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Abstract— There is a large community of people with hand
disabilities, and these disabilities can be a barrier to those
looking to retain or pursue surgical careers. With the devel-
opment of surgical robotics technologies, it may be possible to
develop user interfaces to accommodate these individuals. This
paper proposes a hand-free control method for the gripper
of a patient side manipulator (PSM) in the da Vinci surgical
system. Using electromyography (EMG) signals, a proportional
control method was tested on its ability to grasp a pressure
sensor. These preliminary results demonstrate that the user can
reliably control the grasping motion of the da Vinci PSM using
this system. There is a strong correlation between grasping force
and normalized EMG signal (r= 0.874). Moreover, the gripper
can generate a step grasping force output when feeding in a
generated step signal. The results in this paper demonstrate the
system integration of a research EMG system with the da Vinci
surgical system and are a step towards developing accessible
teleoperation systems for surgeons with disabilities. Hand-free
control for remaining degrees of freedom in the PSM is under
development using additional input from the motion capture
system.
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I. INTRODUCTION

Approximately 541,000 Americans suffered from different

levels of upper limb loss in 2005, and the number of cases

is expected to double by 2050 [1]. Among those upper limb

loss cases, many only experience hand disability. A study

in UK and Italy shows that among their yearly upper limb

amputation cases, 61% of them are transcarpal, and 2% are

wrist disarticulation [2]. In addition, among the 1% to 2%

of newborns that are born with congenital defects, 10% have

upper extremity malformations [3]. While the number of

surgeons effected by limb loss during their career has not

been well documented, severe hand disability can put an

end to a surgeon’s career or prohibit the path to becoming a

surgeon altogether. Even after amputation below wrist, most

muscles controlling the hand still exist and are functional

within the forearm. Moreover, the training and knowledge

of surgeons enable them to control those muscles properly

and make correct decisions during a surgery. With the help

of surgical robotic systems and proper sensors to read muscle

signals, it may be possible to help them operate again.

The da Vinci surgical system (Intuitive Surgical, Sunny-

vale, CA) is an FDA-approved robotic system for teleoper-

ated minimally invasive surgery. The master tool manipulator

(MTM), which the surgeon uses to control the robot, still
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requires the dexterity of the operator’s hands and fingers.

Though there are research projects which focus on further

developing its control mechanisms, most of the new control

interfaces are focused on developing novel control interfaces

of the endoscopic camera, new flexible endoscopes, and

vision devices. Few focus on the compatibility for surgeons

with disabilities [4]. Control of the gripping motion of da

Vinci forceps and scissors is currently accomplished through

a pinching motion on the MTM. One possible solution for

controlling this motion without motion of the user’s hand,

is through sensing electromyography (EMG) signal from

forearm muscle contraction. EMG technology can record

the electrical activity produced by skeletal muscles, and

the signals can be used to detect abnormalities, activation

level, or the biomechanics of human movement [5]. There

are two types of EMG electrodes for recording: surface

EMG (sEMG) and intramuscular EMG. The non-invasive

characteristic of sEMG provides the possibility for its use

as a sensor in a device controller. As a limitation, sEMG

signal comes mostly from superficial muscles, and the signal

strength from the underlying muscles highly depends on the

depth of subcutaneous tissue [5].

sEMG is regularly used as an input for human-machine

interaction [6]. There are three main usages for EMG signals

in the control domain: on-off control, Proportional control,

and Multi-State Control [7], [8]. The EMG signal acts as

a switch in on-off control to determine the robot states.

It is a robust and intuitive method, but the lack of mid-

point states narrows its applications [8]. To increase the

controllable states of the signal, approaches using classifiers

have been implemented to achieve pattern recognition (PR)

and move the actuator to a specific state based on PR result

[9]–[11]. Both on-off control and pattern recognition use

discrete states, while continuous states are preferred in some

situations. A proportional control system allows users to

change one output of the system by varying their input within

a corresponding continuous interval [8]. Proportional control

is well suited for controlling the grasping motion of the da

Vinci PSM.

Using EMG signal as a proportional control signal source

has been well studied. Many prostheses and exoskeletons

have used sEMG as a proportional control source. Young et

al. developed a controller for a hip exoskeleton using both

proportional EMG control and biological torque control and

compared their performance [12]. Both controllers helped to

reduce metabolic cost, but EMG based control had better

performance. Yatsenko et al. built a proportional controller

for a prosthetic hand and wrist and tested on three subjects
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Fig. 1. Plot of General System Structure: The Delsys Trigno system is connected to data collecting PC using serial to USB cable. The data collecting
PC is connected to the controller PC through Rosbridge server. The Controller PC holds ros master core, dvrk-ros package, and controlling scripts

including one transradial amputee [13]. They included both

wrist movement and hand open/close, and their results were

encouraging. For their work, they used 22 electrodes to fully

decouple different muscle contractions. Ao et al. developed

an EMG-driven Hill-type neuromusculoskeletal model and a

linear proportional model for an ankle power-assist exoskele-

ton robot and compared their performance [14]. Though the

combination of sEMG signal and physiological model has a

better performance in general, the linear proportional model

is reasonable in accuracy as well.

Previous work shows the feasibility of using sEMG signal

to map muscle contraction to robot grasping or motion

proportionally. However, these proportional controllers have

not been investigated for the control of surgical systems.

This paper proposes a proportional control method for the

grasping motion of a da Vinci surgical system PSM using

Delsys sEMG sensors. A preliminary user study was done

to demonstrate the system’s feasibility.

II. MATERIAL AND METHODS

The main hardware used in this project is Trigno Wire-

less Biofeedback System (Delsys Inc, Natick, MA), the da

Vinci surgical system with da Vinci Research Kit (dVRK)

controller boxes [15]. The main software packages used in

this project are Delsys API and the dvrk-ros package. Fig. 1

shows the general structure of the proposed control system.

The Trigno system includes a base and 16 wireless Trigno

Avanti Sensors. It can output the processed data as analog

signals to suitable devices or digitized data via USB. In

addition to the hardware sensor system, Delsys, Inc is

developing an API for Trigno to help developers access

sensor data in custom applications. Its core is written in

C# and compiled to dynamic link libraries so that it can

be used by multiple languages, including Python which was

used for this implementation. A Windows machine was used

to receive the EMG data. After filtering and normalizing the

received data on the Windows machine, the normalized data

was published using roslibpy package to a ROS topic on

a Linux machine running dvrk-ros package via Rosbridge

WebSocket Server.

The da Vinci surgical system with dVRK is used in this

work as a research platform for surgical robotics. It has

two parts, the surgeon’s console, which includes a stereo

viewer and a pair of Master Tool Manipulators (MTM),

and a patient-side cart which includes three Patient Side

Manipulators (PSM) and a Endoscope Camera Manipulator.

To demonstrate the feasibility of this approach the gripper

on one PSM was used in these experiments. Zihan et al.

from Johns Hopkins University developed a ROS interface

for controlling da Vinci surgical system with dVRK called

dvrk-ros [15], [16]. In this project, sEMG signal strength

is mapped to gripper position. Performance of the proposed

method is compared with control by the MTM which uses a

position controller.

A. EMG Sensor Placement

Fig. 2. Delsys Trigno wireless EMG sensors placement on a user’s forearm

To cover more superficial flexors and extensors inside the

forearm, three sensors are attached to the user’s forearm,

as shown in Fig. 2. One sensor is placed above flexor

digitorum superficialis, another sensor is placed above the

extensor digitorum, and the last sensor is placed above

extensor pollicis brevis. These muscles are superficial and

provide good signal to noise ratio. Sensors were attached

using double sided tape after the skin had been shaved and

cleaned using an alcohol pad.

B. EMG data filtering
The raw EMG signal is an oscillating signal with a

frequency spectrum between 0-500Hz. The raw EMG is
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filtered to remove inherent noise in electronics equipment,

ambient noise, and motion artifact [17]. Of the three noise

sources, motion artifact is the most significant. The Avanti

Senor has a 20-450Hz band pass filter embedded as signals

with a frequency lower than 20Hz are typically due to motion

artifacts and the majority of the EMG power is in the range

of 50-150Hz. The sensor was set at a sampling rate of

1924Hz and the Delsys API provides an array of the 52 most

recent samples every 27ms. A root mean square (RMS) filter

was applied to provide a relatively smooth control signal

representative of the average power of the EMG signal over

a specified window. Due to the array provided by the API,

the RMS window in this study is a multiple of 52. A larger

RMS window can take more information from the previous

state and smooth the output data curve. However, a larger

window can also ignore some features and delay the current

state. An RMS window length of 108ms (the four most recent

raw EMG arrays) that updates every 27ms is used in the

control system to balance response and smoothness. An RMS

window between 100ms and 350ms is typical in EMG signal

processing, with the lower end of the range giving better

response [18]. An additional exponential moving average

(EMA) filter was applied to the RMS data to provide a more

stable control signal. An EMA filter uses information from

previous states to adjust the current state. Eq. 1 shows the

calculation of EMA.

St =

{
Y 1, t = 1

αYt + (1− α)(̇St−1), t > 1
(1)

The coefficient α represents the degree of weighting de-

crease, a constant smoothing factor between 0 and 1. A

higher α discounts older observations faster. Yt is the value

at a time period t, and St is the value of the result from

the EMA at any time period t. The larger the coefficient

the faster the data will be dampened, but a large coefficient

would also generate a delay. Normally the coefficient would

be set to achieve the smallest mean squared error (MSE)

between original data and filter output [19]. To have a faster

dampening response under reasonable (MSE), the coefficient

is set to 0.85.

C. EMG signal calibration
After the EMG sensors were attached to a user, the signal

strength was calibrated to maintain similar performance

among different individuals and different test sessions. All

testing was conducted on able bodied individuals. To help

these users control their muscle force, a pressure ball was

placed in their hand for them to squeeze. The calibration

included two sessions of maximum voluntary contraction

(MVC) of the muscles for 15s followed by resting for

10s. The data collected was divided into relax and max

contraction groups. An average of the processed EMG signal

for resting and MVC states were used to normalize the

control signal between 0 and 1.

D. Mapping EMG Signal to Control Signal
Once a filtered and normalized EMG signal was collected,

it was mapped to the position of the da Vinci PSM gripper.

Fig. 3. (a) Gripper fully open. (b) Gripper fully close

As shown in Fig. 3, the related position of the gripper is

30 degrees as fully open and 5 degrees as fully closed. The

relation between EMG signal strength and gripper position is

mapped based on the equation of a line. To allow finer control

of force applied to a grasped object, a contact detection

based piecewise function was used. The program tracks the

position error of the gripper as the difference between desired

position and current position as read from its encoder. As

shown in Fig. 4, the gripper will close faster before contact.

When the position error is larger than a threshold, it will

reduce the slope of the mapping function allowing for smaller

adjustments in gripper position after contact.

Fig. 4. A demonstration of the mapping of processed EMG signal to
gripper position. The gripper will make smaller motions after contact is
detected.

DVRK provides servo control that directly applies current

to motors for real-time control. A large step, low update rate

using servo control is not advised as it might result in a large

current impulse and damage to the motors. Normally, an

update rate of 200Hz can reduce the step difference enough

to keep motor current within safe operating limits. Since the

feedback rate of the Delsys API is fixed at 37Hz, instead of

directly moving the gripper to the next desired position every

27ms, the control program linearly interpolates between the

current and desired position with 8 discrete steps. This

increases the control loop running rate to about 296Hz but
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Fig. 5. System setup for user study trials. (A1) Linux machine that runs dvrk-ros package and Rosbridge server. (A2) Stereo viewer and one of Master
Tool Manipulator. (B3) Silicon Wrapped FSR. (B4) Arduino UNO and voltage divider circuit. (B5) Windows machine that collects, processes and transfers
EMG data and provides visual feedback for subject. (B6) A patient side manipulator. (B7) Pressure ball for hand functional user to better control their
grasping. (B8) Delsys Trigno system. (B9) Active Avanti EMG sensors.

Fig. 6. The silicone coated Flexiforce Standard Model A201 FSR used for
testing grasping force.

introduces an additional delay.

E. Force Reading

To test the performance of the proportional EMG control

system, a force sensitive resistor (FSR) was used to measure

the grasping force of the PSM. To better stimulate grasping

of soft tissue, the FSR (FlexiForce Standard Model A201,

Tekscan Inc., Boston, MA) had an approximately 2.5mm

silicon layer applied to each side, as shown in Fig 5.

Each brand and model of FSR has its specific

force-conductance curve, and can be found from their

documentation1. The force-conductance curve for the sensor

used in this experiment can be regarded as an equation of a

line as follows:

G = 0.00014 ∗ F + 0.0012 (2)

Where G is the conductance of the sensor and F is the force

in Newtons on the sensor surface.

Equation 2 indicates that we must know the conductance

of the FSR sensor to calculate the force reading. This project

uses a voltage divider circuit with a pull-down resistor of 2

MΩ to measure the voltage change on the FSR sensor. An

Arduino Uno was used to read the analog voltage signal and

calculate the applied force. Further calibrations of the sensor

were not performed, as it was being used for comparative

measurements where the absolute value was not critical to

1https://cdn.sparkfun.com/datasheets/Sensors/ForceFlex/FLX-FlexiForce-
Sensors-Manual.pdf

the testing result. The measured force was presented on a

plot to the person controlling the system.

F. Experimental Setup

In order to test the controllability of the system, an

experiment was designed and carried out. Fig. 6 shows the

experimental setup of the proposed system. For each user

trial, after calibrating the EMG signal, users were asked to

reach and stay at different contraction levels of grasping

force for a period of time. Subjects were also asked to

perform the same task using the MTM control method to

compare the system performance with the original control

method of the da Vinci surgical system. In addition to the

user study, a simulated step EMG signal was applied to the

proposed control pipeline to study the relationship between

EMG signal strength and grasping force.

III. RESULTS AND DISCUSSION

Three of the authors performed preliminary testing of

the system performance. One subject’s experimental results

are shown in Fig. 7 and Fig. 8. All subjects were able to

reach and maintain three different grasping force levels of

low, medium, and high (one-third, two-thirds, and maximum

grasping force), using both the EMG control method and the

MTM control method. The average Pearson correlation co-

efficient between the grasping force of PSM and normalized

EMG signal is 0.874. Subjects were allowed to practice on

the system until they self-reported that they felt proficient

in controlling the gripper position. The average time of this

practice was approximately 5 minutes. After approximately

10 minutes of controlling the gripper using the proposed

method, two of the subjects reported tiredness and muscle

soreness.

The first plot in Fig. 7a and Fig. 8b are from the same

session using EMG control. Fig. 7a shows the relationship

between EMG signal strength and force sensor reading, while
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Fig. 7. Relationship between force sensor reading and normalized EMG signal. (a) Normalized EMG signal input from a subject. (b) Simulated step
signal input.

Fig. 8. Relationship between force sensor reading and PSM gripper position setpoint. (a) MTM control method PSM gripper position setpoint input. (b)
EMG control method PSM gripper position setpoint input.

Fig. 8b shows the PSM position setpoint and force sensor

reading. These two figures, demonstrate that a subject can

maintain different force levels for a period of time. Fig. 7b

shows the relationship between EMG signal and grasping

force when a simulated step signal is applied to the robot

controller. For different signal levels, the gripper applies a

related grasping force up to a point of saturation. Friction

and backlash in the system are evident as the measured force

follows a different curve for increasing control setpoint than

it does for decreasing setpoint. The friction and backlash

causes force to be maintained for a period as the position

commanded of the gripper decreases.

The plots in Fig. 8 can help compare the performance

between the original MTM control and the EMG control

method. Though both succeed in generating different levels

of grasping force, MTM control has almost no delay whereas

the EMG control has a delay of about 200ms due to filtering,

latency, and interpolation. The maximum force for MTM is

almost twice the proposed method, however this is because

the position setpoint limit for the MTM controller allowed

for values below 0 degrees while the EMG controller never

reached below 5 degrees due to mapping setup. The force

results are close when comparing the force sensor reading

from both methods at a 10 degrees position setpoint for the

gripper.

IV. CONCLUSION AND FUTURE WORK

This paper proposes a system architecture and signal

processing for EMG control of a PSM gripper of the da Vinci

surgical system. Users were able to demonstrate control over

the force applied to a compliant pressure sensor. Though

the clinical da Vinci Surgical System does not provide force

feedback to the user, visual inspection of tissue deformation

and control of gripper position does allow for a coarse degree

of force control in the clinical setting. This functionality was
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preserved through the EMG control implemented. Though

under current hardware and software structure its perfor-

mance does not match that of the original da Vinci MTM,

the results validate the feasibility of controlling portions of

a surgical robot using EMG signals. Further refinement of

these concepts may lead to control interfaces which are more

accessible for surgeons with hand disabilities.

Future work will focus on reducing operator fatigue,

reducing latency, and compensating for cross-talk from adja-

cent muscle contractions. Targeting different muscle groups,

or providing different scaling of EMG signal to control input

may reduce operator fatigue. Improvements in software and

hardware implementations can reduce latency. Combining

pattern recognition with proportional control could help

classify muscle signals generated by cross talk from adjacent

muscles and those intended for gripper control.

In addition to refining the current gripper control, addi-

tional control methods for the entire PSM arm are needed.

EMG is useful for controlling one joint but challenging to

replicate the total arm movement. A promising direction

for achieving full arm control is combining Motion Capture

System with EMG proportional control. In this arrangement,

movement of the operator’s arm will be measured by motion

capture to control the position and orientation of the PSM

with EMG used to control the opening and closing of the

gripper. With this complete implementation, control of a da

Vinci PSM for surgical tasks may be possible for individuals

with hand disabilities.
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