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We present a fully-coupled, implicit-in-time framework for solving a thermodynamically-consistent Cahn-
Hilliard Navier-Stokes system that models two-phase flows. In this work, we extend the block iterative 
method presented in Khanwale et al. [Simulating two-phase flows with thermodynamically consistent energy 
stable Cahn-Hilliard Navier-Stokes equations on parallel adaptive octree based meshes, J. Comput. Phys. (2020)], 
to a fully-coupled, provably second-order accurate scheme in time, while maintaining energy-stability. 
The new method requires fewer matrix assemblies in each Newton iteration resulting in faster solution 
time. The method is based on a fully-implicit Crank-Nicolson scheme in time and a pressure stabilization 
for an equal order Galerkin formulation. That is, we use a conforming continuous Galerkin (cG) finite 
element method in space equipped with a residual-based variational multiscale (RBVMS) procedure 
to stabilize the pressure. We deploy this approach on a massively parallel numerical implementation 
using parallel octree-based adaptive meshes. We present comprehensive numerical experiments showing 
detailed comparisons with results from the literature for canonical cases, including the single bubble rise, 
Rayleigh-Taylor instability, and lid-driven cavity flow problems. We analyze in detail the scaling of our 
numerical implementation.

 2022 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Motivation

Understanding the fundamental mechanisms of phase interactions is critical to developing accurate and efficient models of two-phase 
flows. In particular, insights into the phase interactions may lead to accurate, low-cost coarse-scale models for large systems (e.g., chem-
ical/biological reactors); and optimization-based design of micro-scale systems (e.g., bio-microfluidics and advanced manufacturing using 
multiphase flows). To achieve this understanding, we need physically accurate models that fully capture the phase interactions through a 
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consistent description of the interfacial processes and the interface evolution. Models using coupled Cahn-Hilliard Navier-Stokes (CHNS) 
equations bear the promise of providing such a description [1].

Specifically, applications in bio-microfluidics and advanced manufacturing are characterized by two-phase flows with a steady state 
or a periodic set of states [2–5]. Therefore, simulations of such flows require numerical schemes designed to allow for large time steps. 
With this objective in mind we focus on design of fully-implicit non-linear time scheme which allows for larger time steps. We list the 
following key contributions of this paper.

1. Design second order fully-coupled fully implicit time stepping scheme building on the analysis in Khanwale et al. [6].
2. Analyze the time-scheme for energy stability analysis which is an important property of the CHNS model.
3. Deploy the numerical method in a large scale parallel computational framework which utilizes highly efficient octree based adaptive 

meshes.

1.2. Background

Similar to level set methods [7,8], CHNS models track the boundary between two phases using a smooth function, referred to as 
the phase field function. This approach allows for a diffuse transition between the physical properties from one phase to the other and 
circumvents modeling the jump discontinuities at the interface. The use of the Cahn-Hilliard (CH) equations to track the phase field offers 
many advantages, including mass conservation, thermodynamic consistency, and a free-energy-based description of surface tension with a 
well-established theory from non-equilibrium thermodynamics [9,10]. Carefully designed numerical schemes allow the discrete numerical 
solutions of these CHNS models to inherit these continuous properties.

CHNS models couple the momentum equation governing an “averaged mixture velocity” with the interface-tracking Cahn-Hilliard 
equation. Even assuming that each fluid phase is incompressible, the resulting mixture velocity may not be solenoidal; the pointwise 
incompressibility depends on the averaging. Volume averaging, at least under strictly isothermal conditions, usually results in a solenoidal 
mixture velocity. On the other hand, mass averaging results in a non-solenoidal mixture velocity resulting in quasi-incompressible models 
(e.g., Guo et al. [11], Shokrpour Roudbari et al. [12], and references therein). Here, we use the volume averaging strategy. The resulting 
solenoidal mixture velocity is a useful property in the subsequent numerical method development.

In Khanwale et al. [6] we proposed an energy-stable and mass-conserving discretization of the thermodynamically-consistent CHNS 
model; that approach used a block iterative method for solving the two sets of equations (i.e., Cahn-Hilliard (CH) and Navier-Stokes (NS)). 
Therefore, the fully discrete system resulted in two non-linear systems of algebraic equations, one corresponding to the discretized version 
of the momentum equations, the other corresponding to the discretized Cahn-Hilliard equations. Both sets of equations used an implicit 
time-stepping strategy alongside an internal (within each block iteration) Newton’s method for solving the resulting non-linear algebraic 
equations. While this strategy decoupled the implementation challenges of the CH and NS systems, it required multiple matrix assemblies 
due to the multiple block iterations within each time-step. Xu et al. [13] and Saurabh et al. [14] showed that the matrix assembly and 
preconditioner setup in a framework such as Khanwale et al. [6] can be very expensive.

In the current work we seek to improve the results of [6] in three key aspects.

1. Second-order energy-stable scheme: We extend the time integration scheme presented in [6] to second-order accuracy while main-
taining energy-stability and mass conservation. Furthermore, to address computational efficiency concerns, we use a fully-coupled 
method instead of using a block-iterative approach. The coupling entails solving the fully discretized CHNS system. Therefore, within 
each Newton iteration, we solve a linear system with six degrees of freedom per node (three velocities, one pressure, two phase field 
variables).

2. VMS-based stabilization for conforming Galerkin elements: We extend the variational multiscale (VMS) based treatment in [6] to the 
fully-coupled approach with conforming Galerkin elements. We use VMS stabilization to circumvent the discrete inf-sup condition in 
equal order polynomial representations for velocity and pressure (e.g., Volker [15]). This is especially important in the case of adaptive 
h-refinement [16–18], which is extensively used here.

3. Scalable octree-based adaptive mesh: We apply the proposed method to problems where we need sufficient resolution of the inter-
facial length scales to capture the interface dynamics accurately. To make this computationally tractable, we implement the proposed 
numerical scheme inside the Dendro5 [19] adaptive mesh refinement framework, which efficiently resolves the interface dynamics in 
3D systems with highly deformable interfaces. This implementation extends the previous implementation of [6], which was done in 
the older Dendro4 [18] framework.

1.2.1. Second-order energy-stable scheme
There are two main approaches for CHNS modeling depending on the averaging used to define the mixture velocity. Examples of CHNS 

models based on volume-averaged velocity include Kim et al. [20], Feng [21], Shen and Yang [22,23], Dong [24], Chen and Shen [25],
Dong [26], and Zhu et al. [27]. Kim et al. [20] used a strategy similar to block iteration, while Feng [21] used a fully-coupled approach 
similar to one we adopt in this work. Shen and Yang [22,23], Chen and Yang [28] used a block-solve strategy with linearized time-schemes 
that reduce their discretization to a sequence of elliptic equations for the velocity and phase fields. Subsequently, Han and Wang [29] also 
used a block-iterative strategy with an energy-stable time scheme but with a non-linear scheme. Chen and Shen [25] showed an energy-
stable time scheme with a fully-coupled solver. Guo et al. [11] recently reported a detailed analysis for a mass averaged mixture velocity 
CHNS system using a fully coupled strategy. Fu and Han [30] presented a linear fully-coupled BDF2 based scheme which uses Scalar 
Auxiliary Variable approach to linearize the Cahn-Hilliard equations. The SAV approach modifies the energy law and Fu and Han [30]
prove stability of this modified energy law. Fu and Han [30] use an SUPG/PSPG approach for pressure stabilization in contrast to the 
more fundamental VMS approach in the current paper. Indeed the SUPG/PSPG approach can be derived from the more general VMS 
approach (see Hughes et al. [31]). In addition to pressure stabilization VMS provides a natural leeway into modeling high-Reynolds number 
flows [32,33] as it uses a filtering approach similar to large-eddy simulation (LES).
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We emphasize that the focus in Khanwale et al. [6] and the current paper is on non-linear schemes. This is in contrast to recent elegant 
work in designing linear schemes for the CH-NS equations [22–27]. Non-linear schemes, in general, allow the use of larger time-steps. 
This feature is important, particularly for problems where we are most interested in rapidly reaching a steady state (or a periodic set of 
states). There are many critical applications in bio-microfluidics where one needs to determine steady state (or limit cycle) behavior of the 
two-phase system [34,35]. Linearized schemes [22,23,27,36] generally have a stringent time-step restriction and therefore may not be well 
suited for this particular class of applications. In contrast, such linear schemes are particularly well-suited for problems with naturally 
small time steps, like tracking instabilities.3 Here, in section 3.1, we prove that a second-order extension of the time scheme presented 
in [6] for the fully-coupled solver is energy-stable and mass conserving. The benefit of such a time integration scheme is that it does not 
require storage of more than one previous time step, while still providing accuracy and ensuring energy stability.

1.2.2. VMS-based stabilization for conforming Galerkin elements
Discretizing the momentum equations in the CHNS model with solenoidal velocity requires velocity-pressure pairs that satisfy the 

discrete inf-sup condition (e.g., Ladyzhenskaya-Babuska-Brezzi (LBB) stable). However, we prefer to use standard conforming Galerkin 
finite elements to leverage parallel adaptive meshing tools. These methods circumvent the discrete inf-sup condition by using stabiliza-
tion approaches such as grad-div stabilizations. We build such a stabilization using a VMS approach [37,38]. The VMS approach involves 
the use of an adjustable constant, τ , which requires careful design for a fully-coupled system. In this work, we extend the formulation 
based on the Residual-Based Variational Multiscale Method (RBVMS) [33] we presented in [6] to the fully coupled approach in sec-
tion 3.3.

1.2.3. Scalable octree-based adaptive mesh generation
Adaptive spatial discretizations are popular in computational sciences [39–41] to improve efficiency and resolution quality. In some 

applications (e.g., [42–44]) an adaptive spatial discretization is the key to make those simulations feasible on modern supercomputers. In 
distributed-memory computations, adaptive discretizations introduce additional computational challenges such as load-balancing, low-cost 
mesh generation, and mesh-partitioning. The scalability of the algorithms used for mesh generation and partitioning is crucial, especially 
when the represented solution requires frequent re-meshing. Octrees [42,44–46] are widely used in the community due to their simplicity 
and their extreme parallel scalability. In [6], we used Dendro4 [18] as the underlying parallel octree library. Dendro4 is a parallel octree 
library that supports linear finite element computations on adaptive octrees. Dendro5 [19] extends Dendro4 and supports higher-order 
finite difference (FD), finite volume (FV), and finite element (FE) discretizations on fully adaptive octrees. In the present work, we use
Dendro5 [19] as our primary parallel octree mesh library. From now on, we use Dendro to refer to Dendro5, unless otherwise speci-
fied.

Dendro [19] is a freely available open-source library that is currently used by several research communities to tackle problems 
in computational relativity [44], relativistic fluid dynamics, and other computational science applications. Dendro octree generation 
and partitioning is based on the TreeSort [47] algorithm. Octant neighborhood information is needed to perform numerical compu-
tations on topological octrees. To compute these neighborhood data structures, we use the TreeSearch algorithm, which has better 
scalability compared to traditional binary search approaches [44]. Dendro enforces a 2:1 balancing constraint that ensures that adja-
cent octants differ by at most a factor of 2 in size. This constraint imposition uses top-down and bottom-up traversals with minor 
modifications to the TreeSort algorithm. We detail the adaptive meshing and scalability of our framework in section 4 and section 6, 
respectively.

2. Governing equations

We consider a bounded domain " ⊂ Rd , for d = 2, 3 containing two immiscible fluids, and the time interval, [0, T ]. Let ρ+ (η+) and 
ρ− (η−) denote the specific density (viscosity) of the two phases. Let the phase field function, φ, be the variable that tracks the location 
of the phases and varies smoothly between +1 and −1. The non-dimensional density is

ρ(φ) = αφ + β, where α = ρ+ − ρ−
2ρ+

, β = ρ+ + ρ−
2ρ+

. (1)

Note that our non-dimensional form uses the specific density/viscosity of fluid 1 as the non-dimensionalizing density/viscosity. Similarly, 
the non-dimensional viscosity is

η(φ) = γ φ + ξ, where γ = η+ − η−
2η+

, ξ = η+ + η−
2η+

. (2)

The governing equations in their non-dimensional form are as follows:

Momentum Eqns:
∂ (ρ(φ)vi)

∂t
+ ∂

(
ρ(φ)vi v j

)

∂x j
+ 1

Pe

∂
(

J j vi
)

∂x j
+ Cn

W e
∂

∂x j

(
∂φ

∂xi

∂φ

∂x j

)

+ 1
W e

∂ p
∂xi

− 1
Re

∂

∂x j

(
η(φ)

∂vi

∂x j

)
− ρ(φ)ĝi

F r
= 0,

(3)

Thermo Consistency: J i = (ρ− − ρ+)

2 ρ+Cn
m(φ)

∂µ

∂xi
, (4)

3 It would be very valuable to the bio-microfluids community to have a comparative assessment of optimized implementations of both linear/de-coupled vs non-
linear/coupled to study the trade-off between smaller times step requirement versus increased computational complexity per time step. This is beyond the scope of this 
paper; however, we have made our code open-source to encourage such an analysis.
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Solenoidality:
∂vi

∂xi
= 0, (5)

Continuity:
∂ρ(φ)

∂t
+ ∂ (ρ(φ)vi)

∂xi
+ 1

Pe
∂ J i

∂xi
= 0, (6)

Chemical Potential: µ = ψ ′(φ) − Cn2 ∂

∂xi

(
∂φ

∂xi

)
, (7)

Cahn-Hilliard Eqn:
∂φ

∂t
+ ∂ (viφ)

∂xi
− 1

PeCn
∂

∂xi

(
m(φ)

∂µ

∂xi

)
= 0. (8)

Note that we use Einstein notation throughout this work; in this notation vi represents the ith component of the vector v, and any 
repeated index is implicitly summed over. In the above equations, v is the volume-averaged mixture velocity, p is the volume-averaged 
pressure, φ is the phase field (interface tracking variable), and µ is the chemical potential. Non-dimensional mobility m(φ) is assumed 
to be a constant with a value of one. The non-dimensional parameters are as follows: Peclet, Pe = ur L2

r
mrσ

; Reynolds, Re = ur Lr
νr

; Weber, 

W e = ρr u2
r Lr

σ ; Cahn, Cn = ε
Lr

; and Froude, F r = u2
r

gLr
, with ur and Lr denoting the reference velocity and length, respectively. Here, mr is 

the reference mobility, σ is the scaling interfacial tension, νr = η+/ρ+ , ε is the interface thickness, g is gravitational acceleration. ĝ is a 
unit vector defined as (0,−1,0) denoting the direction of gravity and ψ(φ(x)) is a known free-energy function. In particular, we use the 
polynomial form of the free energy density defined as follows:

ψ(φ) = 1
4

(
φ2 − 1

)2
and ψ ′(φ) = φ3 − φ. (9)

The system of equations in eq. (3) – eq. (8) has a dissipative law given by:

dEtot

dt
= − 1

Re

∫

"

η(φ)

2
‖∇v‖2

F dx − Cn
W e

∫

"

m(φ)‖∇µ‖2 dx ≤ 0, (10)

where the total energy is

Etot(v,φ, t) = 1
2

∫

"

ρ(φ)‖v‖2 dx + 1
CnW e

∫

"

(
ψ(φ) + Cn2

2
‖∇φ‖2 + 1

F r
ρ(φ)y

)
dx. (11)

The norms used in the above expression are the Euclidean vector norm and the Frobenius matrix norm:

‖v‖2 :=
∑

i

|vi|2 and ‖∇v‖2
F :=

∑

i

∑

j

∣∣∣∣
∂vi

∂x j

∣∣∣∣
2

. (12)

Remark 1. A realistic interface thickness (parametrized by the Cahn number) is in the nanometer range; resolving this scale is computa-
tionally intractable, as all the other scales in the problem are orders of magnitude larger. Therefore, an ansatz that diffuse interface models 
follow is that the solution tends to the real physics in the limit of Cn → 0. This limiting process progressively reduces the Cahn number 
from large to small until the dynamics become independent of the Cahn number. However, the choice of Cahn number (Cn) determines 
the Peclet number (Pe), which is given by Pe = ur L2

r
mσ . Pe represents the ratio of the advection timescale to the diffuse interface relaxation 

time to its equilibrium tanh profile (a purely computational construct). Magaletti et al. [48] reported a careful asymptotic analysis of these 
timescales, which suggests a 1/Pe = αCn2 scaling. We use this scaling with α = 3.

3. Numerical method and its properties

We extend the scheme of Khanwale et al. [6] to a fully-implicit, fully-coupled Crank-Nicolson time-marching scheme for the system 
of eq. (3) – eq. (8). This extension delivers better accuracy and energy-stability for larger time-steps while only storing data structures of 
one previous time-step. While this advantage may not be seem significant for smaller cases, it is very useful for large-scale simulations 
with billions of unknowns.

Let δt be a time-step; let tk := kδt; thus, we define the following time-averages:

ṽk := vk + vk+1

2
, p̃k := pk+1 + pk

2
, φ̃k := φk+1 + φk

2
, and µ̃k := µk+1 + µk

2
, (13)

and the following function evaluations:
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ψ̃k := ψ
(
φ̃k

)
, ψ̃ ′k := ψ ′

(
φ̃k

)
, ρ̃ k := ρ

(
φ̃k

)
, and η̃ k := η

(
φ̃k

)
. (14)

Using these temporal values, we define our time-discretized weak form of the Cahn-Hilliard Navier-Stokes (CNHS) equations.

Definition 1

Let (·, ·) be the standard L2 inner product. We state the time-discrete variational problem as follows: find vk+1(x) ∈ H1
0("), 

pk+1(x), φk+1(x), µk+1(x) ∈ H1(") such that

Momentum Eqns:

(

wi, ρ̃ k vk+1
i − vk

i

δt

)

+
(

wi, ρ̃ k ṽk
j
∂ ṽk

i

∂x j

)

+ 1
Pe

(

wi, J̃ k
j
∂ ṽk

i

∂x j

)

− Cn
W e

(
∂ wi

∂x j
,

∂φ̃k

∂xi

∂φ̃k

∂x j

)

− 1
W e

(
∂ wi

∂xi
, p̃k

)

+ 1
Re

(
∂ wi

∂x j
, η̃ k ∂ ṽk

i

∂x j

)

−
(

wi,
ρ̃ k ĝi

F r

)

= 0,

(15)

Thermo Consistency: J̃ k
i = (ρ− − ρ+)

2 ρ+Cn
∂µ̃k

∂xi
, (16)

Solenoidality:

(

q,
∂vk+1

i

∂xi

)

= 0, (17)

Chemical Potential: −
(

q, µ̃k
)

+
(

q, ψ̃ ′k
)

+ Cn2

(
∂q
∂xi

,
∂φ̃k

∂xi

)

= 0, (18)

Cahn-Hilliard Eqn:

(

q,
φk+1 − φk

δt

)

−
(

∂q
∂xi

, ṽk
i φ̃

k
)

+ 1
PeCn

(
∂q
∂xi

,
∂µ̃k

∂xi

)

= 0, (19)

Continuity:

(
ρ

(
φk+1) − ρ

(
φk

)

δt
, q

)

+




∂

(
ρ̃ k ṽk

j

)

∂x j
, q



 −
(

1
Pe

J̃ j,
∂q
∂x j

)
= 0, (20)

∀w ∈ H1
0("), ∀q ∈ H1("), given vk ∈ H1

0("), and φk, µk ∈ H1(").

Remark 2. In Definition 1 for the momentum equations, the boundary terms in the variational form are zero because the velocity and the 
basis functions live in H1

0("). Also we use the no flux boundary condition for φ and µ, which makes boundary terms i.e., 
(

q, ∂φ̃k

∂xi
n̂i

)
and 

(
q, ∂µk

∂xi
n̂i

)
, go to zero. We use these boundary conditions for all the proofs in this paper. The numerical examples in the paper also use 

these boundary conditions unless explicitly noted otherwise.

Remark 3. While φ ∈ [−1, 1] in the continuous equations, the discrete φ may violate these bounds. These bound violations may not change 
the dynamics of φ adversely, but they could lose the strict positivity of some quantities which depend on φ (e.g., mixture density ρ(φ)

and viscosity η(φ)). This effect is especially significant for high density and viscosity contrasts. We fix this issue by saturation scaling 
(i.e., we pull back the value of φ only for the calculation of density and viscosity). We, therefore, define φ∗ for the mixture density and 
viscosity calculations, where φ∗ is:

φ∗ :=
{

φ, if |φ| ≤ 1,

sign(φ), otherwise.
(21)

We note that this pull back strategy to keep the density and viscosity realizable is a common technique in Cahn-Hilliard Navier Stokes 
models [11,22–27].

3.1. Energy-stability of the time-stepping scheme

In this subsection, we prove the energy-stability of the time time-stepping scheme. The result for energy stability in [6] is limited to 
the case of equal density. Here we try to extend the proof to unequal densities. For completeness, we recall some of the crucial results 
from [6] which are common. We begin with mass conservation.

5



M.A. Khanwale, K. Saurabh, M. Fernando et al. Computer Physics Communications 280 (2022) 108501

Proposition 1: Mass conservation

The scheme of eq. (15) – eq. (19) with the following boundary conditions:

∂µ̃

∂xi
n̂i

∣∣∣
∂"

= 0,
∂φ̃

∂xi
n̂i

∣∣∣
∂"

= 0, ṽk
∣∣∣
∂"

= 0, (22)

where n̂ is the outward normal to the boundary ∂", is globally mass conservative:
∫

"

φk+1 dx =
∫

"

φk dx. (23)

We verify this claim numerically in sections 5.1 and 5.2.

Lemma 1: Weak equivalence of forcing

The forcing term due to Cahn-Hilliard in the momentum equation, eq. (15), with the test function wi = δt ṽk
i , becomes

Cn
W e

(
∂

∂x j

(
∂φ̃k

∂xi

∂φ̃k

∂x j

)

, δt ṽk
i

)

= δt
W eCn

(

φ̃k ∂µ̃k

∂xi
, ṽk

i

)

, (24)

∀ φ̃k , µ̃k ∈ H1("), and ∀ ṽk ∈ H1
0("), where vk, vk+1, pk, pk+1, φk, φk+1, µk, µk+1, satisfy eq. (15) – eq. (19).

Lemma 2

The following identity holds:
(
ψ̃ ′k (x),φk+1 (x) − φk (x)

)
=

(
ψ(φk+1 (x)) − ψ(φk (x)),1

)

− 1
24



d3ψ

dφ3

∣∣∣∣∣
φ=λ(x)

,
(
φk+1 (x) − φk (x)

)3



 ,
(25)

for some λ (x) between φk (x) and φk+1 (x).

Lemma 3

The following estimate holds:

1
24

∣∣∣∣∣∣



d3ψ

dφ3

∣∣∣∣∣
φ=λ(x)

,
(
φk+1 (x) − φk (x)

)3





∣∣∣∣∣∣
≤

(
Cm L3

max Pmax

)
δt3, (26)

where

Pmax := 1
24

max
x∈"

∣∣∣∣∣∣
d3ψ

dφ3

∣∣∣∣∣
φ=λ(x)

∣∣∣∣∣∣
, (27)

λ(x) is a value between φk(x) and φk+1(x), Lmax is a global maximum of Lipschitz constants for φ as a function of time, and Cm

is the volume of the physical domain:
∣∣∣φk+1 (x) − φk (x)

∣∣∣ ≤ L (x) δt, Cm :=
∫

"

dx, and Lmax := max
x∈"

(L (x)) .

In the current work, the free energy potential is given by eq. (9), which results in the following simplification of eq. (27):

Pmax = 1
4

max
x∈"

|λ (x)| ≤ 1
4

max
x∈"

max
{∣∣∣φk (x)

∣∣∣ ,
∣∣∣φk+1 (x)

∣∣∣
}

. (28)
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Remark 4. While there is no rigorous maximum principle for CHNS that guarantees that |φk|, |φk+1| ≤ 1, and hence Pmax ≤ 0.25, there is 
ample computational evidence to suggest that |φk|, |φk+1| ! 1, at least for initial and boundary data that is of interest in many applications. 
Hence, in practice we find that Pmax ! 0.25. It is important to note that we don’t actually need φ to be bounded by 1 for Lemma 3. We 
only need that φk and φk+1 are each bounded by some finite constant over the spatial domain: x ∈ ".

As φk and φk+1 are solutions to the Cahn-Hilliard equation, we have proved their continuity in the context of existence in Khanwale 
et al. [6] similar to Han and Wang [29]. In Khanwale et al. [6], Han and Wang [29] the analysis is limited to proving φ is continuous and 
bounded (requirements for existence), in addition, there are several works in the literature that analyze the precise regularity of φ beyond 
just continuity [49,50]. Therefore, if φk and φk+1 are continuous functions on a bounded domain ". Continuous functions achieve bounds 
on a bounded domain.

A major difference between the time integration schemes in [6] and this work is the evaluation of mixture density and viscosity at the 
average of φ (φ̃k).

Remark 5. For this proof we add

1
2

(
ρ

(
φk+1) − ρ

(
φk

)

δt
ṽk

i , wi

)

+ 1
2




∂

(
ρ̃ k ṽk

j

)

∂x j
ṽk

i , wi



 + 1
2

(
1

Pe

∂ J̃ k
j

∂x j
ṽk

i , wi

)

= 0 (29)

to eq. (15). This is equivalent to adding zero to the equation on the time-discrete continuous-space setting.

To analyze the scheme accordingly, we present the following results.

Lemma 4

The variational temporal term from the Cahn-Hilliard contribution in the momentum equation, eq. (15), can be written as follows:
(
ρ̃ k

(
vk+1

i − vk
i

)
, ṽk

i

)
+ 1

2

((
ρ

(
φk+1

)
− ρ

(
φk

))
ṽk

i , ṽk
i

)
=

1
2

∫

"

[
ρ

(
φk+1

)∥∥∥vk+1
∥∥∥

2
− ρ

(
φk

)∥∥∥vk
∥∥∥

2
]

dx

− 1
8

∫

"

[
ρ

(
φk+1

)
− ρ

(
φk

)]∥∥∥vk+1 − vk
∥∥∥

2
dx

(30)

∀ φ̃k , φk , φk+1 ∈ H1("), and ∀ vk, vk+1 ∈ H1
0("), where vk, vk+1, φk, φk+1 satisfy eq. (15) – eq. (19), and

‖v‖2 :=
∑

i

|vi|2 . (31)

Proof. We start with the left-hand side of eq. (30):
(
ρ̃ k

(
vk+1

i − vk
i

)
, ṽk

i

)
= 1

2

∫

"

[
ρ̃ k

∥∥∥vk+1
∥∥∥

2
− ρ̃ k

∥∥∥vk
∥∥∥

2
]

dx

= 1
4

∫

"

[
ρ

(
φk+1

)∥∥∥vk+1
∥∥∥

2
− ρ

(
φk+1

)∥∥∥vk
∥∥∥

2
]

dx

+ 1
4

∫

"

[
ρ

(
φk

)∥∥∥vk+1
∥∥∥

2
− ρ

(
φk

)∥∥∥vk
∥∥∥

2
]

dx,

(32)

where use the definitions eq. (13) and eq. (14) and the fact that ρ is an affine function of φ. Continuing the algebraic manipulations 
we obtain:

(
ρ̃ k

(
vk+1

i − vk
i

)
, ṽk

i

)
= 1

4

∫

"

[
ρ

(
φk+1

)∥∥∥vk+1
∥∥∥

2
− ρ

(
φk+1

)∥∥∥vk
∥∥∥

2
]

dx

+ 1
4

∫

"

[
ρ

(
φk

)∥∥∥vk+1
∥∥∥

2
− ρ

(
φk

)∥∥∥vk
∥∥∥

2
]

dx (33)

7



M.A. Khanwale, K. Saurabh, M. Fernando et al. Computer Physics Communications 280 (2022) 108501

+ 1
4

∫

"

[
ρ

(
φk

)∥∥∥vk
∥∥∥

2
− ρ

(
φk

)∥∥∥vk
∥∥∥

2
]

dx

+ 1
4

∫

"

[
ρ

(
φk+1

)∥∥∥vk+1
∥∥∥

2
− ρ

(
φk+1

)∥∥∥vk+1
∥∥∥

2
]

dx,

=⇒
(
ρ̃ k

(
vk+1

i − vk
i

)
, ṽk

i

)
= 1

2

∫

"

[
ρ

(
φk+1

)∥∥∥vk+1
∥∥∥

2
− ρ

(
φk

)∥∥∥vk
∥∥∥

2
]

dx

− 1
4

∫

"

[
ρ

(
φk+1

)
− ρ

(
φk

)]∥∥∥vk
∥∥∥

2
dx

− 1
4

∫

"

[
ρ

(
φk+1

)
− ρ

(
φk

)]∥∥∥vk+1
∥∥∥

2
dx.

(34)

Here we added 1
4

∫
"

[
ρ

(
φk

)∥∥vk
∥∥2 − ρ

(
φk

)∥∥vk
∥∥2

]
dx and 1

4

∫
"

[
ρ

(
φk+1)∥∥vk+1

∥∥2 − ρ
(
φk+1)∥∥vk+1

∥∥2
]

dx, both of which are zero.

Now adding the second term,
(
ρ̃ k

(
vk+1

i − vk
i

)
, ṽk

i

)
+ 1

2

((
ρ

(
φk+1

)
− ρ

(
φk

))
ṽk

i , ṽk
i

)
=

1
2

∫

"

[
ρ

(
φk+1

)∥∥∥vk+1
∥∥∥

2
− ρ

(
φk

)∥∥∥vk
∥∥∥

2
]

dx

− 1
4

∫

"

[
ρ

(
φk+1

)
− ρ

(
φk

)]∥∥∥vk
∥∥∥

2
dx

− 1
4

∫

"

[
ρ

(
φk+1

)
− ρ

(
φk

)]∥∥∥vk+1
∥∥∥

2
dx

+ 1
8

∫

"

[
ρ

(
φk+1

)
− ρ

(
φk

)]∥∥∥vk+1
∥∥∥

2
dx

+ 1
8

∫

"

[
ρ

(
φk+1

)
− ρ

(
φk

)]∥∥∥vk
∥∥∥

2
dx

+ 1
8

∫

"

[
ρ

(
φk+1

)
− ρ

(
φk

)]
2vk+1

i vk
i dx,

(35)

Here to expand ̃vk
i ṽk

i , we utilized the identity a2 +b2 +2ab = (a +b)2, where a = vk+1
i and b = vk

i ; also recall that ̃vk
i =

(
vk+1

i + vk
i

)
/2. 

After cancellations and simplification,
(
ρ̃ k

(
vk+1

i − vk
i

)
, ṽk

i

)
+ 1

2

((
ρ

(
φk+1

)
− ρ

(
φk

))
ṽk

i , ṽk
i

)
=

1
2

∫

"

[
ρ

(
φk+1

)∥∥∥vk+1
∥∥∥

2
− ρ

(
φk

)∥∥∥vk
∥∥∥

2
]

dx

− 1
8

∫

"

[
ρ

(
φk+1

)
− ρ

(
φk

)]∥∥∥vk+1
∥∥∥

2
dx

− 1
8

∫

"

[
ρ

(
φk+1

)
− ρ

(
φk

)]∥∥∥vk
∥∥∥

2
dx

+ 1
8

∫

"

[
ρ

(
φk+1

)
− ρ

(
φk

)]
2vk+1

i vk
i dx,

(36)

Now, for the last three terms with the coefficient of 1/8, we again utilize the identity a2 + b2 − 2ab = (a − b)2 to complete the square, 
where a = vk+1

i and b = vk
i . Performing this step we get,

8
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(
ρ̃ k

(
vk+1

i − vk
i

)
, ṽk

i

)
+ 1

2

((
ρ

(
φk+1

)
− ρ

(
φk

))
ṽk

i , ṽk
i

)
=

1
2

∫

"

[
ρ

(
φk+1

)∥∥∥vk+1
∥∥∥

2
− ρ

(
φk

)∥∥∥vk
∥∥∥

2
]

dx

− 1
8

∫

"

[
ρ

(
φk+1

)
− ρ

(
φk

)]∥∥∥vk+1 − vk
∥∥∥

2
dx,

(37)

as desired. "

Recognizing that density is an affine transform of φ: ρ (φ) = αφ + β . Further, using Lipschitz continuity for φ and velocity we can 
obtain the following bound.

Lemma 5

The following estimate holds:
∣∣∣∣∣∣

1
8

∫

"

[
ρ

(
φk+1

)
− ρ

(
φk

)]∥∥∥vk+1 − vk
∥∥∥

2
dx

∣∣∣∣∣∣
≤ 1

8
Cm αLφ,max L2

v,maxδt3, (38)

where Lφ,max, Lv,max are global maxima of Lipschitz constants and Cm is the volume of the physical domain:

Cm :=
∫

"

dx, Lφ,max := max
x∈"

(
Lφ (x)

)
, Lv,max := max

x∈"
(Lv (x)) ,

∣∣∣φk+1 (x) − φk (x)
∣∣∣ ≤ Lφ (x) δt,

∣∣∣ρ
(
φk+1

)
− ρ

(
φk

)∣∣∣ ≤ αLφ (x) δt, and
∥∥∥v (x)k+1 − v (x)k

∥∥∥ ≤ Lv (x) δt,

and α is defined by eq. (1).

Lemma 6

The variational advection term from the Cahn-Hilliard contribution in the momentum equation, eq. (15), becomes:

δt
W eCn

(

φ̃k ṽk
i ,

∂µ̃k

∂xi

)

= −1
2

∫

"

[
ρ

(
φk+1

)∥∥∥vk+1
∥∥∥

2
− ρ

(
φk

)∥∥∥vk
∥∥∥

2
]

dx

+ 1
8

∫

"

[
ρ

(
φk+1

)
− ρ

(
φk

)]∥∥∥vk+1 − vk
∥∥∥

2
dx

− δt
Re

∥∥∥∥
√

η̃ k ∇ṽk
∥∥∥∥

2

L2
− 1

F r

(
y, ρ

(
φk+1

)
− ρ

(
φk

))
,

(39)

∀ φ̃k , φk+1, µ̃k ∈ H1("), and ∀ vk, vk+1 ∈ H1
0("), where vk, vk+1, pk, pk+1, φk, φk+1, µk, µk+1 satisfy eq. (15) – eq. (19), and

‖v‖2 :=
∑

i

|vi|2 ,

∥∥∥∥
√

η̃ k ∇ṽk
∥∥∥∥

2

L2
:=

∫

"

√
η̃ k

∑

i

∑

j

∣∣∣∣∣
∂ ṽk

i

∂x j

∣∣∣∣∣

2

dx =
∫

"

√
η̃ k ‖∇v‖2

F dx.

(40)

Proof. The structure of this proof is similar to one presented in Khanwale et al. [6] with some changes. However, for completeness we 
produce the proof below. We start with the momentum equation (eq. (15)) added with eq. (29) from Remark 5 using the test function 
wi = δt ṽk

i :
(

ρ̃ k vk+1
i − vk

i

δt
, δt ṽk

i

)

+
(

ρ̃ k ṽk
j
∂ ṽk

i

∂x j
, δt ṽk

i

)

+ 1
Pe

(

J̃ k
j
∂ ṽk

i

∂x j
, δt ṽk

i

)

1
2

(
ρ

(
φk+1) − ρ

(
φk

)

δt
ṽk

i , δt ṽk
i

)

+ 1
2




∂

(
ρ̃ k ṽk

j

)

∂x j
ṽk

i , δt ṽk
i



 + 1
2

(
1

Pe

∂ J̃ k
j

∂x j
ṽk

i , δt ṽk
i

)

(41)

9
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+ Cn
W e

(
∂

∂x j

(
∂φ̃k

∂xi

∂φ̃k

∂x j

)

, δt ṽk
i

)

+ 1
W e

(
∂ p̃k

∂xi
, δt ṽk

i

)

− 1
Re

(
∂

∂x j

(

η̃ k ∂ ṽk
i

∂x j

)

, δt ṽk
i

)

− 1
F r

(
ρ̃ k ĝi, δt ṽk

i

)
= 0.

The second and third terms together with fifth and sixth terms are in a trilinear form so from eq. (A.5) and eq. (A.6) they go to zero 
and we have:

1
2

∫

"

[
ρ

(
φk+1

)∥∥∥vk+1
∥∥∥

2
− ρ

(
φk

)∥∥∥vk
∥∥∥

2
]

dx − 1
8

∫

"

[
ρ

(
φk+1

)
− ρ

(
φk

)]∥∥∥vk+1 − vk
∥∥∥

2
dx

+ Cn
W e

(
∂

∂x j

(
∂φ̃k

∂xi

∂φ̃k

∂x j

)

, δt ṽk
i

)

+ 1
W e

(
∂ p̃k

∂xi
, δt ṽk

i

)

− 1
Re

(
∂

∂x j

(

η̃ k ∂ ṽk
i

∂x j

)

, δt ṽk
i

)

− 1
F r

(
ĝi, δt ρ̃ k ṽk

i

)
= 0,

(42)

where we made use of the fact that ̃vk
i = (vk+1

i + vk
i )/2 and subsequently Lemma 4. We can now use solenoidality of the velocity field 

to get rid of the pressure term. We can do this by integrating-by-parts on the pressure term:

1
2

∫

"

[
ρ

(
φk+1

)∥∥∥vk+1
∥∥∥

2
− ρ

(
φk

)∥∥∥vk
∥∥∥

2
]

dx − 1
8

∫

"

[
ρ

(
φk+1

)
− ρ

(
φk

)]∥∥∥vk+1 − vk
∥∥∥

2
dx

+ Cn
W e

(
∂

∂x j

(
∂φ̃k

∂xi

∂φ̃k

∂x j

)

, δt ṽk
i

)

− δt
W e

(

p̃k,
∂ ṽk

i

∂xi

)

− 1
Re

(
∂

∂x j

(

η̃ k ∂ ṽk
i

∂x j

)

, δt ṽk
i

)

− 1
F r

(
ĝi, δt ρ̃ k ṽk

i

)
= 0,

(43)

=⇒ 1
2

∫

"

[
ρ

(
φk+1

)∥∥∥vk+1
∥∥∥

2
− ρ

(
φk

)∥∥∥vk
∥∥∥

2
]

dx − 1
8

∫

"

[
ρ

(
φk+1

)
− ρ

(
φk

)]∥∥∥vk+1 − vk
∥∥∥

2
dx

+ Cn
W e

(
∂

∂x j

(
∂φ̃k

∂xi

∂φ̃k

∂x j

)

, δt ṽk
i

)

− 1
Re

(
∂

∂x j

(

η̃ k ∂ ṽk
i

∂x j

)

, δt ṽk
i

)

− 1
F r

(
ĝi, δt ρ̃ k ṽk

i

)
= 0,

(44)

=⇒ 1
2

∫

"

[
ρ

(
φk+1

)∥∥∥vk+1
∥∥∥

2
− ρ

(
φk

)∥∥∥vk
∥∥∥

2
]

dx − 1
8

∫

"

[
ρ

(
φk+1

)
− ρ

(
φk

)]∥∥∥vk+1 − vk
∥∥∥

2
dx

+ Cn
W e

(
∂

∂x j

(
∂φ̃k

∂xi

∂φ̃k

∂x j

)

, δt ṽk
i

)

+ δt
Re

(√
η̃ k

∂ ṽk
i

∂x j
,

√
η̃ k

∂ ṽk
i

∂x j

)

− 1
F r

(
ĝi, δt ρ̃ k ṽk

i

)
= 0,

(45)

=⇒ 1
2

∫

"

[
ρ

(
φk+1

)∥∥∥vk+1
∥∥∥

2
− ρ

(
φk

)∥∥∥vk
∥∥∥

2
]

dx − 1
8

∫

"

[
ρ

(
φk+1

)
− ρ

(
φk

)]∥∥∥vk+1 − vk
∥∥∥

2
dx

+ Cn
W e

(
∂

∂x j

(
∂φ̃k

∂xi

∂φ̃k

∂x j

)

, δt ṽk
i

)

+ δt
Re

∥∥∥∥
√

η̃ k ∇ṽk
∥∥∥∥

2

L2
− 1

F r

(
ĝi, δt ρ̃ k ṽk

i

)
= 0.

(46)

Next, we invoke Lemma 1 and write eq. (46) as:

1
2

∫

"

[
ρ

(
φk+1

)∥∥∥vk+1
∥∥∥

2
− ρ

(
φk

)∥∥∥vk
∥∥∥

2
]

dx − 1
8

∫

"

[
ρ

(
φk+1

)
− ρ

(
φk

)]∥∥∥vk+1 − vk
∥∥∥

2
dx

+ δt
W eCn

(

φ̃k ṽk
i ,

∂µ̃k

∂xi

)

+ δt
Re

∥∥∥∥
√

η̃ k ∇ṽk
∥∥∥∥

2

L2
− 1

F r

(
ĝi, δt ρ̃ k ṽk

i

)
= 0.

(47)

Next we simplify the gravity term noting that

− 1
F r

(
ĝi, δt ρ̃ k ṽk

i

)
= − 1

F r

(
∂ (−y)

∂xi
, δt ρ̃ k ṽk

i

)
= − 1

F r

(

y, δt
∂

(
ρ̃ k ṽk

i

)

∂xi

)

, (48)

where y = x2 and ĝ = (0, −1, 0). Note that the boundary terms vanish in the process of integrating-by-parts due to the fact that 
ṽk+1 ∈ H1

0("). Let C1 = (ρ−−ρ+)
2ρ+Cn m(φ), then using eq. (16), the fact that ρ is affine in φ, eq. (19), and eq. (48) we obtain:

10



M.A. Khanwale, K. Saurabh, M. Fernando et al. Computer Physics Communications 280 (2022) 108501

− 1
F r

(
ĝi, δt ρ̃ k ṽk

i

)
= − 1

F r

(
y, ρ

(
φk+1

)
− ρ

(
φk

))
− δt C1

F r Pe

(

y,
∂

∂xi

(
∂µ̃k

∂xi

))

= − 1
F r

(
y, ρ

(
φk+1

)
− ρ

(
φk

))
+ δt C1

F r Pe

(
∂ y
∂xi

,
∂µ̃k

∂xi

)

= − 1
F r

(
y, ρ

(
φk+1

)
− ρ

(
φk

))
− δt C1

F r Pe

(
∂

∂xi

(
∂ y
∂xi

)
, µ̃k

)
+ δt C1

F r Pe

∫

d"

µ̃k
(

∂ y
∂xi

)
n̂idx

= − 1
F r

(
y, ρ

(
φk+1

)
− ρ

(
φk

))
+ δt C1

F r Pe

∫

d"

µ̃k ĝin̂idx

= − 1
F r

(
y, ρ

(
φk+1

)
− ρ

(
φk

))
,

(49)

where n̂i is outward normal to the boundary of the domain ".

Remark 6. In the last line of (49) we asserted that

δtC1

F r Pe

∫

d"

µ̃k ĝin̂idx = 0. (50)

This is true as long as there is no three-phase contact line on any boundary on which n̂i ĝi is non-zero. For the purpose of the analysis 
presented here, we will assume that this is true.

Combining (49) with eq. (47) yields the desired result:

1
2

∫

"

[
ρ

(
φk+1

)∥∥∥vk+1
∥∥∥

2
− ρ

(
φk

)∥∥∥vk
∥∥∥

2
]

dx − 1
8

∫

"

[
ρ

(
φk+1

)
− ρ

(
φk

)]∥∥∥vk+1 − vk
∥∥∥

2
dx

+ δt
W eCn

(

φ̃k ṽk
i ,

∂µ̃k

∂xi

)

+ δt
Re

∥∥∥∥
√

η̃ k ∇ṽ
∥∥∥∥

2

L2
+ 1

F r

(
y, ρ

(
φk+1

)
− ρ

(
φk

))
= 0.

" (51)

We now have all the ingredients to prove energy-stability. Our argument uses the fact that the energy functional eq. (11) is decreasing 
as the discrete solution is evolving in time. At the semi-discrete level, the successive decrease of the energy functional for each time step 
represents adherence to the second law of thermodynamics. We prove energy-stability in the following theorem.

Theorem 1: energy-stability

The time discretization of the Cahn-Hilliard Navier-Stokes (CHNS) equations as described by eq. (15) – eq. (19) satisfies the 
following energy law:

Etot

(
vk+1,φk+1

)
− Etot

(
vk,φk

)
= −δt

Re

∥∥∥∥
√

η̃ k ṽk
∥∥∥∥

2

L2
− δt

PeCn2W e

∥∥∥∇µ̃k
∥∥∥

2

L2

+ 1
24

1
W eCn



d3ψ

dφ3

∣∣∣∣∣
φ=λ(x)

,
(
φk+1 − φk

)3





+ 1
8

∫

"

[
ρ

(
φk+1

)
− ρ

(
φk

)]∥∥∥vk+1 − vk
∥∥∥

2
dx,

(52)

for some λ (x) between φk (x) and φk+1 (x). The time discretization is energy-stable in the following sense:

Etot

(
vk+1,φk+1

)
≤ Etot

(
vk,φk

)
, (53)

provided that the following time-step restriction is observed:

0 ≤ δt ≤





1
Re

(∥∥∥
√

η̃ k ∇ṽk
∥∥∥

2

L2

)
+ 1

PeCn2 W e

∥∥∇µ̃k
∥∥2

L2

Cm L3
φ,max Pmax

W eCn + Cm αLφ,max Lv,max
8





1
2

. (54)
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Proof. The proof uses L2 estimates of the semi-discrete equations to estimate the energy change between two-time steps. If the 
estimate is strictly negative, we have an energy-stable scheme. We begin with eq. (19) with the test function q = δt µ̃k:

(
φk+1 − φk, µ̃k

)
=

(

ṽk
i φ̃

k, δt
∂µ̃k

∂xi

)

− δt
PeCn

∥∥∥∇µ̃k
∥∥∥

2

L2
. (55)

Next, we take eq. (18) with test function q = φk+1 − φk , where eq. (14) defines ψ̃ ′:

(
µ̃k,φk+1 − φk

)
=

(
ψ̃ ′,φk+1 − φk

)
+ Cn2

2

(∥∥∥∇φk+1
∥∥∥

2

L2
−

∥∥∥∇φk
∥∥∥

2

L2

)
, (56)

where we also use the fact that φ̃k = (φk+1 + φk)/2. The first term on right-hand side of eq. (56) simplifies further using Lem-
ma 2:

(
µ̃k,φk+1 − φk

)
=

(
ψ(φk+1) − ψ(φk),1

)
− 1

24



d3ψ

dφ3

∣∣∣∣∣
φ=λ(x)

,
(
φk+1 − φk

)3





+ Cn2

2

(∥∥∥∇φk+1
∥∥∥

2

L2
−

∥∥∥∇φk
∥∥∥

2

L2

)
.

(57)

Now, combining eq. (57) and eq. (55), we have:

(
ψ(φk+1) − ψ(φk),1

)
− 1

24



d3ψ

dφ3

∣∣∣∣∣
φ=λ(x)

,
(
φk+1 − φk

)3



 + Cn2

2

(∥∥∥∇φk+1
∥∥∥

2

L2
−

∥∥∥∇φk
∥∥∥

2

L2

)

=
(

ṽk
i φ̃

k, δt
∂µ̃k

∂xi

)

− δt
PeCn

∥∥∥∇µ̃k
∥∥∥

2

L2
.

(58)

Next, we divide eq. (58) by W eCn and from Lemma 6, we can substitute the first term on the right-hand side by eq. (39):

1
2

∫

"

[
ρ

(
φk+1

)∥∥∥vk+1
∥∥∥

2
− ρ

(
φk

)∥∥∥vk
∥∥∥

2
]

dx − 1
8

∫

"

[
ρ

(
φk+1

)
− ρ

(
φk

)]∥∥∥vk+1 − vk
∥∥∥

2
dx

+ δt
Re

(∥∥∥∥
√

η̃ k ∇ṽk
∥∥∥∥

2

L2

)

+ 1
W eCn

(
ψ(φk+1) − ψ(φk),1

)

− 1
24 W eCn



d3ψ

dφ3

∣∣∣∣∣
φ=λ(x)

,
(
φk+1 − φk

)3





+ Cn
2W e

(∥∥∥∇φk+1
∥∥∥

2

L2
−

∥∥∥∇φk
∥∥∥

2

L2

)
+ δt

PeCn2W e

∥∥∥∇µ̃k
∥∥∥

2

L2

+ 1
F r

(
y, ρ

(
φk+1

)
− ρ

(
φk

))
= 0.

(59)

Simplifying and using the definition of the energy functional, eq. (11), we obtain energy law eq. (52).

The problem with energy law eq. (52) is that the final two terms on the right-hand side are sign indeterminate. Therefore, in order 
for this energy to be non-increasing in time (i.e., eq. (53)), we require the following:

δt
Re

∥∥∥∥
√

η̃ k ∇ṽk
∥∥∥∥

2

L2
+ δt

PeCn2W e

∥∥∥∇µ̃k
∥∥∥

2

L2
≥ 1

24 W eCn



d3ψ

dφ3

∣∣∣∣∣
φ=λ(x)

,
(
φk+1 − φk

)3





+ 1
8

∫

"

[
ρ

(
φk+1

)
− ρ

(
φk

)]∥∥∥vk+1 − vk
∥∥∥

2
dx.

(60)

Using the estimates from Lemmas 3 and 5, we can guarantee this inequality provided that:

δt
Re

∥∥∥∥
√

η̃ k ∇ṽk
∥∥∥∥

2

L2
+ δt

PeCn2W e

∥∥∥∇µ̃k
∥∥∥

2

L2
≥ Cm L3

max Pmax

W eCn
δt3 + Cm αLφ,max Lv,max

8
δt3. (61)

This condition becomes a condition on the maximum energy-stable time-step size, which is provided by eq. (54). "
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Remark 7. Condition eq. (54) is a weak condition (satisfied by most δt), as all the quantities in its statement are order one quantities. 
While we cannot claim unconditional stability for the scheme, however, the scheme is energy-stable for large range of δt values, which in 
practice allows us to take large time steps (for appropriate accuracy requirements). A consequence is that we do not have to evaluate this 
condition at every timestep. This is reflected by numerical experiments we conduct.

Remark 8. As an example let us consider the case with a very weak flow (small velocities). In this case viscous dissipation term is close 
to zero:

1
Re

∥∥∥∥
√

η̃ k ∇ṽk
∥∥∥∥

2

L2
≈ 0.

The other term in the numerator is finite and order one:

1
PeCn2W e

∥∥∥∇µ̃k
∥∥∥

2

L2
∼ O(1).

Therefore, we have a finite order one numerator. On the other hand, notice that both the terms in the denominator of eq. (54) are 
estimates of

1
24

∣∣∣∣∣∣



d3ψ

dφ3

∣∣∣∣∣
φ=λ(x)

,
(
φk+1 (x) − φk (x)

)3





∣∣∣∣∣∣

and
∣∣∣∣∣∣

1
8

∫

"

[
ρ

(
φk+1

)
− ρ

(
φk

)]∥∥∥vk+1 − vk
∥∥∥

2
dx

∣∣∣∣∣∣
,

respectively. In the limit of velocity going to zero the interface wouldn’t move much between two time points (as advection is close to 
zero) and φk+1 (x) − φk (x) → 0, also for very small velocities 

∥∥vk+1 − vk
∥∥2 → 0. Therefore, both the terms in the denominator of eq. (54)

would approach 0, and with the finite order 1 numerator the right hand side of eq. (54) would actually approach infinity justifying our 
assertion that we would have stability for most timesteps.

Remark 9. Our estimate for the time step size is modified to the one in [6] for unequal densities, while extending the time-scheme to 
second order.

3.2. Solvability of the discrete-in-time, continuous-in-space CHNS system

In this subsection we establish the solvability of eq. (15) – eq. (19). The basic strategy for proving the existence results follows [6]. We 
summarize the process as follows:

1. Breakdown the problem into individual problems corresponding to each equation in eqs. (15) to (19).
2. Show that given µ̃k , eq. (18) uniquely determines φ̃k . Subsequently, with knowledge of φ̃k from eq. (18), show that eq. (15) – eq. (17)

uniquely determines ̃vk and p̃k . This establishes unique determination of φ̃k , ̃vk , and p̃k given µ̃k .
3. From the above point the problem focus now can shift to eq. (19), as a scalar equation for µ̃k which is a non-linear advection-diffusion 

type equation (due to fully-implicit discretization).
4. Show that there exists a solution, µ̃k , to eq. (19), with φ̃k and ̃vk understood to be functions of µ̃k via eqs. (15) to (18).

The bulk of the proof for existence focuses on showing that there exists a µ̃k which solves eq. (19). This involves technical arguments 
that are leveraged from non-linear analysis. The strategy is to use existence of solutions to pseudo-monotone operators from Brezis (see 
theorem 27.A Zeidler [51]). This requires proving that the operator in eq. (19) with the setting of a real, reflexive Banach space4 is 
pseudo-monotone, bounded, and coercive. The two main differences in the time-scheme in [6] and this manuscript are; 1) fully-coupled 
nature of solving eqs. (15) to (19) and Crank-Nicolson averages of mixture density (ρ) and mixture viscosity (η) in eq. (15). Both these 
changes do not affect the strategy discussed above in major ways and the proof remains largely unchanged with minor changes. This is 
one of the advantages of our scheme here – the aforementioned technique of proving existence (solvability) of the semi-discrete system is 
applicable here. The proof that operator in eq. (19) is pseudo-monotone, bounded, and coercive largely remains unchanged from Khanwale 
et al. [6].

It is important to note that the technique initially demonstrated by Han and Wang [29] for linear operators and then modified for 
non-linear operators in Khanwale et al. [6] allows us to show solvability for a fully-nonlinear schemes. However, proving uniqueness of 
the solution of eq. (19) remains difficult, but for practical situations we do not see any problems.

4 Sobolev spaces considered in this manuscript are real and reflexive.
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3.3. Spatial discretization and the variational multiscale approach

The unknowns:

(φ, µ, v, p) , (62)

are all discretized in space using continuous Galerkin finite elements with piecewise polynomial approximations. It is well-known from 
literature that approximating the velocity, v, and the pressure, p, with the same polynomial order leads to numerical instabilities as this 
violates the discrete inf-sup condition or Ladyzhenskaya-Babuska-Brezzi condition (e.g., see Volker [15, page 31]). A popular method to 
overcome this difficulty is to add stabilization terms to the evolution equations that transform the inf-sup stability condition to a coercivity 
statement [52]. In particular, a large class of stabilization techniques derive from the so-called variational multiscale approach (VMS) [31], 
which generalizes the well-known SUPG/PSPG [53] method in the context of large-eddy simulation (LES) [32]. Additionally, VMS provides 
a natural leeway into modeling high-Reynolds number flows [33].

The VMS approach uses a direct-sum decomposition of the function spaces as follows. If v ∈ V, p ∈ Q , and φ ∈ Q then we decompose 
these spaces as:

V = V ⊕ V′ and Q = Q ⊕ Q ′, (63)

where V and Q are the cG(r) subspaces of V and Q , respectively, and the primed versions are the complements of the cG(r) subspaces in 
V and Q , respectively. We decompose the velocity and pressure as follows:

v = v + v′, φ = φ + φ′, and p = p + p′, (64)

where the coarse scale components are v ∈ V and p, φ ∈ Q , and the fine scale components are v′ ∈ V′ and p′, φ′ ∈ Q ′ . We define a projection 
operator, P : V → V, such that v = P{v} and v′ = v − P{v}. A similar operator can decompose p and φ.

Substituting these decompositions in the original variational form Definition 1 yields:

Momentum Eqns:
(

wi,ρ(φ)
∂vi

∂t

)
+

(

wi,
∂

(
ρ(φ)v ′

i

)

∂t

)

+
(

wi,ρ(φ)v j
∂vi

∂x j

)

+
(

wi,ρ(φ)v ′
j
∂vi

∂x j

)
+

(

wi,
∂

(
ρ(φ)v j v ′

i

)

∂x j

)

+



wi,
∂

(
ρ(φ)v ′

j v ′
i

)

∂x j





+ 1
Pe

(
wi, J j

∂vi

∂x j

)
+ 1

Pe

(

wi,
∂

(
J j v ′

i

)

∂x j

)

+ Cn
W e

(
wi,

∂

∂x j

(
∂φ

∂xi

∂φ

∂x j

))

+ 1
W e

(

wi,
∂

(
p + p′)

∂xi

)

+ 1
Re

(
∂ wi

∂xk
,η(φ)

∂
(

vi + v ′
i

)

∂xk

)

−
(

wi,ρ(φ)ĝi

F r

)

+
(

q,
∂vi

∂xi

)
+

(
q,

∂v ′
i

∂xi

)
= 0,

(65)

Cahn-Hilliard Eqn:

(

q,
∂

(
φ + φ′)

∂t

)

−
(

∂q
∂xi

, viφ

)
−

(
∂q
∂xi

, v ′
iφ

)
−

(
∂q
∂xi

, viφ
′
)

(66)

− 1
PeCn

(
∂q
∂xi

,m(φ)
∂µ

∂xi

)
= 0, (67)

Chemical Potential: − (q,µ) +
(

q,
dψ

dφ

)
− Cn2

(
q,

∂

∂xi

(
∂φ

∂xi

))
= 0, (68)

where w ∈ PHr("), v ∈ L2
(

0, T ; PHr,h
0 (")

)
, p, φ, µ ∈ L2 (

0, T ; P Hr(")
)
, v′ ∈ (I − P)Hr("), φ′, p′ ∈ (I − P)Hr("), and q ∈

P Hr("). Here I is the identity operator and P is the projection operator. We use the residual-based approximation proposed in Bazilevs 
et al. [33] for the fine-scale components, applied to a two-phase system [6], to close the equations:

ρ(φ)v ′
i = −τmRm(ρ, vi, p), p′ = −ρ(φ)τcRc(vi), and φ′ = −τφRφ(vi,φ). (69)

We substitute the infinite-dimensional spaces with their discrete counterparts (superscript h) using conforming Galerkin finite elements 
where the trial and test functions are taken from the same spaces. Note that we only solve for the coarse-scale components. The resulting 
discrete variational formulation can then be defined as follows.
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Definition 2

Find vh ∈ L2
(

0, T ; PHr,h
0 (")

)
and ph, φh

, µh ∈ L2 (
0, T ; P Hr,h(")

)
such that

Momentum:

(

wi,ρ
h ∂vi

h

∂t

)

+
(

wi,ρ
h v j

h ∂vi
h

∂x j

)

−
(

wi,τmRm

(
v j

h, ph
) ∂vi

h

∂x j

)

+
(

∂ wi

∂x j
, v j

h
(
τmRm

(
vi

h, ph
)))

−
(

∂ wi

∂x j
,
τ 2

m

ρh
Rm

(
v j

h, ph
)

Rm

(
vi

h, ph
))

+ 1
Pe

(

wi, J h
j
∂vi

h

∂x j

)

+ 1
Pe

(
∂ wi

∂x j
, J h

j
τm

ρh
Rm

(
vi

h, ph
))

− Cn
W e

(
∂ wi

∂x j
,

∂φ
h

∂xi

∂φ
h

∂x j

)

− 1
W e

(
∂ wi

∂xi
, ph

)

+ 1
W e

(
∂ wi

∂xi
,ρhτcRc

(
vi

h
))

+ 1
Re

(
∂ wi

∂xk
,ηh ∂vi

h

∂xk

)

−
(

wi,ρ
h ĝi

F r

)

= 0,

(70)

Thermo: J h
i = (ρ− − ρ+)

2 ρ+Cn
∂µh

∂xi
, (71)

Solenoidality:

(

q,
∂vi

h

∂xi

)

+
(

∂q
∂xi

,
τm

ρh
Rm

(
vi

h, ph
))

= 0, (72)

Cahn-Hilliard:

(

q,
∂φ

h

∂t

)

−
(

∂q
∂xi

, vi
hφ

h
)

+
(

∂q
∂xi

,
τm

ρh
Rm

(
vi

h, ph
)

φ
h
)

+
(

∂q
∂xi

, vi
hτφRφ

(
vi

h,φ
h
))

− 1
PeCn

(
∂q
∂xi

,mh ∂µh

∂xi

)

= 0,

(73)

Potential: −
(

q,µh
)

+
(

q,
dψ

dφ
h

)

+ Cn2

(
∂q
∂xi

,
∂φ

h

∂xi

)

= 0, (74)

∀w ∈ PHr,h
0 (") and ∀q ∈ P Hr,h("), and time t ∈ [0, T ].

In the above expressions, we used the following notation:

ρh := ρ
(
φ

h
)

, ηh := η
(
φ

h
)

, and mh := m
(
φ

h
)

, (75)

and the following parameter values:

τm =



 4
1t2 + vi

hGij v j
h + 1

ρh Pe
vi

hGij J j
h + C I

(
ηh

ρh Re

)2

Gij Gij




−1/2

,

τc = 1
tr(Gij)τm

, τφ =
(

4
1t2 + vi

hGij v j
h + Cφ

(
1

PeCn

)2

Gij Gij

)−1/2

.

(76)

Here we set C I and Cφ for all our simulations to 6 and the residuals are given by

Rm

(
vi

h, ph
)

= ρh ∂vi
h

∂t
+ ρh v j

h ∂vi
h

∂x j
+ 1

Pe
J h

j
∂vi

h

∂x j
+ Cn

W e
∂

∂x j

(
∂φ

h

∂xi

∂φ
h

∂x j

)

+ 1
W e

∂ ph

∂xi
− 1

Re
∂

∂xk

(

ηh ∂vi
h

∂xk

)

− ρh ĝ
F r

,

Rc

(
vi

h
)

= ∂vi
h

∂xi
, Rφ

(
vi

h,φ
h
,µh

)
= ∂φ

h

∂t
+

∂
(

vi
h φ

h
)

∂xi
− 1

PeCn
∂

∂xi

(

mh ∂µh

∂xi

)

.

(77)

The following assumptions were made in the above variational problem.
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1. v′ = 0 on the boundary ∂"; similarly φ′ = 0 on ∂".

2.
(

∂ wi
∂xk

,ηh ∂v ′
i

∂xk

)
= 0 from the orthogonality condition of the projector. The projector utilizes the inner product that comes from the 

bilinear form of these viscous terms [33,54].
3. We assume that 

(
∂q
∂xi

, v ′
iφ

′
)

= 0 under the reasoning that fluctuations in φ′ are small compared to v ′
i . This significantly simplifies the 

formulation.
4. We use the coarse-scale part of the VMS decomposition of φ to compute the mixture density and mixture viscosity. We use the pulled 

back φ∗ (see Remark 3) for this calculation, which regularizes φ by smoothing out overshoots and undershoots. The pull back ensures 
φ∗ ∈ Hr , and it’s projection on the mesh φ∗,h ∈ Hr,h as required for the cG formulation.

Remark 10. The above formulation is written for a generic order (r) for the interpolating polynomials (basis functions).

Finally, the time derivative in the above set of expressions is still continuous. In the fully discrete numerical method we substitute the 
time-derivatives in the momentum and phase field equations using the time scheme presented in eq. (15) – eq. (19).

3.4. Handling non-linearity

The fully discrete version of eq. (15) – eq. (19) represents a non-linear system of algebraic equations that discretize the CHNS system 
eq. (70) – eq. (74) and that must be solved in each time-step. Symbolically, we can write this nonlinear algebraic system as

Fi

(
Uk

1, Uk
2, . . . , Uk

n

)
= 0, (78)

where Uk is a vector containing all of the degrees of freedom at the discrete time tk . In order to solve this nonlinear algebraic system we 
make use of a Newton method, which requires us to solve the following linear system in each Newton iteration:

J s,k
i j δU s,k

j = −Fi

(
U s,k

1 , U s,k
2 , . . . , U s,k

n

)
, J s,k

i j := ∂

∂U j
Fi

(
U s,k

1 , U s,k
2 , . . . , U s,k

n

)
, (79)

where U s,k
j is the vector containing all the degrees of freedom at the kth time step and at the sth Newton iteration. δU s,k

j is the “pertur-
bation” (update) vector that will be used to update the current Newton iteration guess:

U s+1,k
j = U s,k

j + δU s,k
j . (80)

J s,k
i j is the Jacobian matrix, which we analytically compute by calculating the variations (partial derivatives) of the operators with respect 

to the degrees of freedom. The calculation of J s,k
i j is more challenging for the fully-coupled approach compared to the block iterative 

technique in Khanwale et al. [6]. The iterative procedure begins with an initial guess, which we simply take as the solution from the 
previous time-step:

U 0,k
i = Uk−1

i , (81)

and ends once we reach the desired tolerance:

‖δU s,k
j ‖ ≤ TOL. (82)

Once this tolerance is reached we set U k
j = U s,k

j and move on to the next time-step.
In this work we solve linear system eq. (79) in each Newton iteration on a massively parallel architecture. In particular, we make use 

of the petsc library, which provides efficient parallel implementations of the above ideas along with an extensive suite of preconditioners 
and solvers for the linear system [55–57]. The precise choice of linear solvers and preconditioners is different for different numerical 
experiments; and therefore, we provide more details on these choices in the numerical experiment sections of this paper.

4. Octree based domain decomposition

Octrees are widely used in the computational sciences to represent dynamically-adapted hierarchical meshes [44,46,47,58]; this is 
largely due to their conceptual simplicity and their ability to scale across a large number of processors. Adaptivity is crucial in the com-
putational sciences, where in many cases it reduces the overall degrees of freedoms (problem size), making these simulations feasible on 
currently available computers. The use of adaptive discretizations can introduce additional challenges, especially in distributed computing, 
such as load-balancing, low-cost scalable mesh generation, and mesh partitioning. Thus, we use Dendro, a highly scalable parallel octree li-
brary, to generate full adaptive quasi-structured octree based meshes and partitions. In the following sections, we summarize how Dendro 
allows us to perform our numerical simulations. The reader can find a detailed account of the algorithms used in Dendro in [44,47].

4.1. Octree construction and 2:1 balancing

Dendro refines an octant based on user-specified criteria proceeding in a top-down fashion. The user defines the refinement criteria by 
a function that takes the coordinates of the octant, and returns true or false. Since the refinement happens locally to the element, this 
step is embarrassingly parallel. In distributed-memory machines, the initial top-down tree construction enables an efficient partitioning 
of the domain across an arbitrary number of processes. All processes start at the root node (i.e., the cubic bounding box for the entire 
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domain). We perform redundant computations on all processes to avoid communication during the refinement stage. Starting from the 
root node, all processes refine (similar to a sequential implementation) until the process produces at least O(p) octants requiring further 
refinement. The procedure ensures that upon partitioning across p processors, each processor gets at least one octant. Then using a space-
filling-curve (SFC) based partitioning, we partition the octants across p partitions [47]. Once the algorithm completes this partitioning, 
we can restrict the refinement criterion to a processor’s partition, which we can re-distribute to ensure load-balancing. We enforce a 
condition in our distributed octrees that no two neighboring octants differ in size by more than a factor of two (2:1 balancing). This ratio 
makes subsequent operations simpler without affecting the adaptive properties. Our balancing algorithm uses a variant of TreeSort [47]
with top-down and bottom-up traversal of octrees which is different from existing approaches [46,59,60].

4.2. SFC-based octree partition

The refinement and subsequent two-to-one balancing of the octree procedures can result in a non-uniform distribution of elements 
across processes, leading to load imbalance. This imbalance is particularly challenging when meshing complex geometries. SFC induces 
a partial ordering operator in higher dimensional space, where TreeSort [47] performs a parallel sort operation on the octants. The SFC 
traverses the octants in the sorted order, which reduces the partitioning problem to partitioning a 1D curve. Finally, we use a Hilbert 
SFC curve based partitioning compared to traditionally used Morton (Z-curve), which produces superior partitions in large scale computa-
tions [47].

4.3. Mesh generation

By meshing, we refer to the construction of the data structures required to perform numerical computations on topological octree data.
Dendro builds distributed data structures to perform finite difference (FD), finite volume (FV), and finite element (FE) computations. In 
this work, we use the FE data structures. One of the key steps of the mesh generation stage is to construct neighborhood information for 
octants, which uses two maps computed by Dendro. The first map o2o determines the neighboring octants of a given octant, and the map
o2n computes the nodes corresponding to a given octant. We generate the o2o map by performing parallel searches similar to approaches 
described in [44]. Assuming we have n octants per partition, the search operations and building required to create the o2o and o2n data 
structures have O(n log(n)) and O(n) complexity, respectively.

4.4. Handling hanging nodes

While the use of quasi-structured grids such as octree-grids makes parallel meshing scalable and efficient without sacrificing adaptivity, 
one challenge is to handle the resulting non-conformity efficiently. The resulting hanging nodes occur on faces/edges shared between un-
equal elements. These hanging nodes do not represent independent degrees of freedom. We do not store the hanging nodes in Dendro to 
minimize the memory footprint and to improve the overall efficiency. The polynomial order of the elements and the free (non-hanging) 
nodes on the face/edge determine the value of the function at the hanging nodes. Therefore, we introduce these extra degrees of freedom 
as temporary variables before elemental matrix assembly or matrix-vector multiplication (for matrix-free computations) and eliminate 
them following the elemental operation. This virtualization of the hanging nodes is straightforward as we limit the meshes to a two-
to-one balance, which limits the number of overall cases we need to consider explicitly see [44] for further details on the handling of 
hanging nodes in Dendro.

4.5. Re-meshing and interpolation

An essential requirement is to adapt the spatial mesh as the fluid interface moves across the domain. Fig. 10 shows the adaptive 
mesh refinement following the deformation of the interface in a Rayleigh-Taylor instability. In distributed-memory systems, this localized 
meshing requires a re-partition and re-balance of the load. Thus, after a few time steps, we re-mesh. This re-meshing step is similar to 
the initial mesh generation and refinement. Now, the process uses the current position of the interface as well as the original geometry. 
The two-to-one balance enforcement and meshing follow this mesh generation. We now transfer the velocity field from the old mesh 
to the new mesh using a simple interpolation process. That is, the grid transfer only happens between parent and child (for coarsening 
and refinement) as it otherwise remains unchanged. Therefore, the transfer from the old mesh to the new one uses standard polynomial 
interpolation, followed by a simple re-partitioning based on the new mesh.

5. Numerical experiments

5.1. 2D simulations: manufactured solutions

We use the method of manufactured solutions to assess the convergence properties of our method. We select an input “solution” which 
is solenoidal, and substitute it in the full set of governing equations. We then use the residual as a body force on the right-hand side 
of eqs. (15) to (19). We choose the following “solution” with appropriate body forcing terms:

v =
(
π sin2(πx1) sin(2πx2) sin(t), −π sin(2πx1) sin2(πx2) sin(t), 0

)
,

p = cos(πx1) sin(πx2) sin(t), φ = µ = cos(πx1) cos(πx2) sin(t).
(83)

Our numerical experiments use the following non-dimensional parameters: Re = 10, W e = 1, Cn = 1.0, Pe = 3.0, and F r = 1.0. The 
density ratio is set to ρ−/ρ+ = 1.0.

For the first experiment we use a 2D uniform mesh with 512 × 512 elements with quadratic polynomials. Panel (a) of Fig. 1 shows 
the temporal convergence of the L2 errors (numerical solution compared with the manufactured solution) calculated at t = π to allow for 
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Fig. 1. Manufactured Solution Examples (section 5.1). Shown in the Panels are (a) the temporal convergence of the numerical scheme for the case of manufactured solutions; (b) 
the spatial convergence of numerical scheme for the manufactured solutions with a time step of 10−3; and (c) the mass conservation for the case of manufactured solutions 
using 300 × 300 elements with time step of 10−2.

Table 1
Physical parameters and corresponding non-dimensional numbers for the 2D single rising drop benchmarks considered in section 5.2.

Test case ρc ρb µc µb ρ+/ρ− ν+/ν− g σ Ar W e F r

1 1000 100 10 1.0 10 10 0.98 24.5 35 10 1.0
2 1000 1.0 10 0.1 1000 100 0.98 1.96 35 125 1.0

one complete time period. The figure shows the evolution of the error versus time-step on a log-log scale. The errors are decreasing with 
a slope close to two for the phase-field function φ and velocity, thereby demonstrating second-order convergence.

We next conduct a spatial convergence study. We fix the time step at δt = 10−3, and vary the spatial mesh resolution. Panel (b) of Fig. 1
shows the spatial convergence of L2 errors (numerical solution compared with the manufactured solution) at t = π . We observe second 
order convergence for both velocity and φ.

Panel (c) of Fig. 1 shows mass conservation for an intermediate resolution simulation with δt = 10−3 and 300 × 300 elements. We plot 
mass drift:∫

"

φ (x, t) dx −
∫

"

φ (x, t = 0) dx, (84)

and expect this value to be close to zero as per the theoretical prediction of Proposition 1. We observe excellent mass conservation with 
fluctuations of the order of 10−12, which is to be expected in double precision arithmetic. Here we used a relative tolerance of 10−7 for 
the Newton iteration. For the linear solves within each Newton iteration we used a relative tolerance of 10−7.

5.2. 2D simulations: single rising bubble

To validate the framework, we consider benchmark cases for a single rising bubble in a quiescent water channel [61–63]. We set the 
Froude number (F r = u2/(g D)) to 1, which fixes the non-dimensional velocity scale to u = √

g D , where g is the gravitational acceleration, 
and D is the diameter of the bubble. This scaling gives a Reynolds number of ρc g1/2 D3/2/µc , where ρc and µc are the specific density and 
specific viscosity of the continuous fluid, respectively. The Archimedes number, Ar = ρc g1/2 D3/2/µc , scales the diffusion term in the mo-
mentum equation. The Weber number here becomes W e = ρc g D2/σ . We use the density of the continuous fluid to non-dimensionalize: 
ρ+ = 1. The density and viscosity ratios are ρ+/ρ− and ν+/ν− , respectively. We present results for two standard benchmark cases.

Table 1 shows the parameters and the corresponding non-dimensional numbers for the two cases simulated in this work. The bubble 
is centered at (1, 1), and since our scaling length scale is the bubble diameter, the bubble diameter for our simulations is 1. The domain is 
[0, 2] × [0, 4]. Following the benchmark studies in the literature, we choose the top and bottom wall to have no slip boundary conditions 
and the side walls to have boundary conditions: v1 = 0 (x-velocity) and ∂v2

∂x = 0 (y-velocity). We use the biCGstab (bcgs) linear solver 
from the PETSc suite along with the Additive Schwarz (ASM) preconditioner for the linear solves in the Newton iterations (see section 3.4). 
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Fig. 2. 2D Single Rising Drop Test Case 1 (section 5.2.1). Shown in the panels are (a) comparisons of the computed bubble shape against results from the literature at non-
dimensional time T = 4.2; (b) comparisons of the rise of the bubble centroid against results from the literature; (c) decay of the energy functional illustrating Theorem 1; 
and (d) total mass conservation (integral of total φ). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

We use a time step of 2.5 × 10−3 for both the test cases. The convergence criterion for both test cases uses a relative tolerance of 10−6

for Newton iteration and a relative tolerance of 10−7 for the linear solves within each Newton iteration.

5.2.1. Test case 1
This test case considers the effect of higher surface tension, and consequently less deformation of the bubble as it rises. We compare 

the bubble shape in Fig. 2 with benchmark quantities presented in three previous studies [61–63]. We take Cn = 5 × 10−3 for this case. 
Panel (a) of Fig. 2 shows a shape comparison against benchmark studies in the literature, and we see an excellent agreement in the 
shape of the bubble. Panel (b) of Fig. 2 shows a comparison of centroid locations with respect to time against benchmark studies in the 
literature; again, we see an excellent agreement. We can see from the magnified inset in panel (b) of Fig. 2 that as we keep increasing 
the mesh resolution, the plot approaches the benchmark studies. We see an almost exact overlap between the benchmark and cases with 
h = 2/400 and h = 2/600, where h is the size of the element, demonstrating spatial convergence.

We next check whether the numerical method follows the theoretical energy stability proved in Theorem 1. We present the evolution 
of the energy functional defined in eq. (11) for test case 1. Panel (c) of Fig. 2 shows that the energy is decreasing in accordance with the 
energy stability condition for all three spatial resolutions of h = 2.0/200, h = 2.0/400, and h = 2.0/600.
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Table 2
Comparison of time-step used for in the current paper and literature for test case 1 benchmark considered in 
section 5.2.

Sr. no. Literature Type of discretization Time-step used

1 Current work fully-coupled non-linear 2.5 × 10−3

2 Zhu et al. [27] linearized block 3 × 10−4

3 Guo et al. [11] fully-coupled non-linear 1 × 10−3

4 Chen and Shen [25] linearized block 2 × 10−4

5 Shen and Yang [36] linearized block 1 × 10−4

6 Shen and Yang [22,23] linearized block 1 × 10−4

Finally, we check the mass conservation. Panel (d) shows the total mass of the system minus the initial mass. At all reported spatial 
resolutions the change in the total mass is of the order of 10−8, even after 1600 time steps. The numerical method delivers excellent mass 
conservation for long time horizons.

This test case is a good example of a physical system evolving towards a steady state solution (terminal velocity and shape of the 
bubble). This test case has also been used for benchmarking numerical schemes in prior literature. Therefore, we use this example to 
contrast the time-step advantage of the fully-coupled, non-linear scheme. Notice from Table 2 that the time-step used with fully-coupled 
non-linear schemes (current work and Guo et al. [11]) is an order of magnitude larger than the time-step used in linearized block 
schemes [22,23,25,27,36]. As mentioned in the introduction, there are many practical applications in bio-microfluidics where such a 
property is critical.

5.2.2. Test case 2
This test case considers a lower surface tension resulting in high deformations of the bubble as it rises. As before, we compare the 

bubble shape in Fig. 3 with benchmark quantities presented in [61–63]. Panel (a) shows the shape comparison with benchmark studies in 
the literature. We see an excellent agreement in the shape of the bubble. All simulations (our results and benchmarks) exhibit a skirted 
bubble shape. We see an excellent match in the overall bubble shape with minor differences in the dynamics of its tails. Specifically, we 
see that the tails of the bubble in our case pinch-off to form satellite bubbles.5 We performed this simulation with a Cn = 0.0025 and 
three different spatial resolutions. We can see in panel (a) of Fig. 3 that our simulation captures this filament pinch-off in the tails. The 
works of Aland and Voigt [62], Yuan et al. [63] did not observe these thin tails and pinch-offs, while Hysing et al. [61] described pinch-off 
of the tails and satellite bubbles.

Panel (b) of Fig. 3 compares the centroid location evolution with time. Again we see an excellent agreement with all three previous 
benchmark studies. We can see from the magnified inset in this panel that as we increase the mesh resolution the plot approaches the 
benchmark studies and we see an almost exact overlap between the benchmark and cases with h = 2/1000 and h = 2/2000 demonstrating 
spatial convergence. Next, we report the evolution of the energy functional defined in eq. (11) for test case 2. Panel (c) of Fig. 3 shows 
the decay of the total energy functional in accordance with the energy stability condition for all three spatial resolutions of h = 2.0/800, 
h = 2.0/1000, and h = 2.0/1200. Finally, panel (d) of Fig. 3 shows the total mass of the system in comparison with the total initial mass 
of the system. We can see that for all spatial resolutions, the change in the total mass against the initial total mass is of the order of 
1 × 10−8, which illustrates that the numerical method satisfies mass conservation over long time horizons.

5.3. 2d simulations: Rayleigh-Taylor instability

We now demonstrate the performance of the numerical framework with large deformation in the interface and chaotic regimes (high 
Reynolds numbers). While the bubble rise case in the previous sub-section is an interplay between surface tension and buoyancy, buoyancy 
dominates the evolution of the Rayleigh-Taylor instability. Here the choice of non-dimensional numbers ensures that the surface tension 
effect is small (high Weber number). In contrast, other studies switch off the surface tension forcing terms in the momentum equations 
(see, e.g., [64–67]).

The setup is as follows: the heavier fluid is on top of lighter fluid and the interface is perturbed. The heavier fluid on top penetrates the 
lighter fluid and buckles, which generates instabilities. This interface motion is challenging to track due to large changes in its topology. 
Additionally, the Rayleigh-Taylor instabilities generally encompass turbulent conditions that require resolving finer scales to capture the 
complete dynamics. We non-dimensionalize the problem by selecting the width of the channel as the characteristic length scale and the 
density of the lighter fluid as the characteristic specific density. Just as in the bubble rise case we use buoyancy-based scaling, setting 
the Froude number (F r = u2/(g D)) to 1, which fixes the non-dimensional velocity scale to be u = √

g D , where g is the gravitational 
acceleration, and D is the width of the channel. Using this velocity to calculate the Reynolds number, we get Re = ρL g1/2 D3/2/µL , where 
ρL and µL are the specific density and specific viscosity of the light fluid, respectively. We set the Reynolds number to Re = 1000. These 
choices lead to a Weber number of W e = ρc g D2/σ . To compare our results with previous studies, we simulate with the same initial 
conditions as presented in Xie et al. [64], Guermond and Quartapelle [67], Tryggvason [68], Ding et al. [69]. The W e number is selected 
to be 1000, so that the effect of surface tension is small on the evolution of the interface.

The Atwood number (At) is often used to parametrize the dependence on density ratio, with At = (ρ+ − ρ−) / (ρ+ + ρ−). For the 
density ratios of 0.33, and 0.1, the Atwood numbers are At = 0.5, and At = 0.82, respectively. We chose specific density of the heavy fluid 
to non-dimensionalize, therefore ρ+ = 1.0, and ρ− = 0.33 for At = 0.5, while ρ− = 0.1 for At = 0.82. ν+/ν− the viscosity ratio is set to 
1. We use a no-slip boundary condition for velocity on all the walls along with no flux boundary conditions for φ and µ. The no-flux 
boundary condition for φ and µ inherently assumes a 90 degree wetting angle for both the fluids.

5 Such instabilities require a low Cn number, as only a thin interface can capture the dynamics of the thin tails of the bubble.
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Fig. 3. 2D Single Rising Drop Test Case 2 (section 5.2.2). Shown in the panels are (a) comparisons of the computed bubble shape against results from the literature at non-
dimensional time T = 4.2; (b) comparisons of the rise of the bubble centroid against results from the literature; (c) decay of the energy functional illustrating Theorem 1; 
and (d) total mass conservation (integral of total φ).

Remark 11. Weak surface tension reduces vortex roll-up in the simulations of immiscible systems, especially at lower At . Experimental 
results from Waddell et al. [70] show different vortex roll-up amounts for miscible and immiscible systems. This difference is analogous 
to the difference between zero surface tension simulations and finite surface tension simulations. This effect is irrelevant to compare front 
locations against the literature (short time horizons). Nevertheless, it is crucial to accurately track the long time dynamics (as smaller 
filaments are more stable in the non-zero surface tension case).

We run numerical experiments for Cn = 0.005, 0.0025, 0.00125 with a uniform mesh of 400 × 3200, 400 × 3200, and 800 × 6400, 
respectively, for two different Atwood numbers: At = 0.82, 0.5. The time step size for all the experiments is 1.25 ×10−4. A carefully tuned 
algebraic multi-grid linear solver with successive over-relaxation is setup for the linear solves in the Newton iterations (see section 3.4). 
We detail the command-line arguments used in Appendix B. For the convergence criteria for both 2D Rayleigh-Taylor test cases we use a 
relative tolerance of 10−6 for Newton iteration and a relative tolerance of 10−7 for the linear solves.

Fig. 4 shows the snapshots of the interface shape along with the corresponding vorticity generated as it evolves in time for At = 0.82
and Cn = 0.00125. We observe the usual evolution of Rayleigh Taylor instability where the heavier fluid penetrates the light one, causing 
the lighter fluid to rise near the wall. The penetrating plume of the heavier fluid sheds small filaments at a non-dimensional time of 
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Fig. 4. Rayleigh-Taylor instability in 2D (section 5.3): Dynamics of the interface as a function of time for At = 0.82 (density ratio of 0.1). In each panel the left plot illustrates 
the interface, and the right plot shows corresponding vorticity. Here normalized time t′ = t

√
At . See Video 1 in supplementary material for full animation.

t′ = 1.358. The penetrating plume is symmetric at early times, with symmetry breaking occurring at longer times. The instability further 
proceeds to a periodic flapping. At longer times, the instability transitions to a chaotic mixing stage.6

5.3.1. Influence of Cn on long time dynamics
We observe from Fig. 4 that the development of the instability (at longer times) depends on the resolution of shedding filaments. 

Therefore, the long-time dynamics depend on the interface thickness that the Cn number controls. To analyze the influence of Cn number 
on the development of the Rayleigh-Taylor instability, we perform numerical experiments with three Cn numbers. First, we compare our 
results with those in the literature to validate the framework. For the cases of At = 0.5 and At = 0.82 several previous studies presented 
the location of the top and bottom fronts as a function of time. Panel (a) Fig. 5 compares the bottom and top front locations with previous 
studies [64–67]. Our current results match the previous benchmarks for all three Cn numbers. Panels (b) and (c) from Fig. 5 show the 
energy decay in line with Theorem 1 for At = 0.5, 0.82. We observe energy stability for all the three Cn numbers.

At longer times, defining the top/bottom front becomes difficult due to filament breakup. Therefore, we plot the center of mass of the 
heavy fluid as a function of time. This location is a good integral metric to track coarse-scale dynamics. Panels (a) and (b) of Fig. 6 show 
the evolution of center of mass of the heavy fluid for At = 0.5 and At = 0.82, respectively. We observe a convergence of dynamics as we 
decrease the Cn number. There are some deviations even for small Cn numbers at longer time durations. The chaotic filament breakup 
and concomitant fluid features due to the relative motion of the interface cause these deviations. We explore them by visualizing the 
development of coherent vortices using the Q -criterion [71]. Fig. 7(a) shows that Cn = 0.005 under-resolves the filaments shed as the 
instability develops. This lack of sufficient resolution causes under-resolution of fine-scale vortices which depend on the shear instability 

6 These high-resolution simulations of Rayleigh Taylor instability over long time horizons could serve as benchmarks. This data will be made publicly available.
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Fig. 5. Rayleigh-Taylor instability 2D (section 5.3): (a) Comparison of positions of top and bottom front of the interface with literature; (b) decay of the energy functional 
illustrating Theorem 1 for At = 0.5; (c) decay of the energy functional illustrating Theorem 1 for At = 0.82.

Fig. 6. Rayleigh-Taylor instability 2D (section 5.3): Comparison of centroids of heavy fluid for different Cn numbers; (a) At = 0.5; (b) At = 0.82.

generated by the finer filaments. We observe these finer filaments as we decrease the Cn number; Fig. 7(b) shows the interface and the 
corresponding Q -criterion for Cn = 0.0025 at the same time point as Cn = 0.005. We resolve these finer filaments better in this case. 
Upon further reduction of Cn to 0.00125, Fig. 7(c) captures much finer flow structures compared to Cn = 0.0025. We observe that even if 
integral metrics like front locations and center of mass match for two Cn numbers (0.005 and 0.0025 in our case, see Fig. 6), the fine-scale 
flow structures can be quite different due to their dependence on the resolution of the finer filaments. This fine structure resolution has 
a profound influence on the higher-order statistics of Rayleigh-Taylor instability. We defer a detailed analysis of higher-order statistics to 
future work.

Finally, we report on the numerical mass conservation properties of the proposed scheme for the 2D Rayleigh-Taylor experiments. Panel 
(a) of Fig. 8 shows the change in the total mass with respect to the initial total mass. We observe that it is of the order of 10−4 . Therefore, 
we see excellent mass conservation even with a high amount of deformation of the interface over very large time horizons (over 30,000 
time steps), especially in the presence of fine filaments that are clearly under-resolved for computationally tractable Cn numbers. We see 
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Fig. 7. Rayleigh-Taylor instability in 2D (section 5.3): Q -criterion of Rayleigh Taylor instability for At = 0.82 (density ratio of 0.1) at t′ = t
√

At = 5.6143. In each panel the left 
plot illustrates the Q -criterion, and the right plot shows corresponding interface location. These plots are zoomed insets of the domain near the interfacial instabilities. See 
Videos 2, 3, and 1 in supplementary material corresponding to Panels (a), (b), and (c) respectively for full animation.

Fig. 8. Rayleigh-Taylor instability 2D (section 5.3): (a) total mass conservation (integral of total φ) for At = 0.5; (b) total mass conservation (integral of total φ) for At = 0.82.

that there is some deterioration in mass conservation for the smallest Cn number, again due to the under-resolution of thin filaments. We 
see similar behavior of mass conservation for At = 0.82 for all three Cn numbers; these results are shown in Panel (b) of Fig. 8.

5.4. 3D simulations: Rayleigh-Taylor instability

Next we deploy our framework in 3D and simulate the Rayleigh-Taylor instability in 3D using adaptive octree meshes. For the 3D 
simulations we choose the following initial condition for φ to describe the interface:

φ(x) = tanh
(√

2
[

x2 − h0 − g (x)

Cn

])
, (85)

g(x) = 0.05 [cos (2πx1) + cos (2πx3)] . (86)

Here h0 is the location in the vertical direction for the interface, which in this case is chosen to be twice the characteristic length from 
the bottom of the channel. Typical simulations in the literature choose a rectangular domain that only captures one wavelength of the 
initial condition (e.g., [65]). To illustrate the advantage of the adaptive octree framework, we choose to include four wavelengths in the 
initial condition, resulting in a larger domain. Fig. 9 shows the initial condition, along with the schematics of the computational domain. 
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Fig. 9. 3D Rayleigh-Taylor instability (section 5.4): shown here is the computational domain with the iso-surface φ = 0 showing the initial condition of the interface.

We use a Cn = 0.0075 and At = 0.15. For this lower At number simulation, the effect of non-zero surface tension is important. The non-
dimensionalization follows the same logic as the 2D cases, with the Reynolds number set to 1000, the Weber number (W e = ρc g D2/σ ) 
set to 1000, and viscosity ratio, ν+/ν− , set to 1.

Due to the energy stability of the proposed numerical method we are able to take a reasonably large time-step size of δt = 0.0025. 
We refine near the interface to a level corresponding to element length of 4/28, ensuring about three elements for resolving the diffuse 
interface, while the refinement away from the interface is 4/24. Similar to the 2D cases, the boundary conditions are no-slip for velocity 
and no-flux for φ and µ on all the walls. In Appendix B we provide a detailed description of the preconditioners and linear solvers 
along with the command-line arguments that are used. The convergence criterion for all the 3D Rayleigh-Taylor simulations use a relative 
tolerance of 10−6 for Newton iteration and a relative tolerance of 10−6 for the linear solves within each Newton iteration.

Fig. 10 shows the evolution of the interface along with the solution-adapted mesh. We color the mesh with the order parameter value 
(blue for the heavy fluid and white for the light fluid) to show the evolution of the system. It is seen that as the interface evolves it 
deforms and expands, causing the mesh density to gradually increase. This gradual growth helps with the efficiency of the simulation, 
since a uniform mesh for this case would be computationally prohibitive. The efficient and scalable implementation of the approach allows 
us to run this large scale simulation on Stampede2 with 256 KNL nodes. We present the scalability of the approach later in the scaling 
section.

Fig. 11 shows that the initial sinusoidal perturbation develops into penetrating plumes of heavy fluid pushing down while the lighter 
fluid buckles and forms bubbles. The simulation maintains symmetry until the mixing becomes chaotic at long times; this is similar to the 
results in the 2D case. As different parts of the interface move in opposite directions, Kelvin-Helmholtz instabilities cause the plumes to roll 
up, which in turn causes mushroom-like structures to develop (see Fig. 11(d)). Although these two types of spikes (upwards/downwards) 
begin to develop in a checkerboard pattern that preserves symmetry, their dynamics are different due to the velocity differential that the 
two fronts face.

The downward spikes undergo further deformation and we see the emergence of four long filaments from the mushroom structure 
(see Fig. 11(g)) caused by the shear generated between the fluids. Liang et al. [72] and Jain et al. [73] also report four secondary filaments 
in their simulations for the same At number, although their simulations were for zero surface tension (i.e., dynamics similar to miscible 
systems).

On the other hand, the mushroom structures from the upward spikes develop into long and thin circular films. The upward spikes 
develop circular films adjacent to the wall “bubbles” (i.e., structures near the wall that the heavier fluid generates as it is displaced by the 
lighter one) interact with these bubbles to merge and form larger structures (see Fig. 11(h)). While the central plumes have little-to-no 
interaction with the wall, the bubbles continue to rise and ultimately collide with the top wall.

Another important difference between the upward and downward spikes is their rate of growth. Figs. 11(e) to 11(h) show that the 
fronts of the upward spikes move slower than the fronts of the downward spikes due to the density differential. Fig. 11(i) shows that 
the mushroom structures collide with top and bottom walls, which then leads to further breakup that creates the conditions for chaotic 
mixing. To the best of our knowledge, this is the first analysis in the literature of the dynamics for multiple wave single-mode instabilities.

5.5. 3D simulations: lid-driven cavity

Our next example also exhibits considerable deformation of the interface. The setup consists of a regularized lid-driven cavity, such 
that there are no corner singularities due to the imposed velocities. Half of the cubical domain contains fluid 1, the other half contains 
fluid 2. The fluids have finite surface tension. Fig. 12(a) shows the domain. Initially, the interface between the two fluids is flat. We use 
the length of the domain as the non-dimensionalizing length scale. The key non-dimensional numbers are Re = 100 (laminar), W e = 100, 
Cn = 0.005, and Pe = 13333. The viscosity and density ratios are 1. We adaptively refine the mesh with the finest element size near 
the interface being 1/(28), the coarsest element size away from the interface being 1/(24), and wall element size is 1/(26). Boundary 
conditions are no-slip for velocity on all the walls except the top wall, and no flux conditions for φ and µ. For the top wall boundary 
conditions the y and z-velocities are set to zero, while the x-velocity is given by following function:

v1 = 24x1 (1 − x1) x3 (1 − x3) . (87)
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Fig. 10. Rayleigh-Taylor instability in 3D (section 5.4): Snapshots of the mesh at various time-points in the simulation for Rayleigh-Taylor instability for At = 0.15. The figures 
show half of the mesh of the actual domain to illustrate the refinement around the interface of two fluids represented by the gray iso-surface of φ = 0. The phase field φ
values color the mesh, where blue represents heavy fluid and white represents light fluid. Here t(-) is the non-dimensional time. See Video 4 in supplementary material for 
full animation.

The velocity goes to zero on all the corners, thus avoiding corner singularities. It is worthwhile to note that while several authors 
(Chakravarthy and Ottino [74], Chella and Viñals [75], Park et al. [76]) have studied this problem in 2D; to our best knowledge it has 
not been explored in 3D.

The dynamics of the system with Re = 100 is in the laminar regime. In single-phase systems, a vortex develops near the top wall as 
the cavity flow evolves. This vortex forms for the two-phase case, as Fig. 12(b) displays. The vortex in Fig. 12(b) rolls up the flat interface 
up the sidewall and causes a thin wetting layer to form on the top wall. Fig. 13 shows how this layer progressively moves until it rolls 
back into the center of the box. The interface rapidly rolls up as it moves towards the domain center; it moves away from walls since the 
velocity goes to zero near the wall. Chakravarthy and Ottino [74], Chella and Viñals [75], and Park et al. [76] described this behavior in 2D 
simulations. The stability of the thin layer at the top wall depends on the surface tension strength (W e number). We simulate a moderate 
W e number which allows mixing and deformation but the film at the top is stable; for larger W e numbers the film at the top starts 
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Fig. 11. Rayleigh-Taylor instability in 3D (section 5.4): Snapshots of the zero isosurface of φ which represents the interface at various time-points in the simulation for Rayleigh-
Taylor instability for At = 0.15. Here t(-) is the non-dimensional time. See Video 5 in supplementary material for full animation.

breaking up into bubbles. We use a relative tolerance of 10−6 for Newton iteration. For the linear solves within each Newton iteration we 
use a relative tolerance of 10−6.

The previous two examples illustrate the capability of the framework to capture fairly complex interfacial motion in 3D due to its 
robust and efficient implementation, which we discuss next.

6. Scaling of the numerical implementation

6.1. Strong scaling

We perform a detailed timing analysis to demonstrate the parallel scalability of the framework. We perform all scaling tests on TACC’s 
Stampede2 Knights Landing processors ranging from 1 node to 256 nodes with 68 processors per node. We study in detail the lid-driven 
cavity case in section 5.5 for the scaling analysis. We run each scaling experiment for ten time steps such that the initialization and setup 
do not dominate the timing. Three different levels of refinement characterize each mesh: 1. background mesh refinement (Lbkg); 2. wall 
refinement (Lwall); and 3. interface refinement (Linterface). As the interface evolves, the mesh is subsequently refined near the interface 
and coarsened away from it. Table 3 shows the level of refinement and the approximate number of total elements for each of the three 
different meshes used for the scaling study.
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Fig. 12. The lid-driven cavity problem (section 5.5): (a) schematic of the computational domain with the iso-surface φ = 0 showing the initial condition of the interface; (b) 
streamlines of velocity overlayed on the interface at t = 16.5.

Table 3
Level of refinements involved in different meshes used for scaling studies.

Lbkg Lwall Linterface Nelem

M1 3 5 7 280 K
M2 4 6 8 1 M
M3 5 7 9 19 M

Panel (a) of Fig. 14 shows the result of strong scaling for three different meshes, and panel (b) shows the corresponding relative 
speedup. Fig. 14 demonstrates that we achieve a better than ideal scaling for these cases. To analyze the reasons behind this, we ana-
lyze component-by-component the framework timings and observe that the two dominant ones in the total run time are the Jacobian 
assembly ( J in section 3) and the preconditioner setup (PC setup in Petsc), with PC setup dominating the timing (see Fig. 16). Therefore, 
to understand the scaling behavior, we plot the strong scaling curves and corresponding relative speed up for these two components 
in Fig. 15. Panels (a) and (b) of Fig. 15 detail the scaling for Jacobian assembly, whereas, panels (c) and (d) show the scaling for PC setup. 
As expected, the Jacobian assembly scales almost ideally for all the cases considered from panels (a) and (b) of Fig. 15. However, the PC 
setup has better than ideal scaling, see panels (c) and (d). As the PC setup dominates the total solution time, the overall scaling mimics 
this behavior.

The deep memory hierarchy inherent in modern-day clusters may be the cause for the better than ideal scaling behavior. We use 
an additive Schwarz-based block preconditioning with each block using LU factorization (-sub_pc_type in Petsc) (see Appendix B) to 
compute the factors of the block matrix. The factorized block preconditioned matrix loses its sparsity, and the resultant matrix is less 
sparse (b × b) matrix, where b is the block size of the matrix on a processor. This denser matrix can no longer fit in L1, L2, or L3 cache 
for a big enough problem size. As the number of processors increases, the resulting problem size in a processor diminishes. Thus, these 
denser blocks begin to fit in cache, and therefore, we achieve a better than ideal speedup for PC setup and subsequent solve time.

Fig. 16 shows the relative fraction of time spent in different meshes. We observe two specific trends. First, as the number of processors 
increases such that number of elements remains constant, the relative cost of PC setup decreases. This is because of the fact that LU 
factorization is performed on a smaller block matrix. Also, the cost of communication while performing matrix assembly and vector 
assembly increases with increase in number of processor, whereas LU factorization is performed on a block matrix and thus requires 
no communication. Secondly, increasing the number of elements such that the number of processor is fixed has a substantial effect on 
the relative cost of PC setup. LU factorization is an O(N3) operation, whereas the number of FLOPS and communication involved in other 
operations like matrix assembly is atmost O(N2). This explains the increase in the PC setup cost. Future work will seek to develop schemes 
that will efficiently use cheaper preconditioners, whilst maintaining the energy stability and mass conservation of these schemes.

Remark 12. We use a Krylov space solver (BCGS) with ASM/LU preconditioning. Therefore, algebraic multi-grid solvers with Petsc’s AMG 
can substantially improve the solve time. Although we had some success with this setup (e.g., the 2D Rayleigh Taylor in section 5.3 cases 
use this setup), the 3D examples use the ASM/LU combination.

6.2. Weak scaling

Performing exact weak scaling7 is non–trivial due to the adaptive nature of the mesh. Therefore, we consider simulations with an 
approximately equal number of elements per processor to deduce the weak scaling nature of our solver. Fig. 17 shows the weak scaling 
results for the different problem sizes. Overall, similar to the strong scaling, we see an excellent weak scaling efficiency for different 
problem sizes. For each of the cases, we observe a weak scaling efficiency of greater than 0.5 for a 64 fold increase in the problem size. 

7 Weak scaling studies the variation in simulation time as we increase the number of processors with a fixed problem size per processor.
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Fig. 13. Mixing of two fluids in a cubic driven cavity (section 5.5): Snapshots of the zero iso-surface of φ which represents the interface at various time-points in the simulation 
for lid-driven cavity problem. Here t(-) is the non-dimensional time.

We also analyze the weak scaling for the dominant components of the overall time, i.e. Jacobian assembly and PC setup. Fig. 18 segregates 
the time for these components. The weak scaling efficiency (> 0.5) for each of these individual components is excellent as we vary the 
problem size by two orders of magnitude.

The preconditioner complexity and cost challenges (as seen from Fig. 16) are also present in the block iterative method of Khanwale 
et al. [6], where one performs these operation multiple times within one timestep (once every block iteration). This combined cost makes 
the block iterative method much more expensive compared to the fully coupled solver. Therefore, the current coupled framework improves 
the overall time to solve by reducing the number of evaluations required for Jacobian assembly and PC setup. In challenging application 
problems, preconditioning the linear problem (sub-iteration within each Newton solve) requires substantial computational effort; future 
work will seek improve the speed and efficiencies of the preconditioning.

7. Conclusions and future work

In this work we developed a numerical framework for solving the Cahn-Hilliard Navier-Stokes (CHNS) model of two-phase flows. We 
used a continuous Galerkin spatial discretization with linear finite elements and a second-order time-marching scheme. The newly devel-
oped scheme is a variant of the energy-stable energy block-iterative scheme used in Khanwale et al. [6], but in this work we improved 
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Fig. 14. Strong scaling: Shown in the panels are (a) the strong scaling behavior and (b) the relative speedup for total solve time for our solver on Stampede2 Knights Landing 
processor. Three different meshes are considered: M1 with 280 K elements, M2 with 1 M elements and M3 with 19 M elements. Excellent scaling behavior is observed up to 
O(17K ) processors.

Fig. 15. Strong scaling of components: Figure showing the segregated strong scaling behavior of two major component of our solver on Stampede2 Knights Landing processor: 
(a) shows Jacobian assembly strong scaling; (b) shows relative speedup for Jacobian assembly; (c) shows preconditioner setup; (d) shows relative speedup for Preconditioner 
setup.

both on the formal order of accuracy of the scheme (now second-order accurate) and the efficiency of the Newton iteration. We rigorously 
proved that the new time-marching scheme maintains energy-stability. We used a variational multiscale approach to stabilize the pres-
sure. The resulting method was implemented using a scalable adaptive meshing framework to perform large 3D simulations of complex 
multiphase flows. Solution-adapted meshing was accomplished using octrees in the Dendro package. We presented a comprehensive set 
of numerical experiments in both 2D and 3D, which were used to validate and test our numerical framework. We also used these numer-
ical experiments to validate our theoretical estimates for the energy-stability and mass conservation properties of the method. We ran the 
resulting computational code for the CHNS model on a massively parallel architecture to simulate multi-wave single-mode Rayleigh-Taylor 
instability. We were able to push the framework to solve up to 2 billion degrees of freedom. The same 3D framework was also used to 
simulate the mixing of two fluids in a cubic lid-driven cavity. We performed a detailed scaling analysis of the 3D framework and show 
excellent strong and weak scaling up to O(17K ) MPI processes.

For future work we plan to perform a detailed analysis of the performance of higher-order basis functions. As was observed in the 
scaling study (section 6), the preconditioner setup and Jacobian assembly are dominant parts of the overall solve time; we will aim to 
reduce the computational costs of these steps. We will also seek to develop projection-based methods which utilize all benefits of VMS 
approach, while decoupling the pressure row into a separate linear problem. Very efficient multigrid solvers can then be used for both the 
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Fig. 16. Percentage of time taken for individual components for three different meshes used for strong scaling case. The meshes are labelled at the top.

Fig. 17. Weak scaling: Figure showing weak scaling behavior of total solve time of our solver on Stampede2 Knights Landing processor for different number of elements per 
processor.

Fig. 18. Weak scaling: Figure showing the segregated weak scaling behavior of two major components of our solver on Stampede2 Knights Landing processor for different 
number of elements per processor: Jacobian assembly and preconditioner setup.
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blocks to make them more efficient and scalable. These improved solvers will help with adapting the framework to a matrix-free approach 
to solve the linear problems which are very efficient at large scales as shown by Ishii et al. [77].
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Appendix A. Some elementary propositions

For completeness we recall an important proposition and one its corollaries from [6].

Proposition 2

The following identity holds:

∂φ̃k

∂x j

(
∂

∂x j

(
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))

= 1
2

∂

∂x j

(
∂φ̃k

∂xi

∂φ̃k

∂xi

)

(A.1)

∀ φ̃k , ∈ H1("), where φk, φk+1, µk, µk+1, vk, vk+1 solves eq. (15) – eq. (19).

Remark 13. The advection term in eq. (3) can be defined in the divergence form as (see lemma 6.10 of section 6.1.2 of [15] for details):
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The divergence form induces a trilinear form when weakened:
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b2(vi, J j, wi) =
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. (A.4)

Using the above proposition and using integration by parts then yields:

b1(vi, v j, vi) = (B1(vi, v j), vi) = 0, (A.5)

b2(vi, J j, vi) = (B2(vi, J j), vi) = 0. (A.6)

See lemma 6.10 of section 6.1.2 of [15] for proof. For the equal density case J j is zero, and ∂
(
ρv j

)

∂x j
= ρ

∂v j
∂x j

= 0 then,

32

https://bitbucket.org/baskargroup/proteus/src/fully_coupled/
https://bitbucket.org/baskargroup/proteus/src/fully_coupled/


M.A. Khanwale, K. Saurabh, M. Fernando et al. Computer Physics Communications 280 (2022) 108501
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by skew-symmetry which is used in [6].

Corollary 1: Strong equivalence of forcing

If we have the following equivalence in the weak sense:
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∀ φ̃k , µ̃k ∈ H1("), and ∀ ṽk ∈ H1
0("), and ̃vk is weakly divergence-free, where ̃vk, ̃vk+1, pk, pk+1, φk, φk+1, µk, µk+1 satisfy eq. (15)

– eq. (19), then the following equivalence also holds in the strong sense:
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Appendix B. Details of solver selection for the numerical experiments

For the cases presented in sections 5.2, 5.4 and 5.5 we use the BiCGStab linear solver (a Krylov space solver) with additive Schwarz-
based preconditioning. For better reproduction, the command line options we provide petsc are given below which include some 
commands used for printing some norms as well.

-ksp_type bcgs
-pc_type asm
-sub_pc_type lu 0
#For monitoring residuals
-snes_monitor
-snes_converged_reason
-ksp_converged_reason

For the Rayleigh-Taylor instability case (section 5.3), we used an algebraic multigrid (AMG) linear solver with an successive over 
relaxation preconditioner with a GMRES at each level as a smoother. The options used for the Petsc setup are given below.

solver_options_ns = {
snes_atol = 1e-5
snes_rtol = 1e-6
snes_stol = 1e-5
snes_max_it = 40
ksp_rtol = 1e-5
ksp_atol = 1e-6
ksp_diagonal_scale = True
ksp_diagonal_scale_fix = True

#multigrid

#solver selection
ksp_type = "fgmres"
pc_type = "gamg"
pc_gamg_asm_use_agg = True
mg_levels_ksp_type = "gmres"
mg_levels_pc_type = "sor"

#performance options
mattransposematmult_via = "matmatmult"
pc_gamg_reuse_interpolation = "True"
mg_levels_ksp_max_it = 40

};

The linear systems we handle are fairly ill-conditioned, therefore, the smoothers we need to use are fairly expensive. The ASM/LU based 
smoother is more expensive compared to other smoothers like block Jacobi, however ASM/LU is more robust (better convergence). This 
setup works very well with a relatively constant number of Krylov iterations as the number of processes are increased in the massively 
parallel setting. The scaling results we present use the same setup of solvers, but there is substantial room for improvement in this area 
of the code where fieldsplit preconditioners using Schur complement can be used as smoothers to improve speed of the AMG solver.
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Appendix C. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .cpc .2022 .108501.
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