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Abstract—Passive ultra high frequency (UHF) radio frequency
identification (RFID) tags have the potential to find ubiquitous
use in indoor object tracking, localization, and contact tracing.
We propose a machine learning-based method for RFID indoor
localization using a pattern reconfigurable UHF RFID reader
antenna array. The received signal strength indicator (RSSI)
values (from 10,000 tags) recorded at the reader antenna units
are used as features to evaluate the machine learning models
with a train-test split of 75%-25%. The training and testing data
is generated by a wireless ray tracing simulator. Five machine
learning models: random forest regressor, decision tree regressor,
Nu support vector regressor, k nearest regressor, and kernel ridge
regressor are compared. Random forest regressor has the lowest
localization error both in terms of average Euclidean distance
(AED) and root-mean-square error (RMSE). For random forest
regressor, localization error results show that 90% of the tags
are within 1 meter of their true position, and 67% are within 50
cm of their true position based on Euclidean distance.

Index Terms—Indoor localization, Internet of Things (IoT),
machine learning, radio frequency identification (RFID), RFID
reader antenna, reconfigurable RFID reader

I. INTRODUCTION

Radio frequency identification (RFID) based indoor local-
ization has significant potential in modern Internet of Things
(I0T) infrastructures. Commercial RFID readers/interrogators
are high-gain unidirectional circularly polarized antennas, pri-
marily designed for tracking non-human objects. However, in
recent years, research on on-body RFID sensors [1,2] started
to gain traction. Besides rethinking tag designs, reader antenna
systems also need to adapt to the dynamic on-body scenarios.
A pattern reconfigurable ultra high frequency (UHF) RFID
reader antenna array [3] offers efficient interrogation of on-
body sensors in a dynamic environment where one of the
unit antennas would be selected for interrogation based on
the location of the user. The multi-antenna arrangement opens
the door to a new model of indoor localization using the
received signal strength indicator (RSSI) fingerprint from the
four reader antenna units, besides the traditional (geometrical)
techniques such as trilateration, multilateration, efc. [4]. In this
paper, we explore machine learning algorithms for the localiza-
tion of passive RFID tags in a simulated indoor environment.

The existing body of work encompasses multi-reader, multi-
reference tag-based RFID localization systems using different
learning schemes (e.g., deep learning, clustering). Ni et al.
proposed the LANDMARC system [5] based on the RSSI of
active reference and target RFID tags. The proposed system
adopts the k-nearest neighbor algorithm for localization. It

uses k reference tags’ location information to determine the
target tags’ location by weighting each of the k reference tags’
coordinates. The LANDMARC system achieved a localization
error of within 1 m for 50% of the target tags. Zhao et
al. performed clustering of the reference tags and a target
tag for each reader using k means clustering based on the
backscattered signals’ RSSI, and phase information [6]. The
distances between the reader and the reference tags within
the cluster are weighted to determine the target tag’s distance
from the reader. The linear least squares algorithm is then used
to finalize the localization. Artificial neural networks (ANN)
have proven to be very effective in different applications, and
they have also been applied to RFID localization. Wang et
al. [7] fused particle swarm optimization (PSO) and a back-
propagation neural network to localize RFID tags. Soltani ez.
al. [8] used multi-layer ANN for localization. However, using
neural networks for feature extraction requires feature-rich
data, and one way to do that is to increase the dimensionality
of the data. Mo et. al. [9] developed an antenna placement
strategy sensitive to phase difference with position change.
The RSSI and phase difference of the RFID tags were used to
form higher-dimensional features to train a back propagation-
support vector regression (BP-SVR) that achieves an average
localization error of about 9.5 cm. Peng et. al. [10] used
PDOA (phase difference of arrival) and RSSI to form higher-
dimension images and performed localization through feature
extraction using convolutional neural networks (CNN).

We simulated the indoor environment using electromagnetic
ray-tracing software (Wireless InSite), including the recon-
figurable reader antenna and passive RFID tags. Wireless
channels simulated in ray-tracing software can be used to
emulate [11] challenging environments, such as an intensive
care unit or an infectious disease treatment facility, which is
not feasible with real experiments. Using the reconfigurable
reader antenna, we form an RSSI feature space for the RFID
tags placed in the free space surrounding the reader. Machine
learning models are trained using the RSSI feature space, that
can predict the location of the RFID tags at unknown locations
with an average localization error of about 47.69 cm.

II. SIMULATION SETUP
A. Reconfigurable Reader Antenna Array

The reconfigurable reader antenna consists of four identical
circularly polarized patch antennas (Fig. 1). An electrically
controlled single-pole four-throw (SP4T) switch activates one
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Fig. 1: a) Reconfigurable UHF RFID reader antenna array [3]
prototype, and b) block diagram of the top view.

unit antenna at a time. Traditional single unit reader antennas
are not suitable for on-body RFID sensors due to the reduction
in radiation efficiency in the vicinity of the human body [12].
The reconfigurable reader antenna can select the optimum
antenna based on the location of the tag/user. The maximum
gain of each antenna is 8.9 dBi, covering the UHF RFID
band (902-928 MHz). The four broadside directional beams
can efficiently interrogate tags around the azimuth plane.

B. Proposed Method

We propose a technique for RFID localization based on a
reconfigurable reader antenna array. Any RFID tag within the
read range of the reader will have a unique RSSI signature
recorded at the reader. The received power at the four antennas
of the reader can be taken together to form the signature
of an RFID tag. In Fig. 2, the RSSI recorded at the four
reader antennas are Rj, Ro, R3, and R4 respectively. Thus the
RSSI signature of the RFID tag is (R;, R, R3, R4). Placing
numerous RFID tags at known locations around the space of
the reader and recording the RSSI signatures of each tag can
be used to form a dataset. This dataset can be used to train a
machine learning model able to determine the location of an
RFID tag at an unknown location given its’ RSSI signature.
However, the success of such a learning-based model is highly
dependent on the dataset. The more space covered, the better
the model performance will be.

C. Simulation and Data Generation

The reconfigurable RFID reader antenna array and the
passive RFID tags are simulated in the Wireless InSite ray-
tracing software. The dimension of the room is 5 m x 5
m X 5 m where the reader antenna is placed at the center
of the XY plane. The reader and the tags are placed 1
m above the ground. The material of the walls, floor, and
ceiling is concrete. Four left-hand circular polarized directional
antennas represent the four antennas of the RFID reader,
and the passive RFID tags are simulated as omnidirectional
vertically polarized antennas. The diagonal pairs of the four
reader antennas are placed 0.305 m apart to be consistent
with the dimension of the reconfigurable RFID reader antenna
array. To avoid near-field effects, the omnidirectional RFID
tag antennas are placed at least 0.56 m (far-field distance of

R,: RSSI at Antenna 1
R,: RSSI at Antenna 2
R;: RSSI at Antenna 3
: RSSI at Antenna 4

Reader
Antenna Array

Fig. 2: RSSI fingerprints at the reader antenna. (Antenna 1 is
active)
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Fig. 3: Distribution of the RFID tags.

each reader antenna unit at 915 MHz) away from the reader
antennas. Also, no tag is placed within 0.305 m of the walls.
Considering the constraints, the effective area for placing the
tags on the XY plane is 18.52 m2. To place the tags evenly
into different segments of the effective area, it is divided into
four zones, and the tags are then placed randomly in the zones.
The zones are selected in such a manner that the number of
points per square meter for each zone is equal. To capture the
entire scene, 10,000 tags were placed at random. Fig. 3 shows
the number of tags in the four zones, and Fig. 4 shows the
distribution of the tags. The simulation records the received
power of each RFID tag at the four reader antenna units. Fig.
5 shows the simulated indoor environment with four tags and
the reconfigurable reader antenna units.

D. Dataset Description and Model Selection

The performance of any learning-based model is depen-
dent on a good-sized, good-quality dataset. Different size
of the dataset has been tested to determine the optimum
size. However, considering the dimension of the simulated
environment, simulation time in the ray-tracing software, and
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Fig. 4: Placement of the reader antenna and the tags.

average localization error, a dataset of 10,000 samples has
been selected for the final benchmarking. The dataset is a
10,000 x 4 dimensional matrix, where 10,000 is the number
of RFID tags in the simulated environment. Each row of the
matrix contains the received powers at the four reader antenna
units for a particular tag. The dataset is labeled, and the labels
are the (x, y) coordinates of corresponding tags. The dataset is
used to train machine learning models to perform multi-output
regression [13]. The input to the regression models are RSSI
signatures of the passive RFID tags, and the outputs are their
(z, y) coordinates. To determine the best regression models, a
carefully designed grid search [14] process has been performed
leveraging k-fold cross validation [14] where k = 4 with
10 repeats. While performing the grid search all the 10,000
data has been used. Five regression models were selected
based on their average localization error. Average Euclidean
distance (AED) and root-mean-squared error (RMSE) are
used to calculate the average localization errors. The selected
regression models are Random Forest, K Neighbors, Decision
Tree, Nu Support vector, and Kernel Ridge regressor [14]. The
parameters of the regressors are summarized in Table I.

TABLE I: Parameters of the regressors

Regressor \ Parameters

kernel = rbf, number of trees = 150,
criteria = squared error,
maximum number of features = square root
of number of features
criteria = squared error, max depth = 10
K =9, weights = distance,
algorithm = kd tree

Random Forest regressor

Decision Tree regressor

K Neighbors regressor

Nu Support Vector
regressor
Kernel Ridge regressor

kernel = rbf, gamma = 0.01, nu = 0.95

kernel = rbf, gamma = 0.01, alpha = 0.1

III. RESULTS AND DISCUSSION

We have tested different sized datasets randomly sampled
from the total dataset of 10,000 samples. Each random sample

Fig. 5: Simulated indoor environment in ray-tracing software.

of the dataset is then split into train set and test set with a
percentage of 75% and 25% respectively. Given there is M
number of tags in the test set and the coordinates of the tags
are (21,91), (2,Y2), ..., (T, ym), and the corresponding
predictions are (Z1,91), (T2,92); -+ (Tna, Y1), the AED is
defined by Eq. 1, and RMSE is given by Eq. 2. Here, R is
the number of repetitions for train-test split, training, and error
calculation.

AED =

R P \/(xi — @) + (i — )’
R »

1« (RMSEx + RMSEy
RMSE= LY < : ) @

RMSEx and RM SFEy are the root mean square errors in
X and Y axis predictions respectively. RM SEx and RM S Ey
are given by:

M ~\2
RMSEyx — | 2= (?\14 )

w . @
RMSEy = w

From our experiments, we observe that more data gives
better localization accuracy. Fig. 6 shows the relationship
between average localization error and dataset size. The final
benchmarking of the regression models is performed on the
whole dataset of 10,000 samples with 7,500 data on the
training set and 2,500 data on the test set. Table II summarizes
the localization errors for all the five regression models.

Table II shows that the Random Forest regressor has better
AED and RMSE than the rest of the regression models. Fig.
7 is the cumulative distribution of localization error for the
random forest regressor. In terms of Euclidean distance, more
than 90% of the tags fall within a localization error of 1 m
while more than 67% of the tags are within an error of 50 cm.
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Fig. 6: AED vs. size of dataset

TABLE II: Errors of regression models

Regression Model AED (cm) RMSE (cm)
Random Forest 47.69 45.23
Decision Tree 52.24 51.15
K-Nearest 49.15 47.04
Nu Support Vector 49.61 47.43
Kernel Ridge 50.13 48.10

IV. CONCLUSION

This paper presents a novel machine learning-based RFID
localization technique using a reconfigurable reader antenna
array. The indoor environment is simulated in a ray-tracing
software with 10,000 passive RFID tag locations and the
reconfigurable reader antenna. A dataset is created using the
RSSI fingerprints of the RFID tags on the reader antenna. Five
machine learning regression models are compared using the
dataset. Results show that, based on the Euclidean distance,
90% of the tags are within an error of 1 m, and 67% are
within 50 cm error. In the future, we will study on-body
RFID sensor localization using simulation, channel emulation,
and field experimentation. Furthermore, the feasibility of deep
learning algorithms will be studied by increasing the number
of features with an additional reader antenna array.
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