
����������
�������

Citation: Paul, A.; Tajin, M.A.S.;

Das, A.; Mongan, W.M.;

Dandekar, K.R. Energy-Efficient

Respiratory Anomaly Detection in

Premature Newborn Infants.

Electronics 2022, 11, 682.

https://doi.org/10.3390/

electronics11050682

Academic Editor: Alexander

Barkalov

Received: 13 January 2022

Accepted: 17 February 2022

Published: 23 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Energy-Efficient Respiratory Anomaly Detection in Premature
Newborn Infants

Ankita Paul 1,*, Md. Abu Saleh Tajin 1, Anup Das 1, William M. Mongan 2 and Kapil R. Dandekar 1

1 Department of Electrical and Computer Engineering, Drexel University College of Engineering,
Philadelphia, PA 19104, USA; mt3223@drexel.edu (M.A.S.T.); ad3639@drexel.edu (A.D.);
krd26@drexel.edu (K.R.D.)

2 Department of Mathematics and Computer Science, Ursinus College, Collegeville, PA 19426, USA;
wmongan@ursinus.edu

* Correspondence: ankita.paul@drexel.edu

Abstract: Precise monitoring of respiratory rate in premature newborn infants is essential to initiating
medical interventions as required. Wired technologies can be invasive and obtrusive to the patients.
We propose a deep-learning-enabled wearable monitoring system for premature newborn infants,
where respiratory cessation is predicted using signals that are collected wirelessly from a non-invasive
wearable Bellypatch put on the infant’s body. We propose a five-stage design pipeline involving
data collection and labeling, feature scaling, deep learning model selection with hyperparameter
tuning, model training and validation, and model testing and deployment. The model used is a
1-D convolutional neural network (1DCNN) architecture with one convolution layer, one pooling
layer, and three fully-connected layers, achieving 97.15% classification accuracy. To address the
energy limitations of wearable processing, several quantization techniques are explored, and their
performance and energy consumption are analyzed for the respiratory classification task. Results
demonstrate a reduction of energy footprints and model storage overhead with a considerable
degradation of the classification accuracy, meaning that quantization and other model compression
techniques are not the best solution for respiratory classification problem on wearable devices.
To improve accuracy while reducing the energy consumption, we propose a novel spiking neural
network (SNN)-based respiratory classification solution, which can be implemented on event-driven
neuromorphic hardware platforms. To this end, we propose an approach to convert the analog
operations of our baseline trained 1DCNN to their spiking equivalent. We perform a design-space
exploration using the parameters of the converted SNN to generate inference solutions having
different accuracy and energy footprints. We select a solution that achieves an accuracy of 93.33%
with 18× lower energy compared to the baseline 1DCNN model. Additionally, the proposed SNN
solution achieves similar accuracy as the quantized model with a 4× lower energy.

Keywords: wearable; respiratory classification; deep learning; spiking neural network (SNN)

1. Introduction

A premature newborn infant is one who is born more than three weeks before the
estimated due date. Common health problems of these infants include Apnea of Pre-
maturity (AOP), which is a pause in breathing for 15 to 20 s or more [1], and Neonatal
Respiratory Distress Syndrome (NRDS), which is shallow breathing and a sharp pulling in
of the chest below and between the ribs with each breath [2]. Precise respiratory monitoring
is often necessary to detect AOP and NRDS in premature newborn infants and initiate
medical interventions as required [3]. Wired monitoring techniques are invasive and can
be obtrusive to the patient. Therefore, non-invasive respiratory monitoring techniques are
recommended by pediatricians to increase the comfort of infants and facilitate continuous
home monitoring [4].

We have studied the use of wearable technologies in the respiratory monitoring of
infants. To this end, we use the Bellypatch (see Figure 1), a wearable smart garment that

Electronics 2022, 11, 682. https://doi.org/10.3390/electronics11050682 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11050682
https://doi.org/10.3390/electronics11050682
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics11050682
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11050682?type=check_update&version=2

Electronics 2022, 11, 682 3 of 22

Since we intend to deploy the trained network on a wearable device, we conduct energy
efficiency explorations to find which approach provides the least power consumption and
maximum accuracy. We show that the energy consumption of our baseline 1DCNN model
is considerably higher, which makes it difficult to implement the same on the Bellypatch
due to its limited power availability. Our goal is to minimize the energy consumption, thus
allowing more processing within a given power budget. Therefore, we propose several
quantization approaches involving limiting the bit-precision of the model parameters.
We show that in order to achieve a significant reduction in energy, the model accuracy
can be considerably lower. Therefore, model quantization may not be the best solution to
implement respiratory classification on the Bellypatch.

Finally, we propose a novel respiratory classification solution enabled by spiking
neural network (SNN) [13], which can be implemented on event-driven neuromorphic
hardware such as TrueNorth [14], Loihi [15], and DYNAPs [16]. We perform design-space
exploration using SNN parameters, obtaining SNN solutions with different accuracy and
energy. We select a solution that leads to 93.33% accuracy with 18× lower energy than
the baseline 1DCNN model. This SNN-based solution has similar accuracy as the best
performing quantized CNN model with 4× lower energy. This is particularly useful for
wearable devices that are used for bio signals monitoring using less energy such as the
Human++ [17].

Overall, the SNN-based approach introduces two additional stages in our design
pipeline: model conversion and SNN parameter tuning, making the overall approach a
seven-stage pipeline. Using this seven stage design pipeline, we show that the accuracy is
significantly higher than all prior solutions, with considerably lower energy, making this
solution extremely relevant for the battery-less Bellypatch.

The remainder of this paper is organized as follows. Related works on respiratory
classification are discussed in Section 2. The five-stage design pipeline is described in
Section 3. Model quantization techniques are introduced in Section 4. The SNN approach
to respiratory classification is formulated in Section 5. The proposed approach is evaluated
in Section 6 and the paper is concluded in Section 7.

2. Related Work

Recently, machine learning-based respiratory classification techniques have shown
significant promise as enablers for continuous respiratory monitoring of newborn infants.
To this end, a Support Vector Machine (SVM)-based classifier is proposed in [18], achieving
82% classification accuracy. A Logistic Regression-based classifier is proposed in [19],
achieving classification accuracy of 87.4%. An Ensemble Learning with Kalman filtering is
proposed in [19] achieving 91.8% classification accuracy. All these techniques are proposed
for respiratory classification using pulseoximeter data collected from infants, making
these approaches the relevant state-of-the-art for our work. In Section 6, we compare our
approach to these state-of-the-art approaches and show that the proposed approach is
considerably better in terms of both classification accuracy and energy. Thermal imaging
has also been proposed recently for the respiratory classification of infants [20]. The authors
reported a precision and recall score of 0.92. We achieved a score of 0.98. Respiratory
classification using acoustic sensors is proposed in [21]. An accuracy of 95.7% is reported.
We achieved an accuracy of 97.15%.

Beyond respiratory classification, deep-learning-enabled techniques have been used
extensively for health informatics [22]. For instance, sleep apnea classification is proposed
using deep convolutional neural networks (CNNs) and long short-term memory (LSTM)
in [23], achieving an accuracy of 77.2%. A deep learning approach using InceptionV3
CNN model is proposed in [24] to detect Alzheimer’s disease using brain images. The
authors reported an area-under-curve (AUC) score of 0.98. CNN models are used in [25] to
detect metastatic breast cancer in women. The authors reported an AUC score of 0.994. A
CNN-based Arrhythmia classification is also proposed in [26],where the authors reported
significant improvement in classification accuracy over state-of-the-art.

Electronics 2022, 11, 682 4 of 22

Finally, many recent SNN-based techniques have shown comparable and in some
cases higher accuracy than their deep learning counterparts with significantly lower energy.
An unsupervised SNN-based heartrate estimation is proposed in [27]. The authors reported
a 1.2% mean average percent error (MAPE) with 35× reduction in energy. A spiking CNN
architecture is proposed in [28] to classify heart-beats in human. The authors reported 90%
reduction in energy with only 1% lower accuracy than a conventional CNN. SNN-based
epileptic seizure detection is proposed in [29], where the authors reported an accuracy of
97.6% with a considerable reduction in energy.

To the best of our knowledge, this is the first work that uses SNN for respiratory
classification in infants and shows that SNNs can achieve high accuracy (93.33% in our
evaluation) with a considerable reduction in energy (18× lower energy compared to a
baseline 1DCNN model).

3. Design Pipeline

Figure 2 shows a high-level overview of the proposed respiratory classification ap-
proach using deep learning techniques. The design pipeline comprises five stages—(1) data
collection, (2) feature selection, (3) deep learning model selection, (4) model training and
validation, and (5) model testing and deployment. These stages are clearly indicated in the
figure. Once a trained model is obtained using this approach, the model is used for the
respiratory classification of streaming pulseoximeter data collected from the sensors on the
Bellypatch. This is shown at the bottom-left corner of Figure 2.

(1) Data Collection (2) Feature Scaling (3) Model Selection (4) Model Training and Validation

(5) Model Testing and Deployment

Respiratory classification with trained model

Figure 2. Design pipeline for respiratory classification using deep learning.

In the following section, we describe the design pipeline stages.

3.1. Data Collection and Labeling
3.1.1. Data Collection and Feature Selection

In this work, we use a Laerdal SimBaby programmable infant mannequin. The
mannequin was programmed to breathe at a rate of 31 breaths per minute for variable
time intervals, then to stop breathing for 30 s, 45 s, and 60 s, alternating between these
states for a period of one hour. An RFID investigator (Impinj Speedway R420) was used to
poll the Bellypatch wearable RFID tag and the antenna with a 900 MHz band RFID signal
coming from the SimBaby. The RFID interrogator was also used to measure properties of
the backscattered signal reflected from the RFID tag. The interrogator was positioned 1 foot
from the mannequin, oriented above, astride, and at the feet. Interrogations were performed
with a frequency of 90 Hz. RFID properties considered for model features include the
Received Signal Strength Indicator (RSSI), interrogation frequency, and timestamp.

Each of these properties is affected in-band by the frequency of the original signal
emitted by the interrogator. Under United States Federal Communications Commission

Electronics 2022, 11, 682 5 of 22

(FCC) regulations, RFID interrogations must iterate (or channel hop) over 50 frequency
channels in the 900 MHz band. In addition to perturbing the raw measurement observations
at the interrogator, channel hopping poses challenges in computing higher order features
from changes in the observed phase, because these features depend on observing changes
in successive values of the phase under the assumption that they were observed from the
same interrogation frequency. As a result, the observed Doppler shift is used to identify
fine movements of the RFID tag, either in space or because of a strain force applied to the
surrounding knit antenna.

The received signal strength from an interrogation is influenced by several factors as
defined by the Radar Cross Section (RCS) formula in Equation (1) [30]. Specifically, the RCS
relates changes in received signal power (PRx) to the interrogation power (PTx), the reader
and tag gains (Greader and Gtag, respectively), the return loss (R), and the interrogation
wavelength λ [19].

PRx = PTx · G2
reader · G2

tag · R ·
(

λ

4
· π · r

)4
(1)

Some of these terms can be controlled by the interrogator configuration: for example,
the interrogation transmitter power and antenna reader gain at the interrogator; however,
the interrogation frequency changes due to channel hopping, and the receiving antenna
gain (Gtag) changes as the wearer stretches the antenna or moves about in space. Thus, the
observed RSSI alone confounds several artifacts about the state of the transmission along
with the state of the wearer. As a result, a higher order feature ζ is computed from the RSSI
measure by accounting for the interrogation frequency.

We manipulate the RCS equation to arrange those terms related to wearer state on one
side and set them as equal to those terms related to the interrogator configuration, as shown
in Equation (2). Thus, we observe that the changes in the gain of the tag Gtag (resulting from
movement or a strain force on the antenna), the distance r between the interrogator and the
tag (resulting from movement), and return loss R (resulting from movement, strain force,
fading, or multipath interference) are proportional to the interrogation wavelength lambda
and observed RSSI measure PRx, along with the interrogation power PTx and the reader
gain Greader, which are held constant at the interrogator and interrogating antenna [5].
Specifically, ζ is defined as the ratio of the interrogation radius to the product of the
antenna effective aperture and return loss, as shown in Equation (2), which represents the
observed terms after fixing the transmit power, interrogator antenna gain, and interrogation
frequency, given the observed RSSI of the reflected signal:

ζ = G−2
tag · r4 · R−1 = PTx · G2

reader · P−1
Rx ·

(
λ

4π

)4
, (2)

We remove a residual term δ = −10log10
f 4

(f−(0.5∗106 MHz))4 ≈ −0.00941 to compensate
for a sawtooth artifact resulting from quantization of the observed RSSI as the interrogation
frequency changes among 50 discrete channels per FCC regulations in the United States.

In summary, we chose the following features for consideration during wireless respi-
ratory state classification.

• Feature 1: Reflected signal strength as measured at the interrogator, ζ (PRx−deoscillated)
• Feature 2: The difference between the current observed RSSI from the minimum RSSI

value observed in the recent time window (RSSI_ f rom_min)

We normalized RFID signal strength (PRx−deoscillated) data by frequency to utilize the
signal for respiratory analysis. The resulting time-series data were filtered and signal-
processed to determine the mean power spectral density, derived from the amplitude of
the oscillatory behavior observed in the signal during short time windows.

Figure 3 illustrates the two features (PRx−deoscillated and RSSI_ f rom_min) over a time
window of 1.2 s.

Electronics 2022, 11, 682 6 of 22
PRx_deoscillatedRSSI

0.01 9.704198 27.60416 1
0.02 9.704198 27.51442 2
0.03 9.704198 27.49245 3
0.04 9.704056 26.41036 4
0.05 8.704056 27.14085 5
0.06 8.704056 27.33658 6
0.07 8.704056 27.38903 7
0.08 8.704056 27.40308 8
0.09 8.704056 27.40685 9

0.1 8.704056 27.40785 10
0.11 8.704056 27.40812 11
0.12 9.704056 26.67615 12
0.13 9.704056 26.48001 13
0.14 9.703909 22.99332 14
0.15 9.703909 22.97924 15
0.16 9.703909 22.97546 16
0.17 9.703757 26.67202 17
0.18 9.703757 26.67175 18
0.19 47.70376 11.68742 19

0.2 45.70376 5.575803 20
0.21 9.703757 17.61292 21
0.22 9.703757 24.24437 22
0.23 9.703757 26.02126 23
0.24 9.703757 26.49738 24
0.25 9.703757 26.62495 25
0.26 9.703757 26.65914 26
0.27 9.703757 26.66829 27
0.28 9.7036 26.77647 28
0.29 10.7036 26.04507 29

0.3 10.7036 25.8491 30
0.31 9.7036 26.52864 31
0.32 10.7036 25.97867 32
0.33 10.7036 25.83131 33
0.34 10.7036 25.79182 34
0.35 10.7036 25.78124 35
0.36 9.703438 27.01953 36
0.37 9.703438 27.21492 37
0.38 9.703438 27.26728 38
0.39 9.703438 27.28131 39

0.4 9.703438 27.28507 40
0.41 9.703438 27.28607 41
0.42 9.703438 27.28634 42
0.43 9.703438 27.28642 43
0.44 8.70327 27.69022 44
0.45 8.70327 27.88638 45
0.46 8.70327 27.93894 46
0.47 8.70327 27.95302 47
0.48 8.70327 27.9568 48
0.49 8.70327 27.95781 49

0.5 8.70327 27.95808 50
0.51 8.70327 27.95815 51
0.52 8.703098 28.28277 52
0.53 46.7031 13.08881 53
0.54 8.703098 20.82898 54
0.55 8.703098 26.28554 55
0.56 8.703098 27.74762 56
0.57 45.7031 13.67746 57
0.58 9.703098 20.25466 58
0.59 8.703098 26.13165 59

0.6 8.703098 27.70638 60
0.61 8.703098 28.12833 61
0.62 48.7031 11.58332 62
0.63 8.703098 20.42559 63
0.64 46.7031 10.98348 64
0.65 47.70292 2.849085 65
0.66 9.70292 15.55172 66
0.67 9.70292 22.52845 67
0.68 9.70292 24.39786 68
0.69 9.70292 24.89876 69

0.7 9.70292 25.03298 70
0.71 9.70292 25.06894 71
0.72 9.70292 25.07858 72
0.73 9.70292 25.08116 73
0.74 9.70292 25.08185 74
0.75 43.70274 14.09419 75
0.76 43.70274 7.425061 76
0.77 8.702737 18.86422 77
0.78 43.70274 12.02459 78
0.79 44.70274 6.13846 79

0.8 8.702737 18.51948 80
0.81 8.702737 25.15836 81
0.82 8.702737 26.93724 82
0.83 8.702737 27.41389 83
0.84 44.70274 13.58341 84
0.85 8.702737 20.51434 85
0.86 43.70274 12.46673 86
0.87 9.702549 18.81264 87
0.88 9.702549 24.01407 88
0.89 10.70255 24.67573 89

0.9 9.702549 25.58508 90
0.91 48.70255 11.30587 91
0.92 10.70255 17.51203 92
0.93 10.70255 22.93352 93
0.94 10.70255 24.3862 94
0.95 10.70255 24.77545 95
0.96 10.70255 24.87974 96
0.97 8.702356 27.47204 97
0.98 8.702356 27.87183 98
0.99 9.702356 27.2469 99

1 9.702356 27.07945 100
1.01 9.702356 27.03459 101
1.02 9.702356 27.02256 102
1.03 8.702356 27.75139 103
1.04 9.702158 25.95935 104
1.05 9.702158 25.81552 105
1.06 9.702158 25.77699 106
1.07 9.702158 25.76666 107
1.08 9.702158 25.76389 108
1.09 9.702158 25.76315 109

1.1 9.702158 25.76295 110
1.11 9.702158 25.7629 111
1.12 9.702158 25.76289 112
1.13 10.70195 26.3522 113
1.14 10.70195 26.15605 114
1.15 10.70195 26.10349 115
1.16 10.70195 26.08941 116
1.17 10.70195 26.08563 117
1.18 10.70195 26.08462 118
1.19 10.70195 26.08435 119

1.2 10.70195 26.08428 120
10.70175 25.89109
9.701746 26.62313
9.701746 26.81929
9.701746 26.87184
9.701746 26.88593
9.701746 26.8897
9.701746 26.89071
9.701746 26.89098
9.701746 26.89106
9.701746 26.89107
9.701533 26.89949
9.701533 26.89949
9.701533 26.89949
9.701533 26.89949
9.701533 26.89949
9.701533 26.89949
9.701533 26.89949
9.701533 26.89949
9.701533 26.89949
10.70131 26.18273
10.70131 25.98658
10.70131 25.93402
10.70131 25.91993
10.70131 25.91616
10.70131 25.91515
10.70131 25.91488
10.70131 25.9148
10.70131 25.91479
10.70131 25.91478
10.70109 25.94463
10.70109 25.94463
10.70109 25.94463
10.70109 25.94463
10.70109 25.94463
10.70109 25.94463
10.70109 25.94463
10.70109 25.94463
10.70109 25.94463
10.70109 25.94463
10.70109 25.94463
9.700862 26.77621
9.700862 26.97236
9.700862 27.02492
9.700862 27.03901
9.700862 27.04278
9.700862 27.04379
9.700862 27.04406
9.700862 27.04413
9.700862 27.04415
9.700628 23.94199
8.700628 24.67405
9.700628 24.13815
9.700628 23.99455
9.700628 23.95608
9.700628 23.94577
9.700628 23.94301
9.700628 23.94227
9.700628 23.94207
9.700628 23.94201
9.700628 23.942
9.700628 23.942
10.70039 22.94779
10.70039 22.75164
10.70039 22.69908
10.70039 22.685
10.70039 22.68122
10.70039 22.68021
10.70039 22.67994
10.70039 22.67987
10.70039 22.67985
10.70014 24.73415
10.70014 24.73415
10.70014 24.73415
10.70014 24.73415
10.70014 24.73415
10.70014 24.73415
10.70014 24.73415
10.70014 24.73415
10.70014 24.73415
9.699896 25.73123
9.699896 25.92738
9.699896 25.97994
9.699896 25.99403
9.699896 25.9978
9.699896 25.99881
9.699896 25.99908
9.699896 25.99916
9.706049 26.85536
9.706049 26.85537
9.706049 26.85537
9.706049 26.85537
9.706049 26.85537
9.706049 26.85537
9.706049 26.85537
9.706049 26.85537
9.706049 26.85537
9.706044 26.89705
9.706044 26.89705
9.706044 26.89705
9.706044 26.89705
9.706044 26.89705
9.706044 26.89705
9.706044 26.89705
9.706044 26.89705
9.706044 26.89705
9.706044 26.89705
9.706033 27.21281
9.706033 27.21281
9.706033 27.21281
9.706033 27.21281
9.706033 27.21281
9.706033 27.21281
9.706033 27.21281
9.706033 27.21281
9.706033 27.21281
46.70602 10.60255
46.70602 3.344909
9.706017 18.21322
46.70602 8.136795
45.70602 3.416263
9.706017 18.23234
7.706017 26.419
8.706017 27.88057
9.706017 27.54014
9.706017 27.44892
9.705996 27.90965
9.705996 27.9031
9.705996 27.90134
8.705996 28.63293
9.705996 28.0969
8.705996 28.68532

48.706 10.65888
9.705996 20.30709
9.705996 25.866

9.70597 25.98175
9.70597 26.38086
9.70597 26.4878

46.70597 10.36144
9.70597 19.2665

44.70597 9.890603
9.70597 19.14034

11.70594 22.49321
11.70594 23.54981
11.70594 23.83293
11.70594 23.90879
11.70594 23.92911
11.70594 23.93456
11.70594 23.93602
11.70594 23.93641
11.70594 23.93651

10.7059 25.42523
10.7059 25.62139
10.7059 25.67395
10.7059 25.68803
10.7059 25.69181
10.7059 25.69282
10.7059 25.69309
10.7059 25.69316

9.705858 26.65489
9.705858 26.85105
9.705858 26.90361
9.705858 26.9177
9.705858 26.92147
9.705858 26.92248
9.705858 26.92275
9.705858 26.92282
9.705858 26.92284
9.705858 26.92285
9.705858 26.92285

9.70581 26.4738
9.70581 26.4738
9.70581 26.4738
9.70581 26.4738
9.70581 26.4738

10.70581 25.74175
9.70581 26.27765

10.70576 22.02397
10.70576 21.86629
10.70576 21.82405
10.70576 21.81272
10.70576 21.80969
10.70576 21.80888

10.7057 25.00853
10.7057 25.00847
10.7057 25.00845
10.7057 25.00845
10.7057 25.00845
10.7057 25.00845
10.7057 25.00845
10.7057 25.00845
10.7057 25.00845
10.7057 25.00845
10.7057 25.00845

9.705636 25.89767
9.705636 26.09382
9.705636 26.14638
9.705636 26.16046
9.705636 26.16423
9.705636 26.16524
9.705636 26.16552
9.705636 26.16559
45.70564 10.05356
9.705636 19.10413
9.705567 23.34322
9.705567 24.72835
9.705567 25.09949
9.705567 25.19894
9.705567 25.22559
9.705567 25.23273
9.705567 25.23464
9.705567 25.23516
9.705567 25.23529
9.705567 25.23533
9.705567 25.23534
9.705567 25.23534
9.705493 26.41006
9.705493 26.41006
9.705493 26.41006
9.705493 26.41006
9.705493 26.41006
9.705493 26.41006
9.705493 26.41006
9.705493 26.41006
9.705493 26.41006
9.705493 26.41006
10.70541 25.95232
10.70541 25.75616
44.70541 13.73765
46.70541 5.59028
10.70541 16.83726
10.70541 23.31379
10.70541 25.04917
10.70541 25.51417
10.70541 25.63876
45.70541 12.97414
10.70541 18.81576
10.70541 23.84393
10.70533 24.16131
10.70533 24.52231
10.70533 24.61905
10.70533 24.64496
10.70533 24.65191
10.70533 24.65377
10.70533 24.65427
10.70533 24.6544
47.70533 10.69292
10.70533 17.39681
10.70524 23.92929
10.70524 25.35289
10.70524 25.73434
10.70524 25.83656
10.70524 25.86394
10.70524 25.87128
10.70524 25.87325
10.70524 25.87377
10.70524 25.87392
10.70524 25.87395
10.70524 25.87396
10.70524 25.87397
9.705145 24.76382
9.705145 24.95997
9.705145 25.01253
9.705145 25.02661
9.705145 25.03039
9.705145 25.0314
9.705045 23.98444
10.70504 23.25246
10.70504 23.05633
10.70504 23.00377
10.70504 22.98969
8.705045 24.45002
8.705045 24.84131
8.705045 24.94616
9.704939 23.98972
9.704939 23.80109
9.704939 23.75055
9.704939 23.73701
9.704939 23.73338
9.704939 23.73241
9.704939 23.73215
9.704939 23.73208
9.704939 23.73206
10.70483 25.191
10.70483 24.99485
11.70483 24.21024
48.70483 9.45377
8.704829 18.88218
11.70483 22.57235
47.70483 9.746952
10.70483 17.49664
10.70483 22.93315
11.70483 23.65781
11.70483 23.85198
10.70471 25.37982
10.70471 25.58991
10.70471 25.64621
10.70471 25.66129
9.704592 26.37974
9.704592 26.57697
9.704592 26.62982
9.704592 26.64398
9.704592 26.64778
9.704592 26.64879
9.704592 26.64907
9.704592 26.64914
10.70447 25.7737
10.70447 25.57755
10.70447 25.52499
10.70447 25.51091
10.70447 25.50714
11.70447 24.77408
10.70447 25.3097
10.70447 25.45322
10.70447 25.49168
11.70433 25.29716
10.70433 25.83582
10.70433 25.98015
11.70433 25.28677
11.70433 25.10098
11.70433 25.0512
11.70433 25.03786
11.70433 25.03429
11.70433 25.03333

10.7042 26.21661
10.7042 26.41269
10.7042 26.46523
10.7042 26.47931
10.7042 26.48308
10.7042 26.4841
10.7042 26.48437
10.7042 26.48444
10.7042 26.48446

9.704056 26.14027
9.704056 26.33643
9.704056 26.38899
9.704056 26.40307
9.704056 26.40684
9.704056 26.40785
9.704056 26.40812
10.70391 22.242
10.70391 22.04587
10.70391 21.99332
10.70391 21.97924
10.70391 21.97546
10.70391 21.97445
10.70391 21.97418
10.70391 21.97411
10.70376 25.67165
10.70376 25.67165
10.70376 25.67165
10.70376 25.67165
10.70376 25.67165
9.703757 26.4037
11.70376 25.13575
10.70376 25.52805
10.70376 25.63317
11.70376 24.92929

11.7036 24.8464
10.7036 25.52791
11.7036 24.97848
11.7036 24.83125
11.7036 24.79181
11.7036 24.78124

10.70292 23.81519
10.70292 24.01059
10.70292 24.06294
10.70292 24.07697
10.70292 24.08073
10.70292 24.08174
10.70292 24.08201
10.70292 24.08208
10.70292 24.0821
10.70292 24.0821
10.70292 24.08211
9.702737 26.32041
8.702737 27.24861
9.702737 26.76527
8.702737 27.36781
9.702737 26.79721
8.702737 27.37637
8.702737 27.53156
8.702737 27.57314
9.702737 26.85223
9.702737 26.65906
10.70255 25.20481
11.70255 24.26274
11.70255 24.01031
11.70255 23.94268
11.70255 23.92455
11.70255 23.9197
11.70255 23.9184
9.702356 26.48239
9.702356 26.8746
9.702356 26.9797
9.702356 27.00786
10.70236 26.28335
9.702356 26.82127
10.70236 26.23336
10.70236 26.07582
10.70216 24.77833
11.70216 24.03497
11.70216 23.83579
11.70216 23.78242

0

20

40

60

0 0.2 0.4 0.6 0.8 1 1.2
Fe

at
ur

es

Time (seconds)

PRx_deoscillated RSSI

Figure 3. Variation of the two features PRx_deoscillated and RSSI_from_min for 1.2 s.

3.1.2. Data Labeling

In case of supervised learning of human-activity recognition from sensor data, it is nec-
essary to appropriately label the output. The dataset contained approximately 1685 samples
per minute, obtained for 60 min, resulting in approximately one sample generated every
0.03 s. This indicated that the RFID interrogation frequency was approximately 28 Hz per
RFID tag. For each sample, we have two features—PRx−deoscillated and RSSI_ f rom_min.

The observations were broken into time windows of 1 s with no overlap. Hence, each
time window contained approximately 28 samples, with two sets of observations from the
2 features. We manually labeled the data collected from the two features as ‘1’ when the
SimBaby is in breathing state and ‘0’ when it is in a non-breathing state. Over a period of
one hour, we collect and label the dataset to form train and test samples representing binary
respiratory state (1: Breathing, 0: Non-Breathing state). Figure 4 shows the respiratory state
corresponding to the features of Figure 3 for 1.2 s.

0.01 1
0.02 1
0.03 1
0.04 1
0.05 1
0.06 1
0.07 1
0.08 1
0.09 1

0.1 1
0.11 1
0.12 1
0.13 1
0.14 1
0.15 1
0.16 1
0.17 1
0.18 1
0.19 1

0.2 1
0.21 1
0.22 1
0.23 1
0.24 1
0.25 1
0.26 1
0.27 1
0.28 1
0.29 1

0.3 1
0.31 1
0.32 1
0.33 1
0.34 1
0.35 1
0.36 1
0.37 1
0.38 1
0.39 1

0.4 1
0.41 1
0.42 1
0.43 1
0.44 1
0.45 1
0.46 1
0.47 1
0.48 1
0.49 1

0.5 1
0.51 1
0.52 1
0.53 1
0.54 1
0.55 1
0.56 1
0.57 1
0.58 1
0.59 1

0.6 1
0.61 1
0.62 1
0.63 1
0.64 1
0.65 0
0.66 1
0.67 1
0.68 1
0.69 1

0.7 1
0.71 1
0.72 1
0.73 1
0.74 1
0.75 1
0.76 1
0.77 1
0.78 1
0.79 1

0.8 1
0.81 1
0.82 1
0.83 1
0.84 1
0.85 1
0.86 1
0.87 1
0.88 1
0.89 1

0.9 1
0.91 1
0.92 1
0.93 1
0.94 1
0.95 1
0.96 1
0.97 1
0.98 1
0.99 1

1 1
1.01 1
1.02 1
1.03 1
1.04 1
1.05 1
1.06 1
1.07 1
1.08 1
1.09 1

1.1 1
1.11 1
1.12 1
1.13 1
1.14 1
1.15 1
1.16 1
1.17 1
1.18 1
1.19 1

1.2 1

0

1

0 0.2 0.4 0.6 0.8 1 1.2Re
sp

ira
to

ry

St
at

e

Time (seconds)

Figure 4. Respiratory state corresponding to features shown in Figure 3.

Since there are only two features and two output classes, the problem we aim to solve
is a bivariate time series binary classification one.

3.2. Feature Scaling

From the time series features extracted from each time window, we apply feature
engineering to make the input vectors suitable for the classifier. For multivariate data, it
is necessary to transform features with different scales to have uniform distribution, to
ensure optimal performance of the classifiers. We first cleaned our feature set by filtering
the missing values (NaN). The data with the features and the labels were loaded from two
csv files and then we split the dataset 3:1 to form the training set and the testing set. After
splitting the dataset, we scale the features before we fit it into our classifier, which is a
one-dimensional convolutional neural network (1DCNN).

The two features in our dataset were scaled to a standard range and the distribution of
the values was rescaled, so the mean was 0 and the standard deviation was 1. The method
involved determining the distribution of each feature and subtracting the mean from each
feature. Then we divide the values (after the mean has already been subtracted) of each
feature by its standard deviation.

The standard score (Z) of a sample is given by Equation (3).

Z =
x− µ

σ
, (3)

Electronics 2022, 11, 682 7 of 22

where x is the sample value and µ and σ are the mean and standard deviation of all the
samples, respectively. Feature standardization transforms the raw values into the standard
scale that helps the model to extract salient signal information from the observations.
After rescaling the variables, we reshape the data according to dimension expected by the
convolution layer of the 1DCNN model.

3.3. Deep Learning Model Selection

A convolutional neural network (CNN) is a class of deep learning that uses a linear
operation called convolution in at least one of its layers. Equation (4) represents a convolu-
tion operation, where x is the input and w represents the kernel, which stores parameters
for the model. The output s is called the feature map of the convolution layer.

s(t) =
∫

x(a)w(t− a)da (4)

In a CNN, the first layer is a convolution layer that accepts a tensor as an input with
dimensions based on the size of the data [31]. The second layer, or the first hidden layer, is
formed by applying a kernel or filter that is a smaller matrix of weights over a receptive
field, which is a small subspace of the inputs. Kernels apply an inner product on the
receptive field, effectively compressing the size of the input space [12]. As the kernel strides
across the input space, the first hidden layer is computed based on the weights of the filter.
As a result, the first hidden layer is a feature map formed from the kernel applied on the
input space. While the dimension of the kernel may be much smaller in size compared
to the initial inputs of the convolution layer, the kernel must have the same depth of the
input space. The inputs and convolution layers are often followed by rounds of activation,
normalization, and pooling layers [12]. The precise number and combination of these layers
are specific to the problem at hand.

For the proposed respiratory classification problem, our CNN model consists of one
convolution layer, which is activated by a rectified linear unit (ReLU). The ReLU activa-
tion is a suitable choice for non-linear transformation without the problem of vanishing
gradient. The filter size is set to 64 and the kernel size to 1. This layer is followed by a
one dimensional Max Pooling layer with a pool size and stride length of 1, each. The next
layer is a Flattening layer followed by a Dropout layer. The Dropout layer randomly sets
input neurons to 0 with a rate of 0.01 at each step during training time. This is done to
prevent overfitting. The dropout layer is followed by two fully connected hidden layers.
The first hidden layer consists of 200 neurons with ReLU activation, and the second hidden
layer contains 100 neurons with a ReLU activation function and a Softmax function for
the output layer. Softmax is a choice for the output layer, for output to be interpreted as
normalized probabilities. Overall, the proposed CNN model uses one-dimensional convo-
lutions and therefore, this model is referred to as 1DCNN. Figure 5 shows the proposed
1DCNN architecture along with the dimension of each layer.

1 64
64

75
38
4

2

37
69
2

input convolution max pooling fully connected

Figure 5. Our proposed 1DCNN architecture.

Electronics 2022, 11, 682 9 of 22

Table 1. Summary of hyperparameters for the proposed 1DCNN model.

Learning rate 0.001

Batch size 5

Optimizer Adam

Data shuffle per epoch

Maximum epochs 100

3.5. Model Training and Validation

We trained our 1DCNN model with 75,834 samples and used repeated k-fold cross-
validation with 10 splits to validate our model performance. To improve the estimated
performance, we repeated the cross-validation procedure multiple times and reported the
mean result across all folds from all runs. This reported mean accuracy is expected to be a
more accurate estimate of the true unknown underlying mean performance of the model
on the dataset instead of a single run of k-fold cross-validation, ensuring less statistical
noise. We also compute the standard error that provides an estimate of a given sample
size of the amount of error that is expected from the sample mean to the underlying and
unknown population mean. The standard error is calculated as

σerror =
σ√
n

, (7)

where σ is the sample’s standard deviation and n is the number of repeats. We obtained a
validation classification accuracy of 87.78% with a standard error of 0.002 (see Section 6
for detailed evaluation). We defined Early Stopping as a regularization technique at the
very beginning of declaring the model architecture. At end of every epoch, the training
loop monitors whether the validation loss is no longer decreasing and once it is found no
longer decreasing, the training is terminated. We enabled the patience parameter equal
to 5 to terminate the training after epochs of no validation loss decrease. This is another
measure to prevent the model from overfitting during training, alongside the addition of a
Dropout layer. Without Early Stopping, the training would terminate only after reaching
the maximum number of epochs.

3.6. Model Testing and Deployment

We deployed the trained model to test the performance on an unseen test set generated
from the SimBaby to classify the respiratory states. The model was tested on 25,279 samples
and achieved an accuracy of 97.15%, F1 Score of 0.98, AUC score of 0.98, sensitivity score of
0.96, and specificity score of 0.99. These performance metrics are defined in Section 6.1.

4. Model Quantization

CNN models consume a considerable amount of energy due to their high computa-
tional complexity. The high energy consumption is due to the large model size involving
several thousand parameters. It is therefore challenging to deploy the inference, i.e., a
trained CNN model on battery-powered mobile devices, such as smartphones and wear-
able gadgets due to their limited energy budget. To address this high energy overhead,
energy-efficient solutions have been proposed to reduce the model size and computational
complexity. Some common approaches include the pruning of network weights [33] and
low bit precision networks [34]. We focus on the latter techniques. Specifically, we imple-
ment both bit precision weights and activations to reduce model sizes and computational
power requirements. To perform the training of a CNN with low-precision weights and
activations, we use the following quantization function to achieve a k-bit quantization [35].

Zq = Q(Zr) =
1

2k − 1
round

(
(2k − 1)Zr

)
, (8)

Electronics 2022, 11, 682 10 of 22

where Zr ∈ [0, 1] is the full precision value and Zq ∈ [0, 1] is the quantized value obtained
using the k-bit quantization.

The quantization of weights is given by

wq = Q
(

tanh(wr)

2 · max(|tanh(wr)|)
+

1
2

)
, (9)

where wr is the original weight using full precision and wq is the quantized value using
k-bit quatization.

The quantization of activations is given by

xq = Q(f (x)), (10)

where f (x) = clip(xr, 0, 1) is the clip function bounding the activation function between
0 and 1.

In this paper, we apply both bit precision techniques for both weights and activa-
tions using quantization with the QKeras library, which is a quantization extension to
the Keras [36]. It enables a drop-in replacement of layers that are responsible for creating
parameters and activation layers like the Conv 1D, Dense layers. It facilitates arithmetic
calculations by creating a deeply quantized version of a Keras model. We tag the variables,
weights, and biases created by the Keras implementation of the model and the output
of arithmetic layers by quantized functions. Quantized functions are specified as layer
parameters and then passed as a cumulative quantization and activation function, QActiva-
tion. The quantized bits quantizer used above performs mantissa quantization using the
following equation.

mantissa quantization = (11)

2b−k+1 · clip
(
round(xr · 2k−b−1),−2k−1, 2k−1 − 1

)
where x is the input given to the model, k is the number of bits for quantization, and b
specifies how many bits of the bits are to the left of the decimal point.

We conduct our experiment to perform quantization of our Conv1D model using 2 bits,
4 bits, 8 bits, 16 bits, 32 bits, and 64 bits. We observe the performance accuracy increase
with the increase in the quantization bits, with 2 bits achieving an 88.93% compared to
using all the 64 bits achieving 97.15% (see the detailed results in Section 6.2).

The QTools functionality is used to estimate the model energy consumption for the dif-
ferent bit-wise quantization implementations. It estimates a layer-wise energy consumption
for memory access and MAC operations in a quantized model derived from QKeras. This
is helpful when comparing the power consumption of more than one model running on the
same device. The model size is calculated as the number of model parameters multiplied
by the number of bits used in each scenario. We observe that when we increase the number
of bits, the model size increases as well as the accuracy, but so does the consumption of
energy (pJ). This homogeneous replacement technique of Keras layers, with heterogeneous
per-layer, per-parameter type precision, chosen from a wide range of quantizers, enabled
quantization-aware training and energy-aware implementation to maximize the model
performance given a situation of resource constraints, like detection of respiratory cessation
on premature infants in critical care conditions, which is crucial for high-performance
inference on wearables.

5. SNN-Based Respiratory Classification

Spiking neural networks (SNNs), also known as the third generation of neural net-
works, are an interconnection of integrate-and-fire neurons that emulate the working
principle of a mammalian brain [13]. SNNs enable powerful computations due to their
spatio-temporal information-encoding capabilities. In an SNN, spikes (i.e., current) in-
jected from pre-synaptic neurons raise the membrane voltage of a post-synaptic neuron.

Electronics 2022, 11, 682 11 of 22

When the membrane voltage crosses a threshold, the post-synaptic neuron emits a spike
that propagates to other neurons. Figure 7 shows the integration of spike train from four
pre-synaptic neurons connected to a post-synaptic neuron via synapses.

binary events

spike voltage

post-synaptic
neuron

pr
e-

sy
na

pt
ic

ne

ur
on

s

initer-spike interval
(ISI)

Figure 7. Integration of spike trains at the post-synaptic neuron from four pre-synaptic neurons in a
spiking neural network (SNN). Each spike is a voltage waveform of ms time duration.

SNNs can implement many machine learning approaches such as supervised, un-
supervised, reinforcement, few-shot, and lifelong learning. Due to their event-driven
activation, SNNs are particularly useful in energy-constrained platforms such as wearable
and embedded systems. Recent works demonstrate a significant reduction in memory
footprint and energy consumption in SNN-based heart-rate estimation [27], heartbeat
classification [28,37], speech recognition [38], and image processing [39].

To integrate SNN-based respiratory classification into our design pipeline, we intro-
duce two additional stages—model conversion and SNN parameter tuning—before the
SNN model is deployed to perform classification from live data collected from the SimBaby.
Figure 8 shows the new design pipeline.

(1)
Data Collection

and Labeling

(2)
Feature
Scaling

(3)
Model

Selection

(4)
Model

Training

(4)
Model

Conversion

(5)
Parameter

Tuning

(6)
Model

Deployment

Figure 8. Seven-stage pipeline, including the two new stages to process and optimize the SNN model.

5.1. Model Conversion

In this work, the 1DCNN architecture is converted to SNN in order to execute
it on a neuromorphic hardware such as Loihi [15]. The conversion steps are briefly
discussed below.

1. ReLU Activation Functions: This is implemented as the approximate firing rate of a
leaky integrate and fire (LIF) neuron.

2. Bias: A bias is represented as a constant input current to a neuron, the value of which
is proportional to the bias of the neuron in the corresponding analog model.

3. Weight Normalization: This is achieved by setting a factor λ to control the firing rate
of spiking neurons.

4. Softmax: To implement softmax, an external Poisson spike generator is used to
generate spikes proportional to the weighted sum accumulated at each neuron.

5. Max and Average Pooling: To implement max pooling, the neuron which fires first is
considered to be the winning neuron, and therefore, its responses are forwarded to the
next layer, suppressing the responses from other neurons in the pooling function. To
implement average pooling, the average firing rate (obtained from total spike count)
of the pooling neurons are forwarded to the next layer of the SNN.

6. 1-D Convolution: The 1-D convolution is implemented to extract patterns from inputs
in a single spacial dimension. A 1xn filter, called a kernel, slides over the input
while computing the element-wise dot-product between the input and the kernel at
each step.

Electronics 2022, 11, 682 12 of 22

7. Residual Connections: Residual connections are implemented to convert the residual
block used in CNN models such as ResNet. Typically, the residual connection connects
the input of the residual block directly to the output neurons of the block, with a
synaptic weight of ‘1’. This allows for the input to be directly propagated to the output
of the residual block while skipping the operations performed within the block.

8. Flattening: The flatten operation converts the 2-D output of the final pooling operation
into a 1-D array. This allows for the output of the pooling operation to be fed as
individual features into the decision-making fully connected layers of the CNN model.

9. Concatenation: The concatenation operation, also known as a merging operation, is
used as a channel-wise integration of the features extracted from two or more layers
into a single output.

We now briefly elaborate how an analog operation such as Rectified Linear Unit
(ReLU) is implemented using SNN. The output Y of a ReLU activation function is given by

Y = max 0, ∑
i

wi ∗ xi, (12)

where wi is the weight and xi is the activation on the ith synapse of the neuron. To map the
ReLU activation function, we consider a particular type of spiking neuron model known as
an integrate and fire (IF) neuron model. The IF spiking neuron’s transfer function can be
represented as

vm(t + 1) = vm(t) + ∑
i

wi ∗ xi(t), (13)

where vm(t) is the membrane potential of the IF neuron at time t, wi is the weight, and
xi(t) is the activation on the ith synapse of the neuron at time t. The IF spiking neuron
integrates incoming spikes (Xi) and generates an output spike (Yspike) when the membrane
potential (vm) exceeds the threshold voltage (vth) of the IF neuron. Therefore, by ensuring
that the output spiking rate Yspike is proportional to the ReLU activation Y, i.e., Yspike ∝ Y,
we accurately convert the ReLU activation to the spike-based model. To further illustrate
this, we consider the multi-layer perceptron (MLP) of Figure 9a and its SNN conversion
using rate-based encoding (Figure 9b) and inter-spike interval (ISI) encoding (Figure 9c).

Electronics 2022, 1, 0 12 of 22

7. Residual Connections: Residual connections are implemented to convert the residual
block used in CNN models such as ResNet. Typically, the residual connection connects
the input of the residual block directly to the output neurons of the block, with a
synaptic weight of ‘1’. This allows for the input to be directly propagated to the output
of the residual block while skipping the operations performed within the block.

8. Flattening: The flatten operation converts the 2-D output of the final pooling operation
into a 1-D array. This allows for the output of the pooling operation to be fed as
individual features into the decision-making fully connected layers of the CNN model.

9. Concatenation: The concatenation operation, also known as a merging operation, is
used as a channel-wise integration of the features extracted from two or more layers
into a single output.

We now briefly elaborate how an analog operation such as Rectified Linear Unit
(ReLU) is implemented using SNN. The output Y of a ReLU activation function is given by

Y = max 0, ∑
i

wi ∗ xi, (12)

where wi is the weight and xi is the activation on the ith synapse of the neuron. To map the
ReLU activation function, we consider a particular type of spiking neuron model known as
an integrate and fire (IF) neuron model. The IF spiking neuron’s transfer function can be
represented as

vm(t + 1) = vm(t) + ∑
i

wi ∗ xi(t), (13)

where vm(t) is the membrane potential of the IF neuron at time t, wi is the weight, and
xi(t) is the activation on the ith synapse of the neuron at time t. The IF spiking neuron
integrates incoming spikes (Xi) and generates an output spike (Yspike) when the membrane
potential (vm) exceeds the threshold voltage (vth) of the IF neuron. Therefore, by ensuring
that the output spiking rate Yspike is proportional to the ReLU activation Y, i.e., Yspike ∝ Y,
we accurately convert the ReLU activation to the spike-based model. To further illustrate
this, we consider the multi-layer perceptron (MLP) of Figure 9a and its SNN conversion
using rate-based encoding (Figure 9b) and inter-spike interval (ISI) encoding (Figure 9c).

(a) MLP in analog domain (b) MLP in spiking domain
(rate coding)

(c) MLP in spiking domain
(ISI coding)

Figure 9. Example of converting an analog MLP to its spiking equivalent.

In Figure 9a, neurons 1, 2, and 3 are the input neurons and neurons 4 and 5 are the
output neurons. To keep the model simple, let us consider the case where the activations of
the input neurons 1, 2, and 3 are equal to 1. Using Equation (12), we know that the output
of neurons 4 and 5 are 0.6 and 0.3, respectively. Figure 9b,c shows the mapped SNN model,
using rate-based and inter-spike interval encoding schemes, respectively. In the rate-based
model in Figure 9b, the rate of spikes generated is expected to be proportional to the output
of neurons 4 and 5 in the MLP. In the case of the ISI-based SNN model, the inter-spike
interval of the spikes generated by neurons 4 and 5 is expected to be proportional to the
output generated in the MLP, as shown in Figure 9c.

Figure 9. Example of converting an analog MLP to its spiking equivalent.

In Figure 9a, neurons 1, 2, and 3 are the input neurons and neurons 4 and 5 are the
output neurons. To keep the model simple, let us consider the case where the activations of
the input neurons 1, 2, and 3 are equal to 1. Using Equation (12), we know that the output
of neurons 4 and 5 are 0.6 and 0.3, respectively. Figure 9b,c shows the mapped SNN model,
using rate-based and inter-spike interval encoding schemes, respectively. In the rate-based
model in Figure 9b, the rate of spikes generated is expected to be proportional to the output
of neurons 4 and 5 in the MLP. In the case of the ISI-based SNN model, the inter-spike
interval of the spikes generated by neurons 4 and 5 is expected to be proportional to the
output generated in the MLP, as shown in Figure 9c.

Electronics 2022, 11, 682 13 of 22

5.2. SNN Mapping to Neuromorphic Hardware

The SNN model generated using the conversion approach is analyzed in CARLsim [40]
to generate the following information.

• Spike Data: the exact spike times of all neurons in the SNN model.
• Weight Data: the synaptic strength of all synapses in the SNN model.

The spike and weight data of a trained SNN form the SNN workload, which is used
in the NeuroXplorer framework [41] to estimate the energy consumption. Figure 10 shows
the NeuroXplorer framework.

ANN-to-SNN
Converter
(in-house)

CARLSim Clustering Mapping Cycle-Accurate
(Loihi)1DCNN

Energy
Accuracy

Decomposition

Figure 10. The NeuroXplorer framework [41].

The framework inputs the 1DCNN model and estimates the accuracy and energy
consumption of the model on a neuromorphic hardware. Internally, NeuroXplorer first
converts the 1DCNN to SNN using the steps outlined before. It then simulates the SNN
using CARLsim. The extracted workload is first decomposed using the decomposition
approach presented in [42]. This is to ensure that the workload can fit on to the resource-
constraint hardware.

Typically, neuromorphic hardware is designed with tile-based architecture [43], where
each tile can accommodate only a limited number of neurons and synapses. The tiles
are interconnected using a shared interconnect such as Network-On-Chip (NoC) [44] or
Segmented Bus [45]. Therefore, to map an SNN into a tile-based neuromorphic hardware,
the model is first partitioned into clusters, where each cluster consists of a proportion of
the neurons and synapses of the original machine learning model [46]. Each cluster can
then fit onto a tile of the hardware. Then, the clusters are mapped to the tiles to optimize
one or more hardware metrics such as energy [47,48], latency [49–53], circuit aging [54–59],
and endurance [60–62]. We use the energy-aware mapping technique of [48].

Once the clusters of the converted 1DCNN model are placed with the resources of
the neuromorphic hardware, we perform cycle-accurate simulations using NeuroXplorer,
configured to simulate the Loihi neuromorphic system. Table 2 shows the hardware
parameters that are configured in NeuroXplorer.

Table 2. Major simulation parameters extracted from Loihi [15].

Neuron technology 16 nm CMOS (original design is at 14 nm FinFET)

Synapse technology HfO2-based OxRRAM [63]

Supply voltage 1.0 V

Energy per spike 23.6 pJ at 30 Hz spike frequency

Energy per routing 3 pJ

Switch bandwidth 3.44 G. Events/s

5.3. SNN Parameter Tuning

Unlike the baseline 1DCNN architecture, where model hyperparameters are explored
only during model training, SNNs allow parameter tuning on the trained (and converted)
model, such that the energy and accuracy space could be explored to generate a solution
that satisfies the given energy and accuracy constraints of the target wearable platform.
To explore such exploration capabilities, we analyze the dynamics of SNNs.

Electronics 2022, 11, 682 14 of 22

The membrane potential of a neuron at time t can be expressed as [13]

u(t) = u0 + a
∫ t

0
D(s) · w · σ(t− s)ds, (14)

where u0 is the initial membrane potential, a is a positive constant, D(s) is a linear filter, w is
the synaptic weight and σ represents a sequence of N input spikes, which can be expressed
using the Dirac delta function as

σ(t) =
N

∑
i=1

δ(t− ti) (15)

The membrane potential of a neuron increases upon the arrival of an input spike.
Subsequently, the membrane potential starts to decay during the inter-spike interval (ISI).
When the neuron is subjected to an input spike train, the membrane voltage keeps rising,
building on the undissipated component. When the membrane potential crosses a threshold
(Vth), the neuron emits a spike, which then propagates to other neurons of the SNN. The
spike rate of a neuron can be controlled using this threshold. If the threshold is set too
high, fewer spikes will be generated, meaning that not only will the energy be lower but
also the accuracy, because spikes encode information in SNNs. Therefore, by adjusting the
threshold, the design space of accuracy and energy can be explored (see Section 6.3).

6. Results and Discussions

All simulations are performed on a workstation, which has AMD Threadripper 3960X
with 24 cores, 128 MB cache, 128 GB RAM, and 2 RTX3090 GPUs. Keras [36] is used to
implement the baseline 1DCNN, which uses TensorFlow backend [64]. QKeras [65] is used
for training and testing the quantized neural network. Finally, CARLsim [40] is used for
SNN function simulations.

We present our respiratory classification results organized into (1) results for the
baseline 1DCNN model (Section 6.1), (2) results using quantization (Section 6.2), and
(3) SNN-specific results (Section 6.3).

6.1. Baseline 1DCNN Performance

In this section, we evaluate the performance of the proposed 1DCNN specified using
the following metrics.

• Top-1 Accuracy: This is the conventional accuracy and it measures the proportion
of test examples for which the predicted label (i.e., respiratory state) matches the
expected label. To formulate top-1 accuracy, we introduce the following definitions.

– True Positives (TP): For binary classification problems, i.e., ones with a yes/no
outcome (such as the case of respiratory classification), this is the total number
of test examples for which the value of the actual class is yes and the value of
predicted class is also yes.

– True Negatives (TN): This is the total number of test examples for which the value
of the actual class is no and the value of the predicted class is also no.

– False Positives (FP): This is the total number of test examples for which the value
of the actual class is no but the value of the predicted class is yes.

– False Negatives (FN): This is the total number of test examples for which the
value of the actual class is yes but the value of the predicted class is no.

Top-1 Accuracy =
TP + TN

TP + FP + FN + TN
(16)

• F1 Score: To formulate the F1 score, we introduce the following definitions.

Electronics 2022, 11, 682 15 of 22

– Precision: This is the ratio of correctly predicted positive observations to the total
predicted positive observations, i.e.,

Precision =
TP

TP + FP
(17)

– Recall: This is the ratio of correctly predicted positive observations to the all
observations in actual class, i.e.,

Recall =
TP

TP + FN
(18)

The F1 score conveys the balance between the precision and the recall. It is calculated
as the weighted average of precision and recall, i.e.,

F1 Score =
2 ∗ (Recall ∗ Precision)
(Recall + Precision)

(19)

• AUC: In machine learning, a receiver operating characteristic (ROC) curve is a graphi-
cal plot that illustrates the diagnostic ability of a binary classifier as its discrimination
threshold is varied. The area under curve (AUC) measures the two-dimensional area
underneath the ROC curve. AUC tells how much the model is capable of distinguish-
ing between classes. The higher the AUC, the better the model is at predicting yes
classes as yes and no classes as no.

• Sensitivity: This is the true positive rate, i.e., how often the model correctly generates
a yes out of all the examples for which the value of actual class is yes. Sensitivity is
formulated as

Sensitivity =
TP

TP + FN
(20)

• Specificity: This is the true negative rate, i.e., how often the model correctly generates
a no out of all the examples for which the value of actual class is no. Specificity is
formulated as

Specificity =
TN

TN + FP
(21)

Table 3 compares the classification performance using the proposed 1DCNN against
three state-of-the-art approaches: (1) Support Vector Machine (SVM) classifier of [18],
(2) Logistic Regression (LR) classifier of [19], and (3) Random Forest classifier of [19]. We
make the following four key observations.

Table 3. Comparison with state-of-the-art approaches.

Classification Technique Top-1 Accuracy F1 Score AUC Sensitivity Specificity

SVM 92.34% 0.91 0.92 0.93 0.92
LR 91.60% 0.91 0.90 0.90 0.92
RF 93.40% 0.92 0.90 0.92 0.93

1DCNN (proposed) 97.15% 0.98 0.98 0.96 0.99

First, the proposed 1DCNN has the highest top-1 accuracy of all the evaluated tech-
niques (higher top-1 accuracy is better). The top-1 accuracy of 1DCNN is better than SVM
by 5.2%, LR by 6.0%, and RF by 4.0%.

Second, the proposed 1DCNN has the highest F1 score of all the evaluated techniques
(higher F1 score is better). The F1 score of 1DCNN is higher than SVM by 7.7%, LR by 7.7%,
and RF by 6.5%.

Third, the proposed 1DCNN has the highest AUC of all the evaluated techniques
(higher AUC score is better). The AUC score of 1DCNN is higher than SVM by 6.2%, LR by
8.5%, and RF by 8.5%.

Electronics 2022, 11, 682 16 of 22

Fourth, the proposed 1DCNN has the highest sensitivity of all the evaluated techniques
(higher sensitivity score is better). The sensitivity score of 1DCNN is higher than SVM by
3.2%, LR by 6.7%, and RF by 4.3%.

Finally, the proposed 1DCNN has the highest specificity of all the evaluated techniques
(higher specificity score is better). The specificity score of 1DCNN is higher than SVM by
7.6%, LR by 7.6%, and RF by 6.4%.

The reason for high performance using the proposed 1DCNN model is two-fold.
First, we perform intelligent feature selection from the data collected using sensors on
the SimBaby programmable infant mannequin. Second, we perform hyperparameter
optimization with neural architecture search to generate a model that gives the highest
classification accuracy using the selected hyperparameters.

To give further insight to the improvement, Figure 11 shows the confusion matrix
obtained for the training and test sets. We observe that the proposed 1DCNN model has
very low false positives and false negatives, which are critical for respiratory classification
in premature newborn infants.

13616
(99.58%)

57
(0.42%)

2065
(3.33%)

60095
(96.67%)

4465
(99.06%)

42
(0.94%)

711
(3.4%)

20061
(96.5%)

Ta
rg

et
 C

la
ss

Ta
rg

et
 C

la
ss

Predicted Class Predicted Class

0

1

0

1

0 1 10

Confusion Matrix (training set) Confusion Matrix (test set)

Figure 11. Confusion matrix for the 1DCNN model.

6.2. Quantization Results

Table 4 and Figure 12 reports the top-1 accuracy (%), energy (in pJ), and model
size (in bits) with 2-bit, 4-bit, 8-bit, 16-bit, and 32-bit precision for the model parameters.
For comparison, we have included results using the baseline 1DCNN, which uses full 64-bit
precision for the model parameters. We make the following three key observations.

Table 4. Model quantization results.

Quantization Top-1 Accuracy Energy (pJ) Model Size (bits)

2-bit/parameter 88.93% 7089 92,258
4-bit/parameter 88.98% 15,994 184,516
8-bit/parameter 93.00% 29,871 369,032
16-bit/parameter 96.55% 57,640 738,064
32-bit/parameter 97.03% 113,386 1,476,128

Baseline 1DCNN 97.15% 134,613 2,952,256

First, the top-1 accuracy reduces with a reduction in the bit precision (higher accuracy
is better for respiratory classification in premature newborn infants). With 2-bit, 4-bit, 8-bit,
16-bit, and 32-bit precision, the top-1 accuracy is lower than the baseline 64-bit precision by
8.5%, 8.4%, 4.3%, 0.6%, and 0.1%, respectively. The top-1 accuracy with 32-bit precision is
comparable to 64-bit precision.

Electronics 2022, 11, 682 18 of 22

6.3.1. SNN Accuracy Compared to 1DCNN

Figure 13 shows the Bland–Altman plot comparing the accuracy of SNN solution
against the baseline 1DCNN model. Bland–Altman plots are extensively used to evaluate
the agreement among two models, each of which produced some error in their predictions.
As can be seen from the plot, the average accuracy difference between the 1DCNN and the
converted SNN is 7.3%, while the minimum and maximum accuracy difference are 2.1%
and 12.5%, respectively.

Figure 13. Bland−Altman plot comparing the accuracy of different SNN solutions against the baseline
1DCNN model.

6.3.2. Design Space Exploration with SNN Parameters

We perform design-space explorations to identify SNN model parameters that give
the best tradeoff in terms of energy and accuracy.

In spiking neural networks, a spike is not fired by a neuron unless the specified
activation threshold voltage is attained. This implies that the larger the firing threshold
voltage, the more selectively a neuron is fired while communicating between each layer. To
demonstrate this, Figure 14 shows the variation in accuracy as a function of the activation
threshold (Vth) (see Section 5.3).

Electronics 2022, 11, 682 20 of 22

classification and other machine learning tasks on energy-constrained environments such
as wearable systems.

Author Contributions: Conceptualization, A.P., M.A.S.T. and W.M.M.; investigation and software, A.P.
and M.A.S.T.; writing—original draft preparation, A.P.; writing—review and editing, A.D., K.R.D.,
W.M.M. and M.A.S.T. All authors have read and agreed to the published version of the manuscript.

Funding: Our research results are based upon work supported by the National Science Foundation
Division of Computer and Network Systems under award number CNS-1816387. Any opinions,
findings, and conclusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National Science Foundation. Research reported
in this publication was supported by the National Institutes of Health under award number R01
EB029364-01. The content is solely the responsibility of the authors and does not necessarily represent
the official views of the National Institutes of Health.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Eichenwald, E.C.; Watterberg, K.L.; Aucott, S.; Benitz, W.E.; Cummings, J.J.; Goldsmith, J.; Poindexter, B.B.; Puopolo, K.;

Stewart, D.L.; Wang, K.S. Apnea of Prematurity. Pediatrics 2016, 137, e20153757 . [CrossRef] [PubMed]
2. Clements, J.A.; Avery, M.E. Lung surfactant and neonatal respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 1998, 157,

S59–S66. [CrossRef] [PubMed]
3. Rocha, G.; Soares, P.; Gonçalves, A.; Silva, A.I.; Almeida, D.; Figueiredo, S.; Pissarra, S.; Costa, S.; Soares, H.; Flôr-de Lima, F.; et al.

Respiratory care for the ventilated neonate. Can. Respir. J. 2018, 2018, 7472964. [CrossRef] [PubMed]
4. Antognoli, L.; Marchionni, P.; Nobile, S.; Carnielli, V.P.; Scalise, L. Assessment of cardio-respiratory rates by non-invasive

measurement methods in hospitalized preterm neonates. In Proceedings of the 2018 IEEE International Symposium on Medical
Measurements and Applications (MeMeA), Rome, Italy, 11–13 June 2018.

5. Patron, D.; Mongan, W.; Kurzweg, T.P.; Fontecchio, A.; Dion, G.; Anday, E.K.; Dandekar, K.R. On the Use of Knitted Antennas
and Inductively Coupled RFID Tags for Wearable Applications. IEEE Trans. Biomed. Circuits Syst. 2016, 10, 1047–1057. [CrossRef]

6. Tajin, M.A.S.; Amanatides, C.E.; Dion, G.; Dandekar, K.R. Passive UHF RFID-based Knitted Wearable Compression Sensor. IEEE
Internet Things J. 2021, 8, 13763–13773. [CrossRef]

7. Mongan, W.; Anday, E.; Dion, G.; Fontecchio, A.; Joyce, K.; Kurzweg, T.; Liu, Y.; Montgomery, O.; Rasheed, I.; Sahin, C.; et al.
A Multi-Disciplinary Framework for Continuous Biomedical Monitoring Using Low-Power Passive RFID-Based Wireless Wear-
able Sensors. In Proceedings of the 2016 IEEE International Conference on Smart Computing (SMARTCOMP), St. Louis, MO, USA,
18–20 May 2016.

8. Ross, R.; Mongan, W.M.; O-Neill, P.; Rasheed, I.; Dion, G.; Dandekar, K.R. An Adaptively Parameterized Algorithm Estimating
Respiratory Rate from a Passive Wearable RFID Smart Garment. In Proceedings of the 2021 IEEE 45th Annual Computers,
Software, and Applications Conference (COMPSAC), Madrid, Spain, 12–16 July 2021.

9. Vora, S.A.; Mongan, W.M.; Anday, E.K.; Dandekar, K.R.; Dion, G.; Fontecchio, A.K.; Kurzweg, T.P. On implementing an
unconventional infant vital signs monitor with passive RFID tags. In Proceedings of the 2017 IEEE International Conference on
RFID (RFID), Phoenix, AZ, USA, 9–11 May 2017.

10. Gentry, A.; Mongan, W.; Lee, B.; Montgomery, O.; Dandekar, K.R. Activity Segmentation Using Wearable Sensors for DVT/PE
Risk Detection. In Proceedings of the 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC),
Milwaukee, WI, USA, 15–19 July 2019.

11. Tajin, M.A.S.; Mongan, W.M.; Dandekar, K.R. Passive RFID-based Diaper Moisture Sensor. Sensors 2020, 21, 1665–1674. [CrossRef]
12. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
13. Maass, W. Networks of spiking neurons: The third generation of neural network models. Neural Netw. 1997, 10, 1659–1671.

[CrossRef]
14. Debole, M.V.; Taba, B.; Amir, A.; Akopyan, F.; Andreopoulos, A.; Risk, W.P.; Kusnitz, J.; Otero, C.O.; Nayak, T.K.; Appuswamy, R.; et al.

TrueNorth: Accelerating from zero to 64 million neurons in 10 years. Computer 2019, 52, 20–29. [CrossRef]
15. Davies, M.; Srinivasa, N.; Lin, T.H.; Chinya, G.; Cao, Y.; Choday, S.H.; Dimou, G.; Joshi, P.; Imam, N.; Jain, S.; et al. Loihi: A

neuromorphic manycore processor with on-chip learning. IEEE Micro 2018, 38, 82–99. [CrossRef]
16. Moradi, S.; Qiao, N.; Stefanini, F.; Indiveri, G. A scalable multicore architecture with heterogeneous memory structures for

dynamic neuromorphic asynchronous processors (DYNAPs). IEEE Trans. Biomed. Circuits Syst. 2017, 12, 106–122. [CrossRef]
[PubMed]

http://doi.org/10.1542/peds.2015-3757
http://www.ncbi.nlm.nih.gov/pubmed/26628729
http://dx.doi.org/10.1164/ajrccm.157.4.nhlb1-1
http://www.ncbi.nlm.nih.gov/pubmed/9563762
http://dx.doi.org/10.1155/2018/7472964
http://www.ncbi.nlm.nih.gov/pubmed/30186538
http://dx.doi.org/10.1109/TBCAS.2016.2518871
http://dx.doi.org/10.1109/JIOT.2021.3068198
http://dx.doi.org/10.1109/JSEN.2020.3021395
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1016/S0893-6080(97)00011-7
http://dx.doi.org/10.1109/MC.2019.2903009
http://dx.doi.org/10.1109/MM.2018.112130359
http://dx.doi.org/10.1109/TBCAS.2017.2759700
http://www.ncbi.nlm.nih.gov/pubmed/29377800

Electronics 2022, 11, 682 21 of 22

17. Gyselinckx, B.; Vullers, R.; Hoof, C.V.; Ryckaert, J.; Yazicioglu, R.F.; Fiorini, P.; Leonov, V. Human++: Emerging Technology for
Body Area Networks. In Proceedings of the 2006 IFIP International Conference on Very Large Scale Integration, Nice, France,
16–18 October 2006. [CrossRef]

18. Mongan, W.; Dandekar, K.; Dion, G.; Kurzweg, T.; Fontecchio, A. Statistical analytics of wearable passive RFID-based biomedical
textile monitors for real-time state classification. In Proceedings of the 2015 IEEE Signal Processing in Medicine and Biology
Symposium (SPMB), Philadelphia, PA, USA, 12 December 2015.

19. Acharya, S.; Mongan, W.M.; Rasheed, I.; Liu, Y.; Anday, E.; Dion, G.; Fontecchio, A.; Kurzweg, T.; Dandekar, K.R. Ensemble
learning approach via kalman filtering for a passive wearable respiratory monitor. IEEE J. Biomed. Health Inform. 2018, 23,
1022–1031. [CrossRef] [PubMed]

20. Navaneeth, S.; Sarath, S.; Nair, B.A.; Harikrishnan, K.; Prajal, P. A deep-learning approach to find respiratory syndromes in
infants using thermal imaging. In Proceedings of the 2020 International Conference on Communication and Signal Processing
(ICCSP), Chennai, India, 28–30 July 2020.

21. Basu, V.; Rana, S. Respiratory diseases recognition through respiratory sound with the help of deep neural network. In
Proceedings of the 2020 4th International Conference on Computational Intelligence and Networks (CINE), Kolkata, India,
27–29 February 2020.

22. Ravì, D.; Wong, C.; Deligianni, F.; Berthelot, M.; Andreu-Perez, J.; Lo, B.; Yang, G.Z. Deep learning for health informatics. IEEE J.
Biomed. Health Inform. 2016, 21, 4–21. [CrossRef] [PubMed]

23. Van Steenkiste, T.; Groenendaal, W.; Deschrijver, D.; Dhaene, T. Automated sleep apnea detection in raw respiratory signals
using long short-term memory neural networks. IEEE J. Biomed. Health Inform. 2018, 23, 2354–2364. [CrossRef]

24. Henaff, M.; Bruna, J.; LeCun, Y. Deep convolutional networks on graph-structured data. arXiv 2015, arXiv:1506.05163.
25. Bejnordi, B.E.; Veta, M.; Van Diest, P.J.; Van Ginneken, B.; Karssemeijer, N.; Litjens, G.; Van Der Laak, J.A.; Hermsen, M.;

Manson, Q.F.; Balkenhol, M.; et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in
women with breast cancer. JAMA 2017, 318, 2199–2210. [CrossRef]

26. Sannino, G.; De Pietro, G. A deep learning approach for ECG-based heartbeat classification for arrhythmia detection. Future
Gener. Comput. Syst. 2018, 86, 446–455. [CrossRef]

27. Das, A.; Pradhapan, P.; Groenendaal, W.; Adiraju, P.; Rajan, R.; Catthoor, F.; Schaafsma, S.; Krichmar, J.; Dutt, N.; Van Hoof, C.
Unsupervised heart-rate estimation in wearables with Liquid states and a probabilistic readout. Neural Netw. 2018, 99, 134–147.
[CrossRef]

28. Balaji, A.; Corradi, F.; Das, A.; Pande, S.; Schaafsma, S.; Catthoor, F. Power-accuracy trade-offs for heartbeat classification on
neural networks hardware. J. Low Power Electron. 2018, 14, 508–519. [CrossRef]

29. Masquelier, T. Epileptic seizure detection using a neuromorphic-compatible deep spiking neural network. In Proceedings of the
International Work-Conference on Bioinformatics and Biomedical Engineering, Granada, Spain, 8 May 2020.

30. Su, Z.; Cheung, S.C.; Chu, K.T. Investigation of radio link budget for UHF RFID systems. In Proceedings of the 2010 IEEE
International Conference on RFID-Technology and Applications, Guangzhou, China, 17–19 June 2010.

31. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: London, UK, 2016.
32. Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 28–305.
33. Liu, X.; Li, W.; Huo, J.; Yao, L.; Gao, Y. Layerwise sparse coding for pruned deep neural networks with extreme compression ratio.

In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020.
34. Choukroun, Y.; Kravchik, E.; Yang, F.; Kisilev, P. Low-bit Quantization of Neural Networks for Efficient Inference. In Proceedings

of the ICCV Workshops, Seoul, Korea, 27 October–2 November 2019; pp. 3009–3018.
35. Coelho, C.N.; Kuusela, A.; Li, S.; Zhuang, H.; Ngadiuba, J.; Aarrestad, T.K.; Loncar, V.; Pierini, M.; Pol, A.A.; Summers, S.

Automatic heterogeneous quantization of deep neural networks for low-latency inference on the edge for particle detectors. Nat.
Mach. Intell. 2021, 3, 675–686. [CrossRef]

36. Gulli, A.; Pal, S. Deep Learning with Keras, 1st ed.; Packt Publishing: Birmingham, UK, 26 April 2017.
37. Das, A.; Catthoor, F.; Schaafsma, S. Heartbeat classification in wearables using multi-layer perceptron and time-frequency

joint distribution of ECG. In Proceedings of the 2018 IEEE/ACM International Conference on Connected Health: Applications,
Systems and Engineering Technologies, New York, NY, USA, 26–28 September 2018.

38. Dong, M.; Huang, X.; Xu, B. Unsupervised speech recognition through spike-timing-dependent plasticity in a convolutional
spiking neural network. PLoS ONE 2018, 13, e0204596. [CrossRef] [PubMed]

39. Sengupta, A.; Ye, Y.; Wang, R.; Liu, C.; Roy, K. Going deeper in spiking neural networks: VGG and residual architectures. Front.
Neurosci. 2019, 13, 95. [CrossRef] [PubMed]

40. Chou, T.; Kashyap, H.; Xing, J.; Listopad, S.; Rounds, E.; Beyeler, M.; Dutt, N.; Krichmar, J. CARLsim 4: An open source library
for large scale, biologically detailed spiking neural network simulation using heterogeneous clusters. In Proceedings of the 2018
International Joint Conference on Neural Networks (IJCNN), Rio, Brazil, 8–13 July 2018.

41. Balaji, A.; Song, S.; Titirsha, T.; Das, A.; Krichmar, J.; Dutt, N.; Shackleford, J.; Kandasamy, N.; Catthoor, F. NeuroXplorer 1.0:
An Extensible Framework for Architectural Exploration with Spiking Neural Networks. In Proceedings of the International
Conference on Neuromorphic Systems, Knoxville, TN, USA, 27–29 July 2021.

42. Balaji, A.; Song, S.; Das, A.; Krichmar, J.; Dutt, N.; Shackleford, J.; Kandasamy, N.; Catthoor, F. Enabling Resource-Aware Mapping
of Spiking Neural Networks via Spatial Decomposition. IEEE Embed. Syst. Lett. 2020, 13, 142–145. [CrossRef]

http://dx.doi.org/10.1109/vlsisoc.2006.313229
http://dx.doi.org/10.1109/JBHI.2018.2857924
http://www.ncbi.nlm.nih.gov/pubmed/30040664
http://dx.doi.org/10.1109/JBHI.2016.2636665
http://www.ncbi.nlm.nih.gov/pubmed/28055930
http://dx.doi.org/10.1109/JBHI.2018.2886064
http://dx.doi.org/10.1001/jama.2017.14585
http://dx.doi.org/10.1016/j.future.2018.03.057
http://dx.doi.org/10.1016/j.neunet.2017.12.015
http://dx.doi.org/10.1166/jolpe.2018.1582
http://dx.doi.org/10.1038/s42256-021-00356-5
http://dx.doi.org/10.1371/journal.pone.0204596
http://www.ncbi.nlm.nih.gov/pubmed/30496179
http://dx.doi.org/10.3389/fnins.2019.00095
http://www.ncbi.nlm.nih.gov/pubmed/30899212
http://dx.doi.org/10.1109/LES.2020.3025873

Electronics 2022, 11, 682 22 of 22

43. Catthoor, F.; Mitra, S.; Das, A.; Schaafsma, S. Very large-scale neuromorphic systems for biological signal processing. In CMOS
Circuits for Biological Sensing and Processing; Springer International Publishing: Berlin/Heidelberg, Germany, 2018.

44. Liu, X.; Wen, W.; Qian, X.; Li, H.; Chen, Y. Neu-NoC: A high-efficient interconnection network for accelerated neuromorphic
systems. In Proceedings of the 2018 23rd Asia and South Pacific Design Automation Conference (ASP-DAC), Jeju, Korea,
22–25 January 2018.

45. Balaji, A.; Wu, Y.; Das, A.; Catthoor, F.; Schaafsma, S. Exploration of segmented bus as scalable global interconnect for neuromor-
phic computing. In Proceedings of the 2019 on Great Lakes Symposium on VLSI, Tysons Corner, VA, USA, 9–11 May 2019.

46. Das, A.; Wu, Y.; Huynh, K.; Dell’Anna, F.; Catthoor, F.; Schaafsma, S. Mapping of local and global synapses on spiking
neuromorphic hardware. In Proceedings of the 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE),
Dresden, Germany, 19–23 March 2018.

47. Titirsha, T.; Song, S.; Balaji, A.; Das, A. On the Role of System Software in Energy Management of Neuromorphic Computing.
In Proceedings of the 18th ACM International Conference on Computing Frontiers, Virtual Event, Italy, 11–13 May 2021.

48. Balaji, A.; Das, A.; Wu, Y.; Huynh, K.; Dell’anna, F.G.; Indiveri, G.; Krichmar, J.L.; Dutt, N.D.; Schaafsma, S.; Catthoor, F. Mapping
spiking neural networks to neuromorphic hardware. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2020, 28, 76–86. [CrossRef]

49. Song, S.; Balaji, A.; Das, A.; Kandasamy, N.; Shackleford, J. Compiling spiking neural networks to neuromorphic hardware.
In Proceedings of the 21st ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for Embedded Systems,
London, UK, 16 June 2020.

50. Das, A.; Kumar, A. Dataflow-Based Mapping of Spiking Neural Networks on Neuromorphic Hardware. In Proceedings of the
2018 on Great Lakes Symposium on VLSI, Chicago, IL, USA, 23–25 May 2018.

51. Balaji, A.; Das, A. A Framework for the Analysis of Throughput-Constraints of SNNs on Neuromorphic Hardware. In Proceedings
of the 2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Miami, FL, USA, 15–17 July 2019.

52. Balaji, A.; Marty, T.; Das, A.; Catthoor, F. Run-time mapping of spiking neural networks to neuromorphic hardware. J. Signal
Process. Syst. 2020, 92, 1293–1302. [CrossRef]

53. Balaji, A.; Das, A. Compiling Spiking Neural Networks to Mitigate Neuromorphic Hardware Constraints. In Proceedings of the
IGSC Workshops, Pullman, WA, USA, 19–22 October 2020.

54. Titirsha, T.; Das, A. Thermal-Aware Compilation of Spiking Neural Networks to Neuromorphic Hardware. In Proceedings of the
LCPC, New York , NY, USA, 14–16 October 2020.

55. Song, S.; Das, A.; Kandasamy, N. Improving dependability of neuromorphic computing with non-volatile memory. In Proceedings
of the EDCC, Munich, Germany, 7–10 September 2020.

56. Song, S.; Hanamshet, J.; Balaji, A.; Das, A.; Krichmar, J.; Dutt, N.; Kandasamy, N.; Catthoor, F. Dynamic reliability management in
neuromorphic computing. ACM J. Emerg. Technol. Comput. Syst. (JETC) 2021, 17, 1–27. [CrossRef]

57. Song, S.; Das, A. A case for lifetime reliability-aware neuromorphic computing. In Proceedings of the MWSCAS,
Springfield, MA, USA, 9–12 August 2020.

58. Kundu, S.; Basu, K.; Sadi, M.; Titirsha, T.; Song, S.; Das, A.; Guin, U. Special Session: Reliability Analysis for ML/AI Hardware.
In Proceedings of the VTS, San Diego, CA, USA, 25–28 April 2021.

59. Song, S.; Das, A. Design Methodologies for Reliable and Energy-efficient PCM Systems. In Proceedings of the IGSC Workshops,
Pullman, WA, USA, 19–22 October 2020.

60. Titirsha, T.; Song, S.; Das, A.; Krichmar, J.; Dutt, N.; Kandasamy, N.; Catthoor, F. Endurance-Aware Mapping of Spiking Neural
Networks to Neuromorphic Hardware. IEEE Trans. Parallel Distrib. Syst. 2021, 33, 288–301. [CrossRef]

61. Titirsha, T.; Das, A. Reliability-Performance Trade-offs in Neuromorphic Computing. In Proceedings of the IGSC Workshops,
Pullman, WA, USA, 19–22 October 2020.

62. Song, S.; Titirsha, T.; Das, A. Improving Inference Lifetime of Neuromorphic Systems via Intelligent Synapse Mapping.
In Proceedings of the 2021 IEEE 32nd International Conference on Application-specific Systems, Architectures and Processors
(ASAP), Gothenburg, Sweden, 7–8 July 2021.

63. Mallik, A.; Garbin, D.; Fantini, A.; Rodopoulos, D.; Degraeve, R.; Stuijt, J.; Das, A.; Schaafsma, S.; Debacker, P.; Donadio, G.; et al.
Design-technology co-optimization for OxRRAM-based synaptic processing unit. In Proceedings of the 2017 Symposium on
VLSI Technology, Kyoto, Japan, 5–8 June 2017.

64. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. Tensorflow:
A system for large-scale machine learning. In Proceedings of the 12th USENIX symposium on operating systems design and
implementation (OSDI 16), Savannah, GA, USA, 2–4 November 2016.

65. Coelho, C.N., Jr.; Kuusela, A.; Zhuang, H.; Aarrestad, T.; Loncar, V.; Ngadiuba, J.; Pierini, M.; Summers, S. Ultra low-latency,
low-area inference accelerators using heterogeneous deep quantization with QKeras and hls4ml. arXiv 2020, arXiv:2006.10159.

http://dx.doi.org/10.1109/TVLSI.2019.2951493
http://dx.doi.org/10.1007/s11265-020-01573-8
http://dx.doi.org/10.1145/3462330
http://dx.doi.org/10.1109/TPDS.2021.3065591

	Introduction
	Related Work
	Design Pipeline
	Data Collection and Labeling
	Data Collection and Feature Selection
	Data Labeling

	Feature Scaling
	Deep Learning Model Selection
	Hyperparameter Optimization
	Model Training and Validation
	Model Testing and Deployment

	Model Quantization
	SNN-Based Respiratory Classification
	Model Conversion
	SNN Mapping to Neuromorphic Hardware
	SNN Parameter Tuning

	Results and Discussions
	Baseline 1DCNN Performance
	Quantization Results
	SNN-Related Results
	SNN Accuracy Compared to 1DCNN
	Design Space Exploration with SNN Parameters

	Conclusions
	References

