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During the electrification of household energy consumption, there is an increasing number of consumers that
purchase both electric vehicles (EV) and distributed solar photovoltaics (PV) systems. This study aims to examine
the change in electricity demand from the power grid for EV owners when they add distributed solar panels to
their homes. The impacts of the two technologies combined are different from the sum of two individual impacts
because they may not be additive and EV consumers’ behaviors may be subject to change. We apply a difference-
in-differences model and compare consumers with or without EVs and also EV consumers with and without
additional PVs. We use the hourly electricity demand data for 13,190 households in the Phoenix metropolitan
area in Arizona. Our results show that EV consumers, without PV panels, use more electricity compared to non-
EV consumers, and their average hourly demand is higher by 0.4 kWh. After adding PVs, EV consumers decrease
the average hourly demand from the electric grid by 1.1 kWh. The co-adoption of PVs with EVs helps reduce the
system peak hour loads. Besides, we also find evidence of behavior changes when EV consumers shift some of
their EV charging from night to day so that they are charging their EVs with more cleaner electricity. The annual
monetary savings for consumers after adding PVs are estimated to be ~$930, and the total social savings are
estimated to be ~$925. Given the positive co-adoption effects, a policy implication is that incentives should be
provided to promote the co-adoption of PVs with EVs.

1. Introduction

The adoption of electric vehicles (EVs) has increased rapidly due to
many initiatives in transportation electrification (Needell et al., 2016;
Muratori, 2018; Knobloch et al., 2020). It is also a trend that an
increasing number of consumers are purchasing both EVs and distrib-
uted solar photovoltaics (PV) systems (Delmas et al., 2017; Li et al.,
2017). The penetration of EVs together with a cleaner electric grid can
mitigate greenhouse gas emissions and reduce pollutants from
petroleum-driven cars (Muratori, 2018; Jenn, 2020; Xing et al., 2021). If
EVs are charged with renewable solar energy, less electricity generated
from fossil fuels will be required. The distributed solar panels generate
cleaner electricity while EV batteries can be used to store the solar-
generated electricity. Meanwhile, the combination of EVs with PVs
also potentially impacts the supply of the electricity sector by reshaping
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the electricity loads (Burkhardt et al., 2019).

We examine the impacts of the two technologies together—EVs and
PVs—rather than the impacts of EVs and solar systems individually. The
impacts of these two technologies may not be additive and EV charging
behaviors may be subject to change after solar panels are added. Con-
sumers may adapt EV charging to the variable solar energy generation
and shift EV charging to the hours when solar panels are generating
electricity. Studies have already shown that behavioral changes may
occur after solar panel adoption. Consumers may use more electricity
when the marginal cost for electricity generation becomes tiny (i.e., the
rebound effect) (Roy, 2000; Qiu et al., 2019). However, to our knowl-
edge, no studies have specifically focused on the behavioral changes that
occur when EVs and distributed PVs are both adopted by consumers, and
this study will provide such an analysis to empirically assess the impacts
of this co-adoption.
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The co-adoption of EVs and PVs also influences the electric loads of
the grid. EVs could facilitate the integration of solar generation into the
grid by increasing the local consumption of solar electricity and
absorbing the solar generation that would otherwise be curtailed (Finn
et al., 2012; Denholm et al., 2013; Richardson, 2013; Mwasilu et al.,
2014; Fares and Webber, 2017; Hoarau and Perez, 2018). Moreover, the
co-adoption possibly helps with reducing system peak loads because it
reduces EV charging during early evening hours (Muratori, 2018; Burlig,
2020), which coincide with system peak hours (e.g., 2-8 p.m. in Ari-
zona) (Novan and Smith, 2018; Burkhardt et al., 2019). Our study
provides the first empirical evidence of the changes in electricity con-
sumption behaviors of EV consumers after adopting solar panels. Our
findings could help with the electric load analysis (Wang et al., 2019)
and provide guidance for load management strategies. They also have
implications for future power infrastructure investments given that
system peak loads determine the required generation and transmission
capacity.

This study focuses on the co-adoption of EVs and residential solar
PVs in Phoenix, Arizona, using smart meter data of about 13,190
households during 2013-2019 from a large utility company. We employ
a difference-in-differences strategy that captures the pre- and post-
treatment differences in electricity demand and also compares the
treated with the control groups. Our panel regression analyses using the
hourly smart meter data have the benefits of accounting for the hourly
heterogeneity and providing more reliable estimates (e.g., by reducing
the impact of omitted variables) (Ghanem and Smith, 2021). This
analysis using hourly data is also more precise for estimating environ-
mental damages because the marginal emissions factors from the elec-
tric grid differ by hour-of-day due to the various marginal fuels being
used for electricity generation.

There is a self-selection issue for EV and PV adoption in this study.
The adopters share some characteristics that make them more likely to
sort into the adoption than others. Our attempts to reduce the self-
selection bias include (1) We have separated the consumers into two
comparison groups— control consumers (non-EV non-solar consumers)
vs. EV-only consumers and EV-only consumers vs. co-adoption con-
sumers, and we focus on the impacts of EVs and additional PVs (co-
adoption) individually. (2) We have included individual-consumer fixed
effects, which tease out the time-invariant differences such as education,
household income, and environmental awareness. In addition, we have
added zip code-by-year fixed effects in Section 5.3.2, which controls for
the unobservables that change at the zip code level across years. (3) We
have added a two-stage model, as the best as we can, as one more
robustness check.

Our results show that consumers use more electricity after EV
adoption, and their hourly demand is higher by 0.4 kWh, on average.
After adding PVs, EV consumers decrease the average hourly demand
from the electric grid. The co-adoption of EV and solar panels also helps
reduce the system peak hour loads (2-8 p.m.). In addition, we also find
evidence of behavior changes where EV consumers shift some of their EV
charging from night to day when solar panels are generating electricity.
Thus, EV consumers are charging their EVs with cleaner solar electricity
— both an environmentally-driven and environmentally beneficial
behavior change. Our findings are robust to alternative model specifi-
cations and show consistency with the main results. Finally, additional
PV adoption leads to similar private and social savings. The annual
private savings for consumers after adding PVs are estimated to be ~
$930 (or 9866 kWh), and the annual total social savings are estimated to
be ~$925.

This paper begins by providing a theoretical framework in Section 2.
Section 3 describes the data that are used to identify the effects of EVs
and additional PVs. Sections 4 and 5 provide the empirical analysis,
present the results, and show the robustness checks. Sections 6 and 7
estimate the private and social benefits resulting from co-adoption of
PVs with EVs, discuss the policy implications, and also conclude.
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2. Theoretical framework

In this section, we provide a theoretical framework to conceptualize
the possible consumption behavior changes of EV customers after add-
ing PVs. For this study, residential electricity consumption is considered
a normal good. We divide the electricity consumption into peak hour
demand and non-peak hour demand. We assume that there is measur-
able substitution elasticity between peak and non-peak demands (Fili-
ppini, 1995; Baladi et al., 1998). We also assume potential changes
brought out by battery technology are not likely to be very large given
that residential battery storage is not widely adopted during our study
period (2013-2019) (Qiu and Xing, 2020).

As illustrated by figure panel (a), the peak and non-peak hour de-
mand are perceived as two products substitutable to each other to a
certain degree during a day. The equilibrium level of peak hour demand
is at Q; while that for non-peak hour is at Q. Figure panel (b) illustrates
how the electricity demand will change if the budget line for the con-
sumers changes. After adding solar panels, the electricity bills reduce,
which has an equivalent effect of reducing average electricity prices.
Although the average prices for both the peak hours and non-peak hours
reduce, the price for the peak hours (2-8 p.m.) reduce more given that
their original prices are higher (Table Al in the Appendix'). The equi-
librium moves from product bundle A to B. The equilibrium level of peak
hour demand increases to Q;’ while that for non-peak hour reduces to
Q.

Figure panel (c) shows how consumers’ preference for solar elec-
tricity changes their electricity demand.? Consumers may consider en-
ergy generated from solar more environmental-friendly or “greener”
compared to the electricity generated from fuel fossils (Nienhueser and
Qiu, 2016; Deng and Newton, 2017; Qiu et al., 2019). Therefore, con-
sumers tend to consume more during peak hours which coincide with
many hours of solar generation. With this change in the indifference
curve, the equilibrium moves from product bundle A to C. The peak hour
demand increases to Q;’ while that for non-peak hour decreases to Q2'.
In the case of (d), there are both changes in consumers’ income level and
preference, and thus both the budget line and indifference curve change.
The equilibrium moves from product bundle A to D. A new equilibrium
is reached at (Q', Q2).

In the following empirical section, we will examine how EV con-
sumers’ hour-by-day electricity demand changes after the solar panels
are added. Their electricity consumption behaviors may be subjected to
income effects when solar installation changes (or is perceived to
change) the electricity bills they pay. The EV consumers may also have
different preferences given that solar energy generation is considered
more environmental-friendly. Our empirical analysis examines both
potential income effects and preference effects on electricity consump-
tion behaviors.

1 Almost all of our solar consumers are on regular net metering plans with a
few exceptions. These net-metering consumers pay a monthly demand charge
and also a kWh charge lower than other standard plans. We do not differentiate
them in the theoretical model, and assume that they behave in similar ways as
those on other standard electricity plans. No matter what plans the consumers
are on, solar panels all reduce their electricity bills. Their responses to solar
adoption should be in the same direction, although the magnitudes may differ.

2 The consumers that add PVs may have different indifference curves ex ante
than the general consumers. Due to this self-selection, a general consumer may
have a slightly different magnitude of preference change after solar adoption
than what we have plotted in the figure.
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3. Data

We obtain data from a major utility company called the Salt River
Project (SRP®) in Phoenix, Arizona. The SRP consumers self-reported
their EV ownership and their EV charging through an internal load
impact study, in which financial incentives were provided for reporting.
For these EV consumers, we have information on the electricity rate
plans, the EV starting charging dates, the levels of chargers (level 1 and
level 2), and the number of registered electric vehicles.” The smart meter
data for EV owners is from May 2013 to April 2019, and it records
consumers’ hourly electricity demand. The smart meter data for non-EV
non-PV consumers spans from January 2014 to April 2019. The solar
generation starting dates for consumers can be identified by the way
their meter types are symbolized in the datasets. Fig. 2 plots the distri-
bution of EV charging and solar starting dates.” The final dataset com-
piles information for 13,190 households, among which 1805 are EV-
only consumers and 320 are co-adoption consumers of EVs and solar
panels. The electricity prices charged to the consumers are displayed in
Table Al in the Appendix. The distribution of consumers on different
electricity price plans is also displayed in Fig. Al.

We divide the consumers into two comparison groups: (1) control
consumers (non-EV non-solar consumers) vs. EV-only consumers; (2)
EV-only consumers vs. co-adoption consumers (additional PV adoption
after adopting EVs). Fig. 3 plots the net delivered electricity (kWh
delivered from the electricity grid to the consumer minus the kWh sent
back to the grid from the solar consumer). Figure panel (a) depicts how
net delivered electricity demand changes before and after EV adoption.
It shows that EV-only consumers (red line) have higher electricity de-
mand, on average, than non-EV-non-solar consumers (blue line), espe-
cially during the night hours (7 p.m.-5 a.m.). Figure panel (b) compares
the electricity demand before and after adopting additional PVs (all have
adopted EVs). For co-adopters (red line), their average hourly demand is
much lower because of solar electricity generation, especially during the
day hours (7 a.m.-7 p.m.). The net delivered electricity is even negative
from 10 a.m.-3 p.m. when solar panels send more electricity back to the
grid than their electricity consumption. For more comparison, we also
plot the electricity demand for consumers with three different adoption
statuses: before adopting an EV, after the EV but before solar, and after
the EV and solar (Fig. A2). This figure further shows that the increase
after the EV is greater than the decrease after solar during night hours (7
a.m.- 7 p.m.), providing some descriptive information on the magni-
tudes of changes.

4. Empirical strategy

We apply a difference-in-differences (DID) model to the comparison
between the following groups: control consumers vs. EV-only consumers
and EV-only consumers vs. co-adopters. The first comparison is used to
control for the baseline impact of EVs while the second comparison

3 SRP (Salt River Project) is one of the largest utilities in the Phoenix
metropolitan area, Arizona. The utility service territory is assigned for the
neighborhoods although consumers have limited ability to choose their energy
providers. Nearly all houses in SRP territory have smart meters and the pene-
tration of smart meters is quite high in Arizona. With smart meters being the
standard and extra fees being charged ($20 monthly for manual reading), only a
few SRP consumers were reported to choose to opt-out.

4 We can also match these consumers with the Residential Equipment and
Technology (RET) survey, conducted also by the SRP utility in 2017. The RET
survey provides data on consumers’ socio-demographics and housing charac-
teristics. However, only a very small portion (<5% of all EV consumers) can be
matched with the RET survey.

5 We identify our solar starting dates based on our smart meter data. How-
ever, there are 125 consumers with solar panels installed earlier than 2013 May
when smart meter data started. For these consumers, we only have their post-
solar installation data.
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group is particularly of interest to us since it helps to analyze whether
additional adoption of PVs changes the behaviors of EV consumers. The
following empirical model is applied for the first comparison:

24
Demand,y, = a; + Z 'I‘EV,-d*hourh + X;th + 6y + T + @) + Eian (€8]
=1

where Demand;gn, denotes consumers’ net electricity demand in kWh for
household i on day d at hour h. EVj4 is equal to 1 for EV-only consumers
after they purchase EVs and is 0 all otherwise. The covariates Xjgn
include hourly electricity price, Cooling Degree Days (CDD), Heating
Degree Days (HDD), and two dummy variables referring to holiday or
weekend days. CDD and HDD are based on the hourly temperatures
obtained from (NOAA (National Oceanic and Atmospheric Administra-
tion), 2019). The coefficient g measures the change in hourly electricity
load at hour h after adopting EVs and it is the key coefficient of interest.
a; represents the individual consumer-level fixed effects, which controls
for time-invariant characteristics among households such as building
attributes and consumer environmental awareness. The year fixed ef-
fects 8y, month-of-sample fixed effects 7,,, and hour-of-day fixed effects
¢n are a series of time fixed effects used to capture the time-varying
variation among different years, months, and hours such as the
enforcement of local energy policies and economic growth. Since sam-
pling of our data is clustered at the consumer level, we cluster the
standard errors at the individual consumer level.

In addition, the following model is applied for the comparison be-
tween EV-only consumers and co-adopters. This second comparison
helps to identify the impacts of additional PVs.

24
Demand;g, = a; + Z PV houry, + X,5,0 + 8y + T + @), + Eian )
h=1

where PVj; is 1 for the co-adopters after adopting PVs and is 0 all
otherwise. Other variables are defined the same way as those in Eq. (1).
All the consumers are post-EV adoption in this model. The standard
errors are also clustered at the individual consumer level.

5. Results
5.1. Event study analysis

Before a DID analysis is conducted, the underlying assumption of the
parallel trend between the treated and the control consumers should be
satisfied. This assumption requires that before the treatment, the dif-
ference between the treatment and control groups are constant over
time. If these two groups of consumers have a parallel trend, we can rule
out the possibility that they might have experienced other major
changes when they get the EV/PV treatment (Davis et al., 2014). We
conduct an event study analysis to test the parallel trend assumption.
The event study model specification is as follows:

J K
Demand;y = a+ Zﬂj(Lagj)id + Z ve(Lead )y +XigB -+ p; + 8, + 0 + €14
=2 k=1

3

where J and K are lags and leads that are months away from the event
occurrence. The baseline omitted case is the first lag where j = 1. X4 are
time-varying covariates, including average electricity prices, CDD, and
HDD. y;, 6y and 0, are individual consumer-level fixed effects, year and
month fixed effects. ¢;4 is the error term. Hypothetic treatment dates are
assigned to the control group.

Fig. 4 panel (a) describes the effect of EV adoption on average hourly
electricity demand, and panel (b) plots the effect of additional PV
adoption. The x-axis indicates months before and after EV adoption
(panel a) or PV adoption (panel b). The y-axis shows the changes in
average hourly demand in kWh. Panel (a) indicates that prior to the
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adoption of EVs, the EV (blue line) and non-EV consumers (red line)
share a similar trend. That is, the changes in the average hourly elec-
tricity consumption are not statistically different from zero for both
types of consumers, which confirms the parallel trend assumption be-
tween EV consumers and non-EV consumers. In addition, after EV
adoption, the hourly electricity demand for the EV consumers increases
while there is no increase for the non-EV consumers. This provides
suggestive evidence of increased demand after EV adoption.

Panel (b) shows that the changes in average hourly demand are not
statistically different from zero before PV adoption although it fluctuates
around zero.® This also confirms that the consumers with additional PVs
and those without PVs show generally parallel trends. However, after
the additional PV adoption, the average hourly demand decreases for
consumers with additional PVs (blue line), but remains statistically not
different from zero for the control consumers (red line). This provides
suggestive evidence of decreased demand after PV adoption.

It seems that the increase in electricity demand for EV adopters is
fading away (Fig. 4 panel a). There are three possible reasons for this.
Firstly, it is possible that EV adopters discontinue their driving of EVs,
which may be caused by dissatisfaction with the convenience of
charging or having other cars (Hardman and Tal, 2021). Secondly, there
may be learning-by-using for EV consumers. As EV owners have more
knowledge on free public charging and workplace charging, their at-
home charging is decreased. Thirdly, other medium/long-term
changes could happen, such as the adoption of energy-efficient mea-
sures in the households. These measures reduce the electricity demand
of EV adopters, which we may fail to capture accurately in this analysis.

In Fig. 4 panel (b), the impacts of solar adoption also seem to vary
slightly over time and the following reasons could be responsible.
Firstly, solar technology is advancing and solar PVs could help people
save more. This is confirmed by the findings that actual savings from
solar PVs are increasing slightly over years (Fikru, 2019). Secondly,
there is learning-by-doing and solar consumers are learning to save
more, for example, by behaviors of load shifting (Luthander et al.,
2015). Lastly, there may also be some med- and long-term changes,
which we fail to capture after more than one year following the solar
installation.

5.2. DID results

In this section, we present our DID results based on Egs. (1) and (2).
Fig. 5 panel (a) shows the changes in electricity demand after adopting
EVs. Panel (b) displays additional changes in electricity demand after
adopting PVs when consumers have already adopted EVs. According to
panel (a), EV consumers use more electricity compared to non-EV con-
sumers, and their average hourly demand is higher by 0.4 kWh. The
largest increase for EV consumers is 1.2 kWh, which happens at 12 a.m.
There is a demand increase from 5 p.m. in the early evening to 5 a.m. in
the early morning, which also indicates EV consumers tend to charge
their EVs at night. This is consistent with the findings of existing liter-
ature (e.g., Burkhardt et al., 2019; Jenn, 2020). These night hours (5 p.
m.-5 a.m.) also include many peak load hours (2-8 p.m.). Thus, EV
adoption could further increase the peak load during these hours. The
details of the coefficients in the figures are displayed in Table A2.

Panel (b) shows that after adding PVs, EV consumers’ net electricity
demand has decreased all across the day because of solar generation.
The average decrease in hourly electricity demand is 1.1 kWh after PV
adoption. The largest decrease is 2.8 kWh, which occurs at 1 p.m. The
negative net delivered electricity demand across the day indicates that
the solar generation is greater than the electricity delivered from the

6 It seems that the fluctuations happen every more than a year, which could
be due to the way solar panels work and are maintained (e.g., dust cleaned off).
It is possible that there are some engineering factors that also impact the effi-
ciency of solar generation.
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electric grid. There is extra electricity generated from solar, which can
be used to meet residential demand other than charging EVs.
Interestingly, with additional solar panels, EV consumers also have
decreased electricity demand during the night hours (7 p.m.-7 a.m.)
when solar panels are not generating electricity. This may be due to
behavioral changes of EV consumers where they shift some EV charging
at night to during the day when solar panels are generating electricity.
Recall that solar electricity can be considered environmental-friendly,
and EV consumers might prefer to charge their EVs more with solar
electricity during the day. This is consistent with our theoretical
framework in Fig. 1 panel (c) where consumers’ preferences change
between charging their EVs with grid electricity versus with solar elec-
tricity. The details of the coefficients are displayed in Table A2.
Additionally, the co-adoption of EVs and solar helps reduce the
system peak hour loads (2-8 p.m.). The adoption of battery storage
could partially explain this decrease. However, only about 15% of the
solar consumers have battery storage, according to the RET survey
conducted by the same utility for its consumers (not exactly the same
consumers sampled in this study). The remaining decrease in peak loads
is explained by the concurrency of solar generation (7 a.m.-7 p.m.) and
peak hour demand (2 p.m.-8 p.m.), and also explained by the potential
behavioral responses of consumers (i.e., shifting EV charging from the
night to the day). While uncoordinated EV charging during the day in-
creases peak demand (Denholm et al., 2013), this study shows that the
co-adoption of EVs and PVs could reduce the peak demand. This helps
mitigate the need for future investments in the electricity generation
infrastructure, which is necessary for meeting increased peak demand.

5.3. Robustness checks

5.3.1. Zip-year fixed effects

We conduct another analysis that includes the zip-year fixed effects
as one way of robustness check. This analysis is used to control for more
unobserved changes at the zip code level across different years, such as
climate changes and energy initiatives at the zip code level. The results
(Fig. 6) are generally consistent with the former main results in Section
5.2, which suggest that there is increased electricity demand during the
night hours for EV consumers (panel a), and co-adoption consumers of
EVs and solar panels have decreased their demand during the noon
hours while their demand during the peak hours also decreases (panel

b).

5.3.2. A second DID analysis

In this section, we try another DID analysis to examine the co-
adoption impacts. While in Eq. (2), all the consumers are post-EV
adoption, this secondary DID analysis also includes a comparison be-
tween pre- and post-EV adoption. The model specification is as follows:

24 24
Demand,y = o; + Z/i’]‘EV,-d*lmurh + Z/)"Z’PV,-d*hourh

h=1 h=1

24
+ ZﬂgEVid*PVid*hUW’h + X;dho +O + Tt @, e (4)

h=1

where all the variables share the same definition as the former equa-
tions. This regression includes all EV consumers, and non-EV consumers
are not included. Fig. 7 plots the coefficients of fs after running
regression (4). Figure panel (a) depicts 1s—the impacts of EVs, panel
(b) shows fos—the impacts of PVs, and panel (c) plots f3s—the inter-
action between EV and PV adoption. The results are very similar to the
former results in Fig. 5 except that there are slight increases during day
hours (panel a). Panel (b) shows that net delivered electricity demand is
negative during the day hours, meaning electricity generation after PVs
occur mostly during the day, which is intuitive. Panel (c) indicates the
co-adoption effects of EVs and PVs. The co-adoption results are consis-
tent with former ones that with additional PV adoption, there is reduced
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Fig. 1. Theoretical framework for EV
consumers with additional PVs.

Notes: The curved lines refer to the indif-
ference curves for consumers, and the
downward sloping linear lines are the
budget constraint lines. The steepness of
the budget lines depends on the relative
electricity prices of peak and non-peak
hours. The cutpoint on the vertical axis is
further away than that on the horizontal
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Fig. 2. Histogram of starting dates of EV in-home charging and PV adoption.

electricity demand for EV consumers during the night hours due to their
environmental-driven behavioral changes where EV consumers prefer
charging their EVs more with cleaner solar electricity and thus reduce
their EV charging during the night (7 p.m.-7 a.m.). Overall, the results
indicate that the co-adoption of PVs and EVs increases PV self-
consumption during the hours when there is solar generation. This
aligns with the literature (Denholm et al., 2013; Munkhammar et al.,
2013; Hoarau and Perez, 2018), which shows that consumers’ self-
consumption of solar generation changes after introducing EVs. The
details of the coefficients are displayed in Table A3.

In addition, because the EV and PV adoption is endogenous, we
adopt a two-stage model for the adoption, as the best as we can, as one
more robustness check. We predicted the adoption using a series of
socio-demographic and housing characteristics obtained from the 2017
RET survey, including household income, square footage, household
size, number of floors, vintage, age of household head, race, residence

»

Qi Peak hour demand

(d)

type (primary or seasonal residence), swimming pools, and dwelling
type (single-family house, mobile house, or apartment). Then the pre-
dicted adoption is used in the second stage. The pattern seems consistent
with the former analysis, which indicates a reduction in peak hour de-
mand after adding PVs (Fig. A3). The reason why this approach is not
used as the main approach is because of 1) the small number of con-
sumers that have data on socio-demographics (<50); 2) the limited
predictability of adoption (<0.3).

6. Private and social benefits of adding PVs for EV consumers
6.1. Private benefits

In this section, we estimate the private benefits of adding solar panels
for an EV consumer. We calculate the daily private savings on bills by
multiplying the estimated hourly electricity savings in kWh from Eq. (2)
by their hourly electricity prices during a day. Then, we sum up all daily
savings over a year and obtain the annual private savings.

The annual saved electricity is estimated to be 9866 kWh, which
equals monetary savings of $930.6. The average payback period for
additional solar panels, when combined with EVs, is estimated to be
10.3 years. During this payback period estimation, a discount rate of 5%
is applied and the average solar panel costs are taken as $12,900 in
Arizona.”

6.2. Environmental benefits

We estimate the environmental benefits resulting from less elec-
tricity demand by including four pollutants-CO2, SO2, NOx, and PM2.5.
We calculate the annual environmental benefits as a function of hourly
marginal damages of electricity and the amount of electricity (Liang
et al., 2020). The hourly marginal damages per kWh are obtained from
(Holland et al., 2016), and we use the set of values that apply locally to

7 Data about PV costs in Arizona is taken from Energysage. The 26% Federal
Investment Tax Credit (ITC) is accounted for in the calculation.
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a. Average hourly demand before and after adopting EV
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b. Average hourly demand before and after adopting PV
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Fig. 3. Descriptive summary of net delivered hourly electricity demand after EV/PV adoption.
Notes: This figure plots the net delivered electricity from the utility to the households, rather than the total electricity demand including both net delivered electricity

and the electricity generated from solar.
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Fig. 4. The effect of EV and additional PV adoption on the average hourly electricity demand.

Notes: In panel (a), the treated group is EV-only consumers (blue line), and the control group is non-EV non-PV consumers (red line). In panel (b), the treated group is
co-adoption consumers (blue line), and the control group is EV-only consumers (red line). Hypothetic treatment dates are assigned to the control groups. Both the
coefficients and their 95% confidence intervals are plotted in the figures. The horizontal time axis is normalized relative to the month of the treatment and the
excluded period is t = —1. We have dropped the observations before t = —30 and after t = 30. The regressions include Cooling Degree Days, Heating Degree Days,
electricity prices, individual-consumer fixed effects, month-of-year, and year fixed effects. We also cluster the standard errors by the consumer level.

The larger noise or errors around electricity demand for solar adoption (panel b) is due to the smaller sample size and fewer households compared to EV adoption in
panel (a). Standard errors decrease as the sample size increases, which gives a more accurate estimate (or smaller uncertainty) for the left panel.

Arizona (the Western Electricity Coordinating Council region). The
marginal damages of electricity differ from hour to hour, depending on
the fuel used on the margin for electricity generation. The amount of
hourly electricity is taken from the same estimates based on Eq. (2).
After multiplying the marginal damages by the electricity amount in a
year, the annual environmental benefits are estimated to be $196.4.
These environmental benefits are from the co-adoption of EVs and PVs,
in addition to the emission benefits from driving EVs or adopting PVs.
We also estimate the average environmental benefits from driving
EVs (other than gasoline vehicles) and adopting PVs. Suppose the
environmental benefit is $0.03 per mile for driving EVs (Holland et al.,
2016), and the annual average travel mileage is 7000 miles for EVs
(Davis, 2019). This yields an annual environmental benefit of $210 from
driving EVs. For adopting solar PV systems, their environmental benefits
are calculated by multiplying the hourly emissions from electricity
(Holland et al., 2016) by the hourly solar electricity generation. The

hourly solar electricity generation is estimated using the PVWATTS
model® for a typical 5 kW system (Table D1 in Liang et al., 2021). The
annual environmental benefits of adopting a PV system are estimated to
be $191. These calculations indicate that the co-adoption of EVs and PVs
(or additional PVs for EVs) has a similar magnitude of environmental
benefits as an EV or PV system, indicating that the co-adoption has
greatly increased total environmental benefits.

6.3. Reduced social costs of electricity generation
The reduced social costs from electricity generation are long-term

benefits, which are achieved through deferred infrastructure in-
vestments. They include three components: reduced generation fuel

8 http://pvwatts.nrel.gov/pvwatts.php
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b. Change in houlry electricity demand after adopting additional PVs
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Fig. 5. Changes in hourly electricity demand after EV adoption and additional PV adoption.

Notes: The dependent variable is net hourly electricity demand (kWh). Panel (a) and panel (b) show the coefficients with 95% confidence intervals based on Eq. (1)
and Eq. (2), respectively. Both regressions include consumer fixed effects and various time fixed effects (year, month, and hour fixed effects). Covariates of Cooling
Degree Days, Heating Degree Days, hourly electricity prices, holiday dummy, and weekend dummy are also included in the regressions, and standard errors are

clustered at the consumer level.
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Fig. 6. Changes in hourly electricity demand including zip code-year fixed effects.

b. Change in houlry electricity demand after PVs
(with zip-year fixed effects)

0 1

—] L

| o—

o—

lo—

>—

lo—

P

-1
I

Electricity demand (kWh)
-2
1

-3
|

Hour

Notes: The dependent variable is net hourly electricity demand (kWh). Panel (a) shows the coefficients with 95% confidence intervals based on Eq. (1) and panel (b)
plots the coefficients based on Eq. (2). Both regressions include consumer fixed effects and various time fixed effects (year, month, and hour fixed effects). Covariates
such as Cooling Degree Days, Heating Degree Days, hourly electricity prices, holiday dummy, and weekend dummy are also included in the regressions, and standard

errors are clustered at the consumer level.

costs, reduced capacity investments, and reduced transmission/distri-
bution costs. The reduced fuel costs of generating electricity are esti-
mated by making use of the hourly system lambdas from the Federal
Energy Regulatory Commission.”’ The system lambdas are the minimal
marginal fuel costs among all energy resources and they are used as the
economic marginal costs of electricity generation in this paper. Then,
the marginal fuel costs of electricity are multiplied by the total elec-
tricity savings to get the total saved generation fuel costs.

Next, we estimate the reduced capacity costs, which are determined
by the largest amount of electricity that consumers demand (or utility
needs to supply) during a month. To get the reduced capacity costs, we
use the average monthly cost of capacity ($2.66/kW) multiplied by the

9 FERC 714 forms from https://www.ferc.gov/industries-data/electric/gene
ral-information/electric-industry-forms/form-no-714-annual-electric/data;
https://www.e-education.psu.edu/eme801/node/532

largest average demand changes during a summer day (Novan and
Smith, 2018; Liang et al., 2020). Lastly, we estimate the deferred
transmission/distribution investments. The electricity transmission/
distribution costs include expenses for building transmission infra-
structure, purchasing transmission equipment, and installing trans-
mission/distribution equipment. We multiply the average transmission/
distribution costs (3.2 cents/kWh from http://eia.gov'?) by the amount
of electricity savings to get the total reduced transmission/distribution
costs.

All the above estimated benefits and reduced costs are summarized
in Table 1. The total social savings are the sum of environmental ben-
efits, reduced fuel costs, reduced capacity investments, and reduced
transmission/distribution costs. Table 1 shows that there are almost

10 https://www.eia.gov/todayinenergy/detail. php?id=32812
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Fig. 7. Changes in hourly electricity demand after EV and PV adoption.
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b. Change in houlry electricity demand after PVs
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Notes: The dependent variable for all figures is net hourly electricity demand (kWh). The three sets of coefficients in panels (a), (b), and (c) are based on Eq. (4). All
regressions include consumer fixed effects and various time fixed effects (year, month-of-year, and hour fixed effects). In the regression, covariables such as Cooling
Degree Days, Heating Degree Days, hourly electricity prices, holiday dummy, and weekend dummy are also included, and standard errors are clustered at the

consumer level.

Table 1
Summary of annual private and total social savings after adding solar for EV
consumers.

Estimated savings ($)

Mean Confidence intervals
Total social savings 924.6 (751.1, 1094.5)
Environmental benefits 196.4 (154.1, 238.1)
Reduced fuel costs 312.1 (251.9, 371.1)
Reduced capacity investment 100.4 (92.1, 108.7)
Reduced transmission/distribution cost 315.7 (253.0, 376.6)
Total private savings 930.6 (755.2,1101.4)

Notes: The confidence intervals are constructed based on bootstrapped standard
errors. We draw from the distribution around our coefficients based on Eq. (2)
500 times using a bootstrap resampling method for panel data. During the
bootstrapping, the observations are randomly selected by the panel (i.e., same
consumer) rather than by individual observations.

equal private and social benefits after adding PVs for EV consumers
although there are slightly higher private savings than the social savings.

7. Discussion and conclusion

This study provides insights into the near future, in which EVs and
PVs are more closely interlinked. It explores the impact of additional PV

adoption for EV consumers. The empirical findings are consistent with
the conceptualization in the theoretical section and also indicate that
Fig. 1 panel (d) in the theoretical framework is more likely to be the case
in practice. Both income levels and preferences could affect consumers’
electricity consumption behaviors. There are changes in income levels
because the daily consumption decreases and there are private savings
due to adding PVs. There are changes in preference because consumers
now shift some of their EV charging to the hours during which solar
panels generate electricity so that they are charging their EVs with
cleaner electricity. This evidence of behavioral changes is in line with
the findings of existing studies which show pro-environmental behav-
ioral changes happen after the adoption of energy technologies. For
example, load-shifting behaviors are observed for consumers after solar
panel adoption (Keirstead, 2007; Stikvoort et al., 2020). Behavioral
changes have also been reported for energy efficiency adoption in
households (Azevedo, 2014; Gillingham et al., 2016) and after efficiency
improvement for vehicles (Stapleton et al., 2016; Seebauer, 2018).
While it is unlikely that EV owners are always in the house, there are
three potential ways that the behavioral changes observed in this study
are more likely to happen. (1) EV owners could charge more during
weekends. EV charging usually takes 4 h for level 2 chargers and around
20 h for level 1 chargers. Therefore, it is possible to fully charge EVs
when individuals are at home during weekends. (2) Individuals drive
other vehicles while leaving their EVs to be charged at home. It is shown
that only 10% of U.S. households with EVs are single-vehicle households
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(Davis, 2019) and most households have more than one vehicle. The EV
owners in this study also reported that they have more than one car
registered. It is possible that one EV is left at home to charge while
people drive other vehicles. (3) Energy technology such as solar batte-
ries helps people more easily to achieve behavioral changes. Thus, EV
consumers could charge their EVs more with cleaner electricity and the
pro-environmental behaviors are more likely to happen.

This study estimates the sample average treatment effects rather than
the population average treatment effects. The SRP consumers are more
representative of the consumers in hot and arid areas, which are inter-
esting to examine because the consumers in hot areas are likely to in-
crease due to climate change (Saunders et al., 2008) and they are also
more vulnerable to climate change. Besides, our study on the SRP con-
sumers can be reasonably generalized to all Phoenix consumers in Ari-
zona. The SRP and Phoenix consumers are very similar in many
characteristics (Table A4) although the SRP consumers are relatively
healthier, more white, with newer houses, and also more likely to be
homeowners, compared to average Phoenix consumers.

Our results also have implications for the design of new electricity
price plans for the co-adopters. We show that additional PVs for EV
consumers can reduce the peak loads while also decreasing total elec-
tricity demand. This implies that when more EV consumers pair the EV
charging with PV systems, the need for investments in grid in-
frastructures will be decreased while electricity sales are also likely to
reduce for the utilities. This adds to the concerns of the utilities about the
loss of revenues and recouping of upfront costs. Appropriate residential
rate structures should be proposed to ensure that these consumers are
charged for their proper share of connecting to the grid (McLaren et al.,
2015; Qiu et al., 2021).

The co-adoption of EVs and solar has both private and social benefits.

Appendix

Table Al
Residential marginal electricity prices charged by the SRP utility.
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The annual private savings for consumers are estimated to be ~$930
while there is also a similar magnitude of social benefits. Given the
positive co-adoption effects, one policy implication for the policymakers
is that incentives such as extra rebates for co-adopters should be pro-
vided to promote the co-adoption of EVs and solar panels. This co-
adoption could facilitate the electrification of the residential sector
and also greatly help with the mitigation of climate change.

Statement of data availability

The high-frequency electricity data are from the Salt River Project.
As we are restricted by a non-disclosure agreement from SRP, the data
are available upon reasonable request from researchers and also with
permission from the SRP.
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Plan name Season On peak Off peak Super off- Notes
hours hour peak
E-21 Summer $0.290 $0.083
Super peak Time- ;::;{mer $0.344 $0.085 On-peak hours are 3-6 p.m. Monday to Friday and the rest are off-peak hours.
of-Use Winte r $0.106 $0.074
E.22 :szz $0.290 $0.083
Super peak Time- peak $0.344 $0.085 On-peak hours are 4-7 p.m. Monday to Friday and the rest are off-peak hours.
of-Use Winter $0.106 $0.074
0-2000 2001+
kWh kWh
E-23 Summer $0.109 $0.113
Standard price plan ~ Summer $0.116 $0.127
peak
Winter $0.078
E-25 :sz‘: $0.290 $0.083
Super peak Time- peak $0.344 $0.085 On-peak hours are 2-5 p.m. Monday to Friday and the rest are off-peak hours.
of-Use Winter $0.106 $0.074
E-26 Summer $0.209 $0.073
Standard Time-of- Summer $0.241 $0.073 On-peak hours are 2-8 p.m. in summer and 5-9 a.m. & 5-9 p.m. in winter, Monday to Friday.
Use peak The rest are off-peak hours.
Winter $0.095 $0.069
B.27 Summer $0.046 $0.036
Customer Summer $0.062 $0.041 On-peak hours are 2-8 p.m. in summer and 5-9 a.m. & 5-9 p.m. in winter, Monday to Friday.
eneration plan peak The rest are off-peak hours.
8 p Winter $0.041 $0.037
E-29 Summer $0.209 $0.077 $0.061
Electric vehicle Summer $0.241 $0.077 $0.061 On-peak hours are 2-8 p.m. in summer and 5-9 a.m. & 5-9 p.m. in winter, Monday to Friday.
rice plan peak Super off-peak hours are 11 p.m.-5 a.m. The rest are off-peak hours.
price p Winter $0.095 $0.074 $0.058

Notes: Summer season for billing purpose, includes May, June, September and October. Summer peak inlcudes July and August. Winter season is from November to

April.
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Table A2

Impacts on electricity demand by hour-of-day for EV adoption and additional PV adoption.

Energy Economics 112 (2022) 106170

Variables Non-EV non-PV consumers vs. EV-only consumers Variables EV-only consumers vs. co-adopters of EVs and PVs
Hourl *EV_only 1.110%** Hourl*EV*Solar —0.519%**
(0.040) (0.114)
Hour2 *EV_only 0.8517%** Hour2*EV*Solar —0.462%%*
(0.035) (0.107)
Hour3 *EV_only 0.563*** Hour3*EV*Solar —0.317%**
(0.029) (0.107)
Hour4 *EV_only 0.337%%** Hour4*EV*Solar —0.249%*
(0.026) (0.099)
Hour5 *EV_only 0.139%** Hour5*EV*Solar —0.189*
(0.022) (0.096)
Hour6 *EV_only —0.012 Hour6*EV*Solar -0.177*
(0.021) (0.096)
Hour7 *EV_only —0.030 Hour7*EV*Solar —0.272%%*
(0.021) (0.098)
Hour8 *EV_only —0.055%*** Hour8*EV*Solar —0.688***
(0.021) (0.097)
Hour9 *EV_only —0.093%** Hour9*EV*Solar —1.394%**
(0.021) (0.105)
Hour10 *EV_only —0.077%*** Hour10*EV*Solar —2.088%**
(0.021) (0.115)
Hourll *EV_only —0.049** Hour11*EV*Solar —2.622%**
(0.021) (0.124)
Hour12 *EV_only 0.007 Hour12*EV*Solar —2.990%**
(0.021) (0.130)
Hourl3 *EV_only 0.068*** Hour13*EV*Solar —3.144%**
(0.021) (0.132)
Hour14 *EV_only 0.051%* Hourl4*EV*Solar —3.104%**
(0.021) (0.127)
Hourl5 *EV_only 0.072%** Hour15*EV*Solar —2.868%**
(0.021) (0.121)
Hour16 *EV_only 0.048** Hourl6*EV*Solar —2.315%**
(0.022) (0.111)
Hourl7 *EV_only 0.145%** Hour17*EV*Solar —1.588%**
(0.023) (0.102)
Hour18 *EV_only 0.262%** Hour18*EV*Solar —0.754%**
(0.024) (0.101)
Hour19 *EV_only 0.490%** Hour19*EV*Solar —0.320%**
(0.026) (0.107)
Hour20 *EV_only 0.564+** Hour20*EV*Solar —0.199*
(0.026) (0.108)
Hour21 *EV_only 0.720%** Hour21*EV*Solar —0.214%*
(0.026) (0.107)
Hour22*EV_only 0.832%** Hour22*EV*Solar —0.202*
(0.028) (0.109)
Hour23 *EV_only 0.793*** Hour23*EV*Solar —0.201*
(0.030) (0.111)
Hour24 *EV_only 1.186%** Hour24*EV*Solar —0.529%**
(0.042) (0.117)
CDD 0.054+** 0.065***
(0.000) (0.001)
HDD 0.035%** 0.035%**
(0.001)
Electricity price —3.961*
(0.059) (0.181)
Weekend 0.092%** 0.019%**
(0.002) (0.005)
Holiday 0.040%** —0.073%**
(0.002) (0.005)
_cons 1.495%%* 3.689%**
(0.017) (0.070)
No. of obs. 171 M 46 M
R? 0.281 0.269

Notes: The results are from the regression models (1) and (2). Individual fixed effects, as well as year, month-of-year, and hour-of-day fixed effects are included.
Standard errors are in the parentheses with *,**, and *** showing p < 0.10, p < 0.05 and p < 0.01. Standard errors are clustered at the individual consumer level.

Table A3

Impacts on electricity demand by hour-of-day for EV adoption and additional PV adoption using a secondary DID analysis.

Variables Coefficients Variables Coefficients Variables Coefficients

Hourl *EV_only 1.190%** Hour1 *Solar -0.113 Hour1*EV*Solar —0.558%**
(0.041) (0.113) (0.114)

Hour2 *EV_only 0.986%** Hour2 *Solar -0.125 Hour2*EV*Solar —0.488%**

10

(continued on next page)
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Table A3 (continued)

Variables Coefficients Variables Coefficients Variables Coefficients
(0.037) (0.110) (0.103)
Hour3 *EV_only 0.746%** Hour3 *Solar -0.113 Hour3*EV*Solar
(0.032) (0.110)
Hour4 *EV_only 0.575%** Hour4 *Solar —0.080 Hour4*EV*Solar
(0.029) (0.108)
Hour5 *EV_only 0.421%** Hour5 *Solar —-0.035 Hour5*EV*Solar
(0.026) (0.108) (0.086)
Hour6 *EV_only 0.298%** Hour6 *Solar —0.042 Hour6*EV*Solar —0.284***
(0.025) (0.110) (0.088)
Hour7 *EV_only 0.249%** Hour7 *Solar —0.143 Hour7*EV*Solar —0.278%**
(0.025) (0.109) (0.087)
Hour8 *EV_only 0.233%** Hour8 *Solar —0.584%** Hour8*EV*Solar —0.253***
(0.026) (0.106) (0.083)
Hour9 *EV_only 0.250%** Hour9 *Solar —1.130%** Hour9*EV*Solar —0.413%**
(0.026) (0.106) (0.082)
Hour10 *EV_only 0.242%** Hour10 *Solar —1.586*** Hour10*EV*Solar —0.652%**
(0.027) (0.115) (0.096)
Hourl1 *EV_only 0.236%*** Hourl1 *Solar —1.919%** Hourl1*EV*Solar —0.853***
(0.027) (0.122) (0.111)
Hour12 *EV_only 0.245%** Hour12 *Solar —2.158%*** Hourl2*EV*Solar —0.982%***
(0.027) (0.125) (0.120)
Hour13 *EV_only 0.266%** Hour13 *Solar —2.292%** Hour13*EV*Solar —1.002%**
(0.026) (0.126) (0.121)
Hourl4 *EV_only 0.257%** Hourl4 *Solar —2.270%** Hour14*EV*Solar —0.979%**
(0.026) (0.123) (0.116)
Hourl5 *EV_only 0.225%** Hour15 *Solar —2.188%** Hourl5*EV*Solar —0.823***
(0.026) (0.116) (0.105)
Hourl6 *EV_only 0.219%** Hour16 *Solar —1.895%** Hourl6*EV*Solar —0.563%**
(0.026) (0.105) (0.088)
Hourl7 *EV_only 0.249%** Hourl7 *Solar —1.420%** Hourl7*EV*Solar —0.309%**
(0.027) (0.100) (0.080)
Hour18 *EV_only 0.269%*** Hour18 *Solar —0.746%** Hour18*EV*Solar -0.149
(0.028) (0.108) (0.091)
Hour19 *EV_only 0.378%*** Hour19 *Solar —0.272%* Hour19*EV*Solar —0.190*
(0.029) (0.115) (0.105)
Hour20 *EV_only 0.409%** Hour20 *Solar -0.139 Hour20*EV*Solar —0.202*
(0.030) (0.117) (0.107)
Hour21 *EV_only 0.509%*** Hour21 *Solar —0.095 Hour21*EV*Solar —0.268**
(0.030) (0.117) (0.105)
Hour22*EV_only 0.637%** Hour22 *Solar -0.121 Hour22*EV*Solar —0.231**
(0.032) (0.120) (0.108)
Hour23 *EV_only 0.694+** Hour23 *Solar —0.095 Hour23*EV*Solar —0.258**
(0.034) (0.120) (0.111)
Hour24 *EV_only 1.192%** Hour24 *Solar —0.093 Hour24*EV*Solar —0.587%%*
(0.043) (0.115) (0.115)
CDD 0.066***
(0.001)
HDD 0.035%**
(0.001)
Electricity price —3.340%**
(0.151)
Weekend 0.055%**
(0.004)
Holiday —0.027%**
(0.004)
_cons 2.473%%*
(0.040)
No. of obs. 73 M
R? 0.292
Notes: The results are all from the regression model based on Eq. (4). Individual fixed effects, as well as year, month-of-year, and hour-of-day fixed effects are included.
Standard errors are in the parentheses with *,**, and *** showing p < 0.10, p < 0.05 and p < 0.01. Standard errors are clustered at the individual consumer level.
Table A4
Comparison of sociodemographic and building attributes for Phoenix and SRP consumers.
Phoenix, Arizona (Census) SRP sample in this study®
Median Household income $60.9k" 62.5k
Average monthly electricity consumption 1114 kWh" 1245 kwh
Square footage 1832¢ 1770
White 68.2%" 70.0%
Household size 2.82° 2.59
Vintage 36 yearsd 26 years
Ownership 55.6%" 73.0%
Single family house percentage 69%"° 61%
Age of householder 51.8 yearsf 52.6 years
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2 https://www.census.gov/quickfacts/fact/table/phoenixcityarizona,US.

b Arizona mean: https://www.eia.gov/electricity/data.php#sales;

¢ https://ktar.com/story/2246976/when-it-comes-to-house-size-phoenix-is-kind-of-a-big-deal/

d https://www.bestplaces.net/housing/city/arizona/phoenix

€ https://censusreporter.org/profiles/31000US38060-phoenix-mesa-chandler-az-metro-area/

f https://www.bls.gov/regions/west/news-release/consumerexpenditures_phoenix.htm

8 SRP consumers’ characteristics are obtained from the Residential Equipment and Technology (RET) surveys conducted in
2017 by the Salt River Project utility.
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Fig. Al. Distribution of consumers on different price plans.
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Fig. A2. Net delivered hourly electricity demand after EV/PV adoption for co-adopters.
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Fig. A3. Changes in hourly electricity demand after additional PV adoption.
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