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A B S T R A C T

The influence of the microstructural geometry on the behavior of porous media is widely recognized,
particularly in geomaterials, but also in biomaterials and engineered materials. Recent advances in imaging
techniques, such as X-ray microcomputed tomography, and in modeling make it possible to capture the exact
morphometry of the microstructure with high precision. However, most existing continuum theories only
partially account for the morphometry. We propose here a unifying approach to link the strength of porous
materials with the necessary and sufficient microstructural information, using Minkowski functionals, as per
Hadwiger’s theorem. A morphometric strength law is inferred from synthetic microstructures with a wide range
of porosities and heterogeneities, through qualitative 2D phase-field simulations. Namely, damage is modeled
at the microstructural level by tracking the solid-pore interfaces under mechanical loading. The strength is
found to be best described by an exponential function of the morphometers, thus generalizing early works
on metals and ceramics. We then show that the predictiveness of this relationship may extend to real porous
media, including rocks, bones, and ceramics.
1. Introduction

Porous media represent a wide range of materials but also a tremen-
dous challenge to be fully understood and harnessed. Among them,
geomaterials, stemming from millions of years of transformations under
harsh conditions, represent a particularly complex subclass, inasmuch
as processes in these media are multiphysics and multiscales. Recent
advances in geosciences found, however, that this complexity may
boil down to the great heterogeneity and stochasticity of geomaterials’
microstructures. For instance, pressure solution (Niemeijer et al., 2009;
Croizé et al., 2013; van den Ende et al., 2019; Guével et al., 2020),
strain localization (Vardoulakis and Sulem, 1995; Kawamoto et al.,
2018), frictional instabilities (Rattez et al., 2018a,b), fault reactiva-
tion (Veveakis et al., 2014; Lesueur et al., 2020), and granular flow
(Buscarnera and Einav, 2021) largely depend on the microstructural
geometry, or morphometry. The same conclusion holds for engineered
porous materials as well, such as ceramics (Salvini et al., 2018) and
energetic materials (Chun et al., 2020). Biomaterials, forming a third
subclass of porous media (Huyghe et al., 2002), are also increasingly
studied in the light of their microstructures, in particular in bones
mechanics (Augat and Schorlemmer, 2006; Wachter et al., 2002).

Therefore, modeling the microstructural dynamics is a crucial step
towards better understanding the macroscopic behavior of porous me-
dia. In metallurgy, this has been achieved with phase-field model-
ing (Allen and Cahn, 1979; Provatas and Elder, 2010; Bhattacharyya
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et al., 2019), which tracks the grains interfaces through finite elements,
and in geosciences, with discrete element modeling (O’Sullivan, 2011;
Kawamoto et al., 2018), which tracks the grains as discrete elements,
and recently also with phase-field modeling (Guével et al., 2020). That
said, due to computational limitations, relying solely on microscopic
simulations for large scales is unrealistic. On the other hand, the
existing constitutive macroscopic laws rely heavily on destructive ex-
perimental calibration, which can be unfeasible because of the limited
availability of materials or the impossibility to reproduce environmen-
tal conditions. For example, obtaining rocks from high depths can be
prohibitively expensive or even impossible, and geological time scales
are hardly reproducible in laboratory. As for biomaterials, such as
bones, they are best studied in vivo (see Fragogeorgi et al. (2019) e.g.).

The correlation between the strength of materials and their mi-
crostructural geometry was first theorized, through the foundation of
poromechanics, by Biot (1941), and for soils specifically, by Terzaghi
(1943). This effort was intensified following the catastrophic failure of
welded Allies ships through brittle fracture during the Second World
War, with focus on metals and ceramics. The strength of brittle poly-
crystalline metals was quantitatively addressed by Orowan (1949),
proposing what would ultimately become the Hall–Petch effect (Hall,
1951; Petch, 1953). The Hall–Petch relationship asserts that the yield
stress, or similarly the flow stress, scales as the inverse square root of
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the mean grain size. However, Li et al. (2016) recently showed, upon
critically reviewing a large amount of experimental data, that other
types of laws, including inverse exponential, turn out as satisfying. Fur-
thermore, Ryshkewitch (1953) experimentally found that the strength
of porous brittle polycrystalline materials, such as ceramics, is an
inverse exponential function of the porosity. This was confirmed more
recently with porosity-controlled experiments and modeling by Liu
et al. (2017). Building upon the previous results from non-porous
and porous brittle materials, Knudsen (1959) inferred a multiplicative
dependence of the strength on grain size and porosity (Eq. (7) therein),
which was checked experimentally for ceramics at different tempera-
tures. These efforts culminated to the advent of modern poromechanics
(see Coussy (2004) and Dormieux et al. (2006)), reconciling continuum
mechanics with Biot’s theory, and relevant to a wide range of disci-
plines, including geo, bio and material sciences. However, the strength
of porous media has mostly been studied with respect to porosity and
grain size only. According to morphometry theory and in particular
Hadwiger’s theorem (see Armstrong et al. (2019) and Section 2.1),
two more descriptors of the microstructure, which we refer to as
morphometers, are needed to fully account for the morphometric effects.

n these bases, we propose to investigate a morphometric strength law
f the form:

𝑠 = 𝜎∗𝑠 𝑓 (𝑀0∕𝑀∗
0 ,𝑀1∕𝑀∗

1 ,𝑀2∕𝑀∗
2 ,𝑀3∕𝑀∗

3 ), (1)

here 𝜎𝑠 denotes the strength, as described in Section 3.1, the 𝑀𝑖 (i =
0,. . . , 3) are the four required morphometers, the star quantities are ref-
erence values depending on the material and environmental conditions,
and 𝑓 is a multiplicative function of the 𝑀𝑖, following Knudsen (1959).
In particular, 𝑀0 denotes the porosity and 𝑀2 the grain size. Our
objective is to investigate the possible application of this law to porous
materials in general, including geomaterials and biomaterials. Thereby,
we subsume the microscopic mechanisms responsible for failure under
the generic umbrella of damage. For geomaterials, this encompasses
debonding, dissolution, cracks and breakage. Recent investigations in
geosciences on the influence of the morphometry notably include the
work of Zhang et al. (2016), Wetzel et al. (2021) and Buscarnera
and Einav (2021). For biomaterials, in particular for bones, damage
comprises dissolution, as in osteoporosis, and cracks, particularly in
cortical bones (Augat and Schorlemmer, 2006). While the focus in
biomechanics is mostly on the relationship between elastic moduli and
morphometers, some results corroborate the conclusions inferred for
the previous subclasses of porous materials, such as the exponential
relationship between strength and porosity (see Wachter et al. (2002)
and Appendix A). However, a mathematically-consistent law such as
Eq. (1) has not been proposed yet, accounting for the necessary and
sufficient microstructural information (see Section 2.1). In doing so, we
advocate accounting for the simultaneous dependence of strength on
multiple morphometers. This is particularly important for engineering
materials since varying one morphometer will vary the others; for
instance, decreasing the porosity to increase the strength may adversely
increase the grain size (Knudsen, 1959). In addition, we intend to
clarify which of the numerous morphometers used throughout the
literature should be accounted for.

In order to numerically investigate the dependency of the strength
of porous materials on their morphometers and specify Eq. (1), we
control the variability of the morphometry by using synthetic mi-
crostructures (SMs). This also allows to run a sufficiently large, and
hence statistically meaningful, ensemble of simulations and to account
for the stochastic nature of real microstructures (Chun et al., 2020).
Interest in synthesizing microstructures is intensifying in material sci-
ences, owing to recent computational advances. In particular, machine
learning enables to create highly realistic, tunable microstructures
(Mosser et al., 2017; Chun et al., 2020). While the latter represents the
state of the art, we have used, as a first step, a more straightforward
2

and much less computationally-demanding approach (see Section 2.2).
In all, we aim here at bridging the gap between microscopic and
macroscopic modeling, by calibrating macroscopic laws with morpho-
metric parameters upscaled from simulations on synthetic microstruc-
tures, hinging, as much as possible, on non-destructive methods. We
then check that the predictiveness of this relationship may extend
to real porous media, by comparing with simulation results, through
CT scans, and with existing experimental results. While complex mul-
tiphysics processes like pressure solution may still require explicit
modeling of the microstructure (Guével et al., 2020), we suggest that
as far as the influence of the microstructural geometry is concerned, it
is possible to upscale only the essential morphometric information.

2. Methods

2.1. Upscaling of the microstructural information

The morphometers 𝑀𝑖 in Eq. (1) are appropriately described by
the Minkowski functionals of the domain formed by the grains 𝛺
(Armstrong et al., 2019). Hadwiger’s theorem guarantees that a mi-
crostructure is fully described by 𝑑 + 1 Minkowski functionals, where
𝑑 is the space dimension, in the sense that any other descriptor that
is additive, motion-invariant and conditionally continuous would be
a linear combination of those functionals (see Hadwiger (1951) and
also Klain (1995) for a short proof). Owing to the completeness of the
set formed by the 𝑑+1 Minkowski functionals, we use these functionals
as a mathematical basis for a necessary and sufficient accounting of the
microstructural geometry. This result was originally derived in the con-
text of integral geometry; thereby, an important underlying assumption
is the convexity of the bodies upon which the Minkowski functionals
are calculated. This is naturally the case, for instance, for granular
media, which represent a large class of porous materials. However,
non-convexity may occur locally when the grains have highly irregular
shape; in that case, Hadwiger’s result fails to hold, should a local
convex approximation be impossible. In practice, customary tools for
digital image analysis rely on an approximation of convexity. Namely,
in watershed segmentation, utilized to discriminate the grains within
a porous matrix, grains are usually locally approximated by spheres,
similarly to the tools employed in this work (Gostick, 2017). This is
based on the theory of ‘‘parallel bodies’’ approximating irregular shapes
as a finite union of convex sets (Mecke and Arns, 2005). Particular
attention should be paid to the accuracy of this approximation when
a microstructure is dominated by non-convex shapes.

In 3D, the 4 needed Minkowski functionals are (Armstrong et al.,
2019)

𝑀0(𝛺) = ∫𝛺
d𝑉 , (2)

the total volume of the grains,

𝑀1(𝛺) = ∫𝜕𝛺
d𝑆, (3)

their total surface area,

𝑀2(𝛺) = ∫𝜕𝛺

(

1∕𝑟1 + 1∕𝑟2
)

d𝑆, (4)

their total mean curvature, where 𝑟1 and 𝑟2 denote the principal radii
of curvature of the surface element d𝑆, and

𝑀3(𝛺) = ∫𝜕𝛺

(

1∕𝑟1𝑟2
)

d𝑆 = 4𝜋𝜒(𝛺), (5)

their total Gaussian curvature, directly related to the Euler charac-
teristic 𝜒 by the Gauss–Bonnet theorem (Armstrong et al., 2019). In
turn, the Euler characteristic is directly related to the grains, or pores,
connectivity (Vogel, 2002). In practice, we will use the porosity 𝑛 as a
measure of 𝑀0 and the mean grain size 𝑔 for 𝑀2, which approximates
the inverse of the average mean curvature. The latter approximation is

in line with the typical algorithms that calculate the mean curvature
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of the grains obtained from watershed segmentation by approximat-
ing them by equivalent spheres, as detailed in the next section. For
simplicity, we keep the notations 𝑀0 and 𝑀2 for those quantities. In
his contribution, we will restrict our results to 𝑑 = 2 as a first step,
nd therefore use only 3 morphometers to constrain the strength law
q. (1).

.2. Synthetic microstructures

To find the function 𝑓 (𝑀𝑖) in Eq. (1), we run a large amount
f simulations on SMs, which are generated using the Python open-
ource package PoreSpy1 (Gostick et al., 2019). The starting point is
random noise (see Fig. 1a), that is, a 2D array 𝑅[𝑖, 𝑗] (𝑖 = 0,… , 𝑁 −1,
= 0,… , 𝑁 − 1), of dimension 𝑁 , of random values between 0 and 1.

t is then convoluted with a Gaussian filter (see Fig. 1b)

[𝑖, 𝑗] = 𝑒−
𝑖2+𝑗2

2𝑠2 , (6)

which standard deviation 𝑠 = 𝑁
40ℎ , or blurriness, is inversely pro-

ortional to a heterogeneity parameter ℎ, and where 40 is a scaling
actor; the heterogeneity of the output is then independent from the
mage size. The filtered output 𝐹 [𝑖, 𝑗] is thus calculated as follows

(see Gonzalez and Woods (2008) e.g.):

𝐹 [𝑖, 𝑗] = 𝑅[𝑖, 𝑗] ∗ 𝐺[𝑖, 𝑗] =
𝑁−1
∑

𝑢=0

𝑁−1
∑

𝑣=0
𝑅[𝑢, 𝑣]𝐺[𝑖 − 𝑢, 𝑗 − 𝑣], (7)

where ∗ denotes the convolution operator. Finally, after uniformizing
the blurred noise 𝐹 [𝑖, 𝑗] between 0 and 1, the array is binarized into
[𝑖, 𝑗] (see Fig. 1c) by using the porosity 𝑛 as the threshold, yielding

the final SM. The two input parameters controlling the generation of
the SMs are thus the heterogeneity ℎ and the porosity 𝑛. We will see
hat ℎ controls the narrowness and skewness of the morphometers
istributions. To restrict the study to realistic microstructures, 𝑛 is

varied from 0.15 to 0.4 and ℎ from 2 to 5, creating an ensemble of 42
SMs (see Appendix B). This ensemble forms the training batch, from
which the dependence of the strength on the morphometry will be
inferred. Throughout this work, the dimensions of the synthetic SMs are
restricted to 200 × 200 pixels, as a compromise between sufficiently re-
alistic microstructures and reasonable mesh sizes, which increase with
this resolution. It is then possible to obtain the distributions of the mor-
phometers 𝑀0, 𝑀1, 𝑀2, i.e. of the pore size, perimeter and grain size,
respectively, starting with the marker-based watershed segmentation
algorithm introduced by Gostick (2017). The values of the filter size
and of the Gaussian blur therein are carefully chosen to maximize the
number of segmented regions (grains or pores). Thereby, we minimize
the error made in the aforementioned convex approximation, which
enforces Hadwiger’s theorem. In particular, since the optimal values
for those parameters vary with the grain/pore size, they are expected
to vary with ℎ. Namely, we found that the filter size varies from 2 to 9
pixels for our range of SMs, whereas the blur varies from 0.2 to 0.8.
Upon segmenting the pores, their sizes are obtained by determining
the equivalent disks for every pores. Upon segmenting the grains, their
perimeter is obtained via an edge-finding algorithm optimized for fast
computing introduced by Benkrid et al. (2000). The grain sizes are
obtained similarly to the pore sizes. The last morphometer 𝑀3, the
Euler characteristic, is not concerned by distributions since it is a
topological quantity. While the distributions of 𝑀0 and 𝑀1 are useful
when comparing the SMs with real microstructures (see Section 3.4),
only the grain size distribution is calculated for every SMs, in order to
determine the mean grain size 𝑀2. The latter is taken as the mean of the
lognormal fit of the grain size distribution, as explained in Section 3.4.
𝑀0 and 𝑀1 are directly obtained from calculating the porosity, i.e.
the ratio of the black pixels over the total number of pixels, and the

1 http://porespy.org.
3

total perimeter, respectively. Finally, the Euler characteristic 𝑀3 is
calculated from an integral geometry formula in discretized space. In
the current 2D restriction, 𝑀3 is simply the number of objects minus
the number of holes. We refer to the documentation of PoreSpy and
skimage available online for further details (see Appendix C).

2.3. Damage phase-field modeling of the microstructure

The evolution of the microstructure is modeled via a phase field 𝜑
differentiating the pores from the grains, as introduced in Guével et al.
(2020), and describing the damage of the grains. As such, the phase
field measures the morphometric variations, and thus controls the
evolution of the morphometers (see Section 3.6). For all simulations,
we use the open-source multiphysics finite-element platform MOOSE
(Permann et al., 2020). Following Guével et al. (2020), the phase-
field equation stems from the coupling of the microscale mechanics
(at the grains scale) and the macroscale mechanics (mixture of grains
and pores). The former is governed by the micro-momentum balance
(Fried and Gurtin, 1993; Gurtin, 1996) and the latter by the usual
macro-momentum balance, as given, respectively, by
{

∇ ⋅ 𝝃 + 𝜋 = 0,
∇ ⋅ 𝝈 = 0,

(8)

where ∇⋅ denotes the divergence, 𝜋 is the microforce (scalar), energy-
onjugate of 𝜑, 𝝃 is the microstress (vector), energy-conjugate of ∇𝜑,
nd 𝝈 is the Cauchy stress tensor. The two momentum balances are
oupled via the generalized relaxation equation (Guével et al., 2020),

equivalent to the second law of thermodynamics as described by the
dissipation inequality

− 𝜓̇ − 𝜋𝜑̇ + 𝝃 ⋅ ∇𝜑̇ − 𝝈 ∶ 𝝐̇ ≤ 0, (9)

here 𝜓 is the free energy, the superposed dot denotes the time
erivative, the dot operator the scalar product, and the double-dot
perator the tensorial product. The free energy is described in its usual
andau form (Landau, 1937) through

(𝜑,∇𝜑, 𝝐) = 𝐺𝑔(𝜑) + (1 − ℎ(𝜙)) 1
2
𝝐 ⋅𝑪𝑝𝝐 + ℎ(𝜑)

1
2
𝝐 ⋅𝑪𝑔𝝐 +

𝜅
2
|∇𝜙|2, (10)

where 𝐺 is the height of the double-well potential, 𝜅 the interfacial
energy coefficient, the polynomials 𝑔(𝜑) = 𝜑2(1 − 𝜑)2 and ℎ(𝜑) =
𝜑2(3 − 2𝜑) correspond to a double-well potential and an interpolation
function, and 𝑪𝑔 and 𝑪𝑝 denote the elastic tensor of the grains and the
pores, respectively. The micro-mechanical properties are homogenized
through the Voigt–Taylor homogenization scheme (see Ammar et al.
(2009) and Aagesen et al. (2017)), which consists in interpolating the
partial stresses of the grains and pores phases while assuming homoge-
neous strains, thus recovering a familiar poromechanics formulation.
Thereby, 𝑪(𝜑) = (1 − ℎ(𝜑))𝑪𝑝 + ℎ(𝜑)𝑪𝑔 is the elastic tensor of the
mixture, and the Cauchy stress tensor reads 𝝈 = 𝑪(𝜑)𝝐. We note that
the choice of the homogenization scheme may affect the outcome of
quantitative simulations (Aagesen et al., 2017), but we focus here on
qualitative results only.

From a thermodynamic perspective, the state variables are 𝜑, de-
scribing the normal variations of the grains interface, ∇𝜑, describing
the tangential variations of the grains interface, and 𝝐 the macroscopic
(elastic) strain tensor. For simplicity, we consider ∇𝜑 and 𝝐 to be non-
dissipative, thus neglecting viscous effects; the viscous effect associated
with the phase field would delay phase changes as shown in Guével
et al. (2020). Furthermore, differently from Guével et al. (2020), we ne-
glect the gyroscopic chemical coupling that would allow grain healing;
namely, the relaxation potential, which completes the energy potential
𝜓 and relates the rates of the state variables to the thermodynamic
forces, is taken diagonal. Thereupon, the three relaxation equations,

http://porespy.org
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Fig. 1. a) Random noise 𝑅[𝑥, 𝑦], i.e. array of random values between 0 and 1. b) Gaussian filter 𝐹 [𝑥, 𝑦] applied onto the random noise, with a standard deviation of 1.76, or
equivalently, ℎ = 3. c) Resulting binarized SM 𝐵[𝑥, 𝑦] upon applying the threshold 𝑛 = 0.3. d) SM segmented into 110 grains via watershed algorithm.
which constrain the model’s equations to satisfy the second law Eq. (9),
read
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜏𝜑̇ = −𝜋 − 𝜕𝜓
𝜕𝜑 ,

0 = 𝝃 − 𝜕𝜓
𝜕∇𝜑 ,

0 = 𝝈 − 𝜕𝜓
𝜕𝝐 ,

(11)

where 𝜏 is the relaxation time associated with 𝜑. Combining the mo-
mentum balances (8) and the relaxation Eqs. (11) yields the following
Allen–Cahn equation, coupled with elastic mechanics:
{

𝜏𝜑̇ = 𝜅 ▵ 𝜑 − 𝐺𝑔′(𝜑) − 𝜆(𝝐)ℎ′(𝜑),
∇ ⋅ 𝑪(𝜑)𝝐 = 0,

(12)

where 𝜆(𝝐) = 1∕2(𝑪𝑔 − 𝑪𝑝)𝝐 ⋅ 𝝐 denotes the difference of elastic energy
between the grains and pores phases.

The encompassing concept behind modeling damage with a phase
field is the tilting of the double-well potential 𝐺𝑔(𝜑), upon input of
mechanical energy, beyond the saddle–node bifurcation point (Guével
et al., 2020), that is, beyond the activation energy of the damage
process considered. In the present study, we leave our model agnostic
of the specific nature of damage, upon assuming that only the level
of activation energy will differ from a type of damage to another.
Thereupon, in the present description, damage is not specified but
may include debonding, dissolution and microcracking, the choice
of which would depend on the amount of mechanical energy input
and the time scale. For instance, over long time scales, such as in
geological settings, damage may correspond to dissolution, as detailed
in Guével et al. (2020) studying pressure solution with a model similar
to (12). This model could also be applied when damage corresponds to
microcracking. Indeed, (12) is similar to the model used for modeling
fractures at the continuum scale (see Kuhn and Müller (2010) e.g.).
4

The fundamental difference is that our model is applied directly at the
grains scale, whereas phase-field damage models have so far been ap-
plied to the continuum scale. Hence, instead of the usual differentiation
between the intact and the damaged phases, our model differentiates
between the grains and the pores phases, where the growth of the pores
phase at the expense of the grains phase embodies the microstructural
damage. We distinguish the latter from its upscaled manifestation at
the continuum scale, which we call the degradation (see Section 3.6). In
particular, while the damaged phase in the macroscopic theory is not
energetic, here, the pores phase is associated with an elastic energy
(albeit not allowing shearing), yielding a mixture of elastic energies,
as described above. Therefore, the only differences in the form of our
phase-field equation with the continuum damage phase-field modeling
are the presence of an elastic energy for the phase 𝜑 = 0 and the degrees
of the polynomials representing the potential 𝑔(𝜑) and the interpolation
function ℎ(𝜑). Similar models in the literature include also the one
used for grain growth in (non-porous) metals under mechanical loading
(see Tonks and Millett (2011) e.g.), where each grain of a polycrystal is
represented by an order parameter. Unlike for metals, the pores phase
in porous media such as geomaterials plays a crucial role, so that it is
given an independent role in our model. The main difference between
modeling porous media and metals is thus that we discriminate the
pores from the skeleton, without differentiating, as a first step, the
different grains, inasmuch as they are not necessarily distinguishable
within the skeleton, depending on the materials; for instance, as dis-
cussed in the following, unlike a sandstone, a cortical bone can hardly
be decomposed into grains. In practice, this translates into dropping the
grain-to-grain interfacial energy term present in the polycrystals phase-
field model. In all, modeling the microstructural damage of porous
media is performed here as a combination of the concepts used in
continuum damage and polycrystals phase-field modeling. In practice,
since we focus mostly on tensile loadings, one may expect that damage
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would occur through debonding or microcracking, both for the geo and
biomaterials considered here.

Upon choosing a characteristic length 𝑙0, a characteristic time 𝑡0 =
𝜏∕𝐺 and a characteristic specific energy 𝐺 = 1GPa, we write (12) in
dimensionless form as follows:
{

𝜑̇ = 𝜅̂ ▵ 𝜑 − 𝑔′(𝜑) − 𝜆̂(𝝐)ℎ′(𝜑),
∇ ⋅ 𝑪̂(𝜑)𝝐 = 0,

(13)

where 𝜅̂ = 𝜅∕𝐺𝑙20 is the (dimensionless) interfacial group, 𝜆̂ = 𝜆∕𝐺 is the
activation energy group and 𝑪̂ = 𝑪∕𝐺. The dimensionless derivatives
are noted similarly and the hat notation for dimensionless quantities
is dropped in the following. The evolution of the damage via 𝜑 is
ully determined by 𝜆, upon fixing 𝜅 to an appropriately small value
see Section 3.3). We also restrict our attention for simplicity to 2D
roblems, so that the elastic energy 𝜆 is fully determined by the two
amé parameters. As explained in Guével et al. (2020), the grains are
onsidered as solids of very low porosity, and the pores as shear-free
olids that are much more deformable. Namely, for geomaterials, we
hoose the first and second Lamé parameters of the grains both to
e that of granite 30GPa, and for the pores 1GPa and 0, respectively.
urther major assumptions include small strains and that the assembly
f grains considered is representative of the material. To focus on
he effect of the microstructure on the strength, we will first perform
imulations in tension with fixed lateral boundaries. Then, to determine
he effect of the confinement, we will perform axisymmetric biaxial
oadings. As noted by Knudsen (1959), experimental data from the
iterature suggest that the nature of the morphometric function 𝑓 in
q. (1) should be valid for different strength tests, whether in com-
ression, tension, or bending (see Section 4.2). Throughout this work,
he invariant measure of stress used in output is the von Mises stress,
hich is directly related to the second invariant of the deviatoric stress.
he associated strain is the vertical displacement of the top boundary
ivided by the initial length of the square domain.

. Model’s performance

.1. Measure of the strength

In solid mechanics, the word ‘‘strength’’ has a broad meaning.
ost often, it corresponds to the maximum value that the stress can

ttain (peak stress). Alternative measures of strength include the yield
tress, or even the value of stress at a given value of strain when the
aterial is undergoing prolonged hardening (Sari et al., 2020; Fischer

nd Paterson, 1989). Since the latter is the case in the present study,
he strength is defined throughout this work as a value of the vertical
tress for a certain value of a post-yield deformation 𝜖𝑠 attributed to

given material. The latter is determined for the SMs a posteriori,
fter obtaining the stress–strain output for all the training batch, as
he minimum yield strain. Namely, as shown in Fig. 2 for 16 of the
2 SMs, we find that 𝜖𝑠 = 11.5% is the minimum strain required for
ll the SMs to enter yielding, that is, so that the stress–strain response
s non-linear. The 𝜖𝑠-strength, noted 𝜎𝑠, also called flow stress (Fischer
nd Paterson, 1989), is the value of the aforementioned stress invariant
orresponding to this value of 𝜖𝑠. It will be determined similarly for the
eal microstructures.

.2. Mesh convergence

Before obtaining any meaningful results, it is important to study the
esh convergence. The initial conditions of the simulations are indeed
etermined by digitizing the input image, with respect to the chosen
esh dimensions. In particular, smaller microstructural dimensions

equire a finer mesh. Therefore, we expect to use finer meshes for SMs
f smaller grain sizes. We refer to Appendix B for the summary of the
rain sizes of our training batch. To assess the mesh convergence, we
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ompare the values of 𝜎𝑠 for the different SMs, to find that, indeed, the t
Fig. 2. Stress–strain responses for 16 of the 42 SMs (𝑛 ∈ {0.15, 0.20, 0.30, 0.40}, ℎ ∈
2, 3, 4, 5}) until 𝜖𝑠 = 11.5%, showing that all the SMs reach post-yield for this value.
hanges from dotted to full lines correspond to an increase in porosity 𝑛, and increases

n gray intensity to an increase in heterogeneity ℎ. The rest of the SMs corroborates
his assertion but are not shown here for visibility purposes.

Fig. 3. Evolution of the minimum mesh size (number of elements per side of the
domain) required for mesh convergence with respect to the grain size.

Table 1
Number of elements used for the meshes in our simulations for different mean grain
sizes.

Mean grain size (px) Mesh size (elts)

4–6 360 × 360
6–7 350 × 350
7–8 300 × 300
8–13 280 × 280

mesh dimensions increase with the grain size (see Fig. 3). We then pick
the minimum mesh size required for mesh convergence within a 2%
error. In practice, using Fig. 3, we use the mesh sizes shown in Table 1.
Note that the grain sizes are measured in pixels where 1𝑝𝑥 = 𝑙0∕𝑁 ,
𝑙0 is the characteristic length of the problem taken as the image size
and 𝑁 the image dimension. When 𝑙0 is determined in the case of real
microstructures, the length measurements will be given in mm (or μm)
in the following.

3.3. Influence of the interfacial coefficient 𝜅

While the activation energy 𝜆(𝝐), coupled with the mechanical en-
ergy, is the main drive for the phase change, the interfacial coefficient 𝜅
uantifies its diffusive character. When 𝜅 ≫ 𝜆, that is, when the activa-
ion energy is negligible compared to the interfacial energy, the process
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Fig. 4. Mechanical response of the SM (𝑛 = 0.4, ℎ = 5) for different values of 𝜅, including the limit cases 𝜅 = 0 (sharp interface) and 𝜅 ≫ 𝜆 (pure diffusion). Note the spurious
diffusion in the case 𝜅 = 10−4, leading to the closure of the smallest pores, as opposed to the case 𝜅 = 10−5.
is purely diffusive, and therefore nonphysical in the current context.
Conversely, when 𝜅 → 0, the process falls back on the corresponding
sharp interface problem, thereby losing the regularization provided
by the diffuse interfaces, characteristic of phase-field modeling. We
thus choose the value of 𝜅 not too large to avoid spurious interfacial
diffusion, but not too low to keep diffuse interfaces. The former would
typically induce the closure of the smallest pores, independently from
the mechanical loading. To do so, we perform simulations for different
values of 𝜅, while the microstructure and the other parameters are
fixed. To be conservative, we choose the SM with the smallest mean
grain size in our training batch, namely for (𝑛 = 0.4, ℎ = 5). Indeed,
spurious diffusion will occur first for the smallest microstructural length
scales. Note that more elaborated techniques exist to circumvent spuri-
ous kinetic effects (see Tourret et al. (2021) and references therein).
We choose 𝜅 = 10−5 since for 𝜅 ≥ 10−4, spurious diffusion occurs,
whereas for 𝜅 ≤ 10−6, the results are similar to the case where 𝜅 = 0
(see Fig. 4). Specifically, it can be seen that for 𝜅 ≥ 10−4 the smallest
pores close under diffusion of the grains phase, as opposed to the case
where 𝜅 ≤ 10−5. The limit case 𝜅 ≫ 𝜆 of pure diffusion is also shown
in Fig. 4, where, after only one timestep, the microstructure mixes
into a homogeneous phase where 𝜑 ≈ 0.6. Thereupon, the mechanical
response is that of a homogeneous elastic solid, which homogenized
elastic modulus can be estimated around 3.5.

3.4. Resemblance of the SMs with real microstructures

Before drawing realistic results from the SMs, let us also check
how representative they are of real microstructures. We find that the
SMs resemble real microstructures through the distributions of the
three first morphometers. We find that the grain size distributions
of the SMs are skewed towards smaller grains (i.e. right-tailed), as
expected from thresholding the initial symmetric Gaussian noise. The
heterogeneity ℎ controls their skewness (i.e. deviation from a normal
distribution) and narrowness (see Fig. 5). The distributions of SMs with
larger heterogeneity ℎ are less skewed but narrower. More precisely,
the SMs exhibit lognormal distributions (see Fig. 6), similarly to a large
variety of porous media. This type of distribution can be found in
geomaterials (see Hwang and Powers, 2003; Marks and Einav, 2015
and references therein), as well as engineered porous materials (see Liu
6

Fig. 5. Evolution of the grain size distribution with the heterogeneity ℎ for a fixed
porosity 𝑛 = 0.2 for a 200 × 200 pixels resolution, showing that higher values of ℎ lead
to less skewed but narrower distributions. Indeed, the skewness values, calculated as
Pearson’s moment coefficient of skewness, are found here to be 2.75 for ℎ = 2, 1.96
for ℎ = 3, 1.07 for ℎ = 4, 0.95 for ℎ = 5.

et al. (2017) e.g.). For direct comparison, we consider a Mt Simon
sandstone, presented in Kohanpur et al. (2020), and digitalized on
digitalrocksportal.org, of average porosity 27.1%. Each sides of the
CT scans have a resolution of 1200 pixels measuring each 2.8 μm.
To imitate a given slice of porosity 27.4% (Fig. 6a), we generate a
SM (Fig. 6e) of same porosity and resolution, and of heterogeneity
ℎ determined to match the mean grain size. The distributions of the
three first morphometers for the real and synthetic microstructure are
compared in Fig. 6 and Table 2, and checked to be both well fitted by
lognormal distributions.

3.5. Determinism of the SMs

Since the generation of the SMs starts from a random noise, it is not
a priori deterministic. Indeed, varying the random seeds for a given
set of input parameters 𝑛 and ℎ yields different microstructures. To

https://www.digitalrocksportal.org
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Fig. 6. a) CT scan of Mt Simon sandstone segmented into 733 grains, of porosity 𝑀0 = 27.4% (mean pore size 41.51 μm), total perimeter 𝑀1 = 190.11mm (mean perimeter 1.02mm),
mean grain size 𝑀2 = 79.80 μm and Euler number 𝑀3 = −351, along with the associated lognormally-fitted distributions in b), c), d) respectively. e) SM generated for 𝑛 = 27.4% and
ℎ = 3.9 with resolution 1200 × 1200 pixels, matching the sandstone microstructure, segmented into 717 grains, of porosity 𝑀0 = 27.4% (mean pore size 47.49 μm), total perimeter
𝑀1 = 167.17mm (mean perimeter 1.06mm), mean grain size 𝑀2 = 79.26 μm and Euler number 𝑀3 = −202, along with the associated distributions in f), g), h) respectively.
Table 2
Comparison of the morphometers of the Mt Simon sandstone with the synthetic
analogue, along with the mean values of their lognormal distributions.

Sandstone Synthetic Error (%)

Porosity 𝑀0 (%) 27.4 27.4 0
Perimeter 𝑀1 (mm) 190 167 12

Mean grain size 𝑀2 (μm) 79.8 79.3 0.68
Mean pore size (μm) 41.5 47.5 14
Mean perimeter (mm) 1.02 1.06 3.9

quantify the influence of this discrepancy on the mechanical response,
we compare the numerical results for 𝑛 = 0.3, ℎ = 3 as an example,
with 10 different seeds (see Appendix D). Namely, we calculate the set
of strengths 𝜎𝑠 (for 𝜖𝑠 = 11.5%) for the different seeds. We find that the
standard deviation of this set divided by its mean is around 4%, which
we consider as an approximate measure of the potential error in the
following predictive fitting.

3.6. Morphometers evolution

Numerical results are shown in Fig. 7 for the SM 𝑛 = 0.2 and ℎ = 5,
from the initial SM input, which digitization provides the initial condi-
tions for the phase field 𝜑, to the (post-yield) state where the strength
is reached. The associated distributions of the volumetric strain and
of the phase-field rate illustrate the causality between mechanical
loading and damage. Upon tensile loading, the pores open up, leading
to damage events responsible for failure, namely the coalescence of
neighboring pores, well known possible microstructural manifestation
of strain hardening (Pardoen and Hutchinson, 2000). This can repre-
sent debonding or microcracks. In this particular example, the main
damage event (maximum of |𝜑̇|) responsible for failure occurs in the
center (see black oval in Fig. 7). As a macroscopic descriptor of the
microscopic damage, we define the relative degradation 𝐷𝑟, similarly
to breakage mechanics (Einav, 2007), so that 𝐷𝑟 = 0 corresponds to
an undamaged material and 𝐷𝑟 = 100% to a final state of damage. The
latter is arbitrarily defined as the state where the strength is reached
(see Section 3.1). Thus, 𝐷𝑟 is a relative measure of degradation, as it
depends on the initial and final state considered, and is calculated as
the following upscaling function:

𝐷𝑟 =
∫𝛺̄ 𝜑(𝜖)d𝜖 − ∫𝛺̄ 𝜑(𝜖0)d𝜖 , (14)
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∫𝛺̄ 𝜑(𝜖𝑠)d𝜖 − ∫𝛺̄ 𝜑(𝜖0)d𝜖
where 𝛺̄ denotes the total spatial domain, 𝜖0 = 0, 𝜖𝑠 is the strain when
𝜎𝑠 is reached, so that ∫𝛺̄ 𝜑(𝜖)d𝜖 computes the domain’s portion occupied
by the grains, since 𝜑 = 1 represents the grains and 𝜑 = 0 the pores. The
evolution of the relative degradation of the SM of Fig. 7 with respect
to the strain is shown in Fig. 8, along with the corresponding stress–
strain curve and the evolution of the 4 morphometers; although only
3 morphometers are required in 2D to fully constrain the strength law,
we find it informative to include all of them here. As expected, the
tensile loading opens up the pores, which increases the porosity 𝑛 =𝑀0.
Moreover, as the neighboring pores merge with each other towards
failure (see Fig. 7), the number of pores decreases (by around 9%) and
therefore, the Euler characteristic 𝜒 =𝑀3 decreases in absolute value.
As a consequence, the total perimeter 𝑀1 decreases and the mean
grain size 𝑀2 increases, although both by less than 5%, as opposed
to 𝑀0 and 𝑀3 varying by around 20%. The observed morphometers
evolution is consistent with the evolution of strength found later in
Section 4.1 with respect to the initial morphometers values. Indeed,
the material weakens upon loading, and therefore can be seen as a
strong material initially and as a weaker one at the end of the loading.
Consistently, we find that the strength decreases with the porosity 𝑀0
and the mean grain size 𝑀2, but increases with the total perimeter 𝑀1
and the absolute value of the Euler characteristic 𝑀3.

4. Results

4.1. Scaling of the strength with the morphometers in SMs

We now gather the results of all the simulations on the 42 SMs (see
Appendix B), to find the best-fit function 𝑓 (𝑀𝑖) relating the strength to
the morphometers, via the least squares method. The latter is adequate
since no outliers are expected in the present synthetic numerical data
set (as opposed to a set of experimental data). In the present 2D case,
we only need 3 morphometers, chosen as 𝑀0, 𝑀1 and 𝑀2 for instance.
Following our initial assumption of a multiplicative dependence of
the strength on the morphometers, as a generalization of Knudsen’s
theory (Knudsen, 1959), we find that the best fit is exponential, with
an adjusted 𝑟2 coefficient of 0.9995 and an average error of 2.67%, as
compared with other potential candidates (see Table 3). In the present
2D case, the strength law Eq. (1) thus reads

𝜎𝑠 = 𝜎∗𝑠 𝑒
−
𝑀0−𝑀

∗
0

𝑀∗
0

+
𝑀1−𝑀

∗
1

𝑀∗
1

−
𝑀2−𝑀

∗
2

𝑀∗
2 . (15)

Notably, the fitting coefficient for the porosity 1∕𝑀∗
0 = 7.3 is found

to be in the range of values found experimentally by Knudsen (1959).
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Fig. 7. a) SM generated for 𝑛 = 0.2 and ℎ = 5. b) Digitization of the SM used as input for 𝜑. c) Output for 𝜑 after tensile loading post-yield for a vertical strain of 𝜖𝑠 = 11.5%.
d) Volumetric strain distribution for the same state, concentrated in a central zone (black oval). e) Distribution of 𝜑̇ for the same state, negative since the pore phase 𝜑 = 0 is
produced, with maximum absolute value also in the central zone, coinciding with the concentration of mechanical energy.
Fig. 8. a) Stress–strain curve (in blue) corresponding to the evolution of the SM presented in Fig. 7, along with the degradation–strain curve (in orange). b) Evolution of the
morphometers with the degradation, whose values are normalized with their final values. Note that the values of the Euler characteristic 𝑀3 is negative before normalization.
The prediction is found to be as accurate when replacing 𝑀2 by 𝑀3. We
check that a Hall–Petch type of fitting with respect to the mean grain
size 𝑀2 is also satisfying, while keeping the exponential dependence for
𝑀0 and 𝑀1. We find that 𝜎𝑠 increases with the total perimeter 𝑀1 and
with the absolute value of the Euler characteristic 𝑀3. We also check
that it decreases with the porosity 𝑀0 and with the grain size 𝑀2, as
already well known. For a given random seed, the prediction is thus
found to be erroneous by less than 3% on average. Then, since choosing
a seed amounts to an error of approximatively 4.33% (see Section 3.5),
we infer that the overall predictive error is

√

2.672 + 4.332 ≈ 5%. To
use the latter formula, we have assumed that the error propagation is
multiplicative, since the choice of the seed and of the morphometry is
concomitant. This error estimation relies, however, on assuming that
the stochastic error of 4.33% is valid for all the SMs, which is not here
verified.
8

4.2. Comparison with experimental results

As previously discussed, experiments on a wide range of materials
have shown that the strength depends exponentially on the porosity
(see Ryshkewitch (1953), Knudsen (1959), Appendix A). Similarly,
the relationship between strength and grain size is usually accurately
described by a power law (Knudsen, 1959). We found above that this
relationship is also adequately described by a exponential function.
However, there are few results, if any, relating the strength to the two
other morphometers, the surface area 𝑀2 and the Euler number 𝑀3,
which could have corroborated our results. Furthermore, as emphasized
in the present work, the strength should not depend, in general, on a
single morphometer, but simultaneously on three of them in 2D (four
in 3D). We use Knudsen’s experimental data on ceramics (Knudsen,
1959), as regards the simultaneous dependence on porosity and grain
size, to check the validity of Eq. (15) when the dependence on 𝑀
1
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Table 3
Different fitting models with associated adjusted 𝑟2 coefficient and average error, showing that the best fitting function is exponential, where
𝑓1(𝑀0 ,𝑀1 ,𝑀2) = 𝛼1𝑒𝛼2𝑀0+𝛼3𝑀1+𝛼4𝑀2 , 𝑓2(𝑀0 ,𝑀1 ,𝑀3) = 𝛼1𝑒𝛼2𝑀0+𝛼3𝑀1+𝛼4𝑀3 , 𝑓3(𝑀0 ,𝑀1 ,𝑀2) = 𝛼1𝑀

𝛼2
0 𝑀

𝛼3
1 𝑀

𝛼4
2 , 𝑓4(𝑀0 ,𝑀1 ,𝑀2) = 𝛼1𝑒𝛼2𝑀0+𝛼3𝑀1𝑀−0.5

2 ,
𝑓5(𝑀0 ,𝑀1 ,𝑀2) = 𝛼1𝑀0 + 𝛼2𝑀1 + 𝛼3𝑀2. The fitting coefficients 𝛼𝑖 are determined via the least squares method.

Best fit Exponential
(𝑀0, 𝑀1, 𝑀2)

Exponential
(𝑀0, 𝑀1, 𝑀3)

Power Hall–Petch Linear

Adjusted 𝑟2 0.9995 0.9995 0.9963 0.9991 0.9739
Average error (%) 2.67 2.67 7.70 3.56 18.35

Fitting function 𝑓1(𝑀0 ,𝑀1 ,𝑀2) 𝑓2(𝑀0 ,𝑀1 ,𝑀3) 𝑓3(𝑀0 ,𝑀1 ,𝑀2) 𝑓4(𝑀0 ,𝑀1 ,𝑀2) 𝑓5(𝑀0 ,𝑀1 ,𝑀2)
Fig. 9. Fitting of Knudsen’s experimental data on ceramics (Knudsen, 1959) (red dots) with the morphometric strength law Eq. (15) (blue hyperplane) when the strength is
approximated to depend only on the porosity 𝑀0 and the grain size 𝑀2. a) Strength of chromium carbide under bending (Table 8 in Knudsen (1959), temperature 1426 °C), fitted
with an adjusted 𝑟2 coefficient of 0.998. b) Strength of thorium dioxide under compression (Table 6 in Knudsen (1959)), fitted with an adjusted 𝑟2 coefficient of 0.996. c) Strength
of thorium dioxide under bending (Table 4 in Knudsen (1959)), fitted with an adjusted 𝑟2 coefficient of 0.999. The values of strengths and grain sizes are normalized by their
respective maximum values.
and 𝑀3 is dropped (see Fig. 9). The adequacy of the fitting suggests
that, at least for certain materials with relatively regular microstructure
such as ceramics, not all morphometers are necessary. We will see in
the following, however, that for more irregular microstructures like
rocks or bones, this is not satisfactory in general. We also corroborate
Knudsen’s observation that the nature of the morphometric function
in Eq. (15), namely exponential here, should be valid in compression,
tension, or bending.

4.3. Dependence of the strength on the confinement

While the focus of this work concerns the morphometry, the
strength can depend on other factors such as the confining pressure 𝑃 ,
which we shall briefly discuss here. Such dependence can be included
in the reference stress 𝜎∗𝑠 . We determine it by performing simulations
of axisymmetric biaxial compressions for different values of 𝑃 , for
a given microstructure with values of porosity and heterogeneity in
9

the middle range of our training batch (𝑛 = 0.3, ℎ = 3), in plane
strain conditions. To constrain the range of confining pressures, we
estimate the preconsolidation pressure 𝑃𝑐 by performing an isotropic
compression (see Appendix E). By reading the yield stress value in
Fig. E.17, we find an approximate value of 𝑃𝑐 ≈ 1.2. We then plot
the obtained 𝜖𝑠-strength with respect to the confining pressures (see
Fig. 10), where the best fit function is a parabola. This recovers
the parabolic failure criterion, recently suggested and experimentally
verified (see Yuan et al., 2020; Wang et al., 2019; Singh and Rao, 2005).
This also captures the transition from a linear behavior at low confining
pressures to a pressure-insensitive behavior for high confinement (Yuan
et al., 2020).

4.4. Strength prediction from real microstructures

To assess the validity of the morphometric strength law Eq. (15),
‘‘learned’’ on synthetic numerical data, we predict the strength of real
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Fig. 10. The points represent numerical results for the strength versus the confining
pressure in axisymmetric biaxial compression. The curve corresponds to the fit
−0.0308𝑝2 + 0.109𝑝 + 1.88, for which the adjusted 𝑟2 is exactly 1.

materials from CT scans, and compare it with phase-field simulations
as previously. For that, we employ the following procedure. (1) We
choose a set of 𝑚 CT scans 𝐶1,… , 𝐶𝑚 of a given material and pick one
of them as the reference 𝐶∗. (2) We binarize the 𝐶 𝑖 and calculate the
morphometers for each 𝐶 𝑖 as done previously for the SMs. In particular,
this determines the reference values for the morphometers 𝑀∗

𝑖 . (3)
We run one simulation for the reference CT scan 𝐶∗ to determine the
remaining reference value 𝜎∗𝑠 . (4) We deduce the 𝜎𝑖𝑠 for the remaining
CT scans using the strength law. (5) We run the simulations for the
remaining CT scans for comparison.

4.4.1. Geomaterials
Starting with geomaterials, we use CT scans2 of Mt Simon and

Berea sandstones, two benchmark rocks. The Mt Simon sandstone was
introduced in Section 3.4. The Berea sandstone, of average porosity
17.9%, is presented in Lucas-Oliveira et al. (2020), with a digitization
resolution of 2.25 μm per pixel. The resolution of the CT scans of
both sandstones is reduced to 300 × 300 pixels to reduce the mesh
ize and have reasonable computation times, in particular yielding
rroneously high porosity values in Table 4. This does not hinder the
resent qualitative study since the different parts of the Berea sandstone
emain comparable with each others. Using the same model Eq. (13)
nd parameters values, we follow the procedure described above. The
trength of the Mt Simon and Berea sandstones are defined with 𝜖𝑠 =
11.5% and 𝜖𝑠 = 10%, respectively. The results are gathered in Fig. 13 and
detailed in Fig. 11 and Table 4 for the example of a reference CT scan
and a predicted strength for a weaker part with higher porosity. The
predictions show a good agreement with an average error of 2.38% for
the Mt Simon sandstone and 5.27% for the Berea sandstone. We must
note that the choice of the reference CT scan 𝐶∗ was made judiciously
to minimize this error. For instance, for the Mt Simon sandstone, the
average error for all choices of 𝐶∗ was 3.53%. This pertains to the usual
problem in modeling geomaterials, that is, finding a representative
elementary domain. Indeed, it is sensible that in order to deduce
the properties of a material’s domain, one must use a representative
domain as a reference. We also verify that predicting the strength
with less morphometers than required by Hadwiger’s theorem yields
larger predictive errors. For example, for the Mt Simon sandstone, the
prediction error increases by 43% when using the porosity 𝑀0 and the
grain size 𝑀2 only.

2 digitalrocksportal.org.
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4.4.2. Bones
To showcase the general predictive power of the morphometric

strength law Eq. (15), we perform the same predictive procedure
for bones, which are porous materials exhibiting a wide range of
porosities and microstructural architectures usually different from that
of geomaterials. In particular, the example of bones enables us to
address anisotropic microstructures. Since the Minkowski functionals
are motion-invariant by definition, they cannot capture directionality;
instead, one must use Minkowski tensors (Schröder-Turk et al., 2013)
to have a morphometric description that depends on the direction.
We leave this generalization for future works and concede that the
following results on anisotropic microstructures are only valid for the
loading direction considered here.

Typical values of morphometers for geomaterials and bones are
shown in Table 4 for comparison. As far as the microstructure is
concerned, there are two main kinds of bones, the cortical bone and
the trabecular bone (see Cowin (2002) for a general review of bone
mechanics). The former occupies the perimeter of the bone and has a
low porosity ranging typically from 5 to 25%. The latter occupies the in-
side of the bone and has a scaffold microstructure, with a much higher
porosity ranging from 50 to 90%. The main morphometer varying from
a bone to another is the porosity. Indeed, the creation of porosity,
because of age or disease, is the main sign of bone degradation. Thus,
we will use our strength law to predict the strength of bones with
varying porosities, given a reference bone, typically a healthy bone
with a normal porosity.

For the trabecular bone, we used the CT scan in Fig. 1 of Neumann
et al. (2018), providing a transverse section. We choose the healthy
microstructure as the reference, to predict the strength of the arthritic
one (see Fig. 12). As for the cortical bone, failing to find satisfying input
images, we model it via SMs with anisotropy to resemble real cortical
microstructures in their longitudinal section (see Fig. 9 in Cooper et al.
(2004) and Fig. 1 in Granke et al. (2011)). For that, the heterogeneity
ℎ is chosen as an array (1, 4), meaning that the pores are elongated in
the vertical direction four times more than in the horizontal one (see
Fig. 12). We then generate different SMs with varying porosities (3, 5,
7, 10, 15 and 20%) and fixed anisotropy.

We use the same model as previously, but with different elastic mod-
uli for the skeleton phase. The same problem of determining the moduli
of the skeleton phase holds as for geomaterials. Indeed, elastic moduli
are usually measured for the mixture of the skeleton and pores phases.
As explained in Section 2.3, we have assimilated the skeleton phase of
geomaterials to a rock with very low porosity. Similarly, we assume
the solid (mineral) phase of bones to be analogous to a bone of very
low porosity, namely a cortical bone, for which the Lamé parameters
can be found to be around 10GPa and 7GPa respectively (see Lai et al.
(2015)). We define the 𝜖𝑠-strength 𝜎𝑠 with 𝜖𝑠 = 15% for the trabecular
bone and 𝜖𝑠 = 25% for the cortical bone. For the trabecular bone,
since we use transverse sections, the loading is compressive. As for the
cortical bone, modeled longitudinally, we choose a tensile loading. In
agreement with (Morgan et al., 2018), we find that for a given post-
yield vertical strain, the trabecular microstructure, in compression, has
a softening response, whereas the cortical SM, in tension, is limited to
a hardening response (see Fig. 12). For the synthetic cortical bones,
we show for instance the results for 𝑛 = 15% as a healthy bone and
𝑛 = 20% as the arthritic bone to be predicted. Finally, we show a
relatively accurate prediction of the strength from our morphometric
law (see Fig. 13), with an error of 0.65% for the trabecular bone
(detailed in Table 4), and an average error of 2.4% for the synthetic
trabecular bones. For the latter, the accurate prediction required using
two different reference microstructures, one for 𝑛 < 10% and one for
𝑛 ≥ 10%, indicating that the material may have two distinct mechanical
behaviors for those two ranges of porosities. We have used the Euler
characteristic 𝑀3 instead of the grain size 𝑀2 since determining the
grain size distributions is, as expected, less accurate for microstructures

with little convexity and may not bear any physical meaning. As for

https://www.digitalrocksportal.org
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Fig. 11. a) CT scans of a Mt Simon sandstone (layer 108) and b) another layer of the same sandstone (890) with 8% increase of porosity with similar other morphometers, hence
weaker. c) CT scans of a Berea sandstone (layer 000) and d) another layer of the same sandstone (940) with 7% increase of porosity with similar other morphometers, hence
weaker. e) Mechanical response of the 4 sandstones microstructures.
Fig. 12. a) CT scans of a healthy and b) arthritic trabecular bone’s microstructure (from Neumann et al., 2018). c) Synthetic microstructures of a healthy (15% porosity) and d)
arthritic (20% porosity) cortical bone. e) Mechanical response of the 4 bones.
the geomaterials, we also calculate the prediction error made in using
only two morphometers, here the porosity 𝑀0 and the perimeter 𝑀1. In
the case of the trabecular bone, the error soars from 0.65% to 46.2%.
Such an increase is expected insofar as the trabecular bone has the most
irregular microstructure studied in this work, and therefore, demands
the most information to be described. In all, the average errors between
predicted and simulated strengths are of the same order as the expected
maximum prediction error calculated in Section 4.1.

5. Conclusion

We have suggested from qualitative 2D numerical simulations on
synthetic and real microstructures the possibility to fully account for
11
the morphometry of porous media in their macroscopic properties, such
as the strength. To do so, we have used a damage phase-field modeling
of the microstructure, capturing the exact microstructural geometry and
encapsulating causes of damage such as debonding, dissolution and
microcracks. The necessary and sufficient microstructural information
is then upscaled in the form of morphometers defined from Minkowski
functionals, as per Hadwiger’s theorem. In the context of porous media,
the four morphometers are chosen as the porosity, the total surface
area of the skeleton, the mean grain size and the Euler characteristic;
only three of them are required in 2D. We have inferred from a
wide range of synthetic microstructures, with various porosities and
heterogeneities, that the strength is best described by an exponential
function of the morphometers. Those generated microstructures were
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Table 4
Details of the prediction of the strength of the Mt Simon and Berea sandstones and of the trabecular and cortical bones, for
one reference and one prediction.

𝑀0 (%) 𝑀1 (mm) 𝑀2 (μm) 𝑀3 𝜎𝑠 (numerics) 𝜎𝑠 (predicted) Error (%)

Mt Simon sandstone 20.6 142 118 ∕ 2.44 a ∕
Weaker MS sandstone 22.2 145 121 ∕ 2.18 2.24 2.72

Berea sandstone 37.7b 253 7.96 ∕ 0.780 a ∕
Weaker B. sandstone 40.2b 253 8.35 ∕ 0.687 0.697 1.41

Healthy trabecular bone 29.5 451 ∕ −423 0.676 a ∕
Arthritic trabecular bone 41.1 552 ∕ −265 0.389 0.391 0.645

Healthy cortical bone 15 101 ∕ −97 2.51 a ∕
Arthritic cortical bone 20 125 ∕ −91 1.97 2.02 2.60

aReference CT scans.
bPorosities larger than real values from lowering initial resolution.
Fig. 13. Predicted strength with the morphometric strength law Eq. (15) versus the
trength obtained from phase-field simulations, for SMs, geomaterials (Mt Simon and
erea sandstones) and biomaterials (trabecular bones and synthetic cortical bones).

hecked to resemble real microstructures via the lognormal distribution
f their morphometers. When compared with phase-field simulations,
he exponential strength law was also verified to be accurate for two
ubclasses of porous media, geomaterials (sandstones) and biomaterials
bones), from digitalized CT scans. We also find that this law, as a func-
ion of porosity and grain size only, accurately matches experimental
ata for different ceramics. The strength prediction only requires the
nitial values of the morphometers for a given material’s sample, along
ith the reference strength and morphometers values from another
icrostructure made of the same material.

The overarching goal is to predict the behavior of porous media
ith the minimal amount of data possible and in particular, mini-
izing the use of destructive tests in favor of remote sensing. This

s of interest in geosciences where samples may be inaccessible and
n biosciences where materials are best studied in vivo. The following
teps in this endeavor will include 3D modeling and most importantly,
xperimental corroboration of the morphometric strength law. Indeed,
xperimental data are missing for the simultaneous dependence of
trength on multiple morphometers, in particular including the surface
rea and the Euler characteristic. Then, the influence of environmental
actors, like temperature and acidity, may be incorporated in a similar
ashion. Building on aforementioned works, machine learning may also
e used to ensure the realism of the synthetic microstructures. Classical
onstitutive laws, such as viscoplasticity, may be re-explored to ex-
licitly include the morphometric dependence. Apart from mechanical
haracterization, other components of the multiphysics of porous media
an be investigated through their morphometry, such as fluid flow
Armstrong et al., 2016, 2019). A major impediment to such program,
lbeit common to any modeling of heterogeneous microstructures, is
hat the reference sample must be representative of the material. This
12

olistic description opens new avenues for modeling porous media in
Fig. A.14. Exponential fit of the yield stress evolution with porosity for cortical bones.
Source: Adapted from the experimental results of Wachter et al. (2002).

general, including geomaterials, biomaterials and engineered materials,
at least as far as the microstructural geometry is concerned. It is indeed
of paramount interest to draw bridges between the progress in different
disciplines concerned with the same problematics.
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Appendix A. Exponential relationship between strength and
porosity for bones

See Fig. A.14.

Appendix B. Summary table
See Fig. B.15.
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Fig. B.15. Summary table gathering the morphometers of the SMs, with corresponding strengths obtained numerically with phase-field simulations, versus the strengths
redicted with the morphometric strength law, along with the associated prediction error. The predicted strength is found to be best predicted with the exponential function
𝑠 = 9.2251𝑒−7.2947𝑛+0.8511𝑝−1.6305𝑔 , obtained from Mathematica’s function NonlinearModelFit.
s
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Appendix C. Calculations of the morphometers

The morphometers are calculated via the Python libraries PoreSpy
et skimage, as described in the following table. The segmentation
of the SMs is performed via the SNOW algorithm introduced in Go-
stick (2017), using the function filters.snow_partitioning in
PoreSpy (see Table C.5).
13
Table C.5
* The function pore.diameter was initially defined (and named) to calculate the
izes of the pores obtained from segmentation. However, it can be applied to calculate
he grain size when applied on the segmentation of the grains.

Morphometer Library Function

Porosity 𝑀0 PoreSpy metrics.porosity
Perimeter 𝑀1 skimage measure.perimeter
Grain size 𝑀2 PoreSpy pore.diameter*

Euler number 𝑀3 skimage measure.euler_number
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Fig. D.16. Mechanical response for different random seeds for the SM 𝑛 = 0.3, ℎ = 3.

Fig. E.17. Stress–strain curve of the isotropic compression simulation determining the
reconsolidation stress, taken as the yield stress of this curve and found to be around
.2.

ppendix D. Determinism of the SMs

See Fig. D.16.

ppendix E. Preconsolidation

See Fig. E.17.
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