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Abstract
The thermal radiative transfer (TRT) equations form an integro-differential system that
describes the propagation and collisional interactions of photons. Computing numerical solu-
tions of the TRT equations accurately and efficiently is challenging for several reasons, the
first of which is that TRT is defined on a high-dimensional phase space that includes the
independent variables of time, space, and velocity. In order to reduce the dimensionality
of the phase space, classical approaches such as the PN (spherical harmonics) or the SN
(discrete ordinates) ansatz are often used in the literature. In this work, we introduce a novel
approach: the hybrid discrete (HT

N ) approximation to the radiative thermal transfer equations.
This approach acquires desirable properties of both PN and SN , and indeed reduces to each
of these approximations in various limits: H1

N ≡ PN and HT
0 ≡ ST . We prove that HT

N results
in a system of hyperbolic partial differential equations for all T ≥ 1 and N ≥ 0. Another
challenge in solving the TRT system is the inherent stiffness due to the large timescale sepa-
ration between propagation and collisions, especially in the diffusive (i.e., highly collisional)
regime. This stiffness challenge can be partially overcome via implicit time integration,
although fully implicit methods may become computationally expensive due to the strong
nonlinearity and system size. On the other hand, explicit time-stepping schemes that are not
also asymptotic-preserving in the highly collisional limit require resolving themean-free path
between collisions, making such schemes prohibitively expensive. In this work we develop
an asymptotic-preserving numerical method that is based on a nodal discontinuous Galerkin
discretization in space, coupled with a semi-implicit discretization in time. In particular,
we make use of a second order explicit Runge–Kutta scheme for the streaming term and
an implicit Euler scheme for the material coupling term. Furthermore, in order to solve the
material energy equation implicitly after each predictor and corrector step, we linearize the
temperature term using a Taylor expansion; this avoids the need for an iterative procedure,
and therefore improves efficiency. In order to reduce unphysical oscillation, we apply a slope
limiter after each time step. Finally, we conduct several numerical experiments to verify the
accuracy, efficiency, and robustness of the HT

N ansatz and the numerical discretizations.
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1 Introduction

The thermal radiative transfer (TRT) equations describe the interaction of matter and ther-
mal radiation, and are used in a wide range of applications including remote sensing, glass
manufacturing, and combustion [38]. The TRT equations model the propagation, absorption,
and emission of photons, as well as the coupling of these dynamics to background media via
a material-energy equation. Accurate and efficient numerical solutions of the TRT equations
are challenging for several reasons:

1. TheTRTequations form an integro-differential system that is posed on a high-dimensional
phase space: the time dimension, up to three spatial dimensions, two velocity direction
dimensions, and a frequency dimension;

2. Optically thick media introduces stiffness due to the large timescale separation between
propagation and collisions;

3. The material-energy coupling equation introduces strong non-linearity.

1.1 Discretization of the Phase Space

Two broad classes of solution approaches have been used to tackle the TRT equation (1)
stochastic methods and (2) deterministic methods; each approach offers their own advan-
tages and disadvantages. The main workhorse of the stochastic approach is the Monte Carlo
(MC) method, which is considered one of the most reliable methods in the radiation commu-
nity [9,31,43]. Monte Carlo methods produce statistical noise due to under-sampling of the
phase space; and therefore, to compensate for this under-sampling, many MC histories are
required, which in turns makes the MC calculation expensive. As a result, high performance
computing approaches are needed. In the realm of deterministic approaches for the angular
dependence, the most popular methods are the discrete ordinates (SN ) method [3,17,20–
22,36] and the spherical harmonics (PN ) method with various closures [24,28,32,33,35].
One of the advantages of these approaches is that, relative to Monte Carlo, they are less
computationally expensive.

The SN approximation scheme creates a system of equations along a discrete set of angular
directions that are taken from a specific quadrature set [4,14,23,40], and angular integrals
are calculated via the given quadrature set. The SN method has been the subject of intense
research, and many large-scale efficient solution techniques have been developed, including
approaches that have been shown to scale on leadership-class computers [1]. The SN method’s
main drawback is the phenomenon known as ray effects [20,21], which arises due to the fact
that particles move only along certain directions in the quadrature set. These effects are
conspicuously observed in optically thin materials with localized sources or sharp material
discontinuities.

On the other hand, the PN method approximates the solution with a spherical harmon-
ics expansion that by construction is rotationally invariant and converges in the L2 sense
[13]. The main disadvantage of the PN approach is that it is plagued by Gibbs phenomena
(i.e., unphysical oscillations) due to the fact that it is a truncated spectral method and can
thereby produce the negative particle concentrations [13,29], which is physically undesir-
able. Additionally, in the PN method, when N is small, the wave speeds are reduced because
the system eigenvalues can be far from unity. Closures have been developed to deal some
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of the shortcomings of the PN method, such as the MN method [6,12] and other techniques
[11,18,44].

1.2 Stiffness

Another challenging aspect in accurately and efficiently solving the thermal radiative transfer
(TRT) equations is that the system is inherently stiff. This stiffness is especially pervasive
in the diffusive regime (i.e., highly collisional), where there is a large timescale separation
between propagation and collisions. The reduction of the kinetic TRT system to a lower
dimensional system of partial differential equations (PDEs) via an ansatz such as discrete
ordinate (SN ) or spherical harmonics (PN ) does not alleviate this problem.

From the perspective of numerical methods, the stiffness challenge can be partially
overcome via implicit time integration, although fully implicit methods may become compu-
tationally expensive due to the strong nonlinearity and system size. On the other hand, explicit
time-stepping schemes that are not also asymptotic-preserving in the highly collisional limit
require resolving the mean-free path between collisions, making such schemes prohibitively
expensive.

An efficient alternative to both fully implicit and fully explicit schemes are semi-implicit
schemes, where, at least roughly-speaking, the transport is handled explicitly, while the
material coupling term (i.e., collisions) are handled implicitly. For example, Klar et al. [15,16]
developed and analyzed an operator splitting approach that was shown to be asymptotically-
preserving while at the same time relatively efficient in all regimes. A different semi-implicit
approach for TRTwas subsequently developed byMcClarren et al. [28], in which a two-stage
second-order Runge–Kutta (RK) scheme was used for the streaming term and the backward
Euler scheme was used for the material coupling term. This scheme was also shown to be
asymptotic-preserving in the diffusive limit.

1.3 Strong Nonlinearity in theMaterial Coupling Term

In the absence of material coupling, the thermal radiative transfer equations and its various
reductions (e.g., PN or SN ) represent a systemof linear constant-coefficient partial differential
equations. The presence of the material coupling term introduces strong nonlinearity. For
explicit time-steppingmethods this nonlinearity does not pose a direct challenge, although, as
mentioned above, explicit methods will then suffer from small time-steps. For fully implicit
time-stepping methods the nonlinearity results in large nonlinear algebraic equations that
must be inverted in time-step, resulting in significant computational expense. For semi-
implicit time-stepping approaches, a nonlinear material coupling term only introduces a
local nonlinear algebraic equation (i.e., local on each element), although even this can add
computational expense. Fortunately, McClarren, Evans, and Lowrie [28] showed that the
local nonlinear problems presented by a semi-implicit approach can be linearized via a
simple Taylor series argument. It was shown that this linearization reduces the computational
complexity and does not adversely affect overall accuracy of the method.

1.4 Scope of ThisWork

In order to address some of the shortcomings of classical deterministic methods, we introduce
in this work the hybrid discrete (HT

N ) approximation, which hybridizes aspects of the PN and
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SN methods. TheHT
N approximation is equivalent to spherical harmonics (PN ) approximation

when the number of the discretized velocity space (T ) is one and only depends on the order
of spherical harmonics basis functions (N ). Also, it is equivalent to the discrete ordinate (SN )
method for a certain quadrature set. By hybridizing PN and SN , the HT

N approximation is
able to acquire beneficial properties of both of these classical approaches. We prove that HT

N
results in a system of hyperbolic partial differential equations for all T ≥ 1 and N ≥ 0.

Once we have shown how to reduce the TRT equations into their HT
N approximate form,

we will discretize the resulting PDE system via the same semi-implicit time integration
scheme introduced by McClarren et al. [28]. In particular, this approach uses a second order
Runge–Kutta explicit time discretization schemes for the streaming term and a backward
Euler scheme for the material energy term; this allows us to resolve the stiffness of the TRT
systems and to preserve the asymptotic diffusion limit. Furthermore, in order to solve the
material energy equation implicitly after each predictor and corrector step, we linearize the
temperature term using a Taylor expansion; this avoids the need for an iterative procedure,
and therefore improves efficiency. In order to reduce unphysical oscillation, we apply a slope
limiter after each time step.

In the presentworkwewill consider only grey, i.e., frequency-averaged, radiation transport
equations in slab geometry. Non-grey andmulti-dimensional radiative transfer will be studied
in future work. For the grey TRT system in slab geometry we consider several standard test
cases in order to validate the accuracy, efficiency, and robustness of scheme, as well as to
highlight benefits over PN and SN solutions.

The remainder of this paper is organized as follows. In Sect. 2 the novel hybrid discrete
(HT

N ) approximations in slab geometry are derived ands discussed. In Sect. 3 we develop
a semi-implicit nodal discontinuous Galerkin finite element scheme for the resulting HT

N
systems. In Sect. 4 we provide numerical results of HT

N approximations on various bench-
mark problems to show its robustness and asymptotic preserving property. Conclusions are
presented in Sect. 5.

2 Hybrid Discrete Approximation

In this section, we formulate HT
N approximations to the radiative transfer in one-dimension.

We begin with the thermal radiative transfer in slab geometry, and then derive the hybrid
discrete approximation. We prove that the HT

N system is always hyperbolic.

2.1 Frequency-Independent Grey Thermal Transfer

Consider the 1D scattering-free thermal radiative transfer equation (e.g., see [28]):

1
c

6̂I
6t
+ µ

6̂I
6z
+ σ̂ Î = σ̂ B̂ + ŝ

2
, (2.1)

where Î (t, z, µ, ν) : R≥0 ×R× [−1, 1]×R %→ R is the specific intensity, t ∈ R≥0 is time,
z ∈ R is the spatial variable, µ ∈ [−1, 1] is the angular variable, i.e., µ = cosϕ with polar
angle ϕ ∈ [0,π], ν ∈ R is the frequency of the photon, ŝ(t, z, ν) : R≥0 ×R×R %→ R is an
external source term, σ̂ (z, ν) : R × R %→ R≥0 is the opacity, B̂(ν, θ) : R × R≥0 %→ R≥0 is
the Planck function that satisfies:

B(θ) :=
∫

ν
B̂(ν, θ)dν = acθ4

2
, (2.2)

123



Journal of Scientific Computing (2022) 90 :2 Page 5 of 29 2

where θ(t, z) : R≥0 × R %→ R≥0 is the material temperature in keV, c = 3 × 1010 cm s−1

is the speed of light, and a = 1.372 × 1014 ergs cm−3 keV−4 is the radiation constant. The
notation ·̂ is used to signify quantities that depend explicitly on the frequency ν. Equation
(2.1) couples to the material-energy equation:

6e
6t
=
∫

µ

∫

ν
σ̂ (z, ν)

(
Î (t, z, µ, ν) − B̂(ν, θ)

)
dνdµ, (2.3)

where e(ρ, θ) : R≥0 × R≥0 %→ R≥0 is the material energy per volume and ρ(t, z) : R≥0 ×
R %→ R≥0 is the material density.

For the remainder of this paper we consider only the case where the opacity is frequency
independent: σ̂ (z, ν) → σ (z). In this approximation, we define the following frequency-
integrated quantities (which now removes the ·̂ notation):

I (t, z, µ) :=
∫

ν
Î (t, z, µ, ν) dν, s(t, z) :=

∫

ν
ŝ(t, z, ν) dν, (2.4)

and Eq. (2.2). We also define the angular moment of the radiation intensity Î as follows:

E(t, z) := 1
c

∫

µ

∫

ν
Î (t, z, µ, ν)dνdµ = 1

c

∫

µ
I (t, z, µ) dµ. (2.5)

Furthermore, we will assume throughout this work that the material density, ρ, is constant,
which results in the following:

6e
6t
= 6e

6θ
6θ
6t
+ 6e

6ρ
6ρ
6t
= Cv

6θ
6t
, (2.6)

where Cv = 0.3 × 1016 erg/cm3/keV is the heat capacity at constant volume.
Under the assumption of a frequency independent opacity and a constant material density,

we can integrate (2.1) over the frequency ν and arrive at the following grey transport equation
and material-energy equation:

1
c

6I
6t
+ µ

6I
6z
+ σ I = 1

2
σacθ4 + s

2
, (2.7)

Cv
6θ
6t
= σ

(∫ 1

−1
I (t, z, µ) dµ − acθ4

)
. (2.8)

respectively. These equations are defined on t > 0, z ∈ (zL , zR), and µ ∈ [−1, 1], and must
be equipped with initial conditions at t = 0 and appropriate boundary conditions at z = zL
and z = zR .

2.2 Formulation of the 1D HT
N Approximation

Equations (2.7)–(2.8) represent an integro-differential equation for the intensity, I (t, z, µ),
and thematerial temperature, θ(t, z). One class of techniques for approximating such systems
is the dimension reduction via ansatz in µ. Standard techniques for reducing the dimension-
ality of these equations to a system defined only over (t, z) include the PN (i.e., spherical
harmonics) (e.g., see [2]) and SN (i.e., discrete ordinates) [3] methods. Spherical harmonics
(PN ) suffer from producing negative (and therefore unphysical) intensities, while discrete
ordinates (SN ) suffer from ray effects. In this work we consider an alternative approach that
was first developed in Shin [37], namely the HT

N (i.e., hybrid discrete) approach. The main
advantage of HT

N is that it allows us to work with an approximation that combines desirable
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(a) (b)
Fig. 1 The HT

N approximation. Panel a shows the discrete velocity bands, each of which is centered at
µ j ∈ (−1, 1) for j = 1, 2, . . . ,m. Panel b shows the discrete velocity bands with the physical z-mesh
superimposed

aspects of both PN and SN . In particular HT
N reduces to each of these approximations in

various limits: H1
N ≡ PN and HT

0 ≡ ST .
The HT

N approximation of Shin [37] begins by constructing a mesh in velocity space. In
1D this means a mesh in the angular variables µ ∈ [−1, 1]:

T⋃

j=1

[
µ j − 'µ

2
, µ j +

'µ

2

]
, µ j = −1+

(
j − 1

2

)
'µ, and 'µ = 2

T
, (2.9)

which we depict in Fig. 1a. With this velocity mesh, the HT
N approach defines on the velocity

band centered at µ j the following band-localized intensity:

I (t, z, µ(α))
∣∣∣∣
µ∈
[
µ j− 'µ

2 ,µ j+'µ
2

] ≈ I ( j)(t, z,α) :=
N∑

k=0

(
2k + 1

2

)
u( j)k (t, z)pk(α), (2.10)

for j = 1, 2, . . . , T , where α ∈ [−1, 1] is a local variable in each velocity band centered at
µ j with thickness 'µ:

µ(α) = µ j + α

(
'µ

2

)
, (2.11)

and pk(α) is the kth order Legendre polynomial:

pk(α) =
(
2k − 1

k

)
α pk−1(α) −

(
k − 1
k

)
pk−2(α), p0(α) = 1, p1(α) = α,

and
∫ 1

−1
pk(α) pm(α) dα =

(
2

2k + 1

)
δkm .

(2.12)

The moments in (2.10) are defined as

u( j)k (t, z) =
∫ 1

−1
I ( j)(t, z,α) pk(α) dα, (2.13)

for j = 1, 2, . . . , T . Note that in the HT
N approximation T is the number of µ-cells, while

N is the number of basis functions used in ansatz (2.10).
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Using the HT
N approximation, on each interval µ ∈

[
µ j − 'µ

2 , µ j + 'µ
2

]
, Eq. (2.7) can

be written as follows (where we have also temporarily assumed that s ≡ 0):

1
c

6I ( j)

6t
+
(
µ j + α

'µ

2

) 6I ( j)

6z
+ σ I ( j) = 1

2
σacθ4, (2.14)

for j = 1, 2, . . . , T and α ∈ [−1, 1]. Plugging ansatz (2.10) into (2.14), multiplying the
equation by theLegendre polynomial p*, integrating over [−1, 1], and using the orthogonality
of Legendre polynomials (2.12), gives the following equations:

1
c

6u( j)*

6t
+ µ j

6u( j)*

6z
+

N∑

k=0

'µ

2
P*k

6u( j)k

6z
+ σu( j)* = σacθ4δ*0, (2.15)

for * = 0, 1, . . . , N , where via the three-term recurrence relationship and orthogonality from
(2.12):

P*k =
(
2k + 1

2

)∫ 1

−1
α pk(α)p*(α)dα =

(
k
2

)∫ 1

−1
pk−1(α)p*(α)dα

+
(
k + 1
2

)∫ 1

−1
pk+1(α)p*(α)dα =






k
2k−1 , if * = k − 1,
k+1
2k+3 , if * = k + 1,
0, otherwise.

(2.16)

We can write the resulting system of equations as follows:

1
c

6u( j)

6t
+ A( j) 6u( j)

6z
= q
(
u( j), θ

)
, (2.17)

for j = 1, 2, . . . , T , where u( j) =
(
u( j)0 u( j)1 . . . u( j)N

)T
∈ RN+1,

A( j) = µ j I+
'µ

2





0 1
1
3 0 2

3

2
5 0

. . .

. . .
. . . N−1

2N−3
N−1
2N−1 0 N

2N−1
N

2N+1 0





, (2.18)

q
(
u( j), θ

)
= −σu( j) + σacθ4e1, (2.19)

where e1 = (1, 0, . . . , 0)T ∈ R(N+1), I,A( j) ∈ R(N+1)×(N+1), and q
(
u( j), θ

)
: R(N+1) ×

R≥0 %→ R(N+1). Finally, we obtain the linear system:

1
c

6u
6t
+ A

6u
6z
= Q (u, θ) , (2.20)

where

A =




A(1)

. . .

A(T )



 , Q (u, θ) =




q
(
u(1), θ

)

...

q
(
u(T ), θ

)



 , and u =




u(1)
...

u(T )



 , (2.21)

where A ∈ R(N+1)T×(N+1)T , Q (u, θ) : R(N+1)T × R≥0 %→ R(N+1)T , and u ∈ R(N+1)T .
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Proposition 1 Equations (2.20)–(2.21) is a system of strictly hyperbolic partial differential
equation.

Proof To prove hyperbolicity we must show that the matrixA ∈ R(N+1)T×(N+1)T in (2.20)–
(2.21) is diagonalizable with only real eigenvalues. Showing this is equivalent to showing
that each block matrix A( j) ∈ R(N+1)×(N+1) is diagonalizable with only real eigenvalues,
since A is simply a block diagonal matrix with blocks A( j) for j = 1, 2, . . . , T .

To show that A( j) is diagonalizable with only real eigenvalues, we write the tridiagonal
matrix A( j) as follows and define a diagonal matrix D:

A( j) =





a b1
c1 a b2

c2 a
. . .

. . .
. . . bN−1

cN−1 a bN
cN a





, D =





1 √
c1
b1 √

c2
b2

. . . √
cN
bN





,

(2.22)
where a = µ j and for all k = 1, 2, . . . , N : bk = k/(2k−1) )= 0 and ck = (k+1)/(2k+3) )=
0. It can then easily be shown that P( j) = D−1 A( j) D, where

P( j) =





a
√
b1c1√

b1c1 a
√
b2c2

√
b2c2 a

. . .

. . .
. . .

√
bN−1cN−1√

bN−1cN−1 a
√
bNcN√

bNcN a





. (2.23)

Now since the matrix P( j) is real and symmetric, it has only real eigenvalues. Also, all the
eigenvalues of P( j) are distinct since all off-diagonal elements are nonzero [34]. Hence,A( j)

has only real eigenvalues and all the eigenvalues are distinct by similarity to P( j). +,

Proposition 2 The eigenvalues of the matrix A ∈ R(N+1)T×(N+1)T in (2.20)–(2.21) are real,
distinct, and given by

λk+( j−1)(N−1) = µ j +
(

'µ

2

)
sk for k = 1, . . . , N + 1, j = 1, . . . , T , (2.24)

where sk ∈ (−1, 1) for k = 1, 2, . . . , N + 1 are the real distinct roots of the degree (N + 1)
Legendre polynomial. If we assume that the N + 1 Legendre roots are ordered so that sN+1
is the largest root (i.e., closest to +1), then the largest eigenvalue (in absolute value) of A is
given by

ρ(A) = −λ1 = λ(N+1)T = µT +
(

'µ

2

)
sN+1. (2.25)

Proof It can be shown that the eigenvalues of A( j) ∈ R(N+1)×(N+1) from (2.17) are given
by the following formula (e.g., see Cohen [5]):

λ
( j)
k = µ j +

(
'µ

2

)
sk, for k = 1, 2, . . . , N + 1, (2.26)
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where sk ∈ (−1, 1) for k = 1, 2, . . . , N + 1 are the roots of the degree (N + 1) Legendre
polynomial. Since A is just a block diagonal matrix with A( j) ∈ R(N+1)×(N+1) as the blocks
for j = 1, 2, . . . , T (as shown in (2.21)), it follows that the eigenvalues ofA are of the form:

λk+( j−1)(N+1) = µ j +
(

'µ

2

)
sk for k = 1, . . . , N + 1, j = 1, . . . , T . (2.27)

The most negative and most positive eigenvalues in (2.27) are λ1 (k = 1, j = 1) and
λ(N+1)T (k = N + 1, j = T ), respectively. This follows directly from the assumed ordering
of sk , as well as the ordering assumed in the definition of µ j (see Eq. (2.9)). In fact, these
two eigenvalues have the same magnitude, since by definition: s1 = −sN+1 and µ1 = −µT .
This gives the desired result: Eq. (2.25). +,
Remark 2.1 The importance of the formulation of the hyperbolic system in numerical simula-
tions can be explained by two factors, stability and well-posedness. For example, the stability
of the initial value problem for strongly hyperbolic systems is shown in Chapter 5 of [10] and
stiff well-posedness of the Cauchy problem for strongly hyperbolic system has been proved
in [26].

Proposition 3 ρ(A) < 1 for any T and N of HT
N .

Proof A simple calculation, using the fact that sN+1 < 1, shows that

ρ(A) = µT +
(

'µ

2

)
sN+1 = 1 −

(
'µ

2

)
+
(

'µ

2

)
sN+1 < 1 −

(
'µ

2

)
+
(

'µ

2

)
= 1,

-⇒ ρ(A) < 1.

Furthermore, we note that ρ(A) = 1 − O('µ) as 'µ → 0. +,
Remark 2.2 The HT

N model possesses the correct physical property that the propagation rate
cannot exceed the speed of light, i.e., the characteristic speed is less than the speed of light.

Remark 2.3 We have shown via the above propositions that all of the eigenvalues of A are
real, distinct, and strictly between −1 and 1. In practice, we would also like to impose the
condition thatA not have a zero eigenvalue; this additional requirement is useful especially in
the computation of steady-state solutions and in the imposition of inflow/outflow boundary
conditions. We can always ensure that A does not have a zero eigenvalue if either of the
following conditions are satisfied:
1. T is even; or
2. T is odd and N is odd.
These assertions follow directly from definition (2.27).

2.3 The Radiation Energy Density

Using the HT
N asantz (2.10), the angular moment of the radiation density (2.5) can be written

as follows:

E(t, z) := 1
c

∫ 1

−1
I (t, z, µ)dµ = 1

c

T∑

j=1

'µ

2

∫ 1

−1
I ( j)(t, z,α)dα

= 1
c

T∑

j=1

'µ

2

∫ 1

−1

N∑

k=0

(
2k + 1

2

)
u( j)k (t, z)pk(α)dα = 1

c

T∑

j=1

'µ

2
u( j)0 (t, z).

(2.28)
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Using this result, we can rewrite material-energy equation (2.8) as follows:

Cv
6θ
6t
= σ

T∑

j=1

'µ

2
u( j)0 (t, z) − σacθ4. (2.29)

3 Semi-implicit Discontinuous Galerkin (DG) Method

In this section we develop a discontinuous Galerkin (DG) finite element method with a
semi-implicit time discretization for solving the 1D HT

N system (2.20)–(2.21) along with
the material-energy equation (2.29). The strategy that we employ is similar to the method
developed by McClarren et al. [28] for the PN equations, but here we extend that work to the
HT

N approximation as described above.

3.1 Discontinuous Galerkin Spatial Discretization

The HT
N approximation as described in the previous sections divides the phase space into

discrete velocity bands, inside of which we approximate the specific intensity, I (t, x, µ), by
a finite polynomial ansatz; this is illustrated in Fig. 1a. In order to spatially discretize the
resulting HT

N equations: (2.20)–(2.21) and (2.29), we additionally introduce a mesh in the
z-coordinate:

[zL , zR] =
Nz⋃

i=1

Ti , where Ti =
[
zi − 'z

2
, zi +

'z
2

]
, (3.1)

zi = zL +
(
i − 1

2

)
'z, and 'z = zR − zL

Nz
. (3.2)

The full z −µ phase space mesh is illustrated in Fig. 1b. On each mesh element we define a
local coordinate as follows:

z
∣∣∣
Ti
= zi +

(
'z
2

)
ξ, where ξ ∈ [−1, 1] . (3.3)

The test and trial functions for the discontinuous Galerkin scheme will come from fol-
lowing broken finite element spaces:

W'z
Meqn

:=
{
w'z ∈

[
L∞ [zL , zR]

]Meqn : w'z
∣∣∣
Ti

∈
[
P
(
Mdeg
)]Meqn ∀Ti

}
, (3.4)

where Meqn is the number of equations and P
(
Mdeg
)
is the set of all polynomials with

maximum polynomial order Mdeg. On each mesh element we define the Mdeg + 1 Gauss-
Lobatto points: ξ j ∈ [−1, 1] for j = 1, . . . ,Mdeg+1 (e.g., see [42]). For eachGauss-Lobatto
point we define the associated Lagrange interpolating polynomial:

- j (ξ) =
Mdeg+1∏

k=1
k )= j

(ξ − ξk)(
ξ j − ξk

) , s.t. - j (ξ*) = δ j* for j, * = 1, . . . ,Mdeg + 1. (3.5)
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The approximate solution on each element can then be written as

{
u'z (t, z (ξ)) , θ'z (t, z (ξ))

}∣∣∣∣
Ti

=
Mdeg+1∑

j=1

{
Ui j (t) , .i j (t)

}
- j (ξ) , (3.6)

where u'z(t, z) : R≥0 ×R %→ W'z
(N+1)T , θ

'z(t, z) : R≥0 ×R %→ W'z
1 ,- j (ξ) : [−1, 1] %→

R, and U j (t) : R≥0 %→ R(N+1)T . Similarly, we write the approximate source as

Q'z (u'z, θ'z)
∣∣∣∣
Ti

=
Mdeg+1∑

j=1

Q
(
Ui j (t) ,.i j (t)

)
- j (ξ) . (3.7)

To obtain the spatially discretized version of HT
N system (2.20) on each element Ti , we

replace the exact solution by (3.6), the exact source by (3.7), multiply (2.20) by a test function
-k(ξ), integrate over the element, and apply integration-by-parts in ξ :

1
c

Mdeg+1∑

j=1

dUi j (t)
dt

Mkj +
(

2
'z

)[
-k(1)Fi+ 1

2
(t) − -k(−1)Fi− 1

2
(t)
]

−
(

2
'z

)
A

Mdeg+1∑

j=1

Ui j (t)Nkj =
Mdeg+1∑

j=1

Q
(
Ui j (t),.i j (t)

)
Mkj ,

(3.8)

for each k = 1, . . . ,Mdeg, where we used the fact that 6z = (2/'z) 6ξ , and where

Mkj =
∫ 1

−1
-k(ξ)- j (ξ) dξ and Nkj =

∫ 1

−1
- j (ξ)-

′
k(ξ) dξ . (3.9)

The numerical flux on each element face is defined as follows:

Fi− 1
2
(t) = 1

2
A

Mdeg+1∑

j=1

(
Ui−1 j (t)- j (1)+ Ui j (t)- j (−1)

)

+ 1
2
|A|

Mdeg+1∑

j=1

(
Ui−1 j (t)- j (1) − Ui j (t)- j (−1)

)
,

(3.10)

for i = 1, . . . , Nz + 1. In the above expression, |A| is defined through the eigenvalues of A:
A = V!V−1 -⇒ |A| = V |!|V−1, (3.11)

whereV is the matrix of right eigenvectors ofA,! = diag
(
λ1, . . . , λ(N+1)T

)
is the diagonal

matrix of eigenvalues of A, and |!| = diag
(
|λ1|, . . . , |λ(N+1)T |

)
.

In order to close this semi-discrete system,we also need to semi-discretizematerial-energy
equation (2.29). Following all of the above outlined procedures, this results in the following
equation:

Cv

Mdeg+1∑

j=1

d.i j (t)
dt

Mkj =
Mdeg+1∑

j=1

(
σ

T∑

*=1

'µ

2
U (*)
i j(1)(t) − σac

(
.i j (t)

)4
)
Mkj , (3.12)

whereU (*)
i j(1) refers to the (1+ (* − 1)(N + 1))th component of Ui j (i.e., the first component

of Ui j in the *th velocity band).
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For the remainder of this paper we consider the case Mdeg = 1 (i.e., the piecewise linear
DG approximation), which yields a second-order accurate spatial approximation. The basis
functions in this case are

-1(ξ) =
1
2
(1 − ξ) and -2(ξ) =

1
2
(1+ ξ) . (3.13)

In this case, all of the above expressions simplify greatly. For example, the values defined in
(3.8) reduce to the following:

M = 1
3

[
2 1
1 2

]
and N = 1

2

[−1 −1
1 1

]
. (3.14)

After some simple algebra, we arrive at the following semi-discrete system:

1
c
dUi1

dt
−

2Fi+ 1
2
+ 4Fi− 1

2
− 3A
(
Ui1 + Ui2

)

'z
= Q
(
Ui1,.i1

)
, (3.15)

1
c
dUi2

dt
+

4Fi+ 1
2
+ 2Fi− 1

2
− 3A
(
Ui1 + Ui2

)

'z
= Q
(
Ui2,.i2

)
, (3.16)

Cv
d.i j

dt
= σ

T∑

*=1

'µ

2
U (*)
i j(1) − σac.4

i j , for j = 1, 2, (3.17)

for i = 1, . . . , (N + 1)T . The numerical fluxes in the Mdeg = 1 reduces to the following:

Fi− 1
2
(t) = 1

2
A
(
Ui 1(t)+ Ui−1 2(t)

)
− 1

2
|A|
(
Ui 1(t) − Ui−1 2(t)

)
, (3.18)

for i = 1, . . . , Nz + 1.

3.2 Semi-implicit Time Scheme: Nonlinear Version

For the time integration we adopt the semi-implicit scheme by McClarren et al. [28], which
is a two-stage Runge–Kutta method. The first stage (i.e., the predictor step) can be written
as follows:

1
c

U
n+ 1

2
i1 − Un

i1

't/2
= +

2Fn
i+ 1

2
+ 4Fn

i− 1
2

− 3A
(
Un
i1 + Un

i2

)

'z
+Q
(
U
n+ 1

2
i1 ,.

n+ 1
2

i1

)
, (3.19)

1
c

U
n+ 1

2
i2 − Un

i2

't/2
= −

4Fn
i+ 1

2
+ 2Fn

i− 1
2

− 3A
(
Un
i1 + Un

i2

)

'z
+Q
(
U
n+ 1

2
i2 ,.

n+ 1
2

i2

)
, (3.20)

Cv

.
n+ 1

2
i j − .n

i j

't/2
= σ

T∑

*=1

'µ

2
U

(*) n+ 1
2

i j(1) − σac
(

.
n+ 1

2
i j

)4
, for j = 1, 2. (3.21)

Similarly, the second stage (i.e., the correction step) can be written as follows:

1
c

Un+1
i1 − Un

i1

't
= +

2Fn+ 1
2

i+ 1
2
+ 4Fn+ 1

2

i− 1
2

− 3A
(
U
n+ 1

2
i1 + U

n+ 1
2

i2

)

'z
+Q
(
Un+1
i1 ,.n+1

i1

)
,

(3.22)
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1
c

Un+1
i2 − Un

i2

't
= −

4Fn+ 1
2

i+ 1
2
+ 2Fn+ 1

2

i− 1
2

− 3A
(
U
n+ 1

2
i1 + U

n+ 1
2

i2

)

'z
+Q
(
Un+1
i2 ,.n+1

i2

)
,

(3.23)

Cv

.n+1
i j − .n

i j

't
= σ

T∑

*=1

'µ

2
U (*) n+1
i j(1) − σac

(
.n+1

i j

)4
, for j = 1, 2. (3.24)

The numerical flux in both the first and second stages is of the following form:

F/
i− 1

2
= 1

2
A
(
U/
i 1 + U/

i−1 2
)
− 1

2
|A|
(
U/
i 1 − U/

i−1 2
)
, (3.25)

where / ∈
{
n, n + 1

2

}
.

The time-stepping scheme described above is semi-implicit in that it is explicit on the
wave propagation terms and implicit on the collision terms. Since in the TRT system the
collision source is a nonlinear function of the temperature, the result is that in each stage
a nonlinear algebraic equation must be solved. In order to avoid this, we show in the next
section how to linearize the source.

3.3 Semi-implicit Time Scheme: LinearizedVersion

The scheme we propose in this work for solving the 1D HT
N system (2.20)–(2.21) along

with the material-energy equation (2.29) is a variant of the semi-implicit scheme described
by (3.19)–(3.24), but with the additional feature that the source is linearized. The proposed
scheme is a HT

N extension of the scheme developed for the PN system in [28]. The details of
this scheme are provided in this section.

We begin this discussion by recalling that source, Q, in (3.19)–(3.20) and (3.22)–(3.23)
can be written as follows:

Q
(
U/
i j ,.

/
i j

)
= −σU/

i j + σac
(
./

i j

)4
ẽ, (3.26)

where / ∈
{
n + 1

2 , n + 1
}
and ẽ ∈ R(N+1)T is a vector with the following components:

ẽm =
{
1 if m = 1+ (k − 1)(N + 1) for k = 1, 2, . . . , T ,
0 otherwise.

(3.27)

These sources are clearly nonlinear in the temperature .. In order to linearize Q we invoke
the following two Taylor expansions in temperature:
(

.
n+ 1

2
i j

)4
=
(
.n

i j

)4
+ 4
(
.n

i j

)3 (
.

n+ 1
2

i j − .n
i j

)
+O

((
.

n+ 1
2

i j − .n
i j

)2)

, (3.28)

(
.n+1

i j

)4
=
(
.n

i j

)4
+ 4
(
.n

i j

)3 (
.n+1

i j − .n
i j

)
+O
((

.n+1
i j − .n

i j

)2)
. (3.29)

Since our overall method is only accurate to second order, we can safely disregard the second
order corrections in the above expressions. Furthermore, the linear differences in the Taylor
expansions can be replaced via the update formulas (3.21) and (3.24), respectively, yielding:

(
.

n+ 1
2

i j

)4
≈
(
.n

i j

)4
+ 4
(
.n

i j

)3 't
2Cv

(

σ

T∑

*=1

'µ

2
U

(*) n+ 1
2

i j(1) − σac
(

.
n+ 1

2
i j

)4)

, (3.30)
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(
.n+1

i j

)4
≈
(
.n

i j

)4
+ 4
(
.n

i j

)3 't
Cv

(

σ

T∑

*=1

'µ

2
U (*) n+1
i j(1) − σac

(
.n+1

i j

)4
)

. (3.31)

Treating the above approximations as equalities and solving (3.30) and (3.31) for the fourth

power of .
n+ 1

2
i j and .n+1

i j , respectively, yields:

(
.̃

n+ 1
2

i j

)4
:=

(
.n

i j

)3
(

Cv
σ .n

i j + 2't
T∑

*=1

'µ

2
U

(*) n+ 1
2

i j(1)

)

Cv
σ + 2'tac

(
.n

i j

)3 , (3.32)

(
.̃n+1

i j

)4
:=

(
.n

i j

)3
(

Cv
σ .n

i j + 4't
T∑

*=1

'µ

2
U (*) n+1
i j(1)

)

Cv
σ + 4'tac

(
.n

i j

)3 . (3.33)

Using these versions of the fourth power of the temperature successfully linearizes the source
terms in (3.19)–(3.20) and (3.22)–(3.23).

In order to complete the linearization of the source terms, we now turn our attention to
(3.24). In particular, we replace the fourth power of .n+1

i j in (3.24) by (3.33). After some
simple algebra, we now arrive at the final semi-implicit discontinuous Galerkin scheme that
is advocated in this work. The first stage is

U
n+ 1

2
i1 − Un

i1

σc ('t/2)
= +

2Fn
i+ 1

2
+ 4Fn

i− 1
2

− 3A
(
Un
i1 + Un

i2

)

σ'z
− U

n+ 1
2

i1 + ac
(

.̃
n+ 1

2
i1

)4
ẽ, (3.34)

U
n+ 1

2
i2 − Un

i2

σc ('t/2)
= −

4Fn
i+ 1

2
+ 2Fn

i− 1
2

− 3A
(
Un
i1 + Un

i2

)

σ'z
− U

n+ 1
2

i2 + ac
(

.̃
n+ 1

2
i2

)4
ẽ, (3.35)

where .̃
n+ 1

2
i j is defined by (3.32) and ẽ is defined by (3.27). The second stage is

Un+1
i1 − Un

i1

σc't
= +

2Fn+ 1
2

i+ 1
2
+ 4Fn+ 1

2

i− 1
2

− 3A
(
U
n+ 1

2
i1 + U

n+ 1
2

i2

)

σ'z
− Un+1

i1 + ac
(
.̃n+1

i1

)4
ẽ,

(3.36)

Un+1
i2 − Un

i2

σc't
= −

4Fn+ 1
2

i+ 1
2
+ 2Fn+ 1

2

i− 1
2

− 3A
(
U
n+ 1

2
i1 + U

n+ 1
2

i2

)

σ'z
− Un+1

i2 + ac
(
.̃n+1

i2

)4
ẽ,

(3.37)

.n+1
i j = .n

i j +
't

[
T∑

*=1

'µ

2
U (*)n+1
i j(1) − ac

(
.n

i j

)4
]

Cv
σ + 4'tac

(
.n

i j

)3 , for j = 1, 2, (3.38)

where .̃n+1
i j is defined by (3.33) and ẽ is defined by (3.27). Note that by the time we reach

(3.38), Un+1
i j is already known, meaning that this step has the computational complexity of
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an explicit update. Again, the numerical fluxes in both the first and second stages are of the
form (3.25).

3.4 Slope Limiter

In order to remove unphysical oscillations from the numerical method described above, we
include a slope limiter. McClarren and Lowrie [30] pointed out that the double minmod slope
limiter, also known as the monotonized central slope limiter, is asymptotic-preserving for
hyperbolic systems with stiff relaxation terms while the minmod limiter does not preserve
the asymptotic limit due to discontinuities at the cell edge. Therefore, in this work we use the
same double minmod limiter to preserve asymptotic limit. In particular, after each predictor
and corrector step we compute the cell average:

Ui =
Ui1 + Ui2

2
, (3.39)

and then modify the original nodal values as

Ui1 := Ui − si
2

and Ui2 := Ui +
si
2
, (3.40)

where

si(*) = mm
(
Ui2(*) −Ui1(*), α

(
Ui(*) −Ui−1(*)

)
, α
(
Ui+1(*) −Ui(*)

))
, (3.41)

where α ∈ [0, 2], i = 1, . . . , Nz , l = 1, . . . , T (N + 1), and the minmod function is defined
as follows:

mm(a, b, c) :=
{
sign(a)min (|a|, |b|, |c|) , if sign(a) = sign(b) = sign(c),
0, otherwise.

(3.42)

As explained in [28], α = 0 is the first-order upwind or Godunov scheme, α = 1 is the
minmod limiter, and α = 2 is the monotonized central (MC) or double minmod limiter. We
use α = 2 in all our numerical tests.

3.5 Boundary Conditions

To complete the numerical methods section, we briefly explain how boundary conditions
are implemented. The three types of boundary conditions considered in this work in various
examples are reflective, Dirichlet, and vaccuum conditions. In all cases we prescribe the
intensities on the left and right boundaries via the following expressions:

I L (t, µ) =
{
Iout(t, zL , µ) if µ > 0,
I (t, zL , µ) if µ < 0,

I R(t, µ) =
{
I (t, zR, µ) if µ > 0,
Iout(t, zR, µ) if µ < 0,

(3.43)

respectively, where

Iout(t, z, µ) =






I (t, z,−µ) if reflective BC,
I (t, z, µ) if Dirichlet BC,
0 if vacuum BC.

(3.44)

Note that zL and zR denote the left and right boundaries, respectively.
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3.6 Asymptotic Analysis

The grey transport equation (2.7) and material-energy equation (2.8) reduce to the so-
called equilibrium diffusion limit under a certain rescaling of the underlying parameters.
The rescaled parameters are as follows:

σ → σ

ε
, c → c

ε
, Cv → εCv, a → ε a, (3.45)

where ε > 0, which results in the following rescaled transport and material-energy equation
(where we have set s ≡ 0):

ε2

c
6I
6t
+ εµ

6I
6z
+ σ I = 1

2
σacθ4, (3.46)

ε2Cv
6θ
6t
= σ

(∫ 1

−1
I (t, z, µ) dµ − acθ4

)
. (3.47)

As shown in Larsen et al. [19], the highly collisional limit, ε → 0+, results in the following
nonlinear diffusion equation:

6
6t

[
Cvθ

(0) + a
(
θ (0)
)4]

= 6
6z

[
ac
3σ

6
6z

(
θ (0)
)4]

, (3.48)

where θ (0) refers to the leading order term in a power series expansion of the temperature θ

in ε.
A numerical method for system (3.46)–(3.47) is called asymptotic-preserving if for fixed

discretization parameters ('t , 'z, and 'µ), the numerical method in the limit ε → 0+

reduces to a consistent and stable discretization of (3.48).

Proposition 4 (Asymptotic preserving (AP) property in the equilibrium diffusion limit) The
numerical method given by (3.34)–(3.38) with (3.25), (3.27), (3.32), and (3.33), after rescal-
ing (3.45), produces the following consistent and stable discretization of (3.48) in the limit
as ε → 0+ when the discretization parameters ('t , 'z, and 'µ) are held constant:

Cv.̌
[0]n+1
i2 + a

(
.̌

[0]n+1
i2

)4
− Cv.̌

[0]n
i2 − a

(
.̌

[0]n
i2

)4

't

= ac

(
.

[0]n
i+1 2

)4
− 2
(
.

[0]n
i2

)4
+
(
.

[0]n
i1

)4

3σ'z2
,

(3.49)

where the superscript [s] represents the sth term of the expansion in ε and the weighted
average ˇ(·) is defined as follows:

ˇ(·)i2 :=
1
2

[(
¯(·)i+1(1) − 1

3
ˆ(·)i+1(1)

)
+
(

¯(·)i(1) +
1
3
ˆ(·)i(1)
)]

,

¯(·)i :=
1
2
[(·)i1 + (·)i2] , ˆ(·)i :=

1
2
[(·)i2 − (·)i1] .

(3.50)

We note that one obtains the same limiting numerical scheme independent of the number of
velocity bands, T , and that this limiting numerical scheme is the same as the one achieved
by the PN approximation [28].
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Proof The proof of the above claim follows exactly the same steps as the one given in
McClarren et al. [28] for the PN system with only one minor modification: for the proposed
method considered in this work, we need to sum update Eqs. (3.34)–(3.37) over all velocity
bands ('µ

2
∑T

*=1) before applying the perturbation series analysis. +,

4 Numerical Results

In this section, numerical results for six standard benchmark problems for the TRT system are
provided, including examples in the optically thin and thick regimes: (1) bilateral inflow (Sect.
4.1), (2) streaming in a vaccuum (Sect. 4.2), (3) Su-Olson problem (Sect. 4.3), (4) diffusive
Marshak wave (Sect. 4.4), (5) Marshak wave in thin medium (Sect. 4.5), and (6) smooth
Marshak wave problem (Sect. 4.6). Note that the problems (1) and (2) are free streaming.
The material-energy coupling equation (2.29) is only required for in the examples described
in Sects. 4.3–4.6.

Unless otherwise stated, we choose a CFL condition for all simulations as follows:

CFL := c ρ(A)'t
'x

≤ 0.3, (4.1)

where ρ(A) ≈ 1 is the spectral radius of a matrix A as defined in Eq. (2.25). For numerical
examples in which the diffusion dominates, for example problems like the diffusive Marshak
wave problem, we are able to achieve very relaxed CFL number between 2 and 3.

4.1 Bilateral Inflow

This problem is used to test the HT
N scheme without the opacity σ and the external source s;

this shows how well the hybrid discrete approximation of the free-streaming kinetic operator
and its corresponding numerical discretization captures the correct wave speeds and resolves
discontinuities. In this setting, Eq. (2.7) reduces to the following:

1
c

6I
6t
+ µ

6I
6z
= 0, (4.2)

for which the analytic solution can easily be computed from the method of characteristics
(e.g., see [8]):

I (t, z, µ) = I 0(z − cµt, µ). (4.3)

We choose the initial condition as

I 0(z, µ) =






acδ(µ − 1) if z ≤ 0.2,
0 if 0.2 < z < 0.8,
0.5ac if z > 0.8,

(4.4)

where δ(µ− 1) is a Dirac delta centered at µ = 1, c = 3× 1010 cm s−1 is the speed of light,
and a = 1.372×1014 ergs cm−3 keV−4 is the radiation constant. The exact angular moment
of the radiation intensity, E(t, z), is given by the following if 0 < ct < 0.3:

a−1E(t, z) =






1 if z ≤ 0.2+ ct,
0 if 0.2+ ct < z ≤ 0.8 − ct,

(z − 0.8+ ct) / (2ct) if 0.8 − ct ≤ z ≤ 0.8+ ct,
1 if z ≥ 0.8+ ct .

(4.5)
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(a) (b)

(c) (d)

Fig. 2 (Section 4.1: bilateral inflow) Comparisons of PN and HT
N solutions for the bilateral inflow problem at

ct = 0.1, Nz = 500, with CFL = 0.3

We run the code until ctend = 0.1, in the physical domain z ∈ [0, 1] with inflow/outflow
boundary conditions based on the exact solution (4.3)–(4.4) . This example is challenging
for moment closure methods such as PN and HT

N due to the fact that there is a delta function
in velocity, as well as discontinuities in both z and µ. Furthermore, in this example there are
no collisions to help smooth out the solution.

The scaled angular moment of the radiation intensity, E(t, z)/a, for various PN and HT
N

approximations are shown in Fig. 2. Each panel in Fig. 2 shows solutions with models that
have the same DOFs: (a) 4 moments: P3 and H2

1, (b) 6 moments: P5, H3
1, and H2

2, (c) 8
moments: P7, H4

1, and H2
3, and (d) 24 moments: P23, H12

1 , and H4
5. In each case, the HT

N
model with T > 1 gives less oscillation than the PN model with the same DOFs.

In all the simulations shown in Fig. 2 we have used the double minmod limiter to control
unphysical oscillations and to remove negative density values; without the double minmod
limiters active, both PN andHT

N solutions suffer fromnegative densities near the discontinuity.
In order to show how the double minmod limiter affects the solution we also provide Fig. 3,
in which we show a direct comparison of the unlimited and limited H4

3 solutions.
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Fig. 3 (Section 4.1: bilateral
inflow) H4

3 solution with and
without the double minmod
limiter for the bilateral inflow
problem at ct = 0.1, Nz = 500,
with CFL = 0.1

4.2 Free Streaming in a Vacuum

In this section, we test our scheme on the propagation of photons in a vacuum. We choose
a zero initial condition, I 0(z, µ) = 0, on the computational domain z ∈ [0, 1] with the
following Dirichlet boundary conditions:

I (t, z = 0, µ) = ac and I (t, z = 1, µ) = 0. (4.6)

The analytic solution for t > 0 with the given initial and boundary conditions can be
obtained by the method of characteristics as in the previous bilateral problem:

I (t, z, µ) =
{
ac if z/(ct) < µ ≤ 1,
0 if − 1 ≤ µ ≤ z/(ct).

(4.7)

The exact solution for the angular moment for t > 0 in this case is

a−1E(t, z) =
∫ 1

z/(ct)
dµ = 1 − z/(ct). (4.8)

In Fig. 4 and Table 1 we compute the absolute L2 error in the scaled angular moments,
E(t, z)/a, for various HT

N approximations:

L2 error :=



 1
aNz

Nz∑

i=1

(
ET
N (tend, zi ) − Eexact (tend, zi )

)2



1/2

, (4.9)

L∞ error := max
1≤i≤Nz

∣∣∣∣
1
a

(
ET
N (tend, zi ) − Eexact (tend, zi )

)∣∣∣∣, (4.10)

where ET
N is the angular moment solution calculated using the HT

N approximation. In par-
ticular, we show in Fig. 4a the L2 convergence of HT

N with increasing N and in Fig. 4b the
L2 convergence of HT

N with increasing T . Figure 4a shows rapid convergence in terms of
N for the H2

N and H3
N solutions, however PN=(H1

N ) shows a much slower convergence rate.
Meanwhile, Fig. 4b shows rapid convergence with a much steeper slope than Fig. 4a, which
suggests that increasing T is a better way to achieve the desired accuracy than increasing
N when a discontinuity exists in the underlying intensity I (t, z, µ). This observation agrees
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(a) (b)

Fig. 4 (Section 4.2: streaming in a vacuum) Convergence study of HT
N solutions for the vacuum propagation

problem at t = 2.5 × 10−11s with Nz = 100 and CFL = 0.3 with respect to a N and b T

Table 1 (Section 4.2: streaming in a vacuum) L2 and L∞ errors for the vacuum propagation problem for
various methods that all have the same degrees of freedom (DOF = 16)

Error H8
1 H4

3 H2
7 H1

15 (= P15)

L2 2.1623×10−2 2.4764×10−2 2.7112×10−2 2.7934×10−2

L∞ 5.6687×10−2 6.2532×10−2 6.3653×10−2 7.3359×10−2

with the numerical values shown in Table 1, where the L2 and L∞ errors are shown for
various methods that all have the same degrees of freedom (DOF = 16).

Additionally, we study the profile of E(t, z) for various methods in Fig. 5. Each HT
N

solution in Fig. 5 shows the propagation of multiple waves depending on the number of
distinct eigenvalues of the matrix A defined in (2.18) and (2.21). In particular, in Fig. 5a, b
we compare H1

N and H2
N solutions with various N , respectively. Analogously, in Fig. 5c, d

we compare various HT
1 and HT

2 solutions with different T , respectively. Finally, in Fig. 5e
through Fig. 5h we plot in each panel a different HT

N method with DOF = 16: (e) H1
15, (f)

H2
7, (f) H

4
3, and (g) H8

1. Again, we conclude from these simulations that in the case when
the intensity is discontinuous, increasing T is more effective than increasing N . We also
demonstrate in these panels that when T is odd and N is even (i.e.,A has a zero eigenvalue—
see Remark 2.3), the solutions show incorrect boundary values: Fig. 5a (H1

2 and H1
4) and in

Fig. 5d (H1
2 and H

3
2).

4.3 Su-Olson Problem

Thenext benchmarkproblemwesolve is the non-equilibriumSu-Olsonproblemwithmaterial
coupling [39]. In order to compare the numerical solutions to the semi-analytic solution, we
follow the conditions used in [39], i.e., σ = 1, and the external source term is given by

S(t, z) =
{
ac if − 0.5 ≤ z ≤ 0.5,
0 otherwise.

(4.11)
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(a) (b)

(d)(c)

(f)(e)

(g) (h)

Fig. 5 (Section 4.2: streaming in a vacuum) The HT
N solutions for the vacuum propagation problem at t =

2.5 × 10−11 with Nz = 100 and CFL = 0.3
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(a) (b)

(c) (d)

Fig. 6 (Section 4.3: Su-Olson problem) Three different simulations using HT
N for the Su-Olson problem with

Nz = 100, CFL = 0.3, and ctend = 1.0, 3.16, 10, respectively. Panels a and b show P3, H2
1, P5, and H2

2 on
a linear scale, while panels c and d show those same solutions on a log-log scale

We use the computational domain z ∈
[
−ctend − 1, ctend + 1

]
with periodic boundary

conditions. For this problem, both PN = H1
N and HT

N perform very well even with small N .
Figure 6 shows the results from three different simulations with ctend=1.0, 3.16, and 10.0,

respectively. The solutions to these three cases are shown on a linear scale in Fig. 6a (P3 and
H2
1) and Fig. 6b (P5 and H2

2), and on a log-log scale in Fig. 6c (P3 and H2
1) and Fig. 6d (P5

and H2
2). The reference solutions are obtained from [39].

4.4 Diffusive Marshak-Wave Problem

In this section, a diffusive Marshak-wave problem is investigated; this problem is a standard
test case in the literature [7,25,28,41]. This problem consists of a semi-infinite medium of
material with the opacity

σ = 300/θ3. (4.12)

The computational domain is z ∈ [0.0, 0.6] and the initial conditions are given by the
following with θ0 = 10−4 keV:

I (t = 0, z, µ) = 1
2
acθ04 and θ (t = 0, z) = θ0. (4.13)
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Fig. 7 (Section 4.4: diffusive
Marshak-wave problem) The H2

2
solutions for the material
temperature, θ(t, z), for the
diffusive Marshak-wave problem
at various times: t = 10−8s,
5 × 10−8s, and 10−7s,
respectively, with Nz = 16,
σ = 300/θ3, θ0 = 10−4 keV,
and CFL = 1.7. The reference
solution is the semi-analytic
equilibrium–diffusion solution

We use the isotropic incoming boundary condition corresponding to a 1 keV temperature
source on the left boundary zL = 0, and no incoming radiation on the right boundary at
zR = 0.6:

I (t, zL , µ > 0) = 1
2
ac and I (t, zR, µ < 0) = 0. (4.14)

We compute the material temperature, θ(t, z) at various times: t = 10−8 s, 5 × 10−8 s, and
10−7 s. In our numerical tests for this problem all HT

N solutions look similar, thus, we only
present H2

2 solutions in Fig. 7. In this test, we use Nz = 16 with the mesh size 'z = 0.0375.
Despite the fact that we use a coarse mesh, the HT

N solution is able to adequately capture
the wave propagation front. Due to the fact that diffusion dominates, we are able to achieve
stable results with a relaxed Courant number: CFL = 1.7. The reference solution shown in
this plot is the semi-analytic equilibrium-diffusion solution (e.g., see [28]).

4.5 Marshak-Wave in ThinMedium

Here we apply our scheme to a Marshak-wave problem in an optically thin medium with an
opacity given by

σ = 3/θ3. (4.15)

The radiation temperature is given by

θrad(t, z) := 4

√
E(t, z)

a
, (4.16)

and the computational domain is z ∈ [0, 0.35]. We use the isotropic incoming boundary
condition corresponding to a 1 keV temperature source on the left boundary zL = 0, and no
incoming radiation on the right boundary at zR = 0.35:

I (t, zL , µ > 0) = 1
2
ac and I (t, zR, µ < 0) = 0. (4.17)

The initial conditions are given by the following with θ0 = 10−5 keV:

I (t = 0, z, µ) = 1
2
acθ04 and θ (t = 0, z) = θ0. (4.18)
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(a) (b)

Fig. 8 (Section 4.5: Marshak-wave in thin medium) The H2
2 solutions and convergence rate for the thin

Marshak-wave problem at t = 10−9s with σ = 3/θ3, θ0 = 10−5 keV, and CFL = 0.3

Fig. 9 (Section 4.5:
Marshak-wave in thin medium)
Error in various HT

N
approximations with Nz = 512
and CFL = 0.3

In Fig. 8a we show the H2
2 solution with Nz = 400 for the material temperature, θ , and

the radiation temperature, θrad (4.16). In Fig. 8b we show the material temperature error for
H2
2 for various Nz . The error is computed by comparing the H2

2 solutions with various Nz to
the P5 solution with Nz = 2048. This figure shows the expected degradation of the order of
accuracy to first order in space for this problem due to the discontinuity of the solution.

Furthermore, in Fig. 9 we investigate the various convergence rates of H1
N ,H

2
N , H

4
N and

H8
N with Nz = 512 as a function of N . In particular, we compute the following approximate

L2 error:

L2 error :=



0.35
Nz

Nz∑

i=1

(
θT2 j−1 (tend, zi ) − θT99 (tend, zi )

)2



1/2

, (4.19)

for j = 1, 2, . . . , 9, where θTN represents the material temperature as calculated with the HT
N

model. Due to the non-smoothness of the solution we note a fairly rapid convergence as a
function of T with fixed N , and slower convergence as a function of N with fixed T .
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4.6 SmoothMarshak-Wave

Finally, a smooth Marshak-wave problem is considered in this section to observe the con-
vergence rate of our numerical scheme on a smooth solution in an optically thin medium.
The opacity and radiation temperatures are again given by (4.15) and (4.16), respectively.
Following [27,28], the computational domain is z ∈ [0, 0.8] and the smooth initial conditions
are given by:

I (t = 0, z, µ) = ac
2

[
1 − 0.498

(
1+ tanh

[
50(z − 0.25)

])]
, (4.20)

θ(t = 0, z) =
(
E(t = 0, z)

a

) 1
4

. (4.21)

The boundary conditions are given by

I (t, zL , µ > 0) = I (t = 0, zL , µ) and I (t, zR, µ < 0) = 0, (4.22)

where zL = 0 and zR = 0.8.
In Fig. 10 we show the solution for the material temperature, θ(t, z), at various times: (a)

The initial condition for the material temperature, θ(t, z), is shown in Panel (a) of Fig. 10.
In Fig. 10b we show a direct comparison of the material temperature as computed with P5
and H2

2 , both methods have DOF = 6, for Nz = 128. In Fig. 10c, d we show the material
temperature as computed by P5 and H2

2 with various Nz , respectively.
Finally, in Fig. 11 we demonstrate second-order convergence of the H2

2 with increasing
mesh resolution Nz . In this figure, the dashed-line indicates a slope of two on a log–log scale.
In these convergence experiments the approximate L2 error is calculated via the formula:

L2(θ − θ2048) :=

√√√√0.8
Nz

Nz∑

k=1

(
θk − θ

2048/(2m )
k

)2
, (4.23)

where
θ
2048/(2m+1)
k = 1

2

(
θ
2048/(2m)
2(k−1)+1 + θ

2048/(2m)
2(k−1)+2

)
, (4.24)

for m = 0, 1, . . . , 7. Here θ2048 represents the reference temperature solution on mesh with
Nz = 2048 cells, and the superscript k stands for the kth grid cell. The idea encapsulated in
formulas (4.23) and (4.24) is that we project the reference solution θ2048 onto coarser mesh,
i.e., Nz = 2048/(2m), form = 1, 2, . . . , 8 by taking the average of left and right cell on finer
mesh, to obtain θ1024, θ512, . . . , θ8; once we have projected this solution down to the mesh
on which θ is defined, we can directly compute the L2 distance. In Fig. 11 we have used this
strategy with Nz = 8, 16, 32, 64, 128, 256, 512, and 1024 to show the convergence rate.

5 Conclusion

In this work we have developed the hybrid discrete (HT
N ) approximation method for the

thermal radiative transfer (TRT) equations, and implemented a numerical discretization of
these equations using a second order discontinuous Galerkin finite element method in con-
junction with a semi-implicit time-stepping scheme. The HT

N approach acquires desirable
properties of two classical methods for the TRT equations, namely PN (spherical harmonics)
and SN (discrete ordinates), and indeed reduces to each of these approximations in various
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(a) (b)

(d)(c)

Fig. 10 (Section 4.6: smooth Marshak-wave) Comparison of the P5 and H2
N solutions for the material tem-

perature for the smooth Marshak wave problem with CFL = 0.3

Fig. 11 (Section 4.6: smooth
Marshak-wave) Convergence rate
of the material temperature θ for
the smooth Marshak wave
problem

limits: H1
N ≡ PN and HT

0 ≡ ST . We proved that the HT
N approximation results in a system

of hyperbolic partial differential equations for all T ≥ 1 and N ≥ 0. In particular, in one
spatial dimension, the HT

N scheme is essentially a collection of PN approximations localized
in each velocity band. Because of this structure, HT

N , just like PN , can exhibit negative den-
sities. However, because HT

N has band-localized structure, we are able to control unphysical
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numerical oscillations by increasing the number of discrete regions in velocity space, thereby
blending properties of PN and SN .

Once theHT
N approximationwas developed for TRT,we introduced a semi-implicit numer-

ical method that is based on a second order explicit Runge–Kutta scheme for the streaming
term and an implicit Euler scheme for the material coupling term. Furthermore, in order to
solve the material energy equation implicitly after each predictor and corrector step, we lin-
earized the temperature term using a Taylor expansion; this avoided the need for an iterative
procedure, and therefore improved efficiency. In order to reduce unphysical oscillation, we
applied a slope limiter after each time step. Finally, we proved that our scheme is asymptotic-
preserving in the diffusive limit.

In the numerical results section we compared the solutions of the HT
N and PN schemes

for the various benchmark problems. We demonstrated for a variety of problems that for a
fixed total number of moments, we are able to achieve accuracy gains over the PN ≡ H1

N
approximation by balancing T and N . With a more balanced choice of T and N , HT

N shows
less oscillation than PN , especially in the presence of discontinuities. One may use the large
T when the problems include strong shocks or the solutions are non-smooth. Otherwise,
one can use high N instead. The control of the variables T and N can compensate for the
shortcomings of PN and SN schemes.

In future work, we will develop extensions of the HT
N method for multi-energy group

models or frequency-dependent equations in multiple dimensions. In particular, just as we
have done in this work, wewill investigate various choices of N and T to achieve accurate and
efficient moment closure in the multidimensional setting. We will also investigate adaptive
strategies for selecting T and N in the presence of some appropriate error indicator.
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