\,\partial_{\Theta,\xi}^{\alpha_{1}}\,\partial_{\xi}^{\alpha_{2}}a(\xi)\right|\leq C_{\alpha_{1},\alpha_{2},\beta}\langle\xi\rangle^{m-\rho|\alpha_{1}+\alpha_{2}|+\delta|\beta|}$$

for all  $\alpha_1, \alpha_2, \beta \in \mathbb{Z}_+^n$ . Here are some trivial, albeit important, properties:

- i)  $\Sigma_{\rho,\delta}^m(\mathcal{R}_{\Theta}) \subset S_{\rho,\delta}^m(\mathcal{R}_{\Theta})$  since one condition reduces to the other for  $\alpha_1 = 0$ .
- ii) The three derivatives involved in the definition of  $\Sigma_{\rho,\delta}^m(\mathcal{R}_{\Theta})$  commute with each other. In particular, the order considered is completely irrelevant.
- iii) Fix  $(\rho, \delta, m)$  and set  $|a|_{\alpha,\beta}^S$  and  $|a|_{\alpha_1,\alpha_2,\beta}^\Sigma$  for the seminorms given by the optimal constant in the defining inequalities of  $S_{\rho,\delta}^m(\mathcal{R}_{\Theta})$  with parameters  $(\alpha, \beta)$  or  $\Sigma_{\rho,\delta}^m(\mathcal{R}_{\Theta})$  with parameters  $(\alpha_1, \alpha_2, \beta)$  respectively. Then, we have

$$\lim_{\Theta \to 0} |a|_{\alpha_1, \alpha_2, \beta}^{\Sigma} = \lim_{\Theta \to 0} |a|_{\alpha_1 + \alpha_2, \beta}^{S}.$$

Given  $a \in \Sigma_{1,1}^0(\mathcal{R}_{\Theta}) \subset S_{1,1}^0(\mathcal{R}_{\Theta})$ , we will now prove that the integral kernel  $k_a$  associated with  $\Psi_a$  satisfies the Calderón-Zygmund kernel conditions in Theorem A. In conjunction with our Bourdaud type condition in Theorem 3.19, it will give the complete  $L_p$ -boundedness of  $\Psi_a$  stated in Theorem B iii). Composition results further yield Sobolev p-estimates

$$\|\Psi_a: W_{p,s}(\mathcal{R}_{\Theta}) \to W_{p,s-m}(\mathcal{R}_{\Theta})\|_{ch} < \infty,$$

for many symbols of degree m, with  $1 and <math>\|\varphi\|_{p,s} = \|(\mathbf{1} - \Delta_{\Theta})^{s/2}\varphi\|_p$ .

LEMMA 3.21. Given  $a \in \Sigma_{\rho,\delta}^m(\mathcal{R}_{\Theta})$ , let

$$k_1 = (\nabla_{\Theta} \otimes id)(k_a)$$
 and  $k_2 = (id \otimes \nabla_{\Theta})(k_a)$ .

Then, there exist  $b_1, b_2 \in \Sigma_{\rho, \delta}^{m+1}(\mathcal{R}_{\Theta})$  satisfying that  $k_{b_1} = k_1$  and  $k_{b_2} = k_2$ .

**Proof.** It is easily checked that

$$(\nabla_{\Theta} \otimes id)(k_a) = \sum_{j=1}^n s(e_j) \otimes \int_{\mathbb{R}^n} \partial_{\Theta}^j [a(\xi)\lambda_{\Theta}(\xi)] \otimes \lambda_{\Theta}(\xi)^* d\xi = k_{b_1}$$

where  $b_1(\xi) = \nabla_{\Theta}(a) + 2\pi i s(\xi) \otimes a(\xi)$  takes values in  $\mathcal{L}(\mathbb{F}_n) \bar{\otimes} \mathcal{R}_{\Theta}$ , we omit the extra tensor component just to simplify our notation. A simple calculation also gives that  $b_2(\xi) = -2\pi i s(\xi) \otimes a(\xi)$ . It is clear that  $\nabla_{\Theta}(a) \in \Sigma_{\rho,\delta}^{m+\delta}(\mathcal{R}_{\Theta}) \subset \Sigma_{\rho,\delta}^{m+1}(\mathcal{R}_{\Theta})$  while the inclusion for  $s(\xi) \otimes a(\xi)$  follows by Leibniz rule and  $\partial_{\Theta,\xi}^j \xi = \partial_{\xi}^j \xi$ .

LEMMA 3.22. Given  $a \in \mathcal{S}(\mathbb{R}^n; \mathcal{S}_{\Theta})$ , let  $k_a$  be the kernel of  $\Psi_a$ . Recall that  $\pi_{\Theta}(P)$  is a distribution in  $\mathcal{S}_{\Theta \oplus \Theta}$  for any polynomial P in  $\xi_1, ..., \xi_n$ . Then, the following identities hold in the sense of distributions for all  $\alpha \in \mathbb{Z}_+^n$ 

$$k_a \bullet \pi_{\Theta}((2\pi i z)^{\alpha}) = k_{\partial_{\xi}^{\alpha} a},$$
  
$$\pi_{\Theta}((2\pi i z)^{\alpha}) \bullet k_a = k_{\partial_{\Theta}^{\alpha} \epsilon} a.$$

**Proof.** Note that

$$k_a \bullet \pi_{\Theta}(\exp_{\zeta}) = \left( \int_{\mathbb{R}^n} (a(\xi) \otimes \mathbf{1}) \bullet \pi_{\Theta}(\exp_{\xi+\zeta}) d\xi \right) = k_{a(\cdot,-\zeta)}.$$

Taking derivatives formally gives

$$k_a \bullet \pi_{\Theta}(2\pi i z_j) = k_a \bullet \frac{d}{ds}\Big|_{s=0} \pi_{\Theta}(\exp_{se_j}) = k_{\partial_{\xi}^j a}.$$

This symbolic calculation can be justified in the distributional sense. For the second identity, we recall the identity  $(\partial_{\Theta,\xi}^j a)(\xi) = \lambda_{\Theta}(\xi)\partial_{\xi}^j \{\lambda_{\Theta}(\xi)^* a(\xi)\lambda_{\Theta}(\xi)\}\lambda_{\Theta}(\xi)^*$  and notice that

$$\int_{\mathbb{R}^n} (a(\xi) \otimes \mathbf{1}) \bullet \pi_{\Theta}(\exp_{\xi}) d\xi = \int_{\mathbb{R}^n} \pi_{\Theta}(\exp_{\xi}) \bullet (\lambda_{\Theta}(\xi)^* a(\xi) \lambda_{\Theta}(\xi) \otimes \mathbf{1}) d\xi.$$

Therefore, arguing as above, we obtain the identity for left multiplication.  $\Box$ 

LEMMA 3.23. Let  $\psi_j(\xi) = \phi(2^{-j}\xi) - \phi(2^{-j+1}\xi)$  be a standard partition of unity in  $\mathbb{R}^n$  from a smooth, radial and compactly supported  $\phi$ . If we let  $a_j(\xi) = a(\xi)\psi_j(\xi)$  for  $a \in \Sigma_{\rho,\delta}^m(\mathcal{R}_\Theta)$  and  $\ell_1, \ell_2 \geq 0$ , we have

$$\left\| \mathbf{d}_{\Theta}^{\ell_1} \bullet k_{a_j} \bullet \mathbf{d}_{\Theta}^{\ell_2} \right\|_{\mathcal{R}_{\Theta} \bar{\otimes} \mathcal{R}_{\Theta}^{\mathrm{op}}} \leq C_{\ell_1, \ell_2} \ 2^{j(n+m-\rho(\ell_1+\ell_2))}.$$

**Proof.** It is clear that

$$\partial_{\Theta,\xi}^{\alpha} a_j = \sum_{\beta+\gamma=\alpha} a(\partial_{\xi}^{\beta} \psi_j) + (\partial_{\Theta,\xi}^{\gamma} a) \psi_j.$$

Since  $|\partial_{\xi}^{\beta}\psi_{j}(\xi)| \lesssim 2^{-j|\beta|}$  when  $\langle \xi \rangle \sim 2^{j}$ , the  $a_{j}$ 's are in  $\Sigma_{\rho,\delta}^{m}(\mathcal{R}_{\Theta})$  with constants independent of j. Assume first that  $\ell_{1},\ell_{2}$  are even numbers,  $\ell_{k}=2N_{k}$ . Then the  $\ell_{k}$ -th power of |z| is a polynomial of the form

$$|z|^{\ell_k} = \sum_{|\alpha| = N_k} z^{2\alpha}.$$

Applying Lemma 3.22 gives that

$$\left\| \mathbf{d}_{\Theta}^{\ell_1} \bullet k_{a_j} \bullet \mathbf{d}_{\Theta}^{\ell_2} \right\|_{\mathcal{R}_{\Theta} \bar{\otimes} \mathcal{R}_{\Theta}^{\mathrm{op}}} = \frac{1}{(2\pi)^{\ell_1 + \ell_2}} \left\| \sum_{|\alpha_1| = N_1} \sum_{|\alpha_2| = N_2} k_{\partial_{\Theta,\xi}^{2\alpha_1} \partial_{\xi}^{2\alpha_2} a_j} \right\|_{\mathcal{R}_{\Theta} \bar{\otimes} \mathcal{R}_{\Theta}^{\mathrm{op}}}$$

and for each of the terms we have the estimate

$$\begin{aligned} \|k_{\partial_{\Theta,\xi}^{2\alpha_{1}}\partial_{\xi}^{2\alpha_{2}}a_{j}}\|_{\mathcal{R}_{\Theta}\bar{\otimes}\mathcal{R}_{\Theta}^{\mathrm{op}}} &= \|\int_{\mathbb{R}^{n}} \left(\partial_{\Theta,\xi}^{2\alpha_{1}}\partial_{\xi}^{2\alpha_{2}}a_{j}(\xi)\otimes\mathbf{1}\right) \bullet \pi_{\Theta}(\exp_{\xi}) d\xi \|_{\mathcal{R}_{\Theta}\bar{\otimes}\mathcal{R}_{\Theta}^{\mathrm{op}}} \\ &\lesssim 2^{jn} \sup_{|\xi|<2^{j}} \|(\partial_{\xi}^{2\alpha_{1}}\partial_{\Theta,\xi}^{2\alpha_{2}}a_{j})(\xi)\|_{\mathcal{R}_{\Theta}} &\lesssim 2^{j(n+m-\rho(\ell_{1}+\ell_{2}))}. \end{aligned}$$

For general (noneven)  $\ell_1, \ell_2$  we proceed by interpolation. Note that the norm of  $k_a$  is not altered under left/right multiplication by  $d_{\Theta}^{is}$  for any  $s \in \mathbb{R}$ . Therefore we have a bounded and holomorphic function  $\zeta \mapsto \pi_{\Theta}(|z|^{\ell_1+2\zeta}) \bullet k_a \bullet \pi_{\Theta}(|z|^{\ell_2})$  defined

in the band  $0 < \Re(\zeta) < 1$ . An application of the three lines lemma gives the bound for any  $\ell_1$ , the same follows for  $\ell_2$ . This completes the proof.

Proposition 3.24. Given  $a \in \Sigma_{\rho,\rho}^m(\mathcal{R}_{\Theta})$  and  $m_1, m_2 > 0$ 

$$\left\| \mathbf{d}_{\Theta}^{m_1} \bullet k_a \bullet \mathbf{d}_{\Theta}^{m_2} \right\|_{\mathcal{R}_{\Theta} \bar{\otimes} \mathcal{R}_{\Theta}^{\mathrm{op}}} \lesssim 1$$

provided  $\rho(m_1+m_2) > n+m$  for  $\rho < 1$  or  $\rho(m_1+m_2) \ge n+m$  for  $\rho = 1$ .

## **Proof.** Let

$$\rho_i(\xi) = \phi(2^{-j}\xi) - \phi(2^{-j+1}\xi)$$

be another partition of unity —this time for  $j \in \mathbb{Z}$ — and set  $b_j = \pi_{\Theta}(\rho_j)$ . Then

$$\mathbf{d}_{\Theta}^{m_1} \bullet k_a \bullet \mathbf{d}_{\Theta}^{m_2} = \sum_{j,k>0} + \sum_{j,k<0} + \sum_{j,k<0} \left( b_j \bullet \mathbf{d}_{\Theta}^{m_1} \bullet k_a \bullet \mathbf{d}_{\Theta}^{m_2} \bullet b_k \right) = A_+ + A_- + A_{\pm}.$$

Estimate of  $A_+$ . Letting  $a_{\ell} = a\psi_{\ell}$  as in Lemma 3.23

$$||A_{+}||_{\mathcal{R}_{\Theta}\bar{\otimes}\mathcal{R}_{\Theta}^{\mathrm{op}}} \leq \sum_{j,k\geq 0} \sum_{\ell\geq 0} \left\| b_{j} \bullet \mathrm{d}_{\Theta}^{m_{1}} \bullet k_{a_{\ell}} \bullet \mathrm{d}_{\Theta}^{m_{2}} \bullet b_{k} \right\|_{\mathcal{R}_{\Theta}\bar{\otimes}\mathcal{R}_{\Theta}^{\mathrm{op}}} = \sum_{j,k\geq 0} \sum_{\ell\geq 0} A_{+}(j,k,\ell).$$

Pick  $\ell_1$  and  $\ell_2$  large enough (see below) and use Lemma 3.23 to estimate  $A_+(j,k,\ell)$ 

$$A_{+}(j,k,\ell) \leq \|\mathbf{d}_{\Theta}^{\ell_{1}} \bullet k_{a_{\ell}} \bullet \mathbf{d}_{\Theta}^{\ell_{2}}\|_{\mathcal{R}_{\Theta} \bar{\otimes} \mathcal{R}_{\Theta}^{\mathrm{op}}}$$

$$\times \|\pi_{\Theta}(\rho_{j}|z|^{(m_{1}-\ell_{1})})\|_{\mathcal{R}_{\Theta} \bar{\otimes} \mathcal{R}_{\Theta}^{\mathrm{op}}} \|\pi_{\Theta}(\rho_{k}|z|^{(m_{2}-\ell_{2})})\|_{\mathcal{R}_{\Theta} \bar{\otimes} \mathcal{R}_{\Theta}^{\mathrm{op}}}$$

$$\lesssim 2^{\ell(n+m-\rho(\ell_{1}+\ell_{2}))} 2^{j(m_{1}-\ell_{1})} 2^{k(m_{2}-\ell_{2})}.$$

Taking  $\ell_1 > m_1$ ,  $\ell_2 > m_2$  and  $\rho(\ell_1 + \ell_2) > n + m$  we may sum over  $j, k, \ell \ge 0$ . **Estimate of**  $A_-$ . Letting  $a_\ell = a\psi_\ell$  once more, we get

$$A_{-} = \sum_{j,k \leq 0} \left\{ \sum_{\ell > |j|} + \sum_{\ell \leq |j|} \right\} \left( b_{j} \bullet d_{\Theta}^{m_{1}} \bullet k_{a_{\ell}} \bullet d_{\Theta}^{m_{2}} \bullet b_{k} \right) = \sum_{j,k \leq 0} A_{-}^{1}(j,k) + A_{-}^{2}(j,k)$$

$$= \sum_{j \leq k \leq 0} A_{-}^{1}(j,k) + \sum_{k < j \leq 0} A_{-}^{1}(j,k) + \sum_{j \leq k \leq 0} A_{-}^{2}(j,k) + \sum_{k < j \leq 0} A_{-}^{2}(j,k).$$

First, we may bound  $A_{-}^{1}(j,k)$  and  $A_{-}^{2}(j,k)$  in norm via Lemma 3.23

$$\begin{aligned} & \left\| A_{-}^{1}(j,k) \right\|_{\mathcal{R}_{\Theta} \bar{\otimes} \mathcal{R}_{\Theta}^{\mathrm{op}}} & \lesssim & \sum_{\ell > |j|} 2^{j(m_{1}-\ell_{1})} 2^{\ell((n+m)-\rho(\ell_{1}+\ell_{2}))} 2^{k(m_{2}-\ell_{2})}, \\ & \left\| A_{-}^{2}(j,k) \right\|_{\mathcal{R}_{\Theta} \bar{\otimes} \mathcal{R}_{\Theta}^{\mathrm{op}}} & \lesssim & \sum_{\ell < |j|} 2^{j(m_{1}-\ell_{1})} 2^{\ell((n+m)-\rho(\ell_{1}+\ell_{2}))} 2^{k(m_{2}-\ell_{2})}. \end{aligned}$$

$$\begin{split} A^{11}_-) \ \ \text{Taking} \ \rho(\ell_1 + \ell_2) > n + m \ \text{and} \ r = k - j \ge 0, \ \text{we get} \\ & \left\| A^1_-(j,k) \right\|_{\mathcal{R}_\Theta \bar{\otimes} \mathcal{R}_\Theta^{\text{op}}} \ \ \lesssim \ \ 2^{j(m_1 - \ell_1)} 2^{|j|(n+m-\rho(\ell_1 + \ell_2))} \, 2^{k(m_2 - \ell_2)} \\ & = \ \ 2^{r(m_2 - \ell_2)} \, 2^{|j|(n+m+(1-\rho)(\ell_1 + \ell_2) - (m_1 + m_2))} \end{split}$$

If  $\rho < 1$ , our condition  $\rho(m_1+m_2) > n+m$  allows us to pick  $\ell_1, \ell_2$  satisfying  $\ell_1 + \ell_2 = m_1 + m_2$  and  $\ell_2 > m_2$ . If  $\rho = 1$  we pick  $\ell_j > m_j$  for j = 1, 2. In

both cases we get the inequalities  $n+m+(1-\rho)(\ell_1+\ell_2)-(m_1+m_2)\leq 0$  and  $m_2-\ell_2>0$ . This gives

$$\begin{aligned} \left\| A_{-}^{11} \right\|_{\mathcal{R}_{\Theta} \bar{\otimes} \mathcal{R}_{\Theta}^{\mathrm{op}}} &\leq \sum_{r \geq 0} \left\| \sum_{j \leq 0} A_{-}^{1}(j, j + r) \right\|_{\mathcal{R}_{\Theta} \bar{\otimes} \mathcal{R}_{\Theta}^{\mathrm{op}}} \\ &\leq \sum_{r \geq 0} r \sup_{j \leq 0} \left\| A_{-}^{1}(j, j + r) \right\|_{\mathcal{R}_{\Theta} \bar{\otimes} \mathcal{R}_{\Theta}^{\mathrm{op}}} \lesssim \sum_{r \geq 0} r 2^{r(m_{2} - \ell_{2})} \lesssim 1. \end{aligned}$$

By almost orthogonality of  $b_j$ 's the sum inside the norm is a r-th diagonal operator, dominated by r times the supremum of the norms of its entries.

 $A_{-}^{21}$ ) Letting  $r = k - j \ge 0$ , we get

$$\begin{split} & \big\| A_-^2(j,k) \big\|_{\mathcal{R}_\Theta \bar{\otimes} \mathcal{R}_\Theta^{\mathrm{op}}} \lesssim 2^{j(m_1 - \ell_1)} \max \Big\{ 1, 2^{|j|(n + m - \rho(\ell_1 + \ell_2))} \Big\} 2^{k(m_2 - \ell_2)} \\ & = \ 2^{r(m_2 - \ell_2)} \max \Big\{ 2^{|j|((\ell_1 + \ell_2) - (m_1 + m_2))}, 2^{|j|(n + m + (1 - \rho)(\ell_1 + \ell_2) - (m_1 + m_2))} \Big\}. \end{split}$$

Then any choice with  $\ell_1 + \ell_2 = m_1 + m_2$  and  $\ell_2 > m_2$  gives  $||A_-^{21}|| \lesssim 1$ .

 $A_{-}^{12}$ ) We may write

$$A_{-}^{12} = \sum_{k < j \le 0} \left\{ \sum_{\ell > |k|} + \sum_{|j| < \ell \le |k|} \right\} \left( b_j \bullet d_{\Theta}^{m_1} \bullet k_{a_{\ell}} \bullet d_{\Theta}^{m_2} \bullet b_k \right) = A_{-}^{121} + A_{-}^{122}.$$

Then,  $A_{-}^{121}$  is estimated exactly as  $A_{-}11$ . On the other hand, the estimate of  $A_{-}^{122}$  is very much similar to that of  $A_{-}^{21}$ , we leave the details to the reader.

 $A_{-}^{22}$ ) Interchanging roles of (j,k),  $A_{-}^{22}$  is estimated as  $A_{-}^{21}$  above (even simpler). **Estimate of**  $A_{\pm}$ . Since the conditions on  $m_1, m_2$  are symmetric in the statement

and the sum  $\sum_{i\cdot j<0}$  splits into  $\sum_{j<0< k} + \sum_{k<0< j}$ , it suffices to estimate one of these two sums. Arguing as above, if we pick  $\ell_1, \ell_2$  so that  $\rho(\ell_1 + \ell_2) > n + m$ , the problem reduces to estimate

$$\sum_{j<0< k} \left\{ \sum_{\ell>k} + \sum_{\ell \le k} \right\} 2^{j(m_1-\ell_1)} 2^{\ell(n+m-\rho(\ell_1+\ell_2))} 2^{k(m_2-\ell_2)} = A + B.$$

Again as above, we pick r = k - j > 0 and obtain

$$A \lesssim \sum_{r>0} \sum_{k>0} 2^{-r(m_1-\ell_1)} 2^{k(n+m-(1+\rho)(\ell_1+\ell_2)+m_1+m_2)},$$

$$B \lesssim \sum_{r>0} \sum_{k>0} 2^{-r(m_1-\ell_1)} \max \left\{ 2^{k((m_1+m_2)-(\ell_1+\ell_2))}, 2^{k(n+m-(1+\rho)(\ell_1+\ell_2)+m_1+m_2)} \right\}.$$

Since  $n + m \le \rho(m_1 + m_2)$ , it suffices to take  $\ell_1 > m_1$  and  $\ell_1 + \ell_2 > m_1 + m_2$ .  $\square$ 

Theorem 3.25. If  $a, a_{\dagger}^* \in \Sigma_{1,1}^0(\mathcal{R}_{\Theta})$ , we have

$$\begin{split} \left\| \Psi_a : \mathrm{H}_1(\mathcal{R}_{\Theta}) \to L_1(\mathcal{R}_{\Theta}) \right\|_{\mathrm{cb}} < \infty, \\ \left\| \Psi_a : L_{\infty}(\mathcal{R}_{\Theta}) \to \mathrm{BMO}(\mathcal{R}_{\Theta}) \right\|_{\mathrm{cb}} < \infty. \end{split}$$

In particular,  $\Psi_a : L_p(\mathcal{R}_{\Theta}) \to L_p(\mathcal{R}_{\Theta})$  is completely bounded when 1 .

**Proof.** According to our Calderón-Zygmund extrapolation in Theorem 2.18, it suffices to see that  $\Psi_a$  is  $L_2$ -bounded and its kernel  $k_a$  satisfies the CZ conditions there. The  $L_2$ -boundedness follows from the quantum form of Bourdaud's condition in Theorem 3.19. On the other hand, according to Lemma 3.21, both  $(\nabla_{\Theta} \otimes id)(k_a)$ 

and  $(id \otimes \nabla_{\Theta})(k_a)$  belong to  $\Sigma_{1,1}^1(\mathcal{R}_{\Theta})$ . In particular, Proposition 3.24 yields the CZ kernel conditions which we need for  $m_1 + m_1 = n + 1$ .

COROLLARY 3.26. If  $a, a_{\dagger}^* \in \Sigma_{1.1}^m(\mathcal{R}_{\Theta})$ , we have

$$\left\|\Psi_a: \mathcal{W}_{p,s}(\mathcal{R}_\Theta) \to \mathcal{W}_{p,s-m}(\mathcal{R}_\Theta)\right\|_{\mathrm{cb}} < \infty \quad \textit{for every} \quad 1 < p < \infty.$$

**Proof.** We have that

$$L_{p}(\mathcal{R}_{\Theta}) \xrightarrow{(1-\Delta_{\Theta})^{\frac{s-m}{2}} \Psi_{a}(1-\Delta_{\Theta})^{-\frac{s}{2}}} L_{p}(\mathcal{R}_{\Theta})$$

$$(1-\Delta_{\Theta})^{\frac{s}{2}} \xrightarrow{\Psi_{a}} W_{p,s}(\mathcal{R}_{\Theta}) \xrightarrow{\Psi_{a}} W_{p,s-m}(\mathcal{R}_{\Theta})$$

where  $(\mathbf{1} - \Delta_{\Theta})^{u/2} : W_{p,s}(\mathcal{R}_{\Theta}) \to W_{p,s-u}(\mathcal{R}_{\Theta})$  are complete isometries. On the other hand, the complete  $L_p$ -boundedness of  $(\mathbf{1} - \Delta_{\Theta})^{(s-m)/2} \Psi_a(\mathbf{1} - \Delta_{\Theta})^{-s/2}$  follows from Theorem 3.25 once we observe that this pseudodifferential operator and its adjoint are associated to symbols in  $\Sigma_{1,1}^0(\mathcal{R}_{\Theta})$ , which in turn follows from the composition rules for  $\Sigma_{a,\delta}^m(\mathcal{R}_{\Theta})$  established in Remark 3.5

REMARK 3.27. Theorem 3.25 and Corollary 3.26 remain valid for  $a \in \Sigma^0_{1,\delta}(\mathcal{R}_{\Theta})$  with  $0 \leq \delta < 1$ . Indeed,  $\Sigma^0_{1,\delta}(\mathcal{R}_{\Theta}) \subset S^0_{1,\delta}(\mathcal{R}_{\Theta}) \subset S^0_{1,1}(\mathcal{R}_{\Theta})$  and the middle class is stable under adjoints. Thus, we may apply our Bourdaud's condition as we did in the proof of Theorem 3.25. In addition,  $\Sigma^0_{1,\delta}(\mathcal{R}_{\Theta}) \subset \Sigma^0_{1,1}(\mathcal{R}_{\Theta})$  so that Proposition 3.24 applies. The argument for Sobolev spaces is similar.

REMARK 3.28. A careful analysis of our proof for Theorem 3.25 and Corollary 3.26 yields that the condition  $\Sigma_{1,1}^0(\mathcal{R}_{\Theta})$  can be replaced by the weaker condition below

$$\left|\partial_{\Theta}^{\beta}\partial_{\Theta,\xi}^{\alpha_{1}}\partial_{\xi}^{\alpha_{2}}a(\xi)\right|+\left|\partial_{\Theta}^{\beta}\partial_{\Theta,\xi}^{\alpha_{1}}\partial_{\xi}^{\alpha_{2}}a_{\dagger}^{*}(\xi)\right| \, \leq \, C_{\alpha_{1},\alpha_{2},\beta}\langle\xi\rangle^{-|\alpha_{1}+\alpha_{2}|+|\beta|}$$

for  $|\alpha_1 + \alpha_2| \le n + 2$  and  $|\beta| \le 1$ . Indeed, according to Remark 3.20, Bourdaud's condition in Theorem 3.19 can be weakened to  $|\alpha_1 + \alpha_2| \le n + 1$  and  $|\beta| \le 1$ . Moreover, our proof of Proposition 3.24 for  $m_1 + m_2 = n + 1$  requires  $|\alpha_1 + \alpha_2| \le n + 2$ .

The  $L_p$ -theory for exotic symbols  $\Sigma_{\rho,\rho}^m(\mathcal{R}_\Theta)$   $(\rho < 1)$  is only possible due to the regularizing effect of a negative degree m. Fefferman proved in [29] the  $L_p$  bounds for the critical index  $m = -(1-\rho)\frac{n}{2}$ . The noncritical range was proved by Hirschman and Wainger [36] [76] (constant coefficients) and Hörmander [38] (general symbols). Standard interpolation arguments yield more general statements [68], VII 5.12]. Now we shall prove (non optimal) inequalities of this kind in  $\mathcal{R}_\Theta$  with applications below for  $L_p$ -regularity of elliptic PDEs. Namely, in what follows we shall write N for the best possible constant in Remark [3.10]. As explained there we suspect that any N > n/4 is valid and this would be optimal, as it is the case in the Euclidean theory. Consider the index

$$\Lambda_{\rho,n} = -(1-\rho) \max \{2N, n+2\}.$$

It follows from arguments in [71] that 2N is (at least) less or equal than 3n + 2.

COROLLARY 3.29. Let  $a \in \Sigma_{\rho,\rho}^m(\mathcal{R}_{\Theta})$  be a symbol satisfying  $m \leq \Lambda_{\rho,n}$  for some  $\rho < 1$ . Then, the pseudodifferential operator  $\Psi_a$  satisfies the following estimates

for 1

$$\begin{aligned} \|\Psi_a: \mathrm{H}_1(\mathcal{R}_{\Theta}) \to L_1(\mathcal{R}_{\Theta})\|_{\mathrm{cb}} < \infty, \\ \|\Psi_a: L_p(\mathcal{R}_{\Theta}) \to L_p(\mathcal{R}_{\Theta})\|_{\mathrm{cb}} < \infty, \\ \|\Psi_a: L_{\infty}(\mathcal{R}_{\Theta}) \to \mathrm{BMO}(\mathcal{R}_{\Theta})\|_{\mathrm{cb}} < \infty. \end{aligned}$$

Moreover, if m is any real number and  $\ell = m - \Lambda_{\rho,n}$ 

$$\|\Psi_a: W_{p,s}(\mathcal{R}_{\Theta}) \to W_{p,s-\ell}(\mathcal{R}_{\Theta})\|_{cb} < \infty.$$

**Proof.** Since  $a \in \Sigma_{\rho,\rho}^m(\mathcal{R}_{\Theta})$  and  $m = \ell + \Lambda_{\rho,n}$ 

$$\begin{split} \langle \xi \rangle^{m-\rho|\alpha_1+\alpha_2|+\rho|\beta|} &= \langle \xi \rangle^{m+(1-\rho)|\alpha_1+\alpha_2|-|\alpha_1+\alpha_2|+\rho|\beta|} \\ &\leq \langle \xi \rangle^{m+(1-\rho)\max\{2N,n+2\}-|\alpha_1+\alpha_2|+\rho|\beta|} \leq \langle \xi \rangle^{\ell-|\alpha_1+\alpha_2|+\rho|\beta|} \end{split}$$

as long as  $|\alpha_1 + \alpha_2| \leq \max\{2N, n+2\}$ . This means that a satisfies the Hörmander condition  $\Sigma_{1,\rho}^{\ell}(\mathcal{R}_{\Theta})$  for  $\partial_{\Theta,\xi}$ ,  $\partial_{\xi}$  of order up to  $|\alpha_1 + \alpha_2| \leq \max\{2N, n+2\}$ . For the first assertion we apply Theorem A. The  $L_2$ -boundedness is guaranteed by our Calderón-Valillancourt theorem since  $\Sigma_{1,\rho}^0(\mathcal{R}_{\Theta}) \subset S_{\rho,\rho}^0(\mathcal{R}_{\Theta})$  and 2N  $\xi$ -derivatives suffice, according to Remark 3.10. Next, inclusion  $\Sigma_{1,\rho}^0(\mathcal{R}_{\Theta}) \subset \Sigma_{1,1}^0(\mathcal{R}_{\Theta})$  together with the fact that Proposition 3.24 only requires  $|\alpha_1 + \alpha_2| \leq n + 2$ —see Remark 3.28—imply that the CZ kernel conditions also hold. This proves that the first assertion follows from Theorem A. Then, the second assertion follows by adapting the argument in the proof of Corollary 3.26. Indeed, arguing as in Remark 3.5 we deduce that

$$a \in \Sigma_{1,\rho}^{\ell}(\mathcal{R}_{\Theta}) \ \Rightarrow \ (1 - \Delta_{\Theta})^{\frac{s-\ell}{2}} \Psi_a (1 - \Delta_{\Theta})^{-\frac{s}{2}} = \Psi_b \ \text{for some} \ b \in \Sigma_{1,\rho}^0(\mathcal{R}_{\Theta}).$$

In fact, the same holds limiting the conditions above to a prescribed number of derivatives  $\partial_{\Theta,\xi}$  and  $\partial_{\xi}$ . Hence, we apply Theorem A once more to conclude.

Remark 3.30. It is very tempting to claim that Corollary 3.29 holds for the index  $\Lambda_{\rho,n} = -(1-\rho)(n+2)$  since it is reasonable to think that the above result follows from a direct combination of Remarks 3.27 and 3.28 above. However, at the time of this writing, we are not able to circumvent the adjoint stability used in Remark 3.27, since we need it for Hörmander conditions limited to a prescribed number of derivatives. The product stability used above is straightforward instead.

Remark 3.31.  $L_p$ -boundedness up to the critical index  $m = -(1 - \rho)\frac{n}{2}$  is still open.

#### CHAPTER 4

# $L_p$ regularity for elliptic PDEs

In this section, we illustrate our results with a basic application to elliptic PDEs in quantum Euclidean spaces. Given  $0 \le \delta \le \rho \le 1$  and  $m \in \mathbb{R}$ , a symbol  $a \in S_{\rho,\delta}^m(\mathcal{R}_{\Theta})$  is called elliptic of order m when there exist constants C, R > 0 for which the following inequality holds

$$|a(\xi)| \ge C|\xi|^m$$
 for all  $|\xi| \ge R$ .

A prototypical example of elliptic symbol of order 2 is given by  $a(\xi) = \xi^t A \xi$  for some uniformly positive definite  $A \in M_n(\mathcal{R}_{\Theta})$ . We shall be interested in the elliptic PDE

$$\Psi_a(u) = \varphi$$

with data  $\varphi$  in the Sobolev space  $W_{p,s}(\mathcal{R}_{\Theta})$  and  $a \in \Sigma_{1,\delta}^m(\mathcal{R}_{\Theta})$ .  $L_p$ -regularity means that, no matter which a priori regularity do we have in a given solution u, it must belong at least to the Sobolev space  $W_{p,s+m}(\mathcal{R}_{\Theta})$ . When the regularity gained is smaller than m we speak about hypoellipticity. In the Euclidean case, elliptic regularity arises naturally for  $(\rho, \delta) = (1, 0)$  and still holds for  $\rho = 1$ , whereas the case  $\rho < 1$  leads to hypoelliptic scenarios [71]. As we shall see, this is also the case in the quantum setting. Equipped with our results so far, the main obstruction we shall need to overcome will be to construct suitable parametrices for symbols in  $\Sigma$ -classes, for which we can not use product stability in that class. Our first step yields Sobolev p-estimates  $W_{p,s}(\mathcal{R}_{\Theta}) \to W_{p,s-\ell}(\mathcal{R}_{\Theta})$  for symbols in  $S_{\rho,\delta}^m(\mathcal{R}_{\Theta})$  instead of  $\Sigma_{\rho,\delta}^{\ell}(\mathcal{R}_{\Theta})$ , provided the order m is small enough.

Lemma 4.1. Given  $s, \ell \in \mathbb{R}$ , we have

$$\Psi_a: W_{p,s}(\mathcal{R}_{\Theta}) \to W_{p,s-\ell}(\mathcal{R}_{\Theta})$$

provided  $a \in S^m_{\rho,\delta}(\mathcal{R}_{\Theta})$  with degree  $m + (1 + \delta) \max\{2N, n + 2\} \leq \ell$ .

**Proof.** Arguing as in the proof of Corollary 3.29, it suffices to see that a satisfies the  $\Sigma_{1,\delta}^{\ell}(\mathcal{R}_{\Theta})$ -condition for  $\partial_{\Theta,\xi}$  and  $\partial_{\xi}$  of order up to  $\max\{2N, n+2\}$ . Then recalling that

$$\partial_{\Theta,\xi}^{j} = \partial_{\xi}^{j} + \frac{1}{2\pi i} \sum_{k=1}^{n} \Theta_{jk} \partial_{\Theta}^{k},$$

we easily get the following estimate

$$\begin{split} \left\| \partial_{\Theta}^{\beta} \partial_{\Theta,\xi}^{\alpha_{1}} \partial_{\xi}^{\alpha_{2}} a(\xi) \right\|_{\mathcal{R}_{\Theta}} & \lesssim & \sum_{\alpha_{11} + \alpha_{12} = \alpha_{1}} \sum_{|\gamma| = |\alpha_{11}|} \left\| \partial_{\Theta}^{\beta + \gamma} \partial_{\xi}^{\alpha_{12} + \alpha_{2}} a(\xi) \right\|_{\mathcal{R}_{\Theta}} \\ & \lesssim & \sum_{\alpha_{11} + \alpha_{12} = \alpha_{1}} \sum_{|\gamma| = |\alpha_{11}|} \langle \xi \rangle^{m - \rho |\alpha_{12} + \alpha_{2}| + \delta |\beta + \gamma|}. \end{split}$$

When  $|\alpha_1 + \alpha_2| \leq \max\{2N, n+2\}$ , we use

$$m - \rho |\alpha_{12} + \alpha_{2}| + \delta |\beta + \gamma|$$

$$= m + (1 - \rho)|\alpha_{12} + \alpha_{2}| + (1 + \delta)|\gamma| - |\alpha_{1} + \alpha_{2}| + \delta |\beta|$$

$$\leq m + (1 + \delta)|\alpha_{1} + \alpha_{2}| - |\alpha_{1} + \alpha_{2}| + \delta |\beta| \leq \ell - |\alpha_{1} + \alpha_{2}| + \delta |\beta|$$

since  $m + \max\{2N, n + 2\} \le \ell$  by hypothesis. This completes the proof.

LEMMA 4.2. Let  $a \in \Sigma_{\rho,\delta}^m(\mathcal{R}_{\Theta})$  be an elliptic symbol for some  $0 \leq \delta < \rho \leq 1$  and degree m. Let  $\ell = m + \Lambda_{\rho,n}$ . Then, for every  $k \in \mathbb{N}$ , there exist symbols  $b_k$  and  $c_k$  satisfying the following properties:

- $i) \Psi_{b_k} \Psi_a = id \Psi_{c_k},$
- ii)  $c_k \in S_{\rho,\delta}^{k\gamma}(\mathcal{R}_{\Theta})$  with  $\gamma = \delta \rho < 0$ ,
- iii) If  $\rho = 1$ , then  $\Psi_{b_k} : W_{p,s}(\mathcal{R}_{\Theta}) \to W_{p,s+m}(\mathcal{R}_{\Theta})$  for all  $s \in \mathbb{R}$ .
- iv) If  $\rho < 1$ , then  $\Psi_{b_k} : W_{2,s}(\mathcal{R}_{\Theta}) \to W_{2,s+\ell}(\mathcal{R}_{\Theta})$  for all  $s \in \mathbb{R}$ .

In fact, the last assertion holds under the weaker assumption that  $a \in S_{a,\delta}^m(\mathcal{R}_{\Theta})$ .

#### **Proof.** Let

$$b_1(\xi) = (1 - \phi(\xi))a^{-1}(\xi)$$

where  $\phi$  is a smooth function which is identically 1 in  $B_R(0)$  and vanishes outside  $B_{R+1}(0)$ . Here R is determined by the ellipticity of a, so that  $|a(\xi)| \geq C|\xi|^m$  for  $|\xi| \geq R$ . We claim that

- A)  $b_1 \in \Sigma_{\rho,\delta}^{-m}(\mathcal{R}_{\Theta}),$
- B)  $\Psi_{b_1}\Psi_a = id \Psi_{c_1}$  for some  $c_1 \in S_{a,\delta}^{\gamma}(\mathcal{R}_{\Theta})$ .

Assuming the claim, let  $b_k$  and  $c_k$  be determined by

$$\Psi_{b_k} = \sum_{j=0}^{k-1} \Psi_{c_1}^j \Psi_{b_1}$$
 and  $\Psi_{c_k} = \Psi_{c_1}^k$ .

i) 
$$\Psi_{b_k}\Psi_a = \sum_{j=0}^{k-1} \Psi_{c_1}^j \Psi_{b_1} \Psi_a = \sum_{j=0}^{k-1} \Psi_{c_1}^j (id - \Psi_{c_1}) = id - \Psi_{c_1}^k = id - \Psi_{c_k}.$$

- ii)  $c_k \in S_{\rho,\delta}^{k\gamma}(\mathcal{R}_{\Theta})$  with  $\gamma = \delta \rho < 0$  follows from Corollary 3.4, since  $\delta < \rho$ .
- iii) We may not use our results directly since we ignore whether or not  $b_k$  belongs to the right  $\Sigma$ -class, due to the lack (so far) of stability results for the product of symbols in these classes. However, when  $\rho = 1$  we know from claim A) above and Remark 3.27 that

$$\Psi_{b_1}: W_{p,s}(\mathcal{R}_{\Theta}) \to W_{p,s+m}(\mathcal{R}_{\Theta}).$$

Let us note in passing that Corollary 3.29 would also do the job here for  $\rho < 1$  and  $\ell$  in place of m. Next, it suffices to show that  $\Psi^j_{c_1}$  takes the Sobolev space  $W_{p,s+m}(\mathcal{R}_{\Theta})$  to itself. This is clear for the identity map with j=0. On the other hand, the boundedness for j>0 trivially follows from the case j=1. Since  $(a,b_1)\in \Sigma^m_{1,\delta}(\mathcal{R}_{\Theta})\times \in \Sigma^{-m}_{1,\delta}(\mathcal{R}_{\Theta})$ , the boundedness of  $\Psi_{c_1}=id-\Psi_{b_1}\Psi_a$  follows again from Remark 3.27

iv) By the product stability of S-classes from Section 3.1 and according to claims A) and B) we know that  $b_k \in S_{\rho,\delta}^{-m}(\mathcal{R}_{\Theta})$  and the result follows from the argument in Corollary 3.26 Indeed, it works in  $L_2$  when  $\Sigma$ -classes are

replaced by S-classes since we just need to apply Calderón-Vaillancourt and composition with the right powers of  $1 - \Delta_{\Theta}$  in that case.

Once we have proved the assertion, it remains to justify our claim. Point A) follows easily once we express the involved derivatives of  $a^{-1}(\xi)$  in terms of those for a. It is clear that  $\partial^j(a^{-1})(\xi) + a^{-1}(\xi)\partial^j(a)(\xi)a^{-1}(\xi) = 0$  for the derivations  $\partial \in \{\partial_{\xi}, \partial_{\Theta, \xi}, \partial_{\Theta}\}$ . By ellipticity we obtain the estimates below for  $|\xi| \geq R$ 

$$\begin{split} & \left\| \partial_{\xi}^{j} \big( a^{-1} \big) (\xi) \right\|_{\mathcal{R}_{\Theta}} & \lesssim & \langle \xi \rangle^{-m-\rho}, \\ & \left\| \partial_{\Theta}^{j} \big( a^{-1} \big) (\xi) \right\|_{\mathcal{R}_{\Theta}} & \lesssim & \langle \xi \rangle^{-m+\delta}, \\ & \left\| \partial_{\Theta,\xi}^{j} \big( a^{-1} \big) (\xi) \right\|_{\mathcal{R}_{\Theta}} & \lesssim & \langle \xi \rangle^{-m-\rho}. \end{split}$$

By Leibniz rule and induction we get  $b_1 \in \Sigma_{\rho,\delta}^{-m}(\mathcal{R}_{\Theta})$  which proves A). Then B) follows from the product stability in Corollary 3.4 as in 71, Theorem III.1.3].  $\Box$ 

Remark 4.3. The above result for p = 2 is still open for 1 . Accordingto point ii) and Lemma 4.1, we know that  $\Psi_{c_1}^j$  is bounded on  $W_{p,s+\ell}(\mathcal{R}_{\Theta})$  for j large enough. It would be tempting to deduce the result by complex interpolation with j=0. However, imaginary powers of  $\Psi_{c_1}$  are generally unbounded in  $L_p$  since the same happens for  $\Psi_{c_1}$ , due to Fefferman's critical index  $-(1-\rho)n/2$ . Indeed,  $\Psi_{c_1}$  will not be bounded in  $L_p$  or  $W_{p,s}$  when  $|\gamma|$  is small enough and  $\rho < 1$ .

Remark 4.4. In the absence of stability for products of symbols in  $\Sigma$ -classes —left open in Section 3.1— Lemmas 4.1 and 4.2 give together a good substitute for many applications. Lemma 4.2 provides a parametrix  $\Psi_{b_k}$  which, despite we ignore for the moment whether or not it lives in the right  $\Sigma$ -class, it does send  $W_{p,s}(\mathcal{R}_{\Theta})$ to the correct Sobolev space. Moreover, we know from Lemma 4.1 that the same holds for the error term  $\Psi_{c_k}$  provided k is large enough, since  $\gamma < 0$ .

THEOREM 4.5. Given  $0 \le \delta < \rho \le 1$ , consider  $a \in \Sigma_{\rho,\delta}^m(\mathcal{R}_{\Theta})$  an elliptic symbol for some  $m \in \mathbb{R}$  and let  $\ell = m + \Lambda_{\rho,n}$ . Given  $1 and <math>r, s \in \mathbb{R}$ , assume  $\varphi \in W_{p,s}(\mathcal{R}_{\Theta})$  and let u solve

$$\Psi_a(u) = \varphi$$

for some  $u \in W_{p,r}(\mathcal{R}_{\Theta})$ . Then, the following estimates hold:

- $\begin{array}{l} i) \ \ \mathit{If} \ \rho = 1, \ \mathit{we} \ \mathit{get} \ \|u\|_{W_{p,s+m}(\mathcal{R}_{\Theta})} \lesssim \|u\|_{W_{p,r}(\mathcal{R}_{\Theta})} + \|\varphi\|_{W_{p,s}(\mathcal{R}_{\Theta})}. \\ ii) \ \ \mathit{If} \ \rho < 1 \ \mathit{and} \ p = 2, \ \mathit{we} \ \mathit{get} \ \|u\|_{W_{2,s+\ell}(\mathcal{R}_{\Theta})} \lesssim \|u\|_{W_{2,r}(\mathcal{R}_{\Theta})} + \|\varphi\|_{W_{2,s}(\mathcal{R}_{\Theta})}. \end{array}$

**Proof.** According to Lemma 4.2

$$u - \Psi_{c_k}(u) = \Psi_{b_k} \Psi_a(u) = \Psi_{b_k}(\varphi)$$

for any  $k \geq 0$ . This gives in particular

i) If  $\rho = 1$ 

$$||u||_{p,s+m} \leq ||\Psi_{b_k}(\varphi)||_{p,s+m} + ||\Psi_{c_k}(u)||_{p,s+m} \lesssim ||\varphi||_{p,s} + ||\Psi_{c_k}(u)||_{p,s+m}.$$

ii) If  $\rho < 1$  and p = 2

$$||u||_{2,s+\ell} \leq ||\Psi_{b_k}(\varphi)||_{2,s+\ell} + ||\Psi_{c_k}(u)||_{2,s+\ell} \lesssim ||\varphi||_{2,s} + ||\Psi_{c_k}(u)||_{2,s+\ell}.$$

Next, Lemma 4.1 gives that  $\Psi_{c_k}: W_{p,r}(\mathcal{R}_{\Theta}) \to W_{p,s+\ell}(\mathcal{R}_{\Theta})$  for k large enough.  $\square$ 

REMARK 4.6. As in the Euclidean setting [71], Theorem 4.5 above gives elliptic  $L_p$ -regularity in the Hörmander class  $\Sigma^m_{1,\delta}(\mathcal{R}_{\Theta})$  and hypoelliptic  $L_2$ -regularity in  $\Sigma^m_{\rho,\delta}(\mathcal{R}_{\Theta})$  when  $\rho < 1$ . The latter result remains open for other values of  $p \neq 2$ . Compared to [71] our result for p = 2 quantifies the loss of regularity in terms of  $\rho$  and it holds in the larger class  $S^m_{\rho,\delta}(\mathcal{R}_{\Theta})$ .

## APPENDIX A

# Noncommutative tori

Given any  $n \times n$  anti-symmetric  $\mathbb{R}$ -matrix  $\Theta$ , the subalgebra of  $\mathcal{R}_{\Theta}$  generated by  $w_j = u_j(1)$  is the rotation algebra  $\mathcal{A}_{\Theta}$ —also known as quantum or noncommutative torus— and we have

$$w_j w_k = \exp(2\pi i \Theta_{jk}) w_k w_j.$$

 $\mathcal{A}_{\Theta}$  can also be described as the  $\mathbb{Z}^n$ -periodic subalgebra

$$\mathcal{A}_{\Theta} = \left\langle \lambda_{\Theta}(\mathbf{k}) : \mathbf{k} \in \mathbb{Z}^n \right\rangle'' = \left\{ \varphi \in \mathcal{R}_{\Theta} \, \middle| \, \sigma_{\Theta}^{\mathbf{k}}(\varphi) = \varphi \text{ for all } \mathbf{k} \in \mathbb{Z}^n \right\}.$$

The extension of our results for pseudodifferential operators to noncommutative tori  $\mathcal{A}_{\Theta}$  follows by a combination of well-known transference arguments, which we recall now. Given a symbol  $a: \mathbb{Z}^n \to \mathcal{A}_{\Theta}$  we shall say that

•  $a \in S^m_{\rho,\delta}(\mathcal{A}_{\Theta})$  when

$$\left|\partial_{\Theta}^{\beta}\partial_{\mathbf{k}}^{\alpha}a(\mathbf{k})\right| \leq C_{\alpha,\beta} \langle \mathbf{k} \rangle^{m-\rho|\alpha|+\delta|\beta|}.$$

•  $a \in \Sigma_{o,\delta}^m(\mathcal{A}_{\Theta})$  when

$$\left|\partial_{\Theta}^{\beta}\partial_{\Theta,\mathbf{k}}^{\alpha_{1}}\partial_{\mathbf{k}}^{\alpha_{2}}a(\mathbf{k})\right| \leq C_{\alpha_{1},\alpha_{2},\beta} \langle \mathbf{k} \rangle^{m-\rho|\alpha_{1}+\alpha_{2}|+\delta|\beta|}.$$

In the above definitions,  $\partial_{\Theta}$  remains the same differential operator as in  $\mathcal{R}_{\Theta}$  whereas  $\partial_{\mathbf{k}}$  is the difference operator  $(\partial_{\mathbf{k}}^{j}a)(\mathbf{k}) = a(\mathbf{k} + e_{j}) - a(\mathbf{k})$ . The mixed derivatives  $\partial_{\Theta,k}$  are again  $\Theta$ -deformations of  $\partial_k$  by  $\partial_{\Theta}$ 's

$$\partial_{\Theta,\mathbf{k}}^{j} a(\mathbf{k}) = \partial_{\mathbf{k}}^{j} a(\mathbf{k}) + 2\pi i \left[ x_{\Theta,j}, a(\mathbf{k}) \right] = \partial_{\mathbf{k}}^{j} a(\mathbf{k}) + \frac{1}{2\pi i} \sum_{\ell=1}^{n} \Theta_{j\ell} \partial_{\Theta}^{\ell} a(\mathbf{k}).$$

The associated pseudodifferential operator is

$$\Psi_a(\varphi) \, = \, \sum_{\mathbf{k} \in \mathbb{Z}^n} a(\mathbf{k}) \widehat{\varphi}(\mathbf{k}) \lambda_{\Theta}(\mathbf{k}) \quad \text{for} \quad \varphi = \sum_{\mathbf{k} \in \mathbb{Z}^n} \widehat{\varphi}(\mathbf{k}) \lambda_{\Theta}(\mathbf{k}).$$

We say that  $\widetilde{a}:\mathbb{R}^n\to\mathcal{A}_{\Theta}$  is a Euclidean lifting of a when its restriction to  $\mathbb{Z}^n$ coincides with the original symbol  $a: \mathbb{Z}^n \to \mathcal{A}_{\Theta}$ . Recall that we impose the lifting to take values in the periodic subalgebra  $\mathcal{A}_{\Theta}$ , not just in  $\mathcal{R}_{\Theta}$ . The extension/restriction theorem below provides a useful characterization of the quantum Hörmander classes in  $\mathcal{A}_{\Theta}$  defined above since it relates them with their siblings in  $\mathcal{R}_{\Theta}$ .

Theorem A.1. Assume  $\rho > 0$ :

i) 
$$a \in S^m_{\alpha,\delta}(\mathcal{A}_{\Theta})$$
 iff it admits a lifting  $\widetilde{a} \in S^m_{\alpha,\delta}(\mathcal{R}_{\Theta})$ .

i) 
$$a \in S^m_{\rho,\delta}(\mathcal{A}_{\Theta})$$
 iff it admits a lifting  $\widetilde{a} \in S^m_{\rho,\delta}(\mathcal{R}_{\Theta})$ .  
ii)  $a \in \Sigma^m_{\rho,\delta}(\mathcal{A}_{\Theta})$  iff it admits a lifting  $\widetilde{a} \in \Sigma^m_{\rho,\delta}(\mathcal{R}_{\Theta})$ .

In fact, the lifting  $\widetilde{a}: \mathbb{R}^n \to \mathcal{A}_{\Theta}$  has the form

$$\widetilde{a}(\xi) = \sum_{\mathbf{k} \in \mathbb{Z}^n} \phi(\xi - \mathbf{k}) a(\mathbf{k})$$

for certain Schwartz function  $\phi: \mathbb{R}^n \to \mathbb{R}$  satisfying  $\phi(k) = \delta_{k,0}$  for  $k \in \mathbb{Z}^n$ .

The proof follows verbatim [66]. Theorem 4.5.3] since the argument only affects the classical variables  $k \in \mathbb{Z}^n$  and  $\xi \in \mathbb{R}^n$ . In particular, the exact same argument applies when we take values in  $A_{\Theta}$ . In fact, the same extension procedure applies when the Hörmander condition is only required for finitely many derivatives in the line of Remark 3.28, see 66, Corollary 4.5.7. The equality of the associated pseudodifferential operators is also proved in [66], Theorem 4.6.12 and Corollary 4.6.13]. Namely, the class of pseudodifferential operators associated to  $S^m_{o.\delta}(\mathcal{A}_{\Theta})$ or  $\Sigma_{\rho,\delta}^m(\mathcal{A}_{\Theta})$  can be identified with the corresponding Hörmander classes in  $\mathcal{R}_{\Theta}$  for periodic symbols —that is, taking values in  $A_{\Theta}$ — when acting on periodic elements  $\varphi = \sigma_{\mathsf{R}}^{\mathsf{R}}(\varphi)$  for  $\mathsf{k} \in \mathbb{Z}^n$ . Finally, it is also worth mentioning that the extension above also respects ellipticity, as shown in [66], Theorem 4.9.15].

THEOREM A.2. Let  $a: \mathbb{Z}^n \to \mathcal{A}_{\Theta}$  and 1 :

- i) If  $a \in S^0_{\rho,\rho}(\mathcal{A}_{\Theta})$  with  $0 \le \rho < 1$ ,  $\Psi_a : L_2(\mathcal{A}_{\Theta}) \to L_2(\mathcal{A}_{\Theta})$ . ii) If  $a \in S^0_{1,1}(\mathcal{A}_{\Theta}) \cap S^0_{1,1}(\mathcal{A}_{\Theta})^*$ , then  $\Psi_a : L_2(\mathcal{A}_{\Theta}) \to L_2(\mathcal{A}_{\Theta})$ .
- iii) If  $a \in \Sigma_{1,1}^{0,1}(\mathcal{A}_{\Theta}) \cap \Sigma_{1,1}^{0,1}(\mathcal{A}_{\Theta})^*$ , then  $\Psi_a : L_p(\mathcal{A}_{\Theta}) \to L_p(\mathcal{A}_{\Theta})$ .

**Proof of Theorem A.2** i) and ii). Let  $b_j = B_{2^{-j}}(0)$  and

$$h_j = \frac{1}{\sqrt{|b_j|}} \lambda_{\Theta}(1_{b_j}) \text{ and } \Lambda_j : \lambda_{\Theta}(\mathbf{k}) \mapsto \lambda_{\Theta}(\mathbf{k}) h_j.$$

Observe that  $\Lambda_j: L_2(\mathcal{A}_{\Theta}) \to L_2(\mathcal{R}_{\Theta})$  is an isometry for all  $j \geq 1$ . Indeed

$$\begin{split} \left\| \Lambda_{j}(\varphi) \right\|_{L_{2}(\mathcal{R}_{\Theta})}^{2} &= \frac{1}{|b_{j}|} \left\| \sum_{\mathbf{k} \in \mathbb{Z}^{n}} \widehat{\varphi}(\mathbf{k}) \lambda_{\Theta}(\mathbf{k}) \lambda_{\Theta}(\mathbf{1}_{b_{j}}) \right\|_{L_{2}(\mathcal{R}_{\Theta})}^{2} \\ &= \frac{1}{|b_{j}|} \left\| \int_{\mathbb{R}^{n}} \sum_{\mathbf{k} \in \mathbb{Z}^{n}} \widehat{\varphi}(\mathbf{k}) \mathbf{1}_{b_{j}}(\xi - \mathbf{k}) e^{2\pi i \langle \mathbf{k}, \Theta_{\downarrow} \xi - \mathbf{k} \rangle} \lambda_{\Theta}(\xi) d\xi \right\|_{L_{2}(\mathcal{R}_{\Theta})}^{2}. \end{split}$$

By Plancherel theorem and using that  $b_i + k$  are pairwise disjoint, we get

$$\begin{split} \left\| \Lambda_{j}(\varphi) \right\|_{L_{2}(\mathcal{R}_{\Theta})}^{2} &= \frac{1}{|b_{j}|} \int_{\mathbb{R}^{n}} \left| \sum_{\mathbf{k} \in \mathbb{Z}^{n}} \widehat{\varphi}(\mathbf{k}) \mathbf{1}_{b_{j}}(\xi - \mathbf{k}) e^{2\pi i \langle \mathbf{k}, \Theta_{\downarrow} \xi - \mathbf{k} \rangle} \right|^{2} d\xi \\ &= \frac{1}{|b_{j}|} \int_{\mathbb{R}^{n}} \sum_{\mathbf{k} \in \mathbb{Z}^{n}} \left| \widehat{\varphi}(\mathbf{k}) \right|^{2} \mathbf{1}_{b_{j}}(\xi - \mathbf{k}) d\xi = \sum_{\mathbf{k} \in \mathbb{Z}^{n}} \left| \widehat{\varphi}(\mathbf{k}) \right|^{2} = \|\varphi\|_{L_{2}(\mathcal{A}_{\Theta})}^{2}. \end{split}$$

Then, the assertion follows from the following claim

$$\lim_{j \to \infty} \left\| \Lambda_j (\Psi_a(\varphi)) - \Psi_{\widetilde{a}} (\Lambda_j(\varphi)) \right\|_{L_2(\mathcal{R}_{\Theta})} = 0$$

for any trigonometric polynomial  $\varphi$ . In other words, for finite linear combinations of the  $\lambda_{\Theta}(k)$ 's. Indeed, assume the limit above vanishes, then  $\Psi_a$  is  $L_2$ -bounded since trigonometric polynomials are dense and

$$\begin{split} \left\|\Psi_{a}(\varphi)\right\|_{L_{2}(\mathcal{A}_{\Theta})} &= \lim_{j \to \infty} \left\|\Lambda_{j}\left(\Psi_{a}(\varphi)\right)\right\|_{L_{2}(\mathcal{R}_{\Theta})} \\ &= \lim_{j \to \infty} \left\|\Psi_{\widetilde{a}}\left(\Lambda_{j}(\varphi)\right)\right\|_{L_{2}(\mathcal{R}_{\Theta})} \\ &\leq \lim_{j \to \infty} \left\|\Lambda_{j}(\varphi)\right\|_{L_{2}(\mathcal{R}_{\Theta})} &= \|\varphi\|_{L_{2}(\mathcal{A}_{\Theta})}. \end{split}$$

The inequality above follows by application of Theorem A.1 in conjunction with Theorems 3.9, 3.12 and 3.19. Let us then justify our claim above. It clearly suffices to prove it with  $\varphi = \lambda_{\Theta}(k)$  for any  $k \in \mathbb{Z}^n$ . Given an arbitrary  $\varepsilon > 0$ , we shall prove that the quantity  $\|\Lambda_j(\Psi_a(\lambda_{\Theta}(k))) - \Psi_{\widetilde{a}}(\Lambda_j(\lambda_{\Theta}(k)))\|_2 < C\varepsilon$  for some absolute constant C independent of  $(k, \varepsilon)$  and j large enough. Let  $\phi : \mathbb{R}^n \to \mathbb{R}$  be the function used in Theorem A.1 for the construction of the lifting. Since  $\phi$  is a Schwartz function and  $\phi(k) = \delta_{k,0}$  for  $k \in \mathbb{Z}^n$ , there must exists a  $\delta > 0$  satisfying

$$|\xi - \mathbf{k}| < \delta \ \Rightarrow \ \max \left\{ \left| \phi(\xi - \mathbf{k}) - 1 \right|, \sup_{\mathbf{j} \neq \mathbf{k}} \left| \phi(\xi - \mathbf{j}) \right| \right\} < \varepsilon R_{\varepsilon}^{-n}$$

where  $R_{\varepsilon}$  is large enough to satisfy

$$\sum_{|\mathbf{k}| > R_{\varepsilon}} \frac{1}{|\mathbf{k}|^{n+1}} < \varepsilon.$$

Next, consider the Fourier multiplier  $M_{b_k\delta}(\varphi) = \int_{\mathbb{R}^n} 1_{b_k\delta}(\xi) \widehat{\varphi}(\xi) \lambda_{\Theta}(\xi) d\xi$  where we write  $b_{k\delta}$  for  $B_{\delta}(k)$ . Then, we decompose the  $L_2$ -norm into three terms as follows

$$\begin{split} \left\| \Lambda_{j} \left( \Psi_{a}(\lambda_{\Theta}(\mathbf{k})) \right) - \Psi_{\widetilde{a}}(\Lambda_{j}(\lambda_{\Theta}(\mathbf{k}))) \right\|_{2} \\ &= \left\| a(\mathbf{k}) \lambda_{\Theta}(\mathbf{k}) h_{j} - \Psi_{\widetilde{a}} \left( \lambda_{\Theta}(\mathbf{k}) h_{j} \right) \right\|_{2} \\ &\leq \left\| a(\mathbf{k}) \left( \lambda_{\Theta}(\mathbf{k}) h_{j} - M_{b_{\mathbf{k}\delta}}(\lambda_{\Theta}(\mathbf{k}) h_{j}) \right) \right\|_{2} \\ &+ \left\| a(\mathbf{k}) M_{b_{\mathbf{k}\delta}}(\lambda_{\Theta}(\mathbf{k}) h_{j}) - \Psi_{\widetilde{a}} \left( M_{b_{\mathbf{k}\delta}}(\lambda_{\Theta}(\mathbf{k}) h_{j}) \right) \right\|_{2} \\ &+ \left\| \Psi_{\widetilde{a}} \left( M_{b_{\mathbf{k}\delta}}(\lambda_{\Theta}(\mathbf{k}) h_{j}) \right) - \Psi_{\widetilde{a}} \left( \lambda_{\Theta}(\mathbf{k}) h_{j} \right) \right\|_{2} = \mathbf{A} + \mathbf{B} + \mathbf{C}. \end{split}$$

We recall one more time from Theorem A.1 and Theorem B in the Introduction that  $\Psi_{\tilde{a}}: L_2(\mathcal{R}_{\Theta}) \to L_2(\mathcal{R}_{\Theta})$  is a bounded map. Moreover, we also know that  $a \in \ell_{\infty}(\mathbb{Z}^n; \mathcal{A}_{\Theta})$  since it has degree 0. In particular

$$A + C \le \left( \sup_{\mathbf{k} \in \mathbb{Z}^n} \|a(\mathbf{k})\|_{\mathcal{A}_{\Theta}} + \|\Psi_{\widetilde{a}}\|_{L_2(\mathcal{R}_{\Theta}) \to L_2(\mathcal{R}_{\Theta})} \right) \|\lambda_{\Theta}(\mathbf{k})h_j - M_{b_{\mathbf{k}\delta}}(\lambda_{\Theta}(\mathbf{k})h_j))\|_2.$$

The  $L_2$ -norm above can be estimated with Plancherel theorem

$$\begin{split} & \left\| \lambda_{\Theta}(\mathbf{k}) h_{j} - M_{b_{\mathbf{k}\delta}}(\lambda_{\Theta}(\mathbf{k}) h_{j}) \right) \right\|_{2} \\ & = \frac{1}{\sqrt{|b_{j}|}} \left\| \int_{\mathbb{R}^{n}} (1 - 1_{b_{\mathbf{k}\delta}}(\xi)) 1_{b_{j}}(\xi - \mathbf{k}) e^{2\pi i \langle \mathbf{k}, \Theta_{\downarrow} \xi - \mathbf{k} \rangle} \lambda_{\Theta}(\xi) \, d\xi \right\|_{2} \\ & = \left( \frac{1}{|b_{j}|} \int_{\mathbf{k} + b_{j}} \left| 1 - 1_{b_{\mathbf{k}\delta}}(\xi) \right|^{2} d\xi \right)^{\frac{1}{2}} \longrightarrow \left| 1 - b_{\mathbf{k}\delta}(\mathbf{k}) \right| = 0 \end{split}$$

as  $j \to \infty$ . Therefore, it remains to estimate the term B. Letting

$$\begin{aligned} \mathbf{a}_{\mathbf{k}}(\xi) &= & \left(\widetilde{a}(\xi) - a(\mathbf{k})\right) \mathbf{1}_{b_{\mathbf{k}\delta}(\xi)} \\ &= & a(\mathbf{k}) \left(\phi(\xi - \mathbf{k}) - 1\right) \mathbf{1}_{b_{\mathbf{k}\delta}(\xi)} \\ &+ & \sum_{\substack{\mathbf{j} \neq \mathbf{k} \\ |\mathbf{j} - \mathbf{k}| \leq R_{\varepsilon}}} a(\mathbf{j}) \phi(\xi - \mathbf{j}) \mathbf{1}_{b_{\mathbf{k}\delta}(\xi)} \\ &+ & \sum_{\substack{\mathbf{j} = \mathbf{k} > R}} a(\mathbf{j}) \phi(\xi - \mathbf{j}) \mathbf{1}_{b_{\mathbf{k}\delta}(\xi)} &= & \mathbf{a}_{1\mathbf{k}}(\xi) + \mathbf{a}_{2\mathbf{k}}(\xi) + \mathbf{a}_{3\mathbf{k}}(\xi), \end{aligned}$$

we clearly have

$$\mathbf{B} = \left\| \Psi_{\mathbf{a}_{k}}(\lambda_{\Theta}(\mathbf{k})h_{j}) \right\|_{2} \leq \sum_{j=1}^{3} \left\| \Psi_{\mathbf{a}_{jk}} : L_{2}(\mathcal{R}_{\Theta}) \to L_{2}(\mathcal{R}_{\Theta}) \right\|$$

since  $\lambda_{\Theta}(\mathbf{k})h_j$  is a unit vector in  $L_2(\mathcal{R}_{\Theta})$ . This gives

$$\begin{split} \mathbf{B} & \leq \left(\sup_{\mathbf{j} \in \mathbb{Z}^n} \|a(\mathbf{j})\|_{\mathcal{A}_{\Theta}}\right) \left(\sup_{|\xi - \mathbf{k}| < \delta} \left|\phi(\xi - \mathbf{k}) - 1\right|\right) \\ & + \left(\sup_{\mathbf{j} \in \mathbb{Z}^n} \|a(\mathbf{j})\|_{\mathcal{A}_{\Theta}}\right) \left(\sum_{\substack{\mathbf{j} \neq \mathbf{k} \\ |\mathbf{j} - \mathbf{k}| \leq R_{\varepsilon}}} \sup_{|\xi - \mathbf{k}| < \delta} \left|\phi(\xi - \mathbf{j})\right|\right) \\ & + \left(\sup_{\mathbf{j} \in \mathbb{Z}^n} \|a(\mathbf{j})\|_{\mathcal{A}_{\Theta}}\right) \left\||\xi|^{n+1} \phi(\xi)\right\| \left(\sum_{\mathbf{j} = \mathbf{k} \mid > R_{\varepsilon}} \frac{1}{|\mathbf{j} - \mathbf{k}|^{n+1}}\right) \lesssim 3\varepsilon. \end{split}$$

Then, letting  $\varepsilon \to 0^+$  this completes the proof of the claim.

**Proof of Theorem A.2** iii). The next ingredient we need is the natural BMO space in  $\mathcal{A}_{\Theta}$ . Define  $\mathrm{BMO}_c(\mathcal{A}_{\Theta})$  as the column BMO space associated to the transferred heat semigroup  $\varphi \mapsto \sum_{\mathbf{k}} \widehat{\varphi}(\mathbf{k}) \exp(-t|\mathbf{k}|^2) \lambda_{\Theta}(\mathbf{k})$ . As in Section 1.2.1 it can be regarded as the weak-\* closure of  $\sigma_{\Theta}(\mathcal{A}_{\Theta})$  with respect to the pair  $(\mathrm{H}^c_1(\mathcal{Q}_{\Theta}), \mathrm{BMO}_c(\mathcal{Q}_{\Theta}))$ . In other words, we find

$$||a||_{\mathrm{BMO}_c(\mathcal{A}_{\Theta})} \sim \sup_{Q \in \mathcal{Q}} \left\| \left( \int_Q \left| \sigma_{\Theta}(a) - \sigma_{\Theta}(a)_Q \right|^2 d\mu \right)^{\frac{1}{2}} \right\|_{\mathcal{A}_{\Theta}},$$

where Q is the set of all Euclidean cubes in  $\mathbb{R}^n$  with sides parallel to the axes,  $\mu$  stands for the Lebesgue measure and  $\sigma_{\Theta}(a)_Q$  is the average of  $\sigma_{\Theta}(a)$  over the cube Q. Up to absolute constants, it is not difficult to recover an equivalent norm when restricting to cubes Q of side length  $\ell(Q) \in (0,1) \cup \mathbb{N}$ . Moreover, since a is spanned by  $\lambda_{\Theta}(k)$  for  $k \in \mathbb{Z}^n$ , it is clear that  $\sigma_{\Theta}(a)$  is  $\mathbb{Z}^n$ -periodic. In particular, the quantity above for  $\ell(Q) \in \mathbb{N}$  coincides with the same quantity for  $Q = [0,1] \times \ldots \times [0,1]$ , so that we may assume in addition  $\ell(Q) \leq 1$ . We have proved

$$\|a\|_{\mathrm{BMO}_c(\mathcal{A}_{\Theta})} \sim \sup_{Q \in \mathbb{T}^n} \left\| \left( \int_{Q} \left| \sigma_{\Theta}(a) - \sigma_{\Theta}(a)_{Q} \right|^2 d\mu \right)^{\frac{1}{2}} \right\|_{\mathcal{A}_{\Theta}}.$$

In other words,  $BMO_c(\mathcal{A}_{\Theta})$  embeds into  $BMO_c(\mathbb{T}^n; \mathcal{A}_{\Theta})$  using Mei's terminology [52]. The interpolation behavior and other natural properties which we explore for  $BMO(\mathcal{R}_{\Theta})$  in Appendix B are well-known in this case [41], due to the finiteness of  $\mathcal{A}_{\Theta}$ . Note that, according to our definition of  $BMO(\mathcal{A}_{\Theta})$ , the natural inclusion map  $\mathcal{A}_{\Theta} \to \mathcal{R}_{\Theta}$  extends to an embedding  $BMO(\mathcal{A}_{\Theta}) \to BMO(\mathcal{R}_{\Theta})$ . In other words,  $BMO(\mathcal{A}_{\Theta})$  is the subspace of periodic elements in  $BMO(\mathcal{R}_{\Theta})$ . Now, recalling that  $\Psi_{\widetilde{a}}$  sends periodic elements into periodic elements, this makes the following a commutative diagram

$$L_{\infty}(\mathcal{A}_{\Theta}) \xrightarrow{id} L_{\infty}(\mathcal{R}_{\Theta})$$

$$\downarrow^{\Psi_{\tilde{a}}} \qquad \qquad \downarrow^{\Psi_{\tilde{a}}}$$

$$BMO(\mathcal{A}_{\Theta}) \xrightarrow{id} BMO(\mathcal{R}_{\Theta})$$

The assertion follows from it and Theorem A.2 ii) by interpolation and duality.  $\Box$ 

REMARK A.3. Our  $L_p$ -inequalities also hold in the category of operator spaces and admit the endpoint estimates  $\mathrm{H}_1 \to L_1$  and  $L_\infty \to \mathrm{BMO}$ , as in the quantum Euclidean setting. Besides, the natural analogues of Remarks 3.27 and 3.28 as well as Corollary 3.29 concerning  $L_p$ -estimates still apply. On the other hand, the Sobolev p-estimates in Corollary 3.26 and the  $L_p$ -regularity for elliptic PDEs require in addition analogues of the product stability of Hörmander classes in Section 3.1, which seems to be straightforward but we shall not generalize it here.

#### APPENDIX B

# BMO space theory in $\mathcal{R}_{\Theta}$

The theory of BMO spaces was originally developed as a natural endpoint class for singular integral operators. In particular, the natural requirements for a reasonable BMO space are:

- 1) Interpolation endpoint for the  $L_p$ -scale.
- 2) John-Nirenberg inequalities and  $H_1$  BMO duality.
- 3)  $L_{\infty} \to \text{BMO}$  boundedness for Calderón-Zygmund operators.

BMO spaces over von Neumann algebras were introduced by Pisier and Xu in [63] and have been investigated since then. The theory when averages over balls or martingale filtrations are replaced by the action of a Markovian semigroup has been addressed for finite von Neumann algebras in [41]. Interpolation requires a different approach over  $\mathcal{R}_{\Theta}$ —less intricate than the general semifinite case—which we present here. Duality was developed by Mei [52,53] and endpoint estimates for imaginary powers  $A^{is}$  of infinitesimal generators, noncommutative Riesz transforms or more general Fourier multipliers have been studied in [13,40-42,65]. In the setting of  $\mathcal{A}_{\Theta}$  and  $\mathcal{R}_{\Theta}$ , Theorems A and B include many more singular integrals.

### **B.1. Operator space structures on BMO and H**<sub>1</sub>

Let us recall the definitions of several natural operator space structures —o.s.s. in short— for BMO( $\mathbb{R}^n$ ) and its predual. We define the column operator space structure by the family of matrix norms on  $f = [f_{ij}] \in M_m[\text{BMO}_c(\mathbb{R}^n)]$  given by

$$||f||_{M_m[BMO_c(\mathbb{R}^n)]} = \sup_{Q \in \mathcal{Q}} \left\| \int_Q (f - f_Q)^* (f - f_Q) d\mu \right\|_{M_m}^{\frac{1}{2}},$$

where  $f_Q$  is the average of f over Q and Q stands for the set of all the Euclidean balls. We will denote the resulting operator space by  $\mathrm{BMO}_c(\mathbb{R}^n)$ . Similarly, we can define the row o.s.s. by  $\|f\|_{M_m[\mathrm{BMO}_r(\mathbb{R}^n)]} = \|f^*\|_{M_m[\mathrm{BMO}_c(\mathbb{R}^n)]}$ . We shall also denote by  $\mathrm{BMO}(\mathbb{R}^n)$ —sometimes  $\mathrm{BMO}_{r\wedge c}(\mathbb{R}^n)$  for convenience—the operator space structure

$$||f||_{M_m[BMO_c(\mathbb{R}^n)]} = \max \{ ||f||_{M_m[BMO_c(\mathbb{R}^n)]}, ||f||_{M_m[BMO_r(\mathbb{R}^n)]} \}.$$

These are dual operator spaces, with preduals  $H_1^{\dagger}(\mathbb{R}^n)^* = BMO_{\dagger}(\mathbb{R}^n)$  given by

$$||f||_{\mathcal{H}_{1}^{c}(\mathbb{R}^{n})} = \left\| \left( \int_{\mathbb{R}_{+}} \left| s(\nabla + \partial_{s}^{2}) P_{s} f \right|^{2} \frac{ds}{s} \right)^{\frac{1}{2}} \right\|_{L_{1}(\mathbb{R}^{n})},$$

$$||f||_{\mathcal{H}_{1}^{r}(\mathbb{R}^{n})} = \left\| \left( \int_{\mathbb{R}_{+}} \left| s(\nabla + \partial_{s}^{2}) P_{s} f^{*} \right|^{2} \frac{ds}{s} \right)^{\frac{1}{2}} \right\|_{L_{1}(\mathbb{R}^{n})},$$

where  $P_s$  is the Poisson semigroup. The quantities above are just pseudonorms. A natural way of turning them into norms is working with 0-integral functions, in a

way dual to the quotient of constants taken in the definition of BMO. Comparable norms can be defined by removing the  $\partial_s^2$  inside the square function and by using the semigroup analogue of Lusin area integral, given by

$$\|f\|_{\mathcal{H}_{1}^{c}(\mathbb{R}^{n})} \, \sim \, \left\| \Big( \int_{\Gamma_{x}} \left| (\nabla + \partial_{s}^{2}) P_{s} f(y) \right|^{2} ds dy \Big)^{\frac{1}{2}} \right\|_{L_{1}(\mathbb{R}^{n})},$$

where  $\Gamma_x = \{(y,s) \in \mathbb{R}^n \times \mathbb{R}_+ : |y-x| \leq s\}$  is the cone centered at x. The row case can be expressed analogously. The o.s.s. of Hardy spaces can be easily described by taking matrix-valued functions  $f = [f_{ij}]$  in the expression above and taking norms in  $S_1^m \widehat{\otimes} L_1(\mathbb{R}^n) = L_1(\mathbb{R}^n; S_1^m)$ . That will give a family of matrix norms which describes the operator space structure. Indeed, using [61], Lemma 1.7] and the well-known relation

$$M_m[\mathrm{H}_1^\dagger(\mathbb{R}^n)] = \mathcal{CB}(S_1^m, \mathrm{H}_1^\dagger(\mathbb{R}^n))$$

see e.g. **[62**], Theorem 4.1], we can easily express the norm of  $M_m[H_1^{\dagger}(\mathbb{R}^n)]$  in terms of the known norms. The operator space predual  $H_1(\mathbb{R}^n)$  of  $BMO(\mathbb{R}^n)$  is given by the sum  $H_1^c(\mathbb{R}^n) + H_1^r(\mathbb{R}^n)$ , whose norm is

$$\|f\|_{S^m_1 \widehat{\otimes} \mathrm{H}_1(\mathbb{R}^n)} = \inf \Big\{ \|g\|_{S^m_1 \widehat{\otimes} \mathrm{H}^r_1(\mathbb{R}^n)} + \|h\|_{S^m_1 \widehat{\otimes} \mathrm{H}^r_1(\mathbb{R}^n)} : f = g + h \Big\}.$$

Let us note that, by computations in Section 1.2.1 we have that  $\sigma_{\Theta}$  gives an isomorphic embedding  $BMO_{\dagger}(\mathcal{R}_{\Theta}) \to BMO_{\dagger}(\mathbb{R}^n) \bar{\otimes} \mathcal{R}_{\Theta}$ . In particular, since  $\mathcal{R}_{\Theta}$  is hyperfinite, we may equip  $BMO_{\dagger}(\mathcal{R}_{\Theta})$  with an o.s.s. naturally inherited from  $BMO_{\dagger}(\mathbb{R}^n)$ . Following Mei [53], the definition of  $H_1^{\dagger}(\mathcal{R}_{\Theta})$  will be given by completion on the 0-trace functions with respect to

$$\|\varphi\|_{\mathcal{H}_{1}^{c}(\mathcal{R}_{\Theta})} = \left\| \left( \int_{\mathbb{R}_{+}} S_{\Theta,t} |\nabla_{\Theta} S_{\Theta,t} \varphi|^{2} dt \right)^{\frac{1}{2}} \right\|_{L_{1}(\mathcal{R}_{\Theta})},$$

$$\|\varphi\|_{\mathcal{H}_{1}^{r}(\mathcal{R}_{\Theta})} = \left\| \left( \int_{\mathbb{R}_{+}} S_{\Theta,t} |\nabla_{\Theta} S_{\Theta,t} \varphi^{*}|^{2} dt \right)^{\frac{1}{2}} \right\|_{L_{1}(\mathcal{R}_{\Theta})}.$$

The operator space structures of such spaces are defined in the same way as the operator space structures of the classical ones, which could also have been defined with this square function instead of the given one yielding an equivalent norm. Note also that when  $\Theta = 0$ , the semigroup  $S_{\Theta,t}$  behaves (intuitively) like an average over balls of radius  $\sqrt{t}$  and a calculation gives that the quantities above are comparable to the Lusin integral and therefore recover the classical  $H_1(\mathbb{R}^n)$ . We will write  $H_1(\mathcal{R}_{\Theta})$  or  $H_1^{r+c}(\mathcal{R}_{\Theta})$  for the sum

$$H_1(\mathcal{R}_{\Theta}) = H_1^r(\mathcal{R}_{\Theta}) + H_1^c(\mathcal{R}_{\Theta}).$$

### B.2. The H<sub>1</sub>-BMO duality

The von Neumann algebra analogue of the celebrated  $H_1$  – BMO duality [30] has been carefully studied in our semigroup setting by Tao Mei. By [54], Theorem 0.2], the duality between  $H_1(\mathcal{R}_{\Theta})$  and  $BMO(\mathcal{R}_{\Theta})$  can be deduced after verifying that the associated heat semigroup  $(S_{\Theta,t})_{t\geq 0}$  satisfies the following conditions:

i) Bakry's  $\Gamma_2 \geq 0$  condition.

ii) For all 
$$\varepsilon, t > 0$$
 and  $\varphi \in L_1(\mathcal{R}_{\Theta})$ 

$$\left\| (S_{\Theta,(1+\epsilon)t} - S_{\Theta,t})\varphi \right\|_{L_1(\mathcal{R}_{\Theta})} \lesssim \varepsilon^r \|\varphi\|_{L_1(\mathcal{R}_{\Theta})}.$$

iii) For every t > 0 and  $\varphi \in L_1(\mathcal{R}_{\Theta})$ 

$$\sup_{t>0} \left\| \left( \int_0^{8t} S_{\Theta,s}(|S_{\Theta,t}(\varphi)|^2) \, ds \right)^{\frac{1}{2}} \right\|_{L_1(\mathcal{R}_{\Theta})} \lesssim \|\varphi\|_{L_1(\mathcal{R}_{\Theta})}.$$

Verifying such identities is relatively easy for the heat semigroup  $(S_{\Theta,t})_{t\geq 0}$  after noting that it can be presented as an integrable convolution with respect to the z-variable  $\sigma_{\Theta}^{z}(\varphi)$  and using bounds in  $L_{1/2}(\mathcal{R}_{\Theta})$ . In particular, we obtain the expected duality theorem.

Theorem B.1. We have

$$\mathrm{H}_{1}^{\dagger}(\mathcal{R}_{\Theta})^{*}=\mathrm{BMO}_{\dagger}(\mathcal{R}_{\Theta})$$

in the category of operator spaces for  $\dagger \in \{r, c\}$ . Also  $H_1(\mathcal{R}_{\Theta})^* = BMO(\mathcal{R}_{\Theta})$ .

## **B.3.** Complex interpolation

We are interested in proving the generalization of the classical interpolation identities between  $L_p$ , BMO and  $H_1$ . According to Wolff's interpolation theorem [77], this can be reduced to justifying  $[L_2(\mathcal{R}_{\Theta}), \text{BMO}(\mathcal{R}_{\Theta})]_{\theta} = L_p(\mathcal{R}_{\Theta})$  for  $p = \frac{2}{1-\theta}$  which in turn will be reduced, via suitable complemented subspaces, to the same result in  $\mathbb{R}^n$  with operator values in certain hyperfinite von Neumann algebra.

Let us recall a few standard definitions from interpolation theory. Given  $X_0, X_1$  Banach spaces, assume that they embed inside a topological vector space with dense intersection, so that we can define  $X_0 \cap X_1$  and  $X_0 + X_1$  with their natural norms. Let us write  $\mathcal{F}(X_0, X_1)$  for the space of  $(X_0 + X_1)$ -valued holomorphic functions in the strip  $0 < \Re(z) < 1$  which admit a continuous extension to the boundary, with  $X_j$ -values at  $\partial_j$  for j = 1, 2. Such space is a Banach space with respect to the norm given by

$$\|f\|_{\mathcal{F}(\mathbf{X}_0,\mathbf{X}_1)} = \max \Big\{ \sup_{s \in \mathbb{R}} \|f(is)\|_{\mathbf{X}_0}, \sup_{s \in \mathbb{R}} \|f(1+is)\|_{\mathbf{X}_1} \Big\}.$$

The interpolated space with parameter  $0 < \theta < 1$  is

$$[X_0, X_1]_{\theta} = \mathcal{F}(X_0, X_1)/\mathfrak{N}_{\theta},$$

where  $\mathfrak{N}_{\theta}$  is the subspace of functions with  $f(\theta)=0$ . We can also define a larger interpolation functor  $[X_0,X_1]^{\theta}$  that contains  $[X_0,X_1]_{\theta}$  isometrically by changing  $\mathcal{F}(X_0,X_1)$  by a la larger space  $\mathcal{F}_*(X_0,X_1)$  of holomorphic functions in which  $f|_{\partial_j}$  is a more general  $X_j$ -valued distribution. These interpolation functors satisfy that  $[X_0,X_1]_{\theta}^*=[X_0^*,X_1^*]^{\theta}$  and both coincide if any of the spaces involved  $X_0,X_1$  is reflexive  $[\mathfrak{S},$  Corollary 4.5.2] and  $[\mathfrak{G2},$  Theorem 2.7.4]. If  $X_j$  are operator spaces, the o.s.s. of  $[X_0,X_1]_{\theta}$  is given by the identification

$$M_m([X_0, X_1]_{\theta}) = [M_m(X_0), M_m(X_1)]_{\theta}.$$

We first need an auxiliary result concerning complex interpolation of tensor products against hyperfinite von Neumann algebras. This result is a consequence of the interpolation identity  $[\mathcal{M}_*\widehat{\otimes} X_0, \mathcal{M}_*\widehat{\otimes} X_1]_{\theta} = \mathcal{M}_*\widehat{\otimes} X_{\theta}$  which can be found in [61] page 40]. We prove it for completeness.

Lemma B.2. We have

$$\left[\mathcal{M}\bar{\otimes}X_0,\mathcal{M}\bar{\otimes}X_1\right]^{\theta}=\mathcal{M}\bar{\otimes}[X_0,X_1]^{\theta}$$

for any hyperfinite algebra  $\mathcal{M}$  and any pair of dual operator spaces  $X_0, X_1$ .

**Proof.** According to [26] the spaces involved are dual operator spaces. Indeed, von Neumann algebra preduals have the OAP so  $\mathcal{M} \bar{\otimes} X^* = (\mathcal{M}_* \hat{\otimes} X)^*$ . Now, since hyperfiniteness and semidiscreteness are equivalent  $id : \mathcal{M} \to \mathcal{M}$  is approximable in the pointwise weak-\* topology by a net  $i_{\alpha} = \psi_{\alpha} \phi_{\alpha}$  where  $\phi_{\alpha} : \mathcal{M} \to M_{m_{\alpha}}(\mathbb{C})$  and  $\psi_{\alpha} : M_{m_{\alpha}}(\mathbb{C}) \to \mathcal{M}$  are ucp. We have

$$\mathcal{M} \bar{\otimes} \mathbf{X}^{\theta} \xrightarrow{i_{\alpha} \otimes id} \begin{bmatrix} \mathcal{M} \bar{\otimes} \mathbf{X}_{0}, \mathcal{M} \bar{\otimes} \mathbf{X}_{1} \end{bmatrix}^{\theta}$$

$$\downarrow \phi_{\alpha} \otimes id \qquad \qquad \downarrow \phi_{\alpha}$$

a commutative diagram for  $X^{\theta} = [X_0, X_1]^{\theta}$ . The maps  $i_{\alpha}$  approximate the identity and taking a weak-\* accumulation point in  $\mathcal{CB}(\mathcal{M} \bar{\otimes} X\theta, [\mathcal{M} \bar{\otimes} X_0, \mathcal{M} \bar{\otimes} X_1]^{\theta})$ , which is a dual space since  $\mathcal{CB}(X, Y^*) = (X \hat{\otimes} Y)^*$ , we obtain a complete isomorphism.  $\square$ 

A key point in our interpolation argument will be to show that the co-action  $\sigma_{\Theta}: \mathcal{R}_{\Theta} \to L_{\infty}(\mathbb{R}^n) \bar{\otimes} \mathcal{R}_{\Theta}$  also carries other  $\mathcal{R}_{\Theta}$ -spaces — $L_p$  and BMO— into their  $\mathcal{R}_{\Theta}$ -valued Euclidean counterparts.

Proposition B.3. We have complete contractions:

- i)  $\sigma_{\Theta}: L_2^{\dagger}(\mathcal{R}_{\Theta}) \longrightarrow L_2^{\dagger}(\mathbb{R}^n) \bar{\otimes} \mathcal{R}_{\Theta} \text{ for } \dagger \in \{r, c\},$
- ii)  $\sigma_{\Theta}: L_p(\mathcal{R}_{\Theta}) \longrightarrow L_p(\mathbb{R}^n) \bar{\otimes} \mathcal{R}_{\Theta} \text{ for any } 2 \leq p \leq \infty,$
- iii)  $\sigma_{\Theta} : \mathrm{BMO}_{\dagger}(\mathcal{R}_{\Theta}) \longrightarrow \mathrm{BMO}_{\dagger}(\mathbb{R}^n) \bar{\otimes} \mathcal{R}_{\Theta} \text{ for } \dagger \in \{r, c, r \wedge c\}.$

**Proof.** Let us recall the Fubini-type identity

$$\mathbf{1}\tau_{\Theta}(\varphi) = \int_{\mathbb{R}^n} \sigma_{\Theta}^z(\varphi) \, dz.$$

In particular, given  $\varphi = [\varphi_{ij}] \in M_m[L_2^c(\mathcal{R}_\Theta)]$  we obtain

$$\begin{split} \|\varphi\|_{M_{m}[L_{2}^{c}(\mathcal{R}_{\Theta})]}^{2} &= \|(id \otimes \tau_{\Theta}) (\varphi^{*}\varphi)\|_{M_{m}} = \|(id \otimes \mathbf{1}\tau_{\Theta}) (\varphi^{*}\varphi)\|_{M_{m}[\mathcal{R}_{\Theta}]} \\ &= \|\int_{\mathbb{R}^{n}} \sigma_{\Theta}^{z}(\varphi)^{*} \sigma_{\Theta}^{z}(\varphi) \, dz \Big\|_{M_{m}[\mathcal{R}_{\Theta}]} = \|\sigma_{\Theta}(\varphi)\|_{M_{m}[L_{2}^{c}(\mathbb{R}^{n})\bar{\otimes}\mathcal{R}_{\Theta}]}^{2}. \end{split}$$

The same follows in the row case. In fact,  $\sigma_{\Theta}$  is a complete isometry in case [i] and also in case [ii] by construction of BMO( $\mathcal{R}_{\Theta}$ ). Assertion [ii] follows by interpolation from Lemma [ii]. Indeed, since  $L_2(\mathbb{R}^n) = [L_2^c(\mathbb{R}^n), L_2^r(\mathbb{R}^n)]_{1/2}$  in the category of operator spaces and all spaces involved are reflexive, we obtain from [i] that  $\sigma_{\Theta}$  is a complete contraction from  $L_2(\mathcal{R}_{\Theta})$  to  $L_2(\mathbb{R}^n) \bar{\otimes} \mathcal{R}_{\Theta}$ . The case p > 2 also follows by complex interpolation, using the reflexivity of  $L_2$ , since the contractivity of the other endpoint for  $p = \infty$  was already justified in Corollary [1.4].

REMARK B.4. It is interesting to know whether an analogue of Proposition B.3 holds for p=1. Note that  $L_1(\mathbb{R}^n)$  is not a dual space, so that we can not use the weak-\* closed tensor product. Instead, we shall consider the mixed-norm space  $L_{\infty}(\mathcal{R}_{\Theta}; L_1(\mathbb{R}^n))$  as introduced in [39,45]

$$L_{\infty}(\mathcal{R}_{\Theta}; L_{1}(\mathbb{R}^{n})) = (L_{2}^{r}(\mathbb{R}^{n}) \bar{\otimes} \mathcal{R}_{\Theta}) (L_{2}^{c}(\mathbb{R}^{n}) \bar{\otimes} \mathcal{R}_{\Theta}),$$

where the operator space structure for  $\omega \in M_m(L_\infty(\mathcal{R}_\Theta; L_1(\mathbb{R}^n)))$  is

$$\inf \left\{ \left\| \sum_{k} \alpha_{k} \otimes e_{1k} \right\|_{M_{m}(L_{2}^{r}(\mathbb{R}^{n})\bar{\otimes}\mathcal{R}_{\Theta}\otimes R)} \left\| \sum_{k} \beta_{k} \otimes e_{k1} \right\|_{M_{m}(L_{2}^{c}(\mathbb{R}^{n})\bar{\otimes}\mathcal{R}_{\Theta}\otimes C)} \right\}$$

where the infimum runs over all possible factorizations  $\omega = \sum_k \alpha_k \beta_k$ . Now, the contractivity of  $\sigma_\Theta: L_1(\mathbb{R}_\Theta) \to L_\infty(\mathcal{R}_\Theta; L_1(\mathbb{R}^n))$  follows easily from Proposition B.3[]. Particular cases of this kind of spaces — over finite von Neumann algebras or discrete  $\ell_1$  spaces— have been proved to interpolate in the expected way with the corresponding  $L_p$  scale [39,45]. The lack of an available argument in the literature for the general case has led us to avoid the case 1 in Proposition B.3. This contractivity result is unnecessary for our goals.

Observe that

$$\sigma_{\Theta}(\lambda_{\Theta}(f)) = \int_{\mathbb{R}^n} f(\xi) \left( \exp_{\xi} \otimes \lambda_{\Theta}(\xi) \right) d\xi \quad \text{for} \quad f \in \mathcal{S}(\mathbb{R}^n).$$

Clearly such element is invariant under the group of trace preserving automorphisms  $\beta_z$  given by  $\beta_z = \sigma_0^{-z} \otimes \sigma_{\Theta}^z$ . Let us denote by  $(X \bar{\otimes} \mathcal{R}_{\Theta})^{\beta}$  the  $\beta$ -invariant part of the  $X \bar{\otimes} \mathcal{R}_{\Theta}$  with X any of the Euclidean function spaces in Proposition  $\blacksquare$ . We need to see that  $(X \bar{\otimes} \mathcal{R}_{\Theta})^{\beta}$  coincides with the image of  $\sigma_{\Theta}$  and that the  $\beta$ -invariant subspace is complemented. Let us start with the complementation.

Proposition B.5. The following subspaces

- i)  $(L_2^{\dagger}(\mathbb{R}^n)\bar{\otimes}\mathcal{R}_{\Theta})^{\beta} \subset L_2^{\dagger}(\mathbb{R}^n)\bar{\otimes}\mathcal{R}_{\Theta} \text{ for } \dagger \in \{r,c\},$
- ii)  $(L_p(\mathbb{R}^n)\bar{\otimes}\mathcal{R}_{\Theta})^{\beta} \subset L_p(\mathbb{R}^n)\bar{\otimes}\mathcal{R}_{\Theta} \text{ for any } 2 \leq p \leq \infty,$
- iii)  $(BMO_{\dagger}(\mathbb{R}^n)\bar{\otimes}\mathcal{R}_{\Theta})^{\beta} \subset BMO_{\dagger}(\mathbb{R}^n)\bar{\otimes}\mathcal{R}_{\Theta} \text{ for } \dagger \in \{c, r, r \wedge c\},$

are completely complemented as operator spaces in the respective ambient spaces.

**Proof.** By amenability of  $\mathbb{R}^n$ , let  $m \in L_{\infty}(\mathbb{R}^n)^*$  be an invariant mean and let  $m_{\alpha}$  be a sequence of probability measures in  $L_1(\mathbb{R}^n)$  which approximate m. Given  $\omega$  in  $L_p(\mathbb{R}^n)\bar{\otimes}\mathcal{R}_{\Theta}$ , the function  $z \mapsto \beta_z \omega$  sits in the space  $L_{\infty}(\mathbb{R}^n)\bar{\otimes}L_p(\mathbb{R}^n)\bar{\otimes}\mathcal{R}_{\Theta}$ , so

$$P_{\alpha}(\omega) = (m_{\alpha} \otimes id \otimes id)(\beta_z \omega)$$

defines a family of completely positive operators

$$P_{\alpha}: L_{\infty}(\mathbb{R}^n) \bar{\otimes} L_p(\mathbb{R}^n) \bar{\otimes} \mathcal{R}_{\Theta} \to L_p(\mathbb{R}^n) \bar{\otimes} \mathcal{R}_{\Theta}.$$

Since the image is in a dual space, we use  $\mathcal{CB}(X, Y^*) = (X \widehat{\otimes} Y)^*$  and Banach-Alaoglu theorem. Let P be an accumulation point of  $(P_{\alpha} \circ \beta)_{\alpha}$  in the weak-\* topology. P gives a cb-bounded projection into the  $\beta$ -invariant part. We have only used that  $L_p(\mathbb{R}^n)$  is a dual space for weak-\* compactness. Therefore, the same proof applies to  $\mathrm{BMO}_{\dagger}(\mathbb{R}^n)$ . The projections  $P: L_p(\mathbb{R}^n) \bar{\otimes} \mathcal{R}_{\Theta} \to L_p(\mathbb{R}^n) \bar{\otimes} \mathcal{R}_{\Theta}$  form compatible family: they are restrictions of a map defined in the sum of the above spaces.  $\square$ 

Proposition B.6. We have

- i)  $\sigma_{\Theta}(L_2^{\dagger}(\mathcal{R}_{\Theta})) = (L_2^{\dagger}(\mathbb{R}^n)\bar{\otimes}\mathcal{R}_{\Theta})^{\beta} \text{ for } \dagger \in \{r, c\},$
- ii)  $\sigma_{\Theta}(L_p(\mathcal{R}_{\Theta})) = (L_p(\mathbb{R}^n) \bar{\otimes} \mathcal{R}_{\Theta})^{\beta} \text{ for any } 2 \leq p \leq \infty,$
- iii)  $\sigma_{\Theta}(\mathrm{BMO}_{\dagger}(\mathcal{R}_{\Theta})) = (\mathrm{BMO}(\mathbb{R}^n)_{\dagger} \bar{\otimes} \mathcal{R}_{\Theta})^{\beta} \text{ for } \dagger \in \{r, c, r \wedge c\}.$

**Proof.** Since the spaces  $(L_p(\mathbb{R}^n)\bar{\otimes}\mathcal{R}_{\Theta})^{\beta}$  are complemented subspaces, it is enough to prove the identity for p=2 and  $p=\infty$  and interpolation will yield the result for  $2 since the maps <math>\sigma_{\Theta} : L_p(\mathcal{R}_{\Theta}) \to L_p(\mathbb{R}^n)\bar{\otimes}\mathcal{R}_{\Theta}$  are compatible. The same argument gives that the  $L_2$  case follows by interpolation between  $L_2^c(\mathcal{R}_{\Theta})$  and  $L_2^r(\mathcal{R}_{\Theta})$ . This reduces the proof to the row/column cases, the case  $p=\infty$  and  $\mathrm{BMO}(\mathcal{R}_{\Theta})$ . We shall only prove it for columns and for  $p=\infty$ , since the argument is similar in BMO. Let us define the map  $\mathcal{W}: L_2^c(\mathbb{R}^n)\bar{\otimes}\mathcal{R}_{\Theta} \to L_2^c(\mathbb{R}^n)\bar{\otimes}\mathcal{R}_{\Theta}$  by

extension of  $\exp_{\xi} \otimes \lambda_{\Theta}(\eta) \mapsto \exp_{\xi} \otimes \lambda_{\Theta}(\xi) \lambda_{\Theta}(\eta)$ . A calculation easily yields that  $\mathcal{W}$  is a complete isometry. The same follows in the row case if one takes the map  $\exp_{\xi} \otimes \lambda_{\Theta}(\eta) \mapsto \exp_{\xi} \otimes \lambda_{\Theta}(\eta) \lambda_{\Theta}(\xi)$  instead. We have that  $\mathcal{W}$  gives an isomorphism between  $L_2^c(\mathbb{R}^n) \otimes \mathbf{1}$  and  $\sigma_{\Theta}[\lambda_{\Theta}[L_2(\mathbb{R}^n)]]$ . We also have that  $\mathcal{W}$  intertwines the action  $\beta_z$  as follows

$$L_{2}^{c}(\mathbb{R}^{n})\bar{\otimes}\mathcal{R}_{\Theta} \xrightarrow{\mathcal{W}} L_{2}^{c}(\mathbb{R}^{n})\bar{\otimes}\mathcal{R}_{\Theta}$$

$$\downarrow^{\sigma_{\Theta}^{z}} \qquad \downarrow^{\beta_{z}}$$

$$L_{2}^{c}(\mathbb{R}^{n})\bar{\otimes}\mathcal{R}_{\Theta} \xrightarrow{\mathcal{W}} L_{2}^{c}(\mathbb{R}^{n})\bar{\otimes}\mathcal{R}_{\Theta}.$$

Therefore, the subspace fixed by  $\beta$  corresponds under  $\mathcal{W}$  with the subspace fixed by  $id \otimes \sigma_{\Theta}$ . But evaluating such space against every  $\varphi \otimes id$ , with  $\varphi \in L_2^r(\mathbb{R}^n)$ , gives that the fixed subspace of  $id \otimes \sigma_{\Theta}$  is  $L_2^c(\mathbb{R}^n)$  tensored with the subspace fixed by  $\sigma_{\Theta}$ . Such subspace is  $\mathbb{C}1$ . Indeed, if  $\varphi \in \mathcal{R}_{\Theta}$  is invariant under  $\sigma_{\Theta}$  we obtain that  $\varphi = \lambda_{\Theta}(\psi)$ , where  $\psi \in \mathcal{S}(\mathbb{R}^n)'$  is a distribution supported on  $\{0\}$ . But such distribution is a linear combination of distributions of the form  $\langle \psi, f \rangle = f^{(k)}(0)$ , where  $f \in \mathcal{S}(\mathbb{R}^n)$ . The derivatives with k > 0 give rise to unbounded elements and so we obtain that  $\psi$  has to be a multiple of  $\delta_0$  or, equivalently, that  $\varphi \in \mathbb{C}1$ .

The case of  $p = \infty$  follows similarly. We first define a normal \*-homomorphim  $\mathcal{U}: L_{\infty}(\mathbb{R}^n) \bar{\otimes} \mathcal{R}_{\Theta} \to L_{\infty}(\mathbb{R}^n) \bar{\otimes} \mathcal{R}_{\Theta}$  by extension of  $\exp_{\xi} \otimes \lambda_{\Theta}(\eta) \mapsto \exp_{\eta+\xi} \otimes \lambda_{\Theta}(\xi)$ . To prove that such map is a \*-homomorphism we can implement it spatially with techniques analogous to that of Corollary 1.4 We have that  $\mathcal{U}$  carries  $\mathbf{1} \otimes \mathcal{R}_{\Theta}$  in  $\sigma_{\Theta}[\mathcal{R}_{\Theta}]$  and that it intertwines the actions in the expected way. Proceeding like in the case p = 2 we can conclude.

The case of BMO<sub> $\uparrow$ </sub> can be deduced from a similar result for mixed spaces. First we note that the result for BMO<sub> $r \land c$ </sub> follows from the corresponding ones for BMO<sub>r</sub> and BMO<sub>c</sub>, we shall only prove it for BMO<sub>c</sub>. Fix a Euclidean ball B  $\subset \mathbb{R}^n$  and consider the following operator-valued inner product

$$\langle f, f \rangle_{\mathrm{B}} = \int_{\mathrm{B}} |f_s|^2 \, ds - \left| \int_{\mathrm{B}} f_s \, ds \right|^2 \quad \text{for} \quad f \in L_{\infty}(\mathbb{R}^n) \otimes_{\mathrm{alg}} \mathcal{R}_{\Theta}.$$

Let  $\mathcal{H}^c_{\Theta}(B)$  denote the corresponding Hilbert module over  $\mathcal{R}_{\Theta}$  and let  $\mathcal{H}^c_{\Theta}$  be the direct sum, in the  $\ell_{\infty}$ -sense, of  $\mathcal{H}^c_{\Theta}(B)$  over all balls B. Clearly BMO<sub>c</sub>( $\mathcal{R}_{\Theta}$ ) embeds in  $\mathcal{H}^c_{\Theta}$  and we have that

$$\mathcal{H}_{\Theta}^{c} \xrightarrow{id \otimes \sigma_{\Theta}} \mathcal{H}_{\Xi}^{c}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathrm{BMO}_{c}(\mathcal{R}_{\Theta}) \xrightarrow{\sigma_{\Theta}} \mathrm{BMO}_{c}(\mathbb{R}^{n}) \bar{\otimes} \mathcal{R}_{\Theta}$$

where  $\Xi$  is the  $2n \times 2n$ -matrix  $\Xi = 0 \otimes \Theta$ . Now, we can define a map preserving the operator-valued inner product (and thus an isometry)  $\mathcal{W}_c: \mathcal{H}_\Xi^c \to \mathcal{H}_\Xi^c$  by extension of  $\exp_{\xi_1} \otimes \exp_{\xi_2} \otimes \lambda_{\Theta}(\eta) \mapsto \exp_{\xi_1} \otimes \exp_{\xi_2 + \eta} \otimes \lambda_{\Theta}(\eta)$  for every ball B. Such map carries the copy of  $\mathcal{H}_{\Theta}^c \otimes \mathbf{1}$  that lives in the first and third tensor components into  $\sigma_{\Theta}[\mathcal{H}_{\Theta}^c]$  and proceeding like in the previous cases we get that  $\sigma_{\Theta}[\mathcal{H}_{\Theta}^c]$  coincides with the subspace of  $\mathcal{H}_\Xi^c$  invariant under the group of automorphisms  $\beta_z = id \otimes \sigma_0^{-z} \otimes \sigma_{\Theta}^z$ . That result restricts to BMO<sub>c</sub>.

Proposition B.7. We have complete isometries:

i) 
$$\sigma_{\Theta}: L_2^{\dagger}(\mathcal{R}_{\Theta}) \longrightarrow L_2^{\dagger}(\mathbb{R}^n) \bar{\otimes} \mathcal{R}_{\Theta} \text{ for } \dagger \in \{r, c\},$$

ii) 
$$\sigma_{\Theta}: L_p(\mathcal{R}_{\Theta}) \longrightarrow L_p(\mathbb{R}^n) \bar{\otimes} \mathcal{R}_{\Theta} \text{ for any } 2 \leq p \leq \infty,$$

iii) 
$$\sigma_{\Theta} : BMO_{\dagger}(\mathcal{R}_{\Theta}) \longrightarrow BMO_{\dagger}(\mathcal{R}_{\Theta}) \bar{\otimes} \mathcal{R}_{\Theta} \text{ for } \dagger \in \{r, c, r \wedge c\}.$$

**Proof.** Assertions i) and iii) were proved in the proof of Proposition B.3. Assertion ii) for  $p = \infty$  was already justified in Corollary 1.4. The rest of the cases trivially follow by complementation and complex interpolation from our results above.  $\Box$ 

Theorem B.8. We have

$$\begin{aligned} \left[ \mathbf{H}_{1}(\mathcal{R}_{\Theta}), \mathbf{BMO}(\mathcal{R}_{\Theta}) \right]_{\theta} &= \left[ L_{1}^{\circ}(\mathcal{R}_{\Theta}), \mathbf{BMO}(\mathcal{R}_{\Theta}) \right]_{\theta} \\ &= \left[ \mathbf{H}_{1}(\mathcal{R}_{\Theta}), L_{\infty}(\mathcal{R}_{\Theta}) \right]_{\theta} &= L_{p}(\mathcal{R}_{\Theta}) \end{aligned}$$

for  $p = \frac{1}{1-\theta}$ . All isomorphisms above hold in the category of operator spaces.

**Proof.** Since  $L_2(\mathcal{R}_{\Theta})$  is reflexive

$$\begin{split} \left[L_{2}(\mathcal{R}_{\Theta}), \operatorname{BMO}(\mathcal{R}_{\Theta})\right]_{\theta} &= \left[L_{2}(\mathcal{R}_{\Theta}), \operatorname{BMO}(\mathcal{R}_{\Theta})\right]^{\theta} \\ &= \left[\sigma_{\Theta}(L_{2}(\mathcal{R}_{\Theta})), \sigma_{\Theta}(\operatorname{BMO}(\mathcal{R}_{\Theta}))\right]^{\theta} \\ &= \left[P(L_{2}(\mathbb{R}^{n})\bar{\otimes}\mathcal{R}_{\Theta}), P(\operatorname{BMO}(\mathbb{R}^{n})\bar{\otimes}\mathcal{R}_{\Theta})\right]^{\theta} \\ &= P\left(\left[L_{2}(\mathbb{R}^{n})\bar{\otimes}\mathcal{R}_{\Theta}, \operatorname{BMO}(\mathbb{R}^{n})\bar{\otimes}\mathcal{R}_{\Theta}\right]^{\theta}\right) \\ &= P\left(\left[L_{2}(\mathbb{R}^{n}), \operatorname{BMO}(\mathbb{R}^{n})\right]^{\theta}\bar{\otimes}\mathcal{R}_{\Theta}\right) \\ &= P\left(L_{p}(\mathbb{R}^{n})\bar{\otimes}\mathcal{R}_{\Theta}\right) = \sigma_{\Theta}\left(L_{p}(\mathcal{R}_{\Theta})\right) = L_{p}(\mathcal{R}_{\Theta}) \end{split}$$

for  $p = \frac{2}{1-\theta}$ . Indeed, the second identity follows from Proposition B.7, which gives  $X = \sigma_{\Theta}(X)$  completely isomorphic for  $X = L_2(\mathcal{R}_{\Theta})$  and  $X = BMO(\mathcal{R}_{\Theta})$ . The third and fourth identities follow from Proposition B.5, which shows that  $\sigma_{\Theta}(X)$  can be identified with P(Z) where Z is the ambient space of operator-valued functions in  $\mathbb{R}^n$  associated to X. Moreover, since P is a bounded projection, it commutes with the complex interpolation functor by complementation. The fifth identity follows from Lemma B.2 and the sixth one from Mei's interpolation theorem [54]. The last two identities apply from Propositions B.5 and B.7 again. Once this is known we use the reflexivity of  $L_2(\mathcal{R}_{\Theta})$  and duality  $H_1(\mathcal{R}_{\Theta})^* = BMO(\mathcal{R}_{\Theta})$  to obtain

$$\left[\mathrm{H}_{1}(\mathcal{R}_{\Theta}), L_{2}(\mathcal{R}_{\Theta})\right]_{\theta}^{*} = \left[\mathrm{BMO}(\mathcal{R}_{\Theta}), L_{2}(\mathcal{R}_{\Theta})\right]^{\theta} = L_{q'}(\mathcal{R}_{\Theta})$$

for  $q = \frac{2}{2-\theta}$ . This shows that  $[H_1(\mathcal{R}_{\Theta}), L_2(\mathcal{R}_{\Theta})]_{\theta}$  must be reflexive and we get

$$[H_1(\mathcal{R}_{\Theta}), L_2(\mathcal{R}_{\Theta})]_{\theta} = L_q(\mathcal{R}_{\Theta}).$$

The interpolation results in the statement follow from Wolff's theorem [77], which states that if  $X_1$ ,  $X_2$ ,  $X_3$ ,  $X_4$  are spaces with  $X_1 \cap X_4$  dense inside both  $X_2$  and  $X_3$ , then

$$\begin{split} X_2 &= [X_1, X_3]_{\theta_1} \text{ and } X_3 = [X_2, X_4]_{\theta_2} \ \Rightarrow \ X_2 = [X_1, X_4]_{\vartheta_1} \text{ and } X_3 = [X_1, X_4]_{\vartheta_2} \\ \text{where } \vartheta_1 &= \theta_1 \theta_2 / (1 - \theta_1 + \theta_1 \theta_2) \text{ and } \vartheta_2 = \theta_2 / (1 - \theta_1 + \theta_1 \theta_2). \text{ Taking} \\ X_1 &= H_1(\mathcal{R}_{\Theta}), \quad X_2 = L_{\frac{4}{3}}(\mathcal{R}_{\Theta}), \quad X_3 = L_2(\mathcal{R}_{\Theta}), \quad X_4 = L_4(\mathcal{R}_{\Theta}), \\ Z_1 &= H_1(\mathcal{R}_{\Theta}), \quad Z_2 = L_2(\mathcal{R}_{\Theta}), \quad Z_3 = L_4(\mathcal{R}_{\Theta}), \quad Z_4 = \text{BMO}(\mathcal{R}_{\Theta}), \end{split}$$

we first obtain, using  $X_j$ -spaces and the interpolation of  $H_1(\mathcal{R}_{\Theta})$  with  $L_2(\mathcal{R}_{\Theta})$ , that  $H_1(\mathcal{R}_{\Theta})$  and  $L_4(\mathcal{R}_{\Theta})$  interpolate in the expected way. Then, using the same

procedure with the  $Z_j$ -spaces and the interpolation of  $L_2(\mathcal{R}_{\Theta})$  with BMO( $\mathcal{R}_{\Theta}$ ), we finally get the expected result for the bracket

$$[H_1(\mathcal{R}_{\Theta}), BMO(\mathcal{R}_{\Theta})]_{\theta}$$
.

The other two brackets in the statement can be treated analogously.  $\Box$ 

Remark B.9. It is worth mentioning that our techniques have at least another potential application in the abelian case. Let  $(X, \mu)$  be a G-space with a G-invariant measure. In that case, we can identify X and  $H \times G/H$  as measure spaces, where H is the stabilizer and we have the following Fubini-type identity

$$\int_{G} f(g^{-1} x) d\mu_{G}(g) = \int_{G/H=X} \int_{H} f(h^{-1} g^{-1} x) d\mu_{H}(h) d\mu(x),$$

see [31] Chapter 2]. If the stabilizer is compact we can exchange integration in X and integration in G in a way analogous to the Fubini-type identity which relates  $\tau_{\Theta}$  and  $\sigma_{\Theta}$ . If there is a natural definition of  $\mathrm{BMO}(G)$ , either with averages over the balls of an invariant measure or with translation-invariant semigroups, and that BMO interpolates, then we can transfer the interpolation to  $\mathrm{BMO}(X)$  provided that G is amenable. This seems to be a very direct approach for proving interpolation of G-invariant BMO-spaces over X = G/K, where G is a solvable and unimodular Lie group and K is a compact subgroup.

### B.4. An auxiliary density result

Let us write in what follows  $\mathcal{S}_{\Theta}^{\circ}$  for the kernel of the trace functional  $\tau_{\Theta}: \mathcal{S}_{\Theta} \to \mathbb{C}$ , which is of course continuous over  $\mathcal{S}_{\Theta}$ . It is trivial that  $\mathcal{S}_{\Theta}^{\circ} \subset \operatorname{H}_{1}^{\dagger}(\mathcal{R}_{\Theta})$ . We are going to see that it is in fact dense. It will be an easy consequence of the fact that  $\sigma_{\Theta}: \operatorname{BMO}_{\dagger}(\mathcal{R}_{\Theta}) \to \operatorname{BMO}_{\dagger}(\mathbb{R}^{n}) \bar{\otimes} \mathcal{R}_{\Theta}$ , for  $\dagger \in \{r, c, r \wedge c\}$  are normal and complete isometries. Taking preduals we obtain a complete and surjective projection

$$(\sigma_{\Theta})_*: \mathrm{H}_1^{\dagger}(\mathbb{R}^n) \widehat{\otimes} (\mathcal{R}_{\Theta})_* \longrightarrow \mathrm{H}_1^{\dagger}(\mathcal{R}_{\Theta}),$$

for  $\dagger \in \{r, c, r+c\}$ . We are just going to need that such map carries  $\mathcal{S}^{\circ}(\mathbb{R}^n) \otimes_{\pi} \mathcal{S}_{\Theta}$  into  $\mathcal{S}^{\circ}_{\Theta}$  but indeed much more is true and the map  $(\sigma_{\Theta})_*$  can be explicitly described as a diagonal restriction multiplier. That is, it satisfies the following commutative diagram, where  $\mathcal{S}_0(\mathbb{R}^n)$  is the subclass of Schwartz functions with f(0) = 0

$$\begin{array}{ccc} \mathrm{H}_{1}^{\dagger}(\mathbb{R}^{n})\widehat{\otimes}(\mathcal{R}_{\Theta})_{*} & \xrightarrow{(\sigma_{\Theta})_{*}} & \mathrm{H}_{1}^{\dagger}(\mathcal{R}_{\Theta}) \\ & & \downarrow^{\lambda_{0} \otimes \lambda_{\Theta}} & & \downarrow^{\lambda_{\Theta}^{-1}} \\ \mathcal{S}_{0}(\mathbb{R}^{n}) \otimes_{\pi} \mathcal{S}(\mathbb{R}^{n}) & \xrightarrow{f \mapsto f \mid_{\Delta}} & \mathcal{S}_{0}(\mathbb{R}^{n}) \end{array}$$

Now, the proof of the density is immediate.

COROLLARY B.10.  $\mathcal{S}_{\Theta}^{\circ}$  is dense inside  $H_1^{\dagger}(\mathcal{R}_{\Theta})$  for  $\dagger \in \{r, c, r+c\}$ .

**Proof.** We just have to use that  $\mathcal{S}^{\circ}(\mathbb{R}^n) \otimes_{\pi} \mathcal{S}_{\Theta} \subset H_1^{\dagger}(\mathbb{R}^n) \widehat{\otimes} (\mathcal{R}_{\Theta})_*$  is a dense subset. Since  $(\sigma_{\Theta})_*(\mathcal{S}^{\circ}(\mathbb{R}^n)) \subset \mathcal{S}_{\Theta}^{\circ}$  and the image under a projection of a dense set is a dense set we conclude.

# **Bibliography**

- Saad Baaj, Calcul pseudo-différentiel et produits croisés de C\*-algèbres. I (French, with English summary), C. R. Acad. Sci. Paris Sér. I Math. 307 (1988), no. 11, 581–586. MR967366
- [2] Saad Baaj, Calcul pseudo-différentiel et produits croisés de C\*-algèbres. II (French, with English summary), C. R. Acad. Sci. Paris Sér. I Math. 307 (1988), no. 12, 663–666. MR967808
- [3] Dominique Bakry, Étude des transformations de Riesz dans les variétés riemanniennes à courbure de Ricci minorée (French), Séminaire de Probabilités, XXI, Lecture Notes in Math., vol. 1247, Springer, Berlin, 1987, pp. 137–172, DOI 10.1007/BFb0077631. MR941980
- [4] Richard Beals and Charles Fefferman, On local solvability of linear partial differential equations, Ann. of Math. (2) 97 (1973), 482–498, DOI 10.2307/1970832. MR0352746
- [5] Jöran Bergh and Jörgen Löfström, Interpolation spaces. An introduction, Springer-Verlag, Berlin-New York, 1976. Grundlehren der Mathematischen Wissenschaften, No. 223. MR0482275
- [6] Tanvir Ahamed Bhuyain and Matilde Marcolli, The Ricci flow on noncommutative two-tori,
   Lett. Math. Phys. 101 (2012), no. 2, 173–194, DOI 10.1007/s11005-012-0550-0. MR2947960
- [7] Gérard Bourdaud, Une algèbre maximale d'opérateurs pseudo-différentiels (French), Comm.
   Partial Differential Equations 13 (1988), no. 9, 1059–1083, DOI 10.1080/03605308808820568.
   MR946282
- [8] Nathanial P. Brown and Narutaka Ozawa, C\*-algebras and finite-dimensional approximations, Graduate Studies in Mathematics, vol. 88, American Mathematical Society, Providence, RI, 2008, DOI 10.1090/gsm/088. MR2391387
- [9] Alberto-P. Calderón and Rémi Vaillancourt, A class of bounded pseudo-differential operators,
   Proc. Nat. Acad. Sci. U.S.A. 69 (1972), 1185–1187, DOI 10.1073/pnas.69.5.1185. MR0298480
- [10] A. P. Calderon and A. Zygmund, On the existence of certain singular integrals, Acta Math. 88 (1952), 85–139, DOI 10.1007/BF02392130. MR0052553
- [11] Martijn Caspers, Javier Parcet, Mathilde Perrin, and Éric Ricard, Noncommutative de Leeuw theorems, Forum Math. Sigma 3 (2015), e21, 59, DOI 10.1017/fms.2015.23. MR3482270
- [12] M. Caspers, D. Potapov, F. Sukochev, and D. Zanin, Weak type commutator and Lipschitz estimates: resolution of the Nazarov-Peller conjecture, Amer. J. Math. To appear.
- [13] Zeqian Chen, Quanhua Xu, and Zhi Yin, Harmonic analysis on quantum tori, Comm. Math. Phys. 322 (2013), no. 3, 755–805, DOI 10.1007/s00220-013-1745-7. MR3079331
- [14] Ronald R. Coifman and Guido Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), no. 4, 569–645, DOI 10.1090/S0002-9904-1977-14325-5. MR0447954
- [15] Jose M. Conde-Alonso, Tao Mei, and Javier Parcet, Large BMO spaces vs interpolation, Anal. PDE 8 (2015), no. 3, 713–746, DOI 10.2140/apde.2015.8.713. MR3353829
- [16] J. M. Conde-Alonso and J. Parcet, Nondoubling Calderón-Zygmund theory A dyadic approach, Preprint 2016.
- [17] Alain Connes, Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994. MR1303779
- [18] A. Connes, Classification of injective factors. Cases  $II_1$ ,  $II_{\infty}$ ,  $III_{\lambda}$ ,  $\lambda \neq 1$ , Ann. of Math. (2) **104** (1976), no. 1, 73–115, DOI 10.2307/1971057. MR0454659
- [19] Alain Connes, C\* algèbres et géométrie différentielle (French, with English summary), C. R. Acad. Sci. Paris Sér. A-B 290 (1980), no. 13, A599–A604. MR 572645
- [20] Alain Connes, Michael R. Douglas, and Albert Schwarz, Noncommutative geometry and matrix theory: compactification on tori, J. High Energy Phys. 2 (1998), Paper 3, 35, DOI 10.1088/1126-6708/1998/02/003. MR1613978

- [21] Alain Connes and Giovanni Landi, Noncommutative manifolds, the instanton algebra and isospectral deformations, Comm. Math. Phys. 221 (2001), no. 1, 141–159, DOI 10.1007/PL00005571. MR1846904
- [22] Alain Connes and Henri Moscovici, Modular curvature for noncommutative two-tori, J. Amer. Math. Soc. 27 (2014), no. 3, 639–684, DOI 10.1090/S0894-0347-2014-00793-1. MR3194491
- [23] Alain Connes and Paula Tretkoff, The Gauss-Bonnet theorem for the noncommutative two torus, Noncommutative geometry, arithmetic, and related topics, Johns Hopkins Univ. Press, Baltimore, MD, 2011, pp. 141–158. MR2907006
- [24] H. O. Cordes, On compactness of commutators of multiplications and convolutions, and boundedness of pseudodifferential operators, J. Funct. Anal. 18 (1975), 115–131, DOI 10.1016/0022-1236(75)90020-8. MR0377599
- [25] Edward G. Effros and Zhong-Jin Ruan, Operator spaces, London Mathematical Society Monographs. New Series, vol. 23, The Clarendon Press, Oxford University Press, New York, 2000. MR1793753
- [26] Edward G. Effros and Zhong-Jin Ruan, Operator space tensor products and Hopf convolution algebras, J. Operator Theory 50 (2003), no. 1, 131–156. MR2015023
- [27] George A. Elliott and Hanfeng Li, Morita equivalence of smooth noncommutative tori, Acta Math. 199 (2007), no. 1, 1–27, DOI 10.1007/s11511-007-0017-9. MR[2350069]
- [28] Farzad Fathizadeh and Masoud Khalkhali, The Gauss-Bonnet theorem for noncommutative two tori with a general conformal structure, J. Noncommut. Geom. 6 (2012), no. 3, 457–480, DOI 10.4171/JNCG/97. MR2956317
- [29] Charles Fefferman,  $L^p$  bounds for pseudo-differential operators, Israel J. Math. 14 (1973), 413–417, DOI 10.1007/BF02764718. MR0336453
- [30] C. Fefferman and E. M. Stein, H<sup>p</sup> spaces of several variables, Acta Math. 129 (1972), no. 3-4, 137–193, DOI 10.1007/BF02392215. MR0447953
- [31] Gerald B. Folland, A course in abstract harmonic analysis, 2nd ed., Textbooks in Mathematics, CRC Press, Boca Raton, FL, 2016. MR3444405
- [32] Adrián González-Pérez, Marius Junge, and Javier Parcet, Smooth Fourier multipliers in group algebras via Sobolev dimension (English, with English and French summaries), Ann. Sci. Éc. Norm. Supér. (4) 50 (2017), no. 4, 879–925, DOI 10.24033/asens.2334. MR3679616
- [33] Loukas Grafakos, Classical Fourier analysis, 2nd ed., Graduate Texts in Mathematics, vol. 249, Springer, New York, 2008. MR2445437
- [34] Loukas Grafakos, Modern Fourier analysis, 2nd ed., Graduate Texts in Mathematics, vol. 250, Springer, New York, 2009, DOI 10.1007/978-0-387-09434-2. MR2463316
- [35] Uffe Haagerup and Mikael Rørdam, Perturbations of the rotation C\*-algebras and of the Heisenberg commutation relation, Duke Math. J. 77 (1995), no. 3, 627–656, DOI 10.1215/S0012-7094-95-07720-5. MR[1324637]
- [36] I. I. Hirschman Jr., On multiplier transformations, Duke Math. J 26 (1959), 221–242. MR0104973
- [37] Guixiang Hong, Luis Daniel López-Sánchez, José María Martell, and Javier Parcet, Calderón-Zygmund operators associated to matrix-valued kernels, Int. Math. Res. Not. IMRN 5 (2014), 1221–1252, DOI 10.1093/imrn/rns250. MR3178596
- [38] Lars Hörmander, Pseudo-differential operators, Comm. Pure Appl. Math. 18 (1965), 501–517,
   DOI 10.1002/cpa.3160180307. MR0180740
- [39] Marius Junge, Doob's inequality for non-commutative martingales, J. Reine Angew. Math. 549 (2002), 149–190, DOI 10.1515/crll.2002.061. MR[1916654]
- [40] M. Junge and T. Mei, Noncommutative Riesz transforms—a probabilistic approach, Amer. J. Math. 132 (2010), no. 3, 611–680, DOI 10.1353/ajm.0.0122. MR2666903
- [41] M. Junge and T. Mei, BMO spaces associated with semigroups of operators, Math. Ann. 352 (2012), no. 3, 691–743, DOI 10.1007/s00208-011-0657-0. MR2885593
- [42] Marius Junge, Tao Mei, and Javier Parcet, Smooth Fourier multipliers on group von Neumann algebras, Geom. Funct. Anal. 24 (2014), no. 6, 1913–1980, DOI 10.1007/s00039-014-0307-2. MR3283931
- [43] Marius Junge, Tao Mei, and Javier Parcet, Noncommutative Riesz transforms—dimension free bounds and Fourier multipliers, J. Eur. Math. Soc. (JEMS) 20 (2018), no. 3, 529–595, DOI 10.4171/JEMS/773. MR3776274
- [44] M. Junge, T. Mei, and J. Parcet, Algebraic Calderón-Zygmund theory, In progress.

- [45] Marius Junge and Javier Parcet, Mixed-norm inequalities and operator space  $L_p$  embedding theory, Mem. Amer. Math. Soc. **203** (2010), no. 953, vi+155, DOI 10.1090/S0065-9266-09-00570-5. MR[2589944]
- [46] Marius Junge, Javier Parcet, and Quanhua Xu, Rosenthal type inequalities for free chaos, Ann. Probab. 35 (2007), no. 4, 1374–1437, DOI 10.1214/009117906000000962. MR2330976
- [47] Tim de Laat and Mikael de la Salle, Approximation properties for noncommutative L<sup>p</sup>-spaces of high rank lattices and nonembeddability of expanders, J. Reine Angew. Math. 737 (2018), 49–69, DOI 10.1515/crelle-2015-0043. MR3781331
- [48] Vincent Lafforgue and Mikael De la Salle, Noncommutative L<sup>p</sup>-spaces without the completely bounded approximation property, Duke Math. J. 160 (2011), no. 1, 71–116, DOI 10.1215/00127094-1443478. MR<sup>2838352</sup>
- [49] E. C. Lance, Hilbert C\*-modules: A toolkit for operator algebraists, London Mathematical Society Lecture Note Series, vol. 210, Cambridge University Press, Cambridge, 1995, DOI 10.1017/CBO9780511526206. MR1325694
- [50] Matthias Lesch and Henri Moscovici, Modular curvature and Morita equivalence, Geom. Funct. Anal. 26 (2016), no. 3, 818–873, DOI 10.1007/s00039-016-0375-6. MR3540454
- [51] J. Manuceau and A. Verbeure, Quasi-free states of the C.C.R.—algebra and Bogoliubov transformations, Comm. Math. Phys. 9 (1968), 293–302. MR0238536
- [52] Tao Mei, Operator valued Hardy spaces, Mem. Amer. Math. Soc. 188 (2007), no. 881, vi+64, DOI 10.1090/memo/0881. MR<sup>2327840</sup>
- [53] Tao Mei, Tent spaces associated with semigroups of operators, J. Funct. Anal. 255 (2008), no. 12, 3356–3406, DOI 10.1016/j.jfa.2008.09.021. MR2469026
- [54] T. Mei, An H1-BMO duality theory for semigroups of operators, ArXiv:1204.5082.
- [55] Tao Mei and Javier Parcet, Pseudo-localization of singular integrals and noncommutative Littlewood-Paley inequalities, Int. Math. Res. Not. IMRN 8 (2009), 1433–1487, DOI 10.1093/imrn/rnn165. MR2496770
- [56] Nikita Nekrasov and Albert Schwarz, Instantons on noncommutative R<sup>4</sup>, and (2,0) super-conformal six-dimensional theory, Comm. Math. Phys. 198 (1998), no. 3, 689–703, DOI 10.1007/s002200050490. MR1670037
- [57] Javier Parcet, Pseudo-localization of singular integrals and noncommutative Calderón-Zygmund theory, J. Funct. Anal. 256 (2009), no. 2, 509–593, DOI 10.1016/j.jfa.2008.04.007. MR2476951
- [58] Javier Parcet and Keith M. Rogers, Twisted Hilbert transforms vs Kakeya sets of directions, J. Reine Angew. Math. 710 (2016), 137–172, DOI 10.1515/crelle-2013-0110. MR3437562
- [59] Dénes Petz, An invitation to the algebra of canonical commutation relations, Leuven Notes in Mathematical and Theoretical Physics. Series A: Mathematical Physics, vol. 2, Leuven University Press, Leuven, 1990. MR 1057180
- [60] Gilles Pisier, The operator Hilbert space OH, complex interpolation and tensor norms, Mem. Amer. Math. Soc. 122 (1996), no. 585, viii+103, DOI 10.1090/memo/0585. MR1342022
- [61] Gilles Pisier, Non-commutative vector valued L<sub>p</sub>-spaces and completely p-summing maps (English, with English and French summaries), Astérisque 247 (1998), vi+131. MR1648908
- [62] Gilles Pisier, Introduction to operator space theory, London Mathematical Society Lecture Note Series, vol. 294, Cambridge University Press, Cambridge, 2003, DOI 10.1017/CBO9781107360235. MR2006539
- [63] Gilles Pisier and Quanhua Xu, Non-commutative martingale inequalities, Comm. Math. Phys. 189 (1997), no. 3, 667–698, DOI 10.1007/s002200050224. MR1482934
- [64] Gilles Pisier and Quanhua Xu, Non-commutative  $L^p$ -spaces, Handbook of the geometry of Banach spaces, Vol. 2, North-Holland, Amsterdam, 2003, pp. 1459–1517, DOI 10.1016/S1874-5849(03)80041-4. MR[1999201]
- [65] Éric Ricard,  $L_p$ -multipliers on quantum tori, J. Funct. Anal. **270** (2016), no. 12, 4604–4613, DOI 10.1016/j.jfa.2015.11.015. MR $\overline{3490779}$
- [66] Michael Ruzhansky and Ville Turunen, Pseudo-differential operators and symmetries: Back-ground analysis and advanced topics, Pseudo-Differential Operators. Theory and Applications, vol. 2, Birkhäuser Verlag, Basel, 2010, DOI 10.1007/978-3-7643-8514-9. MR2567604
- [67] Donald Sarason, Functions of vanishing mean oscillation, Trans. Amer. Math. Soc. 207 (1975), 391–405, DOI 10.2307/1997184. MR0377518

- [68] Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals: With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III, vol. 43, Princeton University Press, Princeton, NJ, 1993. MR1232192
- [69] Nathan Seiberg and Edward Witten, String theory and noncommutative geometry, J. High Energy Phys. 9 (1999), Paper 32, 93, DOI 10.1088/1126-6708/1999/09/032. MR1720697
- [70] M. Takesaki, Theory of operator algebras. II, Operator Algebras and Non-commutative Geometry, 6, vol. 125, Springer-Verlag, Berlin, 2003, DOI 10.1007/978-3-662-10451-4. MR1943006
- [71] Michael E. Taylor, Pseudodifferential operators, Princeton Mathematical Series, vol. 34, Princeton University Press, Princeton, N.J., 1981. MR618463
- [72] Michael E. Taylor, Pseudodifferential operators and nonlinear PDE, Progress in Mathematics, vol. 100, Birkhäuser Boston, Inc., Boston, MA, 1991, DOI 10.1007/978-1-4612-0431-2. MR1121019
- [73] A. van Daele and A. Verbeure, Unitary equivalence of Fock representations on the Weyl algebra, Comm. Math. Phys. 20 (1971), 268–278. MR0286406
- [74] Dan Voiculescu, A strengthened asymptotic freeness result for random matrices with applications to free entropy, Internat. Math. Res. Notices 1 (1998), 41–63, DOI 10.1155/S107379289800004X. MRI601878
- [75] D. V. Voiculescu, K. J. Dykema, and A. Nica, Free random variables: A noncommutative probability approach to free products with applications to random matrices, operator algebras and harmonic analysis on free groups, CRM Monograph Series, vol. 1, American Mathematical Society, Providence, RI, 1992. MR1217253
- [76] Stephen Wainger, Special trigonometric series in k-dimensions, Mem. Amer. Math. Soc. No. 59 (1965), 102. MR0182838
- [77] Thomas H. Wolff, A note on interpolation spaces, Harmonic analysis (Minneapolis, Minn., 1981), Lecture Notes in Math., vol. 908, Springer, Berlin-New York, 1982, pp. 199–204. MR654187
- [78] Runlian Xia, Xiao Xiong, and Quanhua Xu, Characterizations of operator-valued Hardy spaces and applications to harmonic analysis on quantum tori, Adv. Math. 291 (2016), 183–227, DOI 10.1016/j.aim.2015.12.023. MR3459017
- [79] G. Zeller-Meier, Produits croisés d'une C\*-algèbre par un groupe d'automorphismes (French),
   J. Math. Pures Appl. (9) 47 (1968), 101–239. MR0241994

#### **Editorial Information**

To be published in the *Memoirs*, a paper must be correct, new, nontrivial, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication.

Papers appearing in *Memoirs* are generally at least 80 and not more than 200 published pages in length. Papers less than 80 or more than 200 published pages require the approval of the Managing Editor of the Transactions/Memoirs Editorial Board. Published pages are the same size as those generated in the style files provided for  $\mathcal{AMS}$ -IATEX or  $\mathcal{AMS}$ -TEX.

Information on the backlog for this journal can be found on the AMS website starting from http://www.ams.org/memo.

A Consent to Publish is required before we can begin processing your paper. After a paper is accepted for publication, the Providence office will send a Consent to Publish and Copyright Agreement to all authors of the paper. By submitting a paper to the *Memoirs*, authors certify that the results have not been submitted to nor are they under consideration for publication by another journal, conference proceedings, or similar publication.

#### Information for Authors

*Memoirs* is an author-prepared publication. Once formatted for print and on-line publication, articles will be published as is with the addition of AMS-prepared frontmatter and backmatter. Articles are not copyedited; however, confirmation copy will be sent to the authors.

Initial submission. The AMS uses Centralized Manuscript Processing for initial submissions. Authors should submit a PDF file using the Initial Manuscript Submission form found at www.ams.org/submission/memo, or send one copy of the manuscript to the following address: Centralized Manuscript Processing, MEMOIRS OF THE AMS, 201 Charles Street, Providence, RI 02904-2294 USA. If a paper copy is being forwarded to the AMS, indicate that it is for *Memoirs* and include the name of the corresponding author, contact information such as email address or mailing address, and the name of an appropriate Editor to review the paper (see the list of Editors below).

The paper must contain a descriptive title and an abstract that summarizes the article in language suitable for workers in the general field (algebra, analysis, etc.). The descriptive title should be short, but informative; useless or vague phrases such as "some remarks about" or "concerning" should be avoided. The abstract should be at least one complete sentence, and at most 300 words. Included with the footnotes to the paper should be the 2010 Mathematics Subject Classification representing the primary and secondary subjects of the article. The classifications are accessible from www.ams.org/msc/. The Mathematics Subject Classification footnote may be followed by a list of key words and phrases describing the subject matter of the article and taken from it. Journal abbreviations used in bibliographies are listed in the latest Mathematical Reviews annual index. The series abbreviations are also accessible from www.ams.org/msnhtml/serials.pdf. To help in preparing and verifying references, the AMS offers MR Lookup, a Reference Tool for Linking, at www.ams.org/mrlookup/.

Electronically prepared manuscripts. The AMS encourages electronically prepared manuscripts, with a strong preference for  $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ -IfTeX. To this end, the Society has prepared  $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ -IfTeX author packages for each AMS publication. Author packages include instructions for preparing electronic manuscripts, samples, and a style file that generates the particular design specifications of that publication series. Though  $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ -IfTeX is the highly preferred format of TeX, author packages are also available in  $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ -TeX.

Authors may retrieve an author package for *Memoirs of the AMS* from www.ams.org/journals/memo/memoauthorpac.html. The *AMS Author Handbook* is available in PDF format from the author package link. The author package can also be obtained free

of charge by sending email to tech-support@ams.org or from the Publication Division, American Mathematical Society, 201 Charles St., Providence, RI 02904-2294, USA. When requesting an author package, please specify  $\mathcal{A}_{M}\mathcal{S}$ -IATEX or  $\mathcal{A}_{M}\mathcal{S}$ -TEX and the publication in which your paper will appear. Please be sure to include your complete mailing address.

After acceptance. The source files for the final version of the electronic manuscript should be sent to the Providence office immediately after the paper has been accepted for publication. The author should also submit a PDF of the final version of the paper to the editor, who will forward a copy to the Providence office.

Accepted electronically prepared files can be submitted via the web at www.ams.org/submit-book-journal/, sent via FTP, or sent on CD to the Electronic Prepress Department, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2294 USA. TEX source files and graphic files can be transferred over the Internet by FTP to the Internet node ftp.ams.org (130.44.1.100). When sending a manuscript electronically via CD, please be sure to include a message indicating that the paper is for the *Memoirs*.

Electronic graphics. Comprehensive instructions on preparing graphics are available at www.ams.org/authors/journals.html. A few of the major requirements are given here.

Submit files for graphics as EPS (Encapsulated PostScript) files. This includes graphics originated via a graphics application as well as scanned photographs or other computer-generated images. If this is not possible, TIFF files are acceptable as long as they can be opened in Adobe Photoshop or Illustrator.

Authors using graphics packages for the creation of electronic art should also avoid the use of any lines thinner than 0.5 points in width. Many graphics packages allow the user to specify a "hairline" for a very thin line. Hairlines often look acceptable when proofed on a typical laser printer. However, when produced on a high-resolution laser imagesetter, hairlines become nearly invisible and will be lost entirely in the final printing process.

Screens should be set to values between 15% and 85%. Screens which fall outside of this range are too light or too dark to print correctly. Variations of screens within a graphic should be no less than 10%.

Any graphics created in color will be rendered in grayscale for the printed version unless color printing is authorized by the Managing Editor and the Publisher. In general, color graphics will appear in color in the online version.

Inquiries. Any inquiries concerning a paper that has been accepted for publication should be sent to memo-query@ams.org or directly to the Electronic Prepress Department, American Mathematical Society, 201 Charles St., Providence, RI 02904-2294 USA.

#### Editors

This journal is designed particularly for long research papers, normally at least 80 pages in length, and groups of cognate papers in pure and applied mathematics. Papers intended for publication in the *Memoirs* should be addressed to one of the following editors. The AMS uses Centralized Manuscript Processing for initial submissions to AMS journals. Authors should follow instructions listed on the Initial Submission page found at www.ams.org/memo/memosubmit.html.

Managing Editor: Henri Darmon, Department of Mathematics, McGill University, Montreal, Quebec H3A 0G4, Canada; e-mail: darmon@math.mcgill.ca

1. GEOMETRY, TOPOLOGY & LOGIC

Coordinating Editor: Richard Canary, Department of Mathematics, University of Michigan, Ann Arbor, MI 48109-1043 USA; e-mail: canary@umich.edu

Algebraic topology, Michael Hill, Department of Mathematics, University of California Los Angeles, Los Angeles, CA 90095 USA; e-mail: mikehill@math.ucla.edu

Logic, Mariya Ivanova Soskova, Department of Mathematics, University of Wisconsin-Madison, Madison, WI 53706 USA; e-mail: msoskova@math.wisc.edu

Low-dimensional topology and geometric structures, Richard Canary

Symplectic geometry, Yael Karshon, School of Mathematical Sciences, Tel-Aviv University, Tel Aviv, Israel; and Department of Mathematics, University of Toronto, Toronto, Ontario M5S 2E4, Canada; e-mail: karshon@math.toronto.edu

2. ALGEBRA AND NUMBER THEORY

Coordinating Editor: Henri Darmon, Department of Mathematics, McGill University, Montreal, Quebec H3A 0G4, Canada; e-mail: darmon@math.mcgill.ca

Algebra, Radha Kessar, Department of Mathematics, City, University of London, London EC1V 0HB, United Kingdom; e-mail: radha.kessar.l@city.ac.uk

Algebraic geometry, Lucia Caporaso, Department of Mathematics and Physics, Roma Tre University, Largo San Leonardo Murialdo, I-00146 Rome, Italy; e-mail: LCedit@mat.uniroma3.it

Analytic number theory, Lillian B. Pierce, Department of Mathematics, Duke University, 120 Science Drive Box 90320, Durham, NC 27708 USA; e-mail: pierce@math.duke.edu

Arithmetic geometry, Ted C. Chinburg, Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19104-6395 USA; e-mail: ted@math.upenn.edu

Commutative algebra, Irena Peeva, Department of Mathematics, Cornell University, Ithaca, NY 14853 USA; e-mail: irena@math.cornell.edu

Number theory, Henri Darmon

3. GEOMETRIC ANALYSIS & PDE

Coordinating Editor: Alexander A. Kiselev, Department of Mathematics, Duke University, 120 Science Drive, Rm 117 Physics Bldg, Durham, NC 27708 USA; e-mail: kiselev@math.duke.edu

Differential geometry and geometric analysis, Ailana M. Fraser, Department of Mathematics, University of British Columbia, 1984 Mathematics Road, Room 121, Vancouver BC V6T 1Z2, Canada; e-mail: afraser@math.ubc.ca

Harmonic analysis and partial differential equations, Monica Visan, Department of Mathematics, University of California Los Angeles, 520 Portola Plaza, Los Angeles, CA 90095 USA; e-mail: visan@math.ucla.edu

Partial differential equations and functional analysis, Alexander A. Kiselev

Real analysis and partial differential equations, Joachim Krieger, Bâtiment de Mathématiques, École Polytechnique Fédérale de Lausanne, Station 8, 1015 Lausanne Vaud, Switzerland; e-mail: joachim.krieger@epfl.ch

4. ERGODIC THEORY, DYNAMICAL SYSTEMS & COMBINATORICS

Coordinating Editor: Vitaly Bergelson, Department of Mathematics, Ohio State University, 231 W. 18th Avenue, Columbus, OH 43210 USA; e-mail: vitaly@math.ohio-state.edu

Algebraic and enumerative combinatorics, Jim Haglund, Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19104 USA; e-mail: jhaglund@math.upenn.edu

Probability theory, Robin Pemantle, Department of Mathematics, University of Pennsylvania, 209 S. 33rd Street, Philadelphia, PA 19104 USA; e-mail: pemantle@math.upenn.edu

Dynamical systems and ergodic theory, Ian Melbourne, Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom; e-mail: I.Melbourne@warwick.ac.uk

Ergodic theory and combinatorics, Vitaly Bergelson

5. ANALYSIS, LIE THEORY & PROBABILITY

Coordinating Editor: Stefaan Vaes, Department of Mathematics, Katholieke Universiteit Leuven, Celestijnenlaan 200B, B-3001 Leuven, Belgium; e-mail: stefaan.vaes@wis.kuleuven.be

Functional analysis and operator algebras, Stefaan Vaes

Harmonic analysis, PDEs, and geometric measure theory, Svitlana Mayboroda, School of Mathematics, University of Minnesota, 206 Church Street SE, 127 Vincent Hall, Minneapolis, MN 55455 USA; e-mail: svitlana@math.umm.edu

Probability theory and stochastic analysis, Davar Khoshnevisan, Department of Mathematics, The University of Utah, Salt Lake City, UT 84112 USA; e-mail: davar@math.utah.edu

# Selected Published Titles in This Series

- 1323 Shu Kawaguchi and Kazuhiko Yamaki, Effective Faithful Tropicalizations Associated to Linear Systems on Curves, 2021
- 1322 D. Bulacu and B. Torrecillas, Galois and Cleft Monoidal Cowreaths. Applications, 2021
- 1321 Christian Haase, Andreas Paffenholz, Lindsey C. Piechnik, and Francisco Santos, Existence of Unimodular Triangulations—Positive Results, 2021
- 1320 **Th. Heidersdorf and R. Weissauer,** Cohomological Tensor Functors on Representations of the General Linear Supergroup, 2021
- 1319 Abed Bounemoura and Jacques Féjoz, Hamiltonian Perturbation Theory for Ultra-Differentiable Functions, 2021
- 1318 Chao Wang, Zhifei Zhang, Weiren Zhao, and Yunrui Zheng, Local Well-Posedness and Break-Down Criterion of the Incompressible Euler Equations with Free Boundary, 2021
- 1317 Eric M. Rains and S. Ole Warnaar, Bounded Littlewood Identities, 2021
- 1316 Ulrich Bunke and David Gepner, Differential Function Spectra, the Differential Becker-Gottlieb Transfer, and Applications to Differential Algebraic K-Theory, 2021
- 1315 S. Grivaux, É. Matheron, and Q. Menet, Linear Dynamical Systems on Hilbert Spaces: Typical Properties and Explicit Examples, 2021
- 1314 Pierre Albin, Frédéric Rochon, and David Sher, Resolvent, Heat Kernel, and Torsion under Degeneration to Fibered Cusps, 2021
- 1313 Paul Godin, The 2D Compressible Euler Equations in Bounded Impermeable Domains with Corners, 2021
- 1312 Patrick Delorme, Pascale Harinck, and Yiannis Sakellaridis, Paley-Wiener Theorems for a p-Adic Spherical Variety, 2021
- 1311 Lyudmila Korobenko, Cristian Rios, Eric Sawyer, and Ruipeng Shen, Local Boundedness, Maximum Principles, and Continuity of Solutions to Infinitely Degenerate Elliptic Equations with Rough Coefficients, 2021
- 1310 Hiroshi Iritani, Todor Milanov, Yongbin Ruan, and Yefeng Shen, Gromov-Witten Theory of Quotients of Fermat Calabi-Yau Varieties, 2021
- 1309 Jérémie Chalopin, Victor Chepoi, Hiroshi Hirai, and Damian Osajda, Weakly Modular Graphs and Nonpositive Curvature, 2020
- 1308 Christopher L. Douglas, Christopher Schommer-Pries, and Noah Snyder, Dualizable Tensor Categories, 2020
- 1307 Adam R. Thomas, The Irreducible Subgroups of Exceptional Algebraic Groups, 2020
- 1306 **Kazuyuki Hatada,** Hecke Operators and Systems of Eigenvalues on Siegel Cusp Forms, 2020
- 1305 Bogdan Ion and Siddhartha Sahi, Double Affine Hecke Algebras and Congruence Groups, 2020
- 1304 Matthias Fischmann, Andreas Juhl, and Petr Somberg, Conformal Symmetry Breaking Differential Operators on Differential Forms, 2020
- 1303 Zhi Qi, Theory of Fundamental Bessel Functions of High Rank, 2020
- 1302 Paul M. N. Feehan and Manousos Maridakis, Lojasiewicz-Simon Gradient Inequalities for Coupled Yang-Mills Energy Functionals, 2020
- 1301 **Joachim Krieger,** On Stability of Type II Blow Up for the Critical Nonlinear Wave Equation in  $\mathbb{R}^{3+1}$ , 2020
- 1300 Camille Male, Traffic Distributions and Independence: Permutation Invariant Random Matrices and the Three Notions of Independence, 2020

For a complete list of titles in this series, visit the AMS Bookstore at www.ams.org/bookstore/memoseries/.



