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Abstract— There is a large community of people with hand
disabilities, and these disabilities can be a barrier to those
looking to retain or pursue surgical careers. With the devel-
opment of surgical robotics technologies, it may be possible to
develop user interfaces to accommodate these individuals. This
paper proposes a hand-free control method for the gripper
of a patient side manipulator (PSM) in the da Vinci surgical
system. Using electromyography (EMG) signals, a proportional
control method was tested on its ability to grasp a pressure
sensor. These preliminary results demonstrate that the user can
reliably control the grasping motion of the da Vinci PSM using
this system. There is a strong correlation between grasping force
and normalized EMG signal (r= 0.874). Moreover, the gripper
can generate a step grasping force output when feeding in a
generated step signal. The results in this paper demonstrate the
system integration of a research EMG system with the da Vinci
surgical system and are a step towards developing accessible
teleoperation systems for surgeons with disabilities. Hand-free
control for remaining degrees of freedom in the PSM is under
development using additional input from the motion capture
system.

Keywords: sEMG proportional control, da Vinci surgical
system, ROS

I. INTRODUCTION

Approximately 541,000 Americans suffered from different
levels of upper limb loss in 2005, and the number of cases
is expected to double by 2050 [1]. Among those upper limb
loss cases, many only experience hand disability. A study
in UK and Italy shows that among their yearly upper limb
amputation cases, 61% of them are transcarpal, and 2% are
wrist disarticulation [2]. In addition, among the 1% to 2%
of newborns that are born with congenital defects, 10% have
upper extremity malformations [3]. While the number of
surgeons effected by limb loss during their career has not
been well documented, severe hand disability can put an
end to a surgeon’s career or prohibit the path to becoming a
surgeon altogether. Even after amputation below wrist, most
muscles controlling the hand still exist and are functional
within the forearm. Moreover, the training and knowledge
of surgeons enable them to control those muscles properly
and make correct decisions during a surgery. With the help
of surgical robotic systems and proper sensors to read muscle
signals, it may be possible to help them operate again.

The da Vinci surgical system (Intuitive Surgical, Sunny-
vale, CA) is an FDA-approved robotic system for teleoper-
ated minimally invasive surgery. The master tool manipulator
(MTM), which the surgeon uses to control the robot, still
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requires the dexterity of the operator’s hands and fingers.
Though there are research projects which focus on further
developing its control mechanisms, most of the new control
interfaces are focused on developing novel control interfaces
of the endoscopic camera, new flexible endoscopes, and
vision devices. Few focus on the compatibility for surgeons
with disabilities [4]. Control of the gripping motion of da
Vinci forceps and scissors is currently accomplished through
a pinching motion on the MTM. One possible solution for
controlling this motion without motion of the user’s hand,
is through sensing electromyography (EMG) signal from
forearm muscle contraction. EMG technology can record
the electrical activity produced by skeletal muscles, and
the signals can be used to detect abnormalities, activation
level, or the biomechanics of human movement [5]. There
are two types of EMG electrodes for recording: surface
EMG (SEMG) and intramuscular EMG. The non-invasive
characteristic of SEMG provides the possibility for its use
as a sensor in a device controller. As a limitation, SEMG
signal comes mostly from superficial muscles, and the signal
strength from the underlying muscles highly depends on the
depth of subcutaneous tissue [5].

sEMG is regularly used as an input for human-machine
interaction [6]. There are three main usages for EMG signals
in the control domain: on-off control, Proportional control,
and Multi-State Control [7], [8]. The EMG signal acts as
a switch in on-off control to determine the robot states.
It is a robust and intuitive method, but the lack of mid-
point states narrows its applications [8]. To increase the
controllable states of the signal, approaches using classifiers
have been implemented to achieve pattern recognition (PR)
and move the actuator to a specific state based on PR result
[9]-[11]. Both on-off control and pattern recognition use
discrete states, while continuous states are preferred in some
situations. A proportional control system allows users to
change one output of the system by varying their input within
a corresponding continuous interval [8]. Proportional control
is well suited for controlling the grasping motion of the da
Vinci PSM.

Using EMG signal as a proportional control signal source
has been well studied. Many prostheses and exoskeletons
have used sSEMG as a proportional control source. Young et
al. developed a controller for a hip exoskeleton using both
proportional EMG control and biological torque control and
compared their performance [12]. Both controllers helped to
reduce metabolic cost, but EMG based control had better
performance. Yatsenko et al. built a proportional controller
for a prosthetic hand and wrist and tested on three subjects
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Fig. 1.

Plot of General System Structure: The Delsys Trigno system is connected to data collecting PC using serial to USB cable. The data collecting

PC is connected to the controller PC through Rosbridge server. The Controller PC holds ros master core, dvrk-ros package, and controlling scripts

including one transradial amputee [13]. They included both
wrist movement and hand open/close, and their results were
encouraging. For their work, they used 22 electrodes to fully
decouple different muscle contractions. Ao et al. developed
an EMG-driven Hill-type neuromusculoskeletal model and a
linear proportional model for an ankle power-assist exoskele-
ton robot and compared their performance [14]. Though the
combination of sSEMG signal and physiological model has a
better performance in general, the linear proportional model
is reasonable in accuracy as well.

Previous work shows the feasibility of using SEMG signal
to map muscle contraction to robot grasping or motion
proportionally. However, these proportional controllers have
not been investigated for the control of surgical systems.
This paper proposes a proportional control method for the
grasping motion of a da Vinci surgical system PSM using
Delsys sEMG sensors. A preliminary user study was done
to demonstrate the system’s feasibility.

II. MATERIAL AND METHODS

The main hardware used in this project is Trigno Wire-
less Biofeedback System (Delsys Inc, Natick, MA), the da
Vinci surgical system with da Vinci Research Kit (dVRK)
controller boxes [15]. The main software packages used in
this project are Delsys API and the dvrk-ros package. Fig. 1
shows the general structure of the proposed control system.

The Trigno system includes a base and 16 wireless Trigno
Avanti Sensors. It can output the processed data as analog
signals to suitable devices or digitized data via USB. In
addition to the hardware sensor system, Delsys, Inc is
developing an API for Trigno to help developers access
sensor data in custom applications. Its core is written in
C# and compiled to dynamic link libraries so that it can
be used by multiple languages, including Python which was
used for this implementation. A Windows machine was used
to receive the EMG data. After filtering and normalizing the
received data on the Windows machine, the normalized data
was published using roslibpy package to a ROS topic on
a Linux machine running dvrk-ros package via Rosbridge
WebSocket Server.

The da Vinci surgical system with dVRK is used in this
work as a research platform for surgical robotics. It has
two parts, the surgeon’s console, which includes a stereo
viewer and a pair of Master Tool Manipulators (MTM),

and a patient-side cart which includes three Patient Side
Manipulators (PSM) and a Endoscope Camera Manipulator.
To demonstrate the feasibility of this approach the gripper
on one PSM was used in these experiments. Zihan et al.
from Johns Hopkins University developed a ROS interface
for controlling da Vinci surgical system with dVRK called
dvrk-ros [15], [16]. In this project, SEMG signal strength
is mapped to gripper position. Performance of the proposed
method is compared with control by the MTM which uses a
position controller.

A. EMG Sensor Placement

Wireless
EMG sensors

4,

Fig. 2. Delsys Trigno wireless EMG sensors placement on a user’s forearm

To cover more superficial flexors and extensors inside the
forearm, three sensors are attached to the user’s forearm,
as shown in Fig. 2. One sensor is placed above flexor
digitorum superficialis, another sensor is placed above the
extensor digitorum, and the last sensor is placed above
extensor pollicis brevis. These muscles are superficial and
provide good signal to noise ratio. Sensors were attached
using double sided tape after the skin had been shaved and
cleaned using an alcohol pad.

B. EMG data filtering

The raw EMG signal is an oscillating signal with a
frequency spectrum between 0-500Hz. The raw EMG is
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filtered to remove inherent noise in electronics equipment,
ambient noise, and motion artifact [17]. Of the three noise
sources, motion artifact is the most significant. The Avanti
Senor has a 20-450Hz band pass filter embedded as signals
with a frequency lower than 20Hz are typically due to motion
artifacts and the majority of the EMG power is in the range
of 50-150Hz. The sensor was set at a sampling rate of
1924Hz and the Delsys API provides an array of the 52 most
recent samples every 27ms. A root mean square (RMS) filter
was applied to provide a relatively smooth control signal
representative of the average power of the EMG signal over
a specified window. Due to the array provided by the API,
the RMS window in this study is a multiple of 52. A larger
RMS window can take more information from the previous
state and smooth the output data curve. However, a larger
window can also ignore some features and delay the current
state. An RMS window length of 108ms (the four most recent
raw EMG arrays) that updates every 27ms is used in the
control system to balance response and smoothness. An RMS
window between 100ms and 350ms is typical in EMG signal
processing, with the lower end of the range giving better
response [18]. An additional exponential moving average
(EMA) filter was applied to the RMS data to provide a more
stable control signal. An EMA filter uses information from
previous states to adjust the current state. Eq. 1 shows the
calculation of EMA.

Y1, t=1
S, = - (1)
Oé}/t'i‘(l_a)(stfl), t>1

The coefficient « represents the degree of weighting de-
crease, a constant smoothing factor between 0 and 1. A
higher a discounts older observations faster. Y; is the value
at a time period t, and S; is the value of the result from
the EMA at any time period t. The larger the coefficient
the faster the data will be dampened, but a large coefficient
would also generate a delay. Normally the coefficient would
be set to achieve the smallest mean squared error (MSE)
between original data and filter output [19]. To have a faster
dampening response under reasonable (MSE), the coefficient
is set to 0.85.

C. EMG signal calibration

After the EMG sensors were attached to a user, the signal
strength was calibrated to maintain similar performance
among different individuals and different test sessions. All
testing was conducted on able bodied individuals. To help
these users control their muscle force, a pressure ball was
placed in their hand for them to squeeze. The calibration
included two sessions of maximum voluntary contraction
(MVC) of the muscles for 15s followed by resting for
10s. The data collected was divided into relax and max
contraction groups. An average of the processed EMG signal
for resting and MVC states were used to normalize the
control signal between 0 and 1.

D. Mapping EMG Signal to Control Signal

Once a filtered and normalized EMG signal was collected,
it was mapped to the position of the da Vinci PSM gripper.

(a)

(b)

Fig. 3. (a) Gripper fully open. (b) Gripper fully close

As shown in Fig. 3, the related position of the gripper is
30 degrees as fully open and 5 degrees as fully closed. The
relation between EMG signal strength and gripper position is
mapped based on the equation of a line. To allow finer control
of force applied to a grasped object, a contact detection
based piecewise function was used. The program tracks the
position error of the gripper as the difference between desired
position and current position as read from its encoder. As
shown in Fig. 4, the gripper will close faster before contact.
When the position error is larger than a threshold, it will
reduce the slope of the mapping function allowing for smaller
adjustments in gripper position after contact.

Example of Contact Detection
60 T T T

Contact Point

20 -

Gripper Position (degrees)
8

L L L L L L L
[ 01 0.2 03 0.4 0.5 0. 0.7 08 0.9 1

.6
EMG signal Strength (%)

Fig. 4. A demonstration of the mapping of processed EMG signal to
gripper position. The gripper will make smaller motions after contact is
detected.

DVRK provides servo control that directly applies current
to motors for real-time control. A large step, low update rate
using servo control is not advised as it might result in a large
current impulse and damage to the motors. Normally, an
update rate of 200Hz can reduce the step difference enough
to keep motor current within safe operating limits. Since the
feedback rate of the Delsys API is fixed at 37Hz, instead of
directly moving the gripper to the next desired position every
27ms, the control program linearly interpolates between the
current and desired position with 8 discrete steps. This
increases the control loop running rate to about 296Hz but
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(A)

Fig. 5.

(B)

System setup for user study trials. (A1) Linux machine that runs dvrk-ros package and Rosbridge server. (A2) Stereo viewer and one of Master

Tool Manipulator. (B3) Silicon Wrapped FSR. (B4) Arduino UNO and voltage divider circuit. (B5) Windows machine that collects, processes and transfers
EMG data and provides visual feedback for subject. (B6) A patient side manipulator. (B7) Pressure ball for hand functional user to better control their

grasping. (B8) Delsys Trigno system. (B9) Active Avanti EMG sensors.

Fig. 6. The silicone coated Flexiforce Standard Model A201 FSR used for
testing grasping force.

introduces an additional delay.

E. Force Reading

To test the performance of the proportional EMG control
system, a force sensitive resistor (FSR) was used to measure
the grasping force of the PSM. To better stimulate grasping
of soft tissue, the FSR (FlexiForce Standard Model A201,
Tekscan Inc., Boston, MA) had an approximately 2.5mm
silicon layer applied to each side, as shown in Fig 5.

Each brand and model of FSR has its specific
force-conductance curve, and can be found from their
documentation! The force-conductance curve for the sensor
used in this experiment can be regarded as an equation of a
line as follows:

G = 0.00014 % F' + 0.0012 2)

Where G is the conductance of the sensor and F is the force
in Newtons on the sensor surface.

Equation 2 indicates that we must know the conductance
of the FSR sensor to calculate the force reading. This project
uses a voltage divider circuit with a pull-down resistor of 2
M) to measure the voltage change on the FSR sensor. An
Arduino Uno was used to read the analog voltage signal and
calculate the applied force. Further calibrations of the sensor
were not performed, as it was being used for comparative
measurements where the absolute value was not critical to

Uhttps://cdn.sparkfun.com/datasheets/Sensors/ForceFlex/FLX-FlexiForce-
Sensors-Manual.pdf

the testing result. The measured force was presented on a
plot to the person controlling the system.

F. Experimental Setup

In order to test the controllability of the system, an
experiment was designed and carried out. Fig. 6 shows the
experimental setup of the proposed system. For each user
trial, after calibrating the EMG signal, users were asked to
reach and stay at different contraction levels of grasping
force for a period of time. Subjects were also asked to
perform the same task using the MTM control method to
compare the system performance with the original control
method of the da Vinci surgical system. In addition to the
user study, a simulated step EMG signal was applied to the
proposed control pipeline to study the relationship between
EMG signal strength and grasping force.

III. RESULTS AND DISCUSSION

Three of the authors performed preliminary testing of
the system performance. One subject’s experimental results
are shown in Fig. 7 and Fig. 8. All subjects were able to
reach and maintain three different grasping force levels of
low, medium, and high (one-third, two-thirds, and maximum
grasping force), using both the EMG control method and the
MTM control method. The average Pearson correlation co-
efficient between the grasping force of PSM and normalized
EMG signal is 0.874. Subjects were allowed to practice on
the system until they self-reported that they felt proficient
in controlling the gripper position. The average time of this
practice was approximately 5 minutes. After approximately
10 minutes of controlling the gripper using the proposed
method, two of the subjects reported tiredness and muscle
soreness.

The first plot in Fig. 7a and Fig. 8b are from the same
session using EMG control. Fig. 7a shows the relationship
between EMG signal strength and force sensor reading, while
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(a) Plot of EMG signal and Force Sensor Reading
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Fig. 7. Relationship between force sensor reading and normalized EMG signal. (a) Normalized EMG signal input from a subject. (b) Simulated step

signal input.
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Fig. 8. Relationship between force sensor reading and PSM gripper position setpoint. (a) MTM control method PSM gripper position setpoint input. (b)

EMG control method PSM gripper position setpoint input.

Fig. 8b shows the PSM position setpoint and force sensor
reading. These two figures, demonstrate that a subject can
maintain different force levels for a period of time. Fig. 7b
shows the relationship between EMG signal and grasping
force when a simulated step signal is applied to the robot
controller. For different signal levels, the gripper applies a
related grasping force up to a point of saturation. Friction
and backlash in the system are evident as the measured force
follows a different curve for increasing control setpoint than
it does for decreasing setpoint. The friction and backlash
causes force to be maintained for a period as the position
commanded of the gripper decreases.

The plots in Fig. 8 can help compare the performance
between the original MTM control and the EMG control
method. Though both succeed in generating different levels
of grasping force, MTM control has almost no delay whereas
the EMG control has a delay of about 200ms due to filtering,

latency, and interpolation. The maximum force for MTM is
almost twice the proposed method, however this is because
the position setpoint limit for the MTM controller allowed
for values below 0 degrees while the EMG controller never
reached below 5 degrees due to mapping setup. The force
results are close when comparing the force sensor reading
from both methods at a 10 degrees position setpoint for the

gripper.
IV. CONCLUSION AND FUTURE WORK

This paper proposes a system architecture and signal
processing for EMG control of a PSM gripper of the da Vinci
surgical system. Users were able to demonstrate control over
the force applied to a compliant pressure sensor. Though
the clinical da Vinci Surgical System does not provide force
feedback to the user, visual inspection of tissue deformation
and control of gripper position does allow for a coarse degree
of force control in the clinical setting. This functionality was
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preserved through the EMG control implemented. Though
under current hardware and software structure its perfor-
mance does not match that of the original da Vinci MTM,
the results validate the feasibility of controlling portions of
a surgical robot using EMG signals. Further refinement of
these concepts may lead to control interfaces which are more
accessible for surgeons with hand disabilities.

Future work will focus on reducing operator fatigue,
reducing latency, and compensating for cross-talk from adja-
cent muscle contractions. Targeting different muscle groups,
or providing different scaling of EMG signal to control input
may reduce operator fatigue. Improvements in software and
hardware implementations can reduce latency. Combining
pattern recognition with proportional control could help
classify muscle signals generated by cross talk from adjacent
muscles and those intended for gripper control.

In addition to refining the current gripper control, addi-
tional control methods for the entire PSM arm are needed.
EMG is useful for controlling one joint but challenging to
replicate the total arm movement. A promising direction
for achieving full arm control is combining Motion Capture
System with EMG proportional control. In this arrangement,
movement of the operator’s arm will be measured by motion
capture to control the position and orientation of the PSM
with EMG used to control the opening and closing of the
gripper. With this complete implementation, control of a da
Vinci PSM for surgical tasks may be possible for individuals
with hand disabilities.
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