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Abstract—Currently, wired respiratory rate sensors tether
patients to a location and can potentially obscure their body
from medical staff. In addition, current wired respiratory rate
sensors are either inaccurate or invasive. Spurred by these
deficiencies, we have developed the Bellyband, a less invasive
smart garment sensor, which uses wireless, passive Radio Fre-
quency Identification (RFID) to detect bio-signals. Though the
Bellyband solves many physical problems, it creates a signal
processing challenge, due to its noisy, quantized signal. Here, we
present an algorithm by which to estimate respiratory rate from
the Bellyband. The algorithm uses an adaptively parameterized
Savitzky-Golay (SG) filter to smooth the signal. The adaptive
parameterization enables the algorithm to be effective on a
wide range of respiratory frequencies, even when the frequencies
change sharply. Further, the algorithm is three times faster and
three times more accurate than the current Bellyband respiratory
rate detection algorithm and is able to run in real time. Using an
off-the-shelf respiratory monitor and metronome-synchronized
breathing, we gathered 25 sets of data and tested the algorithm
against these trials. The algorithm’s respiratory rate estimates
diverged from ground truth by an average Root Mean Square
Error (RMSE) of 4.1 breaths per minute (BPM) over all 25 trials.
Further, preliminary results suggest that the algorithm could be
made as or more accurate than widely used algorithms that detect
the respiratory rate of non-ventilated patients using data from an
Electrocardiogram (ECG) or Impedance Plethysmography (IP).

Index Terms—biomedical signal processing, parameter estima-
tion, wearable sensors, filtering algorithms

I. INTRODUCTION

Currently, many respiratory monitoring systems utilize sen-
sors attached to a patient’s body. These sensors are then
connected by wires to machines which process, record, and
display the patient’s respiratory information. Al-Khalidi, et al
provide an overview of respiration monitoring systems, and

concludes that most respiration monitoring systems involve
wired sensors directly attached to patients [1].

Wired sensors have several negative effects: staff and pa-
tients can pull the wires, causing detachment and/or pain;
wires can obscure the patient’s body, inhibiting evaluations and
procedures, and they tether the patient to a location; the most
accurate wired sensors require a mask or intubation, causing
discomfort, distress, and distortion of the respiratory pattern.
Respiratory monitoring is a standard component of care in
Neonatal Intensive Care Units (NICU), but premature babies
have a limited surface area and adhesive sensors may not be
desirable on their developing skin [2], [3].

Of even greater concern, the wired systems most commonly
used on non-ventilated patients are surprisingly inaccurate.
Charlton et al [4] tested several hundred algorithms which
estimated respiratory rate from two of the most common
signals: Electrocardiogram (ECG) and Photoplethysmogram
(PPG), and compared algorithm performance to algorithms
using another common signal, Impedance Plethysmography
(IP), “the clinical standard for continuous respiratory rate
measurement in spontaneously breathing patients.” Of the
hundreds of algorithms that they tested, the best algorithm
had a bias of 0 breaths per minute (BPM) and a 95% Limits
of Agreement (LOA) of -4.7 to 4.7 BPM. Thus, the best
algorithm available for estimating respiratory rate from ECG,
PPG, or IP gives results within 4.7 BPM of the true rate only
95% of the time. Therefore, there is a need, not only for a
wireless respiratory rate monitor, but also a more accurate one.

The Bellyband project aims to improve over other biometric
monitoring systems with a wireless, passive RFID, smart-
fabric sensor (the Bellyband). The Bellyband project is a
collaboration among computer scientists, electrical engineers,
materials scientists, fashion designers, sociologists, and med-
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Fig. 1: Left: the Bellyband on an animatronic mannequin
called a SimBaby [5]. Right: close up of the antenna portion
of the Bellyband. Note the darker non-conductive material, the
lighter conductive thread antenna, and the grey square inlaid
in the lighter thread, which is a non-conductive pouch housing
an RFID chip and matching circuit.

ical doctors [6]–[9]. The band (see Figure 1) is a cylindrical,
knit band, about 8 cm wide, and long enough to stretch entirely
around the abdomen of a patient. Most of the band is made
of flexible, non-conductive thread. A small section (5 cm by
12 cm) is made of a flexible, stretchable, conductive, silver-
coated nylon thread. The conductive thread is knit in such a
way as to create an antenna. An RFID chip is inserted into a
pouch on the band, and connected to the antenna [7].

The Bellyband can be used to measure several biological
processes in patients, such as respiration and uterine contrac-
tion. As the wearer breathes, experiences a uterine contraction,
etc., the garment stretches and deforms its the knitted an-
tenna, yielding changes in Received Signal Strength Indicator
(RSSI) power [10] without requiring a transducer or other
tethered sensor. It uses a Magicstrap RFID LMXS31ACNA-
011 chip [11] or Monza X Dura chip [12]. The chip is inter-
rogated by an Impinj R420 interrogator [13] using a RFMAX
S9028PCLJ antenna [14]. The RFID interrogator operates
within the 902-928 MHz unlicensed frequency band in the
United States, and the knitted antenna and tag are impedance
matched to 870 MHz [7] to facilitate oscillatory strengthening
and weakening of the observed RSSI as the wearer stretches
and relaxes the band during respiratory activity.

When interrogated within range, the Bellyband tag emits a
signal containing its identifier, which is then received by the
interrogator. Each time the return signal is received by the in-
terrogator, the interrogator logs the return signal’s arrival time,
and strength, phase, and Doppler shift relative to the original
interrogation wave. We use a combination of these features
(e.g. RSSI, Doppler shift, and relative time stamp) to draw
conclusions about various medical states of the patient wearing
the Bellyband. Previously, the Bellyband has been used to
detect respiratory rate [15] as well as apnea. In section V, the
method proposed in this paper is compared to the GMM-based
fusion algorithmdeveloped in [15], demonstrating significant
improvement in detection and in runtime performance.

A system level block diagram is described in Figure 2. As
shown in the figure, the smart fabric Bellyband is interrogated
by an RFID interrogator, and the physical properties of the
resulting backscatter are affected by changes in the Bellyband

structure. In particular, the antenna stretches and relaxes as
the wearer breathes, tuning and de-tuning the antenna and
changing the corresponding RSSI and phase shift. These
physical properties are stored and processed as time-series
data sets in or near enough to real-time to provide meaningful
biomedical estimates about the wearer’s state, i.e., respiratory
rate (RR).

A. Bellyband Relative Signal Strength Model

The Received Signal Strength Indicator (RSSI) is a function
of distance between the interrogating antenna and the Belly-
band d, Bellyband antenna gain G, and radar cross section
of the Bellyband’s antenna σ, all three of which are, in turn,
functions of respiration. On inhalation, the distance between
the interrogator and the tag decreases, increasing RSSI by
a factor of d4. In addition, the Bellyband antenna’s gain
increases, increasing RSSI by a factor of G2. Finally, the radar
cross section of the tag’s antenna increases, increasing RSSI
linearly as shown in Equation 1 [16]:

RSSI =
Pr

Pt
= Round

(
G2λ2σ

(4π)3d4
+ ν

)
(1)

Where:
RSSI = The Received Signal Strength Indicator
Pr

Pt
= the ratio of power received to power transmitted

G = the interrogating antenna’s gain, a function of respira-
tion
λ = the interrogation wavelength. speed of light

interrogation frequency
σ = the radar cross section of the tag’s antenna, a function

of respiration
d = the distance between the interrogator and the tag, a

function of respiration
ν = the noise due to multipath and other indeterminate

factors.
Thus, subject respiration results in a quantized, fluctuating

wave in the RSSI vs time graph. See the top graphs of Figures
3 and 6 for a visualization of this quantized fluctuation.

B. Motivation for the Respiratory Rate Detection Algorithm

The Bellyband’s use of passive RFID offers several benefits
for bio-signal detection. Tags do not require batteries or wires,
resulting in a small form factor, suitable for wearable garment
integration. Tags transmit a configurable unique identifier,
devoid of personally identifiable information over the air.
Thus, the Bellyband is comfortable, easy to put on and take off,
contains no wires or batteries, and uniquely identifies patients
in a HIPAA-compliant way.

However, using RFID for respiratory monitoring presents
challenges: its signal decays quickly as the interrogation
distance is increased, the reflected RFID signal is affected
by multipath fading which result in perturbations unrelated to
patient respiration, and some interrogators discretize the RSSI
measurement which introduces sensor noise.

In this paper, we present an algorithm which responds
to these challenges. The algorithm first smooths the noisy,
discretized signal with a Savitzky-Golay filter, then counts
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tf = either the time (in seconds) of the final extremum or the
time (in seconds) of the final point in the window, as observed
by that point’s time of arrival
ti = either the time (in seconds) of the initial extremum or

the time (in seconds) of the initial point in the window, as
observed by that point’s time of arrival

This respiratory rate is used to parameterize the Savitzky-
Golay filter on the next ∆w sliding time window.

One of the key features of the algorithm is its application
of an adaptive Savitzky-Golay filter. The filter fits a kth order
polynomial to a set of n sequential points in the data. k and n
are both parameters to the filter. Because the data points are
equally spaced (in time), for any given k, the n-length vector
of weights for the Savitzky-Golay filter is known and only
needs to be computed one time. (The weights are calculated
to minimize the least squares difference between a polynomial
of degree k and the data points.) Thus, the filter can be used
with negligible speed cost.

The challenge for every application which uses the
Savitzky-Golay filter is to choose the parameters n and k to
best preserve the signal while reducing the noise. All other
things being equal, we preferred a smaller k value as this
simplifies the model and makes the model more robust to noise
in the signal. We also wanted the filter to model an entire
respiratory cycle (requiring a k of at least 3) to decrease the
noise associated with respiratory rate changes within a single
respiratory cycle. Thus, we chose k = 3 because three is the
smallest value of k able to model a single respiratory cycle,
with both a peak and a trough.

The more significant challenge when detecting respiratory
rate is that the period of the RSSI wave varies with the
underlying respiratory rate. Thus, the parameter n must be
adapted.

A well-adapted Savitzky-Golay filter might fit a 3rd order
polynomial to the data from half a period of the oscillating
RSSI wave. The number of points in that half a period, which
will be passed to the filter as parameter n, can be calculated
as follows in Equation 3:

n =

⌈
1

2
×
s× 60 sec

min

r

⌉
(3)

Where:
n = the number of points in half a period of the RSSI wave
s = the sample rate in Hz
r = the actual respiratory rate in BPM
For example, suppose that an respiratory rate of 70 BPM

is sampled at 25 Hz. Then, using equation 3, each half breath
would take place over 11 points (n = 11). Suppose instead
that the underlying respiratory rate is 15 BPM. Now, each half
breath would take place over 50 points. Savitzy-Golay filters
require n to be odd, so we set n = 51.

A. Dynamic Savitzky-Golay Filter

The Savitzky-Golay filter was chosen for this algorithm
because the underlying oscillatory human respiratory pattern:
‘inhale, pause, exhale, pause, repeat’ can be well fitted by a

low-degree polynomial even when the period of the respiratory
curve is not constant (as shown in Figure 6c). In addition, the
underlying noise is indeterminate and is best modeled as a
normal distribution.

However, dynamic processes such as respiratory behavior
are not well modeled by filtering algorithms using a fixed
parameterization strategy. In Figure 3, observe that a 3rd order
polynomial fitted to 11 points is well adapted to 70 BPM
data but is poorly adapted to 15 BPM data, and a 3rd order
polynomial fitted to 51 points is well adapted to 15 BPM
data but is poorly adapted to 70 BPM data. We seek a filter
that is well adapted to both 15 BPM and 70 BPM data
(and to data reflecting even more extreme respiratory rates),
and achieve this through an efficient, dynamic, and adaptive
parameterization of the Savitzky-Golay filter.

The problem is solved by setting parameter n for the current
window according to the estimated respiratory rate of the
previous window, creating an adaptive Savitzky-Golay filter.
Allowing the filter to adapt its value of n based on the
estimated respiratory rate of the previous window fits our
intuition about human respiration: respiratory rate rarely jumps
significantly and instantaneously. In addition, the algorithm
contains an additional feature which makes it robust against
the rare case of an extreme and instantaneous respiratory rate
change. We describe this feature in section III-B.

1) Selecting the Multipass Filtration Order: The dynam-
ically parameterized Savitzky-Golay filter, like a traditional
Savitzky-Golay filter, smooths the datastream by fitting the
points in the datastream to a polynomial of a certain order
and width [28]. Unlike a traditional Savitzky-Golay filter, the
dynamic filter chooses the particular width it will seek based
on the respiratory rate it has perceived most recently. In this
way, the dynamic filter smooths non-dominant frequencies
while leaving the dominant frequency largely unaffected.

The Savitzky-Golay filter is a convolution, and so applying
it to the datastream corresponds to multiplication of the
datastream’s frequency domain transform. Further, repeated
application of the filter has a multiplicative effect. Thus,
repeated application of the filter results in additional smooth-
ing of non-dominant frequencies [29]. Figure 4 graphs the
result of four successive applications of the same filter to two
different datastreams: one reflecting low-frequency respiration
and one reflecting high-frequency respiration. We observe the
most significant improvement to signal clarity in the first
or second filtration in all trials, followed by improvements
of diminishing significance upon each successive filtration.
Thus, we empirically-define an optimal number of filtrations
(denoted by m), which takes into account signal clarity and
dynamic range achieved from repeated filtrations. Others have
also demonstrated the value of this process [30]. For each of
the m filtrations, the same filter parameters (i.e., polynomial
order k and number of points n) are used for each filter pass.
Table I records the effect of the same four successive filtrations
on the dynamic range of the two particular datasets. The table
shows that, even with four filtrations, the primary signal decays
less than 10%.
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Fig. 3: Two sets of data filtered by two Savitzky-Golay Filters (the left image is RSSI for 15 BPM of respiration vs Time in
µs, and the right image is RSSI for 70 BPM of respiration vs Time in µs). In each image, the top graph shows the raw RSSI
data. The middle graph shows the same data filtered with an incorrectly parameterized Savitzky-Golay filter (n = 11). The
bottom graph shows the same data filtered with a correctly parameterized Savitzky-Golay filter (n = 51). In the middle and
bottom graphs, the black and grey dots show the extrema detected by the algorithm after filtering. Note that each filter is well
adapted to one of the datasets, and that neither filter is well adapted to both datasets. Note also that the dynamic range of the
70 BPM data is smaller than that of the 15 BPM data, as the subject’s abdomen was unable to displace as far when breathing
at 70 BPM compared to 15 BPM.

Fig. 4: Two sets of data: the left figure is RSSI for low-frequency (15 BPM) respiration, and the right figure is RSSI for
high-frequency (70 BPM) respiration, vs time in µs. Each image shows five graphs, each showing an additional filtration of
the RSSI. Note that, for both datasets, after the second filtering, additional smoothing is insignificant.

TABLE I: Dynamic range of the signal from two different
datasets, one reflecting a 15 BPM respiratory rate and one
reflecting a 70 BPM respiratory rate. Note that the overall
decrease in dynamic range is less than 10%.

Filtration Level 15 BPM 70 BPM
Raw signal 3.000 3.000
Filter 1 2.999 2.949
Filter 2 2.788 2.925
Filter 3 2.678 2.878
Filter 4 2.583 2.845

Regardless of the value of m, the application of m filtra-
tions will not entirely eliminate non-dominant-frequency, low-
magnitude modulations from the data. Thus, when relative
extrema are counted in the filtered signal, relative extrema
with an amplitude smaller than a certain threshold (denoted
by ∆y) are excluded from the total count. ∆y is based upon
the dynamic range of the overall window of the filtered signal.

Due to the distributed property of convolutions, the multi-
pass filter can be prepared a priori by convolving the coeffi-
cients (or multiplying the corresponding frequency spectra)
with themselves until the desired order is obtained. Thus,
the computational complexity of constructing an mth order
Savitzky-Golay filter (which filters m times) amounts to
the offline-computable exponentiation of the Savitzky-Golay
weight vector a. By computing am, we obtain an Savitzky-
Golay weight vector that achieves the desired convolutional
effect in the time domain without the need to iteratively con-
volve the signal. This equivalence is shown in Equation 4 [31],
where F denotes the Fourier Transform.

a ∗ x = F−1(F(a)F(x))

a ∗ (a ∗ x) = F−1(F(a)F−1(F(a)F(x)))

a ∗ (a ∗ x) = (a ∗ a) ∗ x = F−1(F(a)2F(x))

(4)

The Savitzky-Golay filter smooths data in the time domain,
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Fig. 5: Effect of running Savitzky-Golay filter 0 to 10 times on two datastreams. (The filter can be run an arbitrary number of
times.) Top Graphs: Signal strength and noise strength (y-axis) vs number of filtrations (x-axis) on a dataset where the subject
breathed at a constant 15 BPM (left) and where the subject’s respiratory rate alternated between 15 and 30 BPM (right). Bottom
Graphs: Signal-to-Noise ratio of the same two datasets (y-axis) vs the number of filtrations (x-axis): a constant 15 BPM (left)
and 15, 30 BPM alternation (right). Note that for the 15 BPM dataset, maximum SNR occurred at 1 filtration, while at the
15/30 BPM dataset, maximum SNR occurred at 2 filtrations.

but has limited attenuation of higher frequencies regardless
of polynomial order [28]. To improve upon the low-pass
filtration of the Savitzky-Golay frequency response, a multi-
pass approach is employed [29] in which the filter is applied
multiple times in an iterative manner. Because the convolution
of the Savitzky-Golay filter window with the input data corre-
sponds to multiplication in the frequency domain, repeated
application of the filter has a multiplicative effect on the
frequency response on the same order as the number of passes
selected. The multiplicative effect attenuates non-dominant
frequencies relative to the dominant one, and sacrifices signal
dynamic range for enhanced low-pass filtering. The high
frequency artifacts present in the 15 BPM plot of Figure 3
are attenuated by the application of a second filter pass, while
the dominant high-frequency observed in the 70 BPM plot
of Figure 3 is generally unaffected in the frequency domain.
The same filter parameters (i.e., polynomial order and window
size) are used for each filter pass, so that at least one-half
respiratory period is present in the window during filtering,
facilitating attenuation of relatively high-frequency artifacts
that are generally periodic within that window as discussed
in Section III-A.

The benefit of attenuation diminishes as the number of
passes increases, as the dynamic range of the signal is reduced;
it is infeasible to eliminate artifact components entirely with-
out sacrificing useful signal. Therefore, a limited number of fil-
ter passes is taken (denoted by m), even though this will leave
behind a high-frequency, low magnitude modulation within the
data. When the difference of the filtered time-series is taken
for purpose of identifying respiratory peaks, modulated peaks
with amplitude smaller than a dynamic threshold (denoted by
∆y) based upon the dynamic range of the overall window
are discarded following the low-pass filter. By the distributed
property of convolutions, the multi-pass filter can be prepared
a priori by convolving the coefficients (or multiplying the
corresponding frequency spectra) with themselves until the
desired order is obtained.

B. Filtering High Variation Data
As long as k < n − 1, n and k are both positive integers,

and n is odd, the Savitzky-Golay filter will find a unique, best
fitting of a kth degree polynomial to n points. This robustness
is an important strength, but is accompanied by a less obvious
weakness. As long as the above parameter limitations are met,
a kth degree polynomial will always fit n − 1 points ‘better’
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(defined as returning a lower sum of the squared difference)
than it fits n points.

Thus, there is no way to compare the fit of two filters
with different n parameters or to verify that a particularly
parameterized polynomial does not overfit or underfit the data.
As shown in Figure 3, an incorrectly parameterized filter will
not return an error - it will simply fit the best kth degree
polynomial to the n points it can. Thus, the question arises,
‘how can we ensure that the filter is not grossly underfitting (or
overfitting) the data, resulting in the algorithm underestimating
(or overestimating) the respiratory rate?’

In initial testing, our filter proved robust against instanta-
neous decreases in respiratory rate from 175 BPM to 15 BPM,
with its estimate converging to 15 BPM within 2 seconds.
However, the filter was not robust against instantaneous in-
creases in respiratory rate of more than 40 BPM. When faced
with increases in respiratory rate of this magnitude, the filter
would consistently underfit the post-increase data and diverge
towards a 0 BPM estimated rate until the actual respiratory
rate dropped back to within 40 BPM of its estimate.

Thus, an additional step in the filtration portion of the
algorithm was added to protect against divergent underfitting.
At the end of the respiratory rate calculation for each window,
if the estimated respiratory rate for the window drops below a
threshold of the lowest feasible respiratory rate rll, we classify
an apnea condition [32].

If there is no apnea, the algorithm resets the filter’s number
of points parameter (n) as if the estimated respiratory rate
from the previous window was sufficiently high (rreset), and
runs again on the current window. The algorithm stores the
respiratory rate calculated during this 2nd run as the estimated
respiratory rate for the window, and progresses to the next
window. With this addition, the filter is able to converge to
any biologically feasible respiratory rate.

Our datasets contained moderate and extreme instantaneous
jumps in respiratory rate. Figures 6c and 6d show that the
adaptive filter handled these transitions well. Table III, row
6, shows the results of running the algorithm on datasets that
contained extreme and instantaneous respiratory rate jumps
from 10 BPM to 70 BPM. On this dataset, the algorithm
resulted in a Root Mean Squared Error (RMSE) of 5.2 BPM.

1) Training the Filter: As described above, the Savitzky-
Golay filter’s number of points parameter (n) is recalculated
for each new window of data, based upon the previous
window’s estimated respiratory rate. This raises the question,
if the ith window’s filter is based upon the (i− 1)th window,
how is the filter for the first window set? We answered this
question by setting the initial respiratory rate to a value (rinit)
and then training the filter with ntr incomplete windows of
training data. During these training windows, no respiratory
rate is output, but a respiratory rate is calculated and is used
to set the number of points parameter for the next window’s
filter. Thus, in our implementation, there are no estimations
the first ∆w ∗ ntr = 0.5 ∗ 10 = 5 seconds. This process leads
to the convergence of estimated respiration rate to the correct
rate by the end of the 5 second training period.

Further testing revealed that, to a very large degree, the
choice of rinit was overwhelmed by inclusion of ntr training
windows. This matches well with the findings presented in
section III-B regarding the convergence limits of the algorithm
when faced with instantaneous jumps in respiratory rate of
varying sizes.

C. Extrema Detection

Once the RSSI signal is filtered, extrema are detected in the
filtered signal, and the respiratory rate is calculated.

Note that, if a window contains z extrema, the window
contains (z − 1)/2 breaths, because each breath contains a
maximum (peak) and a minimum (valley) and the first breath
is marked by three extrema (e.g. peak, valley, peak). For
example, if there are 5 extrema (3 peaks and 2 valleys or
the other way around) there would be (5 − 1)/2 = 2 breaths
detected. Note also that, in this case, the 2 breaths should not
necessarily be thought of as occupying the entire window, but
they might be appropriately thought of as occupying either
the entire window or the sub-window that extends from the
first extremum to the last extremum. This observation raises
a question: ‘which is the true respiratory rate: the number of
breaths in the window divided by the number of seconds in the
window, or the number of breaths divided by the time covered
by those breaths?’

We answered that question by considering two cases. In
case one, the more common case, the initial or final extrema is
separated from the window boundary by a small margin. Here,
the time between the initial and final extrema and the window
boundaries represents a partial breath which was cut off by the
window boundary before an extrema could be reached, and we
divide the number of breaths by the amount of time between
the extrema in order to get the number of breaths per second
in the time window. In case two, the first or last extrema is
separated from the window boundary by a large margin. In this
case, excluding the time between the initial or final extrema
and the window boundary from the denominator would create
an artificially high respiratory rate. Thus, we divide the number
of breaths by the size of the window.

Once we have divided by the appropriate length of time, we
multiply by 60 sec/min to get the BPM in the time window.
This value is the average respiratory rate of the entire window,
and is recorded as the instantaneous respiratory rate associated
with the moment that comes at the end of the window.

IV. TESTING METHODOLOGY

We investigated algorithm performance using the Bellyband
and using a wired respiratory monitor. Data were gathered
under a protocol approved by our university’s Institutional
Review Board (IRB)1. The Bellyband was attached to each
subject, along with a second, wired respiration measuring
device: a Vernier Go Direct Respiration Belt [33], as shown in
Figure 7. The Go Direct Respiration Belt was used to establish

1The study protocol was approved by the Drexel University IRB under
protocol number 1604004440.
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(a) 15 BPM RSSI (y) vs Time in µs (x) (b) 70 BPM RSSI (y) vs Time in µs (x)

(c) 20 BPM transitioning to 40 BPM RSSI (y) vs Time in µs (x) (d) 10 BPM transitioning to 70 BPM RSSI (y) vs Time in µs (x)

Fig. 6: Four sets of data filtered by the adaptive Savitzky-Golay Filter. In each image, the top line shows the raw RSSI data.
The middle line is the same data after the first Savitzky-Golay filter. The bottom line shows the same data after the second
Savitzky-Golay filter. The black and grey dots show the extrema detected by the algorithm. Note that the filter eliminates the
noise while preserving the signal in all four sets of data. Note also that the filter performs well when the signal has a low
dynamic range, as in Figure 6b, the respiratory rate changes moderately, as in Figure 6c, and the respiratory rate changes
dramatically, as in Figure 6d.

ground truth respiratory rate. Both sensors recorded all data
sets.

A metronome was set to click at a specific frequency which
was a multiple of the desired respiratory rate (for example
60 clicks per minute when a respiratory rate of 15 BPM was
desired). The test subject was instructed to time their breathing
with the metronome, and a researcher observed them to make
sure they were breathing at the specified rate.

Note that it is relatively easy to synchronize a breathing rate
with a metronome rate as long as Equation 5 holds

metronome rate
breathing rate× 2

∈ Z+ (5)

This is because the inhale and exhale each take place over an
integer number of clicks, and the subject can time their inhale
and exhale length to a integer number of clicks without much
training or expertise. At the beginning and end of each data set,
the subject inhaled quickly and deeply, held their breath for 5
seconds, exhaled quickly and deeply, and held for 5 seconds.
The signature of these opening and closing breaths allowed
the signals from the Bellyband and the Go Direct Respiration
Belt to be synchronized.

We gathered data during 25 trials. Each trial lasted 1 to 2
minutes. We gathered data in using seven different respiratory
patterns, with experimental parameters summarized in Table II,
and using the following ground-truth respiratory patterns for
validation:

i 15 BPM
ii 15 BPM followed by 30 BPM

iii 20 BPM followed by 40 BPM
iv 20 BPM followed by 10 BPM
v 30 BPM, then 15 BPM, then 30 BPM, then 15 BPM

vi 70 BPM
vii 10 BPM, then 70 BPM, then 10 BPM, then 70 BPM

We chose this mix of datasets because it included both
low and high rates, constant rates, rates that changed multiple
times, and instantaneous rate changes of varying intensity, and
yet all of its rates could be synchronized with a metronome,
giving us streams of data for which we could determine the
underlying respiratory rate accurately and precisely.

Once the data was collected, we tested our algorithm.
on window sizes of 2, 4, 6, 8, 10 and 15 seconds. Our
data included sharp discontinuities in the respiratory rate
(for example, datasets might change from 15 BPM to 30
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Fig. 7: Bellyband and Vernier Go Direct Respiration Belt on
subject. The Respiration Belt (below), a wired sensor, was
used to verify ground truth respiratory rate. The datastreams
from the sensors were synchronized by the subject taking a
particularly deep breath at the beginning and ending of the
data collection - creating a noticeable wave signature in both
streams.

TABLE II: The experimental parameters used in our algorithm.

Symbol Value Definition
W 15 size of data window in seconds
∆w 0.5 window slide in seconds
ntr 10 number of training windows
k 3 degree of the SG filter polynomial
rinit 40 initial respiratory rate estimate
rll 6 lower limit of likely respiratory rate
rreset 100 value to which respiratory rate esti-

mate was reset when rll was breached
m 2 number of applications of the

Savitzky-Golay filter
∆y 0.1 × range(RSSI) threshold below which detected ex-

trema are discarded

BPM instantaneously). During time windows which included
h seconds of a higher respiratory rate (rmax)and l seconds
of a lower respiratory rate (rmin), the ideal algorithm would
estimate the respiratory rate (r) to be a linear combination of
the two rates (Equation 6):

r =
(h× higher rate) + (l × lower rate)

h+ l
(6)

Thus, we built this equation into the ground truth files against
which we tested the algorithm. We calculated the RMSE, the
bias, and the LOA of the algorithm over the entire dataset.
Table III compares the RMSE of Extrema Peak Detection
to the performance of the previous state-of-the-art Bellyband
algorithm.

V. RESULTS AND DISCUSSION

Table II describes the values we used when implementing
the algorithm described in Section III. RMSE is a common

TABLE III: Average RMSE of two algorithms on 25 trials.
Starting from the left: the 1st column shows the trials’ res-
piratory rate(s), the 2nd column shows the number of trials
which used that respiratory rate, the 3rd column shows the
sum of the lengths of the trials with that respiratory rate (in
minutes:seconds), the 4th column shows the previous state-
of-the-art, which used a Gaussian Mixture Model (GMM) to
fuse estimates from four different algorithms into a single
estimate [15]. The 5th column (FED) shows Filtered Extrema
Detection, the algorithm which is presented in this paper.
The 6th column shows the average percent improvement
of Filtered Extrema Detection over GMM on each set of
trials with the same respiratory rate. Note that the aver-
ages in the final row are calculated as (

∑7
i=1RMSEi ∗

TotalT imei)/(
∑7

i=1 TotalT imei).

Rate(s)
(BPM)

#
trials

total time
(m:s)

GMM
(RMSE)

FED
(RMSE)

RMSE
Reduct.

15 5 9:00 4.0 1.2 70%
15, then 30 3 3:06 9.7 1.4 86%
10, then 20 4 4:00 7.3 4.3 41%
20, then 40 5 5:00 10.8 12.8 -18%
30, 15, 30, 15 4 5:20 8.4 2.4 71%
70 3 3:00 49.6 3.3 93%
10, 70, 10, 70 1 2:00 32.8 5.2 84%
Totals 25 31:26 13.0* 4.1* 68%*

measure of how much a set of values deviates from verified
values. We used RMSE to evaluate algorithm performance
on each trial in the following way: when the algorithm
processed a trial, it generated a respiratory rate estimate
every 0.5 seconds. Upon finishing, it had created a list of
time-stamped estimates. The RMSE is computed from these
estimates against ground truth.

Table III charts the RMSE of two Bellyband algorithms. The
first 7 rows list the RMSE of an algorithm on one type of trial
(type is determined by the underlying respiratory rate of the
subject during that trial). The final row contains averages and
totals for the entire set of 25 trials. The 4th column (GMM)
shows the performance of the previous state-of-the-art algo-
rithm for detecting respiratory rate from a smart fabric with
passive RFID on the data. GMM is a Gaussian Mixture Model
algorithm, which fuses four different algorithms’ estimates
together [15]. The 5th column (FED) shows the results of the
algorithm presented in Section III

As Table III shows, Filtered Extrema Detection’s error rate
is lower than the previous Bellyband algorithm’s error rate by
68%, averaged across all trials. It also has a slightly lower error
rate than the state of the art algorithms for detecting respiratory
rate from ECG or IP. In a 2016 study, 314 algorithms designed
to deliver respiratory rate from ECG, PPG, or IP data were
tested. The best algorithm had a bias of 0 and a 95% LOA (the
range falling within 1.96 standard deviations of the mean) of
-4.7 to 4.7 [4]. On these 25 trials, Filtered Extrema Detection’s
bias was: 2.1 and its 95% LOA was (1.5, 2.7), comparable to
the LOA of the best algorithm available for ECG, PPG, and
IP. The 95% LOA ranges for two sample trials were (-2.72,
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(a) Bland-Altman plot for a trial run in which a human subject
breathed at a rate of 15 BPM for two minutes.

(b) Bland-Altman plot for a trial run in which a human subject
breathed at a rate of 15 BPM for ≈ 30 seconds, then at a rate of
30 BPM for 30 seconds.

Fig. 8: Example Bland-Altman plots from the human trial data
collected, indicating the differences from the mean respiratory
rate in BPM. 95% LOA ranges are given as the ±1.96
Standard Deviation (SD) dashed lines in the plots.

3.76) at a 15 BPM respiratory trial, and (-8.07, 8.65) at a 70
BPM respiratory trial is given in Figure 8.

The algorithm took an average of 0.26 seconds to process
one second of data, which cuts the previous algorithm’s speed
performance of 0.79 seconds by 67%.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a novel algorithm for
measuring respiratory rate from the noisy, quantized signal
produced by the Bellyband: a knit, smart fabric, wireless,
passive, RFID sensor. The algorithm operates on the RSSI of
the signal returned from the Bellyband. It filters the signal
twice with an adaptive Savitzky-Golay filter, then detects
extrema on the resulting wave. The algorithm was tested
on data gathered in 25 trials, whose underlying respiratory

rate ranged from 10 to 70 BPM. Over the 25 trials, the
algorithm averaged a 4.1 BPM RMSE. This result represents
a 68% improvement over the previous state-of-the-art, and,
though based on a less diverse and smaller dataset, suggests
that the Bellyband sensor and the Filtered Extrema Detection
algorithm might be made as or more accurate than sensors
and algorithms currently in widespread use for respiratory rate
detection, such as ECG and IP.

While the algorithm and testing regime presented here
represent significant milestones for this project, additional
progress remains to be made. The dataset included only
deep breathing at constant respiratory rates by two adult
test subjects in a controlled lab environment. These features
of the dataset likely resulted in a higher signal-to-noise ra-
tio than would result from normal or shallow breathing, a
smaller/younger subject, or a non-lab environment. In the near
future, we plan to gather a more diverse and larger dataset
which will overcome these limitations. We will soon gather
data from a diverse set of subjects which will be instructed
to breathe normally (not intentionally deeply or intentionally
steadily). We also anticipate a clinical trial on infants at a local
hospital in the near future. At the physical layer, we intend
to utilize interrogator radios on smartphone and/or portable
devices, and denoise ambulatory sensing using a reference tag
embedded into the garment with an interrogator worn about
an ambulatory subject.
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