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NOTES ON REAL INTERPOLATION OF OPERATOR L,-SPACES

MARIUS JUNGE AND QUANHUA XU

ABSTRACT. Let M be a semifinite von Neumann algebra. We equip the associated noncommu-
tative Lp-spaces with their natural operator space structure introduced by Pisier via complex
interpolation. On the other hand, for 1 < p < oo let

Lp,p(M) = (Loo(M), L1(M))

P
be equipped with the operator space structure via real interpolation as defined by the second
named author (J. Funct. Anal. 139 (1996), 500-539). We show that L, ,(M) = L,(M)
completely isomorphically if and only if M is finite dimensional. This solves in the negative the
three problems left open in the quoted work of the second author.

We also show that for 1 < p < oo and 1 < g < oo with p # ¢

(LOO(M§éq)7 Ll(M§Zq)) 1= Lp(M; Lq)
P
with equivalent norms, i.e., at the Banach space level if and only if M is isomorphic, as a Banach
space, to a commutative von Neumann algebra.

Our third result concerns the following inequality:
1 1
120y oney < 120l ne
k2
for any finite sequence (z;) C L;r(./\/l)7 where 0 < r < g < ooand 0 < p < co. If M is not

isomorphic, as a Banach space, to a commutative von Meumann algebra, then this inequality
holds if and only if p > r.

1. INTRODUCTION

Interpolation of L,-spaces is a classical subject. Our reference for interpolation theory is [I.
Let (€2, 1) be a measure space. Let 1 < pg,p1,p < 0o and 0 < 6 < 1 with % = 117;09 + z%' The
following well known interpolation equalities hold

(1) (Lpy (), Ly, (Q))e = L,(Q) with equal norms,

(2) (Lpo (Q), Ly, (Q))e b= L,(?) with equivalent norms.

Here (-, -)g and (-, - )g,p denote, respectively, the complex and real interpolation functors. It is
also well known that the above equalities hold for vector-valued L,-spaces. More precisely, under
the same assumption on the parameters (assuming additionally p < co), we have

(3) (LPO (Q7 EO)) L;Dl (Qv El))g = L;D (Qa (EO; El)G) with una1 norms,

(4) (Lpo (Q; Eo), Ly, (2 El))e » = Lo (Q; (Eo, E1)g,p) with equivalent norms

for any compatible pair (Fy, E1) of Banach spaces.

The present note concerns interpolation theory in the category of operator spaces. We refer
to [2 [I0] for operator space theory. The complex and real interpolations for operator spaces are
developed in [8] and [I3], respectively. Unless explicitly stated otherwise, all (commutative and
noncommutative) L,-spaces in the sequel are equipped with their natural operator space structure
as defined in [9, [10]. Pisier proved that () and (B]) remain true in the category of operator spaces,
that is, these equalities hold completely isometrically, (Ey, F1) being, of course, assumed to be
operator spaces in the case of (3.

It is more natural to work with noncommutative L,-spaces in the category of operator spaces.
Let M be a semifinite von Neumann algebra equipped with a normal semifinite faithful trace .
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Let L,(M) denote the associated noncommutative Ly-space (cf. [II]). If M = B({2) with the
usual trace, L,(M) is the Schatten p-class S,. If M is hyperfinite, Pisier [9] also introduced the
vector-valued L,(M; E) for an operator space E, and showed that (B) continues to hold in this
more general setting:

(5) (Lpo(M; Eo), Ly, (M; Er)), = Lyp(M; (Eo, E1)p) completely isometrically

for any hyperfinite M and any compatible pair (Ey, F1) of operator spaces.

However, real interpolation does not behave as smoothly as complex interpolation in the category
of operator spaces. The problem whether ({]) can be extended to real interpolation was left unsolved
in [I3], see Problems 6.1, 6.2 and 6.4 there. Let 1 < p < co. Using the Banach space equality

Ly(M) = (Loo(M), Li(M)), .

we can equip L,(M) with another operator space structure via real interpolation as in [I3], the
resulting operator space is denoted by L, ,(M). Then Problem 6.1 of [I3] asks whether L, ,(M) =
L,(M) completely isomorphically for p # 2 (the answer is affirmative for p = 2). The following
result resolves this problem in the negative.

Theorem 1. Let 1 < p < oo with p # 2. Then Ly ,(M) = L,(M) completely isomorphically if
and only if M is finite dimensional.

Consequently, the answers to all three Problems 6.1, 6.2 and 6.4 of [I3] are negative. In partic-
ular, neither (2) nor (@) holds in the category of operator spaces.

The next theorem provides an even worse answer to Problem 6.4. It shows that (&) extends to
real interpolation at the Banach space level only in the commutative case. Recall that one can
define L,(M;{,) for any von Neumann algebra M (see section Bl for more information). L,(M;{,)
coincides with Pisier’s space when M is hyperfinite. Note that L,(M;{,) is defined only as a
Banach space if M is not hyperfinite.

Theorem 2. Let 1 <p < oo and 1 < q < oo with p # q. Then

(6) (Loc(M;ly), L1 (M;ly)) .= L,(M;¥,) with equivalent norms

1
D’

if and only if M is isomorphic, as a Banach space, to L (2, ) for some measure space (€0, ).

Our third theorem does not concern the real interpolation of the L,(M;{,) spaces but gives a
result that is to be compared with the norm of these spaces. In the commutative case, the norm
of a sequence (z;) in L,(£2; ¢,) is given by

l@llzy e = 13 209 7], o -

It is well known that this expression is no longer valid in the noncommutative setting, which is one
source of many difficulties in noncommutative analysis. The following theorem shows that another
classical property of the norm ||(z;)||z,(,) does not extend to the noncommutative case. The
index p is now allowed to go below 1, L (M) denotes the positive cone of L,(M).

Theorem 3. Let 0 <r < qg<oo and 0 < p < 0.
(i) If p>r, then

(7) 12, e < IS

[ [
for any finite sequence (;) C L (M).
(ii) If p < r and M is not isomorphic, as a Banach space, to Lo (Q, p) for some measure space
(Q, ), then there exists no constant C' such that

(8) 1), g <CI )

i i

Lp(M)

Lp(M)

for any finite sequence (x;) C L (M).

The previous theorems will be respectively proved in the next three sections.
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2. PrROOF oF THEOREM [

We will need some preparations on column and row Hilbertian operator spaces. Let C), (resp.
R,) denote the first column (resp. row) subspace of S, consisting of matrices whose all entries
but those in the first column (resp. row) vanish. We have the following completely isometric
identifications:

(9) (Cp)"=Cp 2R, and (Rp)" =Ry =Cp, V1<p<oo,

where p’ denotes the conjugate index of p. C,, and R, can be also defined via complex interpolation
from C' = Cy, and R = R,,. We view (C, R) as a compatible pair by identifying both of them with
{5 (at the Banach space level), i.e., by identifying the canonical bases (ex,1) of Cp and (e1,x) of R,
with (ey) of ¢3. Then we have the following completely isometric equalities

(10) Cpo=(C, R)1 =(Cx, C1)1 and R, = (R, C)1 = (Reo, R1)

1 1.
P P

We refer to [8, 9] for more details.
Let Rad,, be the closed subspace spanned by the Rademacher sequence (g,,) in L, ([0, 1]). Then

the noncommutative Khintchine inequality can be reformulated in terms of column and row spaces
(see [6 [@]). To this end, we introduce

CR,=Cp+R,forp<2 and CR,=C,NR,forp>2.

Lemma 4. Let 1 < p < oo. Then Rad, = CR, completely isomorphically. Moreover, the
orthogonal projection from Ly([0, 1]) onto Rady extends to a completely bounded projection from
L,([0, 1]) onto Rad,. All relevant constants depend only on p.

If E is an operator space, C,(E) (resp. R,(E)) denotes the first column (resp. row) sub-
space of the E-valued Schatten class S,(E). It is clear that C,(E) and R,(E) are completely
1-complemented in S, (E). Consequently, applying (@) to M = B({2), we get

(11) (CPO(EO)v CP1 (El))g = CP((E(Jv El)e)

for any compatible pair (Fy, E1) of operator spaces, where % = 117;09 + 1%'

Note that C,(R,) = S, and C,(C,) = So isometrically at the Banach space level. Here we
represent the elements in C,(R,) and C,(C)) by infinite matrices in the canonical bases of C}, and
R,,. The following elementary fact is known to experts and implicitly contained in the proof of [14]
Lemma 5.9]. We include its simple proof for completeness.

Lemma 5. Let 1 < p,q < oo. Let r be determined by % = % + 2%,, Then
Cp(CRy) = S, with equivalent norms.
Proof. By (@), (1) and (@), we have the following isometric equalities
Coo(Cq) = (Coc(Cc), Co(Ch)) 4
= (Cxe(Cx0), Csc(Rov))
= (82, Soo)% = Sogr .

1
q

Similarly, C1(Cy) = S(24) isometrically. Thus

Cp(cq) = (OOO(Oq)v Cl(Oq))% = (SQq’a S(2q)’) =5

Combining this with (@), we also have
Cp(Ry) = Cp(Cy) = S isometrically,
where } = % + 2—1q. Hence,
CP(CRQ) = Cp(Cq) + Cp(Rq) =5 +5 =25,
for ¢ <2 and Cp(CRy) = S, NSy =5, for ¢ > 2 too. O
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Proof of Theorem [l By the type decomposition of von Neumann algebras, if M is not finite di-
mensional, then M contains an infinite dimensional commutative Loo(€2, 1) as subalgebra which
is moreover the image of a trace preserving normal conditional expectation. Indeed, if the type
I summand of M is infinite dimensional, then M contains an infinite dimensional commutative
Loo(€2, ). On the other hand, if the type II,, summand of M exists, then M contains B({2), so
ls too. Finally, if the type II; summand of M exists, then M contains Lo ([0, 1]). See [12] for
the type decomposition of von Neumann algebras.

Note that if Lo (€2, i) is infinite dimensional, Lo (€2, 1) contains, as subalgebra, either Lo ([0, 1])
or {oo. On the other hand, if L, ,(M) = L,(M) held for M = {,, it would do so for M = £7,
uniformly in n > 1. Then by a standard approximation argument, we see that it would hold for
M = L ([0, 1]) too.

Thus we are reduced to showing the theorem for the special case M = L. ([0, 1]). Namely, we
must show that L, ([0, 1]) # L,([0, 1]) completely isomorphically. In the rest of the proof, we
will drop the interval [0, 1] from L,([0, 1]). By [13, Theorem 5.4], we choose 1 < py < p1 < o0 and
0<9<1suchthat%:1p;09+p%and

Lpp = (Lp,, Lpl)&p.
Then by [I3, Proposition 6.3] and its proof, we have
Sp(Lpp) = (Sp(Lpo)a Sp(Lm))
Using the complete complementation of Cp,(E) in S,(E), we deduce

Cp(Lpp) = (Cp(Lpo)a Cp(Lm))e,p'

On the other hand, by the complete complementation of Rad,, in L,, for i = 0,1, we get the
following isomorphic embedding:

(Cp(Radpo)v Cp(Radm))g’p C Cp(Lyp,p)-

O.p°

Now by Lemmas @ and [B]
(Cp(Rady, ), Cp(Rady, )), b= (Sros Sry)o.p = S2,p With equivalent norms,

where Ti = ﬁ + Qip/_ for ¢ = 0,1. Thus the closed subspace spanned by the Rademacher functions

in Cp(Lyp) is isomorphic to Sy ,. However, that spanned by the same functions in C,(L,) is
isomorphic to Sy. But Ss, = S> only if p = 2. Thus the theorem is proved. |

3. PROOF OF THEOREM

We begin this proof by recalling the definition of the space L,(M;¥,) that is introduced in [3]
for ¢ =1 and g = oo (see also [4]), and in [5] for 1 < ¢ < oco. This definition is inspired by Pisier’s
description of the norm of L,(M;{,;) in the hyperfinite case.

A sequence (z;) in L,(M) belongs to L,(M; ) iff (z;) admits a factorization z; = ay;b with
a,b € Lyp(M) and (y;) € loo(Loo(M)). The norm of (x;) is then defined as

(12) (@)l L, (M) = ,mf lall 2o ) 1Yl ne (Lo (M) (0]l pr) -

On the other hand, L,(M;¢;) is defined as the space of all sequences (x;) C L,(M) for which
there exist a;j;, b;j € Loy(M) such that
xTr; = Z afj bij .
J

L,(M;¥y) is equipped with the norm
I@)llL,(mier) = - mf H ZG’UG’UHLP(M) I Zb bUHL

Now for 1 < ¢ < co we define L,(M;¢;) as a complex 1nterp01at10n space between L, (M; () and
L;D(M§ él):
Lp(M; tg) = (Lp(M; loo), Ly(M: )

1
q
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The following description of the norm of L,(M;¢,) is proved in [9] for hyperfinite M and in [5]
for a general M.

Lemma 6. Let 1 < p,q < 0.

(i) Ifp<q,
@)z, mie,) = Ingyb lall 2oy 1Wille, (2 ) 101 Ly (r1)
for any (xi) € Ly(M;ly), where % = 1—17 - %.
(ii) Ifp > q,
||(m1:)||Lp(M;£q) = sup ||(O‘$16)||ZQ(L,,(M))

el Loy (a) <L 1Bl Loy (M) <1

for any (z;) € Ly(M;L,), where 1 = % — %.

We will again consider the column subspace C,(¢,) of S,(¢,) for the proof of Theorem 2l As in
the previous section, a generic element z € C}({,) is viewed as an infinite matrix

€T = Z Tijei1 @ €j.
ij=1
Let Dy, , denote the diagonal subspace of C,(¢,) consisting of all x with z;; = 0 for ¢ # j.
Lemma 7. Let 1 < p,q < co. Then D, 4 is completely 1-complemented in C)({y).

Proof. The proof is very simple. It suffices to note that the canonical bases of C), and ¢, are
completely 1-unconditional. A standard average argument then yields the assertion. 0

We will identify an element x = (z;e;1) € D, , with the sequence (z;).

Lemma 8. Let 1 < p,q < 00 and rp 4 be determined by % = ﬁ + 2—1q. Then Dy g = ¢ with

equal norms.

Tp.a

Proof. First consider the cases ¢ = 0o and ¢ = 1. Let = (z5¢,1) € Dp.oc C Sp({so). Let a be the
diagonal matrix with the x;’s as its diagonal entries. Then we have the following factorization:

Tie;1 = ae;1e11, > 1.
Thus by the definition of the norm of S, (¢~ ), we get

lls,0) < llallsy, (€1l (Bee2)) l€11ll sz, = 7] 2ay, -

On the other hand, for ¢ = 1 we factorize x as
wiein = [sgn(zi)zi|ei ) [z “e1 ] = aibi,

where o = 2. Therefore, by the definition of the norm of S, (¢;)

2p
1 1
12l 5, ey < || D asaf]| 2] D bl
% %
= (Z |xi|rp,1)ﬁ (Z |xi|7’p,1)% _ Hx”erﬂ1 .

i i
Thus we have proved that for any 1 < p < oo

¢ CDpo and 4, , CDyy contractively.

Tp,o0

Dualizing these inclusions and using Lemma[7] we deduce the assertion for ¢ = co and ¢ = 1. The
case 1 < ¢ < oo is then completed by complex interpolation via (II]) with the help of Lemma [
again. O

Remark 9. The previous lemma can be proved directly by Lemma [l without passing to complex
interpolation.
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Proof of Theorem[d. If M is isomorphic, as Banach space, to some commutative L., then M is a
finite direct sum of algebras of the form L. (€2, 1) ® M,,, where M,, is the n x n full matrix algebra.
Then (@) goes back to ).

Conversely, suppose that M is not isomorphic to a commutative von Neumann algebra. Our
first step is to reduce the non validity of (Bl to the special case where M = B({,). To this end,
we use the type decomposition of M. If the type I summand of M is infinite dimensional, then M
contains M, for infinite many n’s. On the other hand, if the type Il summand of M exists, then
M contains B(¢2). Finally, it is well known that if the type IT; summand of M exists, then M
contains the hyperfinite IT; factor R (cf. e.g. [7]); R is the von Neumann tensor of countable many
copies of (Mg, tr), where tr is the normalized trace on My; so M again contains M, for infinite
many n’s. Note that in all the three cases, the M,,’s contained in M are images of trace preserving
normal conditional expectations (up to a normalization in the type II; case).

In summary, if M is not isomorphic to a commutative von Neumann algebra, M contains M,
for infinite many n’s which are images of trace preserving normal conditional expectations. This
shows that if (@) held for M, then it would do so for M = M, for infinite many n’s; consequently,
by approximation, it would further hold for M = B(¥2) too. This finishes the announced reduction.

It remains to show that (@) fails for M = B(¢3). Namely, we must show
(Soo(éq)v Sl(éq))%’p 7& Sp(éq) .

This is an easy consequence of the previous two lemmas. By Lemma [7]

(Doo.qs DLq)l_p C (Sec(ly), S1(€g)) 1 . an isometric embedding.
On the other hand, by Lemma [,
(Dosq» D1,q) 1 b= (Cre s lre ) 1 b= Ly, .p With equivalent norms,

where ¢, , denotes the Lorentz sequence space. On the other hand, by Lemma[8] the corresponding
subspace of S, (¢,) is equal to ¢, .. However, £, ., = ¢,  ifand only if r,, = p,ie., ¢=p. The
theorem is thus proved. O

4. PROOF OF THEOREM
In the sequel, |||, will denote the norm of L,(M). Fix a finite sequence (z;) C L;f (M). We

1
claim that the function ¢ — || ( > xf) a ||;17 is log-convex. Namely, for any qo,¢1 € (0, co) and any
aec(0,1)

" 12 el < Nt 1, () ), "

3

where ¢ = (1 — a)qo + aq1. It suffices to show this inequality for o = % Then it immediately
follows from the Holder inequality for column spaces:

0

q a0 a1 9 1 90 @ 1 91
_ 2 2 o || 2 a1 || 2
||§:xz||£—H§:xz Z; HESH(E:%) Hp H(E:xz) Hp ~
) q . q . .
1 K2 K2 K2

Now let us show (). Replacing z; by z! and dividing all indices by r, we are reduced to the
case where r =1 < ¢ and p > 1. Thus it suffices to show

(14) I, <Xl

i

Set x =), x;. We first consider the case where ¢ = 2. If p < 2, then
1 D
()l = ()] < 3t
< S r@iarta) = 3 r@rtey) = |2t

i
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Note that the same argument yields (I4)) in the case where p < min(g,2). Assume p > 2. Let (&)
be a Rademacher sequence, and let E denote the corresponding expectation. Then by the triangle

inequality in Lz (M),
1 2.4
I )2, < (B D emll,]* < llllp
i i
where we have used the fact that —z < ). &;2; < 2. Thus inequality ({4 is proved for ¢ = 2 and
any p > 1.

Using ([I3) and the just proved cases, we deduce ([I4) for any 1 < ¢ <2 and any p > 1.

Next, we show (4 for ¢ = p. If p < 2, this was proved previously. The case p > 2 easily follows
by an iteration argument. Indeed, if 2 < p < 4, by the two cases already proved

121, = 1271 <11 242

i i
1
= (> )2, < llally-
n

Repeating this argument, we obtain (I4]) for the case ¢ = p.
We then deduce ([I) for 1 < p < ¢ as follows

1 1
I M, <=1l < llally-
3 3
Thus it remains to consider the case where p > ¢ > 2. This is treated by an iteration argument
as above. Indeed, if ¢ < 4, then

1 . N 2 2 1
(2, = I HE < (a3, < el
Thus the proof of [Id), so that of ([@), is complete.
Now we turn to the proof of part (ii) of the theorem. As in the proof of Theorem [ it suffices to
consider the case where M = B({3). Suppose that (8) holds with a constant C' and some indices

p,q,r such that 0 < p < r < ¢ < co. Then by dividing all indices by r, we are again reduced to
the case where p < 1 =r < ¢. Thus

(1) ()], <,

%

S ol

for all finite sequences (z;) C L;f(M). We claim that C' must be equal to 1. Indeed, given a
positive integer k, applying ([I3) to the family (z;, ® -+ ® x;,) we get

1
1> et e eal) <C| Y v oo
i1, ,

~~~~~ B15enylk
However,
@k k
1> wn @@, =13 =), = 1 >l
115005k 7 7
Similarly,
1 1
10 st @ oal)e], = (D"
i1yein i

It then follows that

1 1
1=l <1 2wl
i i
whence the claim by letting £ — oo.

Now it is easy to construct counterexamples to (I3 with C' = 1. Consider M = My and the

following matrices
(11 q (0 0
=) M YT o o
with ¢ > 0 very small. Then

1 1 1 1
_ q q — 9q—1
r4y= (1 1 t) and a9 +y?=2 <1 14 9l-q tq) .
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The two eigenvalues of x + y are

24+t +V4+12

2
Thus (recalling that p < 1)
e+ 9] = @+t+VITEP Q2+t VITEP

P op 2p
=204+ 27PtP +o(t?) as t—0.
Similarly,
|27+ y?)a||) = 27+ 270 7 + o(t?),
Hence, by ([[H) with C' =1, we get
W 274 tP 4 o(tP) < 2P + 27P 1P 4 o(tP).

It then follows that 29 < 2, which is a contradiction since ¢ > 1. Thus Theorem [ is completely
proved.
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