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Accurate  assessment  of the  impact  of  electric  vehicle  (EV)  charging  on  the  electric  grid  is
critical for  energy  policymakers  to design  efficient  EV  subsidy  programs  as  well  as to  pro-
vide reliable  electricity  infrastructure.  Despite  the  fact that  80  %  of  EV  charging  is conducted
with residential  in-home  chargers,  very  few  empirical  studies  have  examined  the  load  and
environmental impact  of  residential  EV  charging  based  on  actual  electricity  consumption
data.  Our  paper  fills  this  critical  gap  in  the  literature,  applying  a  difference-in-differences
approach  to high  frequency  smart  meter  data  of about  1600  EV  homes  from  2014  to  2019
in Arizona,  United  States.  First, we find  that the electricity  demand  during  the  system
peak  hours  from  6 to  8 pm  in  summer  can  increase  by  7–14  % at an  average  household
with  in-home  EV  charging.  Second,  EV  households  respond  to electricity  pricing  signals  by
increasing their  charging  in  lower-priced  off-peak  hours  within  the  EV-specific  time-of-use
(TOU)  pricing.  Third,  we  find  evidence  of rebound  effects  in  driving  that  lead  to a reduc-
tion  in  home-electricity  consumption  in  certain  hours  of  the  day.  Lastly,  we  show  that  our
empirical  estimation  of the  grid  impact  due  to  in-home  EV  charging  is different  from  that
predicted  by  existing  simulation  models  due  to factors  such  as  consumer  behaviors.  Such
deviations  between  predicted  and actual  behaviors  imply  potential  adjustment  of  relevant
policy  interventions.

© 2021  Elsevier  B.V.  All  rights  reserved.

uction

s types of financial incentives exist for adopting electric vehicles (EVs) and installing in-home EV chargers such as

s and direct rebates. A key motivation for such financial incentives is that EVs can electrify the transportation sector,
rification is essential for decarbonization (Steinberg et al., 2017). According to the 2018 data, the transportation
he largest sector for greenhouse gas (GHG) emissions in the US, having exceeded the utility sector in 2017 (US EPA,
e transportation sector is also responsible for emissions with negative health impacts, such as carbon monoxide,
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te matter, nitrogen oxide, non-methane organic gases, and formaldehyde. By electrifying vehicles, combined with
y of electricity with clean and renewable energy sources, the emissions in the transportation sector can be reduced.
ifying vehicles has other potential benefits. Consumers can potentially save on expenditure on transportation fuel.
n-home chargers, combined with electricity price signals, can also serve as a demand-side management strategy.
rs can charge their EVs during off-peak hours with lower electricity prices to help flatten the electric load so that
perators have less pressure to ramp up power plants and meet sharp increases in demand during peak hours. The

 social benefits (reduced carbon and environmental emissions, and benefits to help the electric grid operations)
ubsidies for EVs and the EV chargers.
option of EVs worldwide has increased dramatically in the recent few years. In the United States, the projected
f EVs on road will reach 18.7 million, sharing about 7% of all cars and light trucks on road in 2030 (EEI, 2019). The
ption of EVs can have a significant impact on the electric grid (Muratori, 2018) and the associated environmental

 (Holland et al., 2016). If EV charging adds to the electricity demand during electric grid system peak hours, this
e pressure on the electric grid infrastructure and implies grid expansion. EV charging in other hours can also have
t implications for capacity planning and grid management.
ate  assessment of the impact of EV charging is critical for energy policymakers to evaluate the EV adoption subsidies
he calculation of the positive externalities resulted from EVs relies on the estimation of the impact of EV charging
ctric grid. This paper focuses on the empirical analysis of the impacts from residential EV in-home charging on the
ad profile and how such impacts respond to various electricity price plans. Analyzing the impacts of residential

ing is critical because residential charging accounts for about 80 % of EV charging among all charging methods,
 public, commercial, and workplace charging (Charging at Home, 2021).
existing studies on residential EV charging and electric load profiles are simulation-based studies without using
nsumer behavior and electricity consumption data. Earlier simulation-based studies are helpful to predict the

 residential EV charging on electric load profiles (Khemakhem et al., 2020; Harris and Webber, 2014; Paevere et al.,
uratori (2018) adopts a bottom-up simulation modelling and finds that uncoordinated residential PEV charging can
tly change the load shape of residential consumers. Another study (Clement-Nyns et al., 2010) uses simulations to
that the PEV penetration rate of 30 % will increase the peak load at the residential distribution transformer level

ation-based studies have important common limitations as discussed in Muratori (2018): (a) assuming that PEVs
ed in a certain way (e.g., mostly in off-peak hours) and (b) using an average and pre-determined charging profile
sumers in the models. As discussed in previous studies, actual consumer behaviors and technological performance
te from theoretical and simulated predictions (Qiu et al., 2021; Liang et al., 2020; Qiu et al., 2019; Liang et al., 2018;

 al., 2018; Qiu and Kahn, 2018; Zivin and Novan, 2016). Empirical studies can overcome these limitations by using
ta on behaviors and electric load profiles without the need to make assumptions on such behaviors (Lee et al., 2020).
e the fact that 80 % of EV charging is through in-home chargers, empirical studies examining residential EV charging
actual electricity consumption data are very scarce. There are only two  studies. Burkhardt et al. (2019) use data from

es in Austin Texas to examine the impact of electricity pricing on residential EV charging behaviors. Compared to
t et al. (2019), we make two meaningful contributions. First, our larger sample size (about 1600 EV homes) should
ore representative estimates. Second, we adopt a study design (a difference-in-differences (DID) approach) more

or evaluating the causal impact of EV charging on load profiles. The second study, Burlig et al. (2021), uses EV
on data to link EV adoption timing with household electricity consumption data in California. Their study has
ample (about 57,000 EVs) than our study. While empirical evidence on residential EV charging is scarce, more

l studies on public charging have been done. For example, (Jenn, 2020) analyzes high resolution empirical charging
blic charging stations of EVs that provide ride-hailing services (such as Uber and Lyft) in California, and finds that

iated environmental benefits are three times higher than the EVs in regular vehicle usage.
udy provides a unique contribution to the literature in the following aspects. First, our study focuses on a different
on, the Phoenix metropolitan area, Arizona. Our study region and that of Burlig et al. (2021) differ significantly in
climate. Based on the International Energy Conservation Code, the study region of Burlig et al. (2021) and ours

 different climate zones (IECC, 2020). Phoenix metropolitan area, a city built on desert, is known for its hot climate.
ing studies have shown that hot climate can have a negative impact on EV battery performance (Samadani et al.,
us, the EV charging behaviors and the impact on electricity consumption in our study region will be different

 to the EV households in California. Understanding such empirical impact of EV charging in different jurisdictions
esearchers and policymakers better evaluate EV’s impact. Second, in our study we  were able to obtain the variation
ariffs across customers. This allows us to examine the impact of different electricity pricing plans such as time-
icing on EV in-home charging behaviors. We  find that pricing plays a significant role in influencing EV consumers’
charging patterns. Third, we conduct a back-of-envelope calculations of the environmental benefits, private savings,
ction in generation costs from EV in-home charging using our empirical estimates. These benefits and costs from
l estimation are different from those using engineering simulation estimates.
marize, there is a limited amount of empirical studies on the impact of residential EV charging on electric load
sing a large sample of EV consumers. Our paper fills this critical gap in the literature by using high frequency smart
ta of about 1600 EV homes from 2014 to 2019 in Arizona, United States. Our main empirical method is to use
cts panel regression to control for confounding factors such as consumer-specific characteristics (e.g., building and
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d attributes) that can impact both the adoption of EVs and EV pricing, and the electricity consumption behaviors.
conduct a set of robustness checks to further help eliminate any potential biases, including zip code-year fixed
ding group-specific time trend, using propensity score and coarsened exact matching, using only treatment group

 using only post-treatment data.
ve four key findings. First, we find that an average household with residential EV charging can increase the electricity
y 7–14 % during the system peak hours from 6 to 8 pm in summer. The system peak is the highest electricity demand
hole year. A 10 % residential EV penetration rate in a single utility’s service territory implies the need for a new
as power plant to meet the demand increase during the system peak hours. Second, we  find that EV consumers
to electricity pricing signals by increasing their charging time in super off-peak hours (11 pm-5am) within the
c time-of-use (TOU) pricing scheme. Third, the magnitude of change in the electric load profile due to EV charging

nt in our empirical estimates from the charging profiles obtained in the previous simulation studies. One of such
al changes is rebound effects in driving that lead to a reduction in home-electricity consumption in certain hours of
he rebound effects here mean that consumers drive more when they get an EV so they are out of the house more

 in a reduction in consumption in certain hours. Such deviations between predicted and actual behaviors imply
 adjustment of relevant policy interventions. Lastly, we estimate the annual environmental benefit of EV in-home
of $101-113 per consumer and the annual private benefit from fuel cost savings of $517-640 per consumer.
st of the paper is organized as follows. Section 2 presents a summary of the data and industry background infor-
ection 3 summarizes our empirical methodology. Section 4 presents the results of the empirical analyses. Section
es the implications for grid management, private and environmental benefits, comparison with simulation studies,

 connections to broader literature. Section 6 concludes.

am background and data

udy in-home EV charging in the Phoenix metropolitan area, Arizona, under the service territory of the utility
 Salt River Project (SRP). SRP provided financial incentives for their consumers to report their EV charging status
ernal EV load impact study. More than 1600 EV customers self-reported their EV ownership and in-home charging
SRP through this study, along with information on the types of chargers used and the charging start dates1 . We
e the information on the EV model in our dataset. We also have access to the information of about 17,000 non-EV
ds which can serve as potential control homes. We  know that these control homes do not have EVs because these
nsumers that were surveyed in SRP’s residential energy technology survey in 2017 and they reported no EV in the
e  randomly select a subset (2224) of the 17,000 non-EV homes as the control group. For each home, we  have the
art meter electricity data from 2014 to 2019. Since we examine the entire household electric meters, our estimated
re the changes in total electricity consumption of the household due to EV charging, which is important because
ng can potentially induce behavioral changes such as using more or less of other electric appliances in the house.
ajority of the EV in-home charging consumers were on two  types of electricity rates before they adopted the

 We  call these base rates. These two “base rates” are: (1) an increasing block tariff (IBT, called E-23 rate in SRP’s
) and (2) a time-of-use (TOU) rate (called E-26 rate)2 . Some EV consumers stay on their base rates while others

 an EV-specific price plan – a specific TOU rate (called E-29 rate). For those who  switched to the EV-specific price
w months’ lags exist between the date of EV charger adoption and the date of switching to the EV price plan. The
g block rate IBT does not have different marginal electricity prices at different hours of the day. The marginal price
eriences a sudden increase after the cumulative electricity consumption within a given month exceeds a certain
. The two TOU price plans have higher marginal electricity prices during peak hours, and lower prices during off-
rs. The peak hours of the TOU base rate are between 2 pm and 8 pm in summer months, and are 5−9am & 5−9 pm

 months. The peak hours of the EV-specific TOU rate has the same peak hours with one important difference: super
hours from 11 pm to 5am when the electricity prices are very low (lower than the remaining off-peak hours) in all
o encourage charging at night. Table S1 in the Supplementary Information provides the details of these three rates.
lly acknowledge the self-selection of EV adoption. In terms of the sample representativeness, the self-reported 1600
mers can potentially be different from the other EV consumers who  do not self-report their EV status. Unfortunately,
 do not have the household characteristics of these EV consumers, we  do not know how or whether they are
 Since our paper uses a large sample of EV homes to estimate empirically the impact of EV charging on electric load,

 that such self-reported sample can still shed important light on such impact. To help alleviate the concern about

inate any potential concern about the measurement error of charging start date, we  conduct a robustness check and drop the data 4 weeks
4 weeks after the reported EV charging start dates. Results in Supplementary Fig. S17 show similar results as our main analysis, indicating low
f a measurement error.
riginal analysis, we dropped those who  switched rates to a different non-EV base rate. In other words, in our analysis, we only included those

 stayed on one of the two base non-EV rates, or those who were first on one of the two  base rates and then switched to the EV rate after they
harging. As a result, the base rate switching did not happen in our analysis. However, to further alleviate this concern, we now go back to the
d check how many EV consumers switched between different non-EV rates. In total about 35.7% consumers switched between different non-EV

 consumers did not enter our analysis due to the confounding effects of the price plans. We conducted a separate analysis keeping the 35.7%
in the regression models. The results are listed in Supplementary Information Fig. S18. The results are similar to our main results.

3
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Fig. 1. The average hourly electricity consumption profiles of the treatment and control groups one-year before and after the adoption of EV charging.
Notes:  The 
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electricity consumption by hour-of-day is averaged by month-of-year. Treatment means EV consumers and control means non-EV consumers.
 Treatment-Control. IBT is the increasing block base rate. TOU is the TOU base rate. The number of each type of consumers in this figure: IBT

sumers- 1315, EV consumers with IBT as the base rate - 876, TOU control consumers-909, EV consumers with TOU as the base rate - 813.

alidity, we match the zip code level characteristics to each EV consumer in our sample and compare our EV sample
istics with that from the most recent nationwide Residential Energy Consumption Survey (RECS) conducted by
formation Administration (EIA, 2015). Results in Supplementary Table S11 show that our sample of self-reported
mers have similar education, income, and race profiles compared to the nationwide EV consumers sampled from

 recent RECS survey.
 sample, compared to non-EV consumers, the EV consumers have higher education, higher income, and a lower
e of the ethnic minority population. However, since we  include individual household fixed effects and run DID
Lechner, 2011), we can tease out any differences between households that are time-invariant such as wealth and
ental awareness. Also, as long as the control and treatment groups share parallel trends prior to the treatment,

 analysis is still valid despite the differences in baseline levels. As will be discussed later, we  conduct an event-study
o check for the parallel trends of electricity consumption between EV and non-EV consumers. We also conduct
nalysis using propensity score and coarsened exact matching to find more comparable non-EV consumers.
plots the average hourly electricity demand by hour-of-day and by month-of-year one-year before and after the
t between the control (non-EV) and treatment (EV in-home charging) consumers. The treatment here is the start of
ng. The start dates of the EV charging can be different for different EV consumers. Control consumers do not have
ent (in Fig. 1, we randomly assign a hypothetical treatment date for each control consumer in order to create pre-

t and post-treatment periods for these control consumers.) The pre-treatment load shapes between the treatment
ol consumers show parallel trends in general. EV charging households on average consume more electricity than
ouseholds. However, since the control and treatment consumers share parallel trends in electricity consumption,
el regressions and difference-in-differences methods can help difference out the baseline differences in the levels
ity consumption between the two groups. The post-treatment electricity consumption profiles show the increase
ity consumption of EV consumers compared to non-EV consumers. The geographic distributions of the control and
t consumers can be found in Fig. S1 in Supplementary Information, which shows that the treatment and control
rs are balanced in terms of locations. Table S2 in the Supplementary Information shows the summary statistics of
ariables in our analysis.

ds

y design

e a difference-in-differences (DID) method to deal with endogeneity concerns. Since the adoption of EVs and in-
chargers is voluntary, there can be potential selection bias and omitted variable issues. For example, consumers who
home chargers might be those who are more environmentally-conscious and, therefore, they might be also more
ave on their electricity consumption. To address these issues, we  adopt fixed effects panel regressions to control for

servable variables that can cause the endogeneity issues. About 1600 EV owners started in-home charging during
19. We  thus have the electricity data in both the pre-treatment and post-treatment periods for these EV owners,
a DID design. We  checked for the parallel-trend assumption (as shown in the electric load profiles in Fig. 1 and in

 study analyses as discussed later) and confirmed that the electricity consumption profiles between the non-EV and
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s share parallel trends prior to the start of in-home charging. In addition, we  conduct an additional analysis using
ty score matching and coarsened exact matching (as discussed in Section 4) to construct a control group that are

 the EV consumers in terms of pre-treatment summer and winter electricity consumption. This matching approach
eliminate any further potential concerns about the differential electricity consumption trends in the pre-treatment

 the EV and non-EV consumers.
 is also potential concern about the solar panel installation or other major changes in household consumption that

 at the same time as the EV arrives, the so-called contemporaneous changes. Although not directly available from
et, based on SRP’s 2017 residential energy technology survey, only 9% of EV households have solar panels. Also
r panels may  not have been installed around the same time of installing EV chargers. As a result, the probability of

jor technological changes happening around the same time of adopting EVs should be very low. As will be discussed
 robustness check, we include a group-specific time trend to control for any time-variant unobservable differences
the EV charging and non-EV consumers, such as contemporaneous changes that can happen around the same
dopting EV charging. In addition, we only included non-solar consumers or the pre-solar-adoption data of solar
rs in our analysis3 .

 panel regression models

 panel regression model is

hih = ˛i +
24∑

H=1

ˇHEV Chargingih*IH + �pih + f (HDDih) � + f (CDDih) � + Day of sample + Hour of day + εih (1)

dicates individual residential consumer; h indicates hour-of-sample; kWhih is the electricity consumption of con-
 hour h. ˛i is individual consumer fixed effects which can control for factors such as consumer socio-demographics,

al  and awareness characteristics, and technology attributes that can influence both the adoption of EV charging and
icity consumption behaviors. EV Charging indicates whether a consumer has started in-home EV charging4,5 ; IH

 hour-of-day; ˇH measures the impact of EV charging on electricity consumption in hour H of the day. pih is the
y price6 . f (HDDih) is the spline function of heating degree days (calculated using 65 degrees) and f (CDDih) is the
ction of cooling degree days (calculated using 65 degrees); for the spline functions, we use 4 knots equally spaced

 percentiles of HDD and CDD; the hourly temperature data comes from meteoblue.com. Our rich day-of-sample
day-of-year) fixed effects can control for variations in electricity usage patterns at each day of our sample, which
seasonal patterns and daily patterns that vary across years. Hour-of-day fixed effects control for hourly differences
ity using patterns within a day. Note that we  do not include holiday indicator or weekend indicator because these
ators will be automatically dropped with the day-of-sample fixed effects included, which already capture the
 a holiday or weekend. The standard errors in all our models are clustered at individual household level. Overall,
rical analysis controls for time-invariant consumer attributes, temperature, seasonality, and daily economy-wide

 shocks.

ataset, for each individual consumer, there are different types of meter data with specific identification codes. The types of meters relevant for
clude S, 0, and Z. Code S indicates the solar electricity generation meter. 0 and Z are house meters (meters that record household electricity
n). Code 0 is for customer accounts before they acquired solar and Z is for accounts after adopting solar panels. A non-solar consumer will never

eters S or Z showing up in our dataset. A solar consumer only had meter 0 before adopting solar panels. Thus, we can use meter type S and Z
the EV consumers who adopted solar panels. In our original analysis, we  only included meter type 0 in all of our models; in other words, we
ed non-solar consumers, or the pre-solar-adoption data of solar consumers. As a result, our main analysis would not be confounded by solar
owever, one might argue that EV consumers with solar panels might be different from EV-only consumers in terms of their behaviors even
ting solar panels. Thus we add a robustness check, in which we  remove the pre-solar-adoption data of EV consumers who eventually adopted

s (note that the post-solar-adoption data was  not in our analysis in the first place). The results are consistent with our main results and are
pplementary Fig. S5.

at this treatment variable indicates the start of EV charging, no matter it is through the dedicated EV meter or through the household master
use the EV household reported the EV charging start date as when they started charging the EVs.
etting, the treatment timing (EV charging and EV pricing) varies across different treatment consumers. According to Goodman-Bacon (2021); de
in  and D’Haultfœuille (2020), using two way fixed effects model in such a setting is equivalent to calculating a weighted average of all possible
two-period difference-in-difference estimators. If there are negative weights, the usual two way  fixed effects linear model estimand may  for

 negative but in fact all average treatment effects on the treated (ATT) are positive, thus generating a biased weighted treatment effect. We use
m developed by De Chaisemartin & d’Haultfoeuille (2020) to compute the weight attached to individual ATT in each group and period. The

listed in Supplementary Table S12 and show that the number of negative weights are very small compared to the total number of ATTs. This
low probability of biased ATTs estimated from our main two way fixed effects model.

 a potential concern about the endogeneity of the electricity price, if the decision to adopt a new tariff is correlated with unobservable time-
erogeneity. We conduct an additional analysis removing the price variable, similar to the model specification in Burlig et al. (2021). The results
ilar to our main results. Please see Supplementary Fig. S6. To avoid the endogeneity issue of price level with the inclining block tariff, we do

ct the price based on cumulative electricity consumption within a given month. Instead, we  use the average (not weighted) of all price levels of
g block rate of each billing season. One rationale for this is that consumers might not be able to monitor their hourly price precisely given the
ch for such information.
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so analyze the impact of switching to EV-specific pricing on EV-charging homes’ electricity consumption profiles.
ing model is applied to the post-charging only data of EV charging consumers only. This way  the pre-treatment

 the pricing analysis is after adopting EV charging but before switching to EV pricing.

hih = ˛i +
24∑

H=1

ˇHEV pricingih*IH + �pih + f (HDDih) � + f (CDDih) � + Day of sample + Hour of day + εih (2)

 pricing indicates whether an EV consumer has switched to EV-specific pricing. All other variables have the same
s as in Eq. (1). We  acknowledge that switching to the EV rate is also self-selected. To deal with potential self-

 issues of EV pricing, we use consumer-fixed effects to control for any time invariant confounding factors such as
ies to pricing. We  also conduct event study analysis to check for the parallel trend assumption for the DID analysis
pact of EV pricing.

t study models

nduct an event study analysis for two purposes: to estimate the average hourly net electricity consumption change
ging, and to test the parallel trend assumption (the EV charging and non-EV consumers are comparable in terms
ing similar trends of electricity consumption prior to the treatment). The parallel trend assumption is important

 that the estimated impact of EV charging adoption from our DID regression is not biased due to any systematic
al trends between EV charging adopters and non-adopters. The following event study model is applied to the two
samples with different base rates:

hih = ˛i +
15∑

w=−15

ˇW 1[Time to EV charging adoption = w]ih + �pih + f (HDDih) �

 f (CDDih) � + Day of sample + Hour of day + εih (3)

ndicates hour-of-sample; 1[Time to EV charging adoption = w]ih is a dummy  variable indicating the week to the EV
adoption which the hour-of-sample h falls into. We  analyze the 15 weeks prior to and 15 weeks after the adoption.

lation of the costs and benefits of EV in-home charging

nduct a back-of-envelope calculation to estimate the reduction in generation costs, environmental benefits, and
vings from EV in-home charging. To calculate the reduction in generation costs, we use the largest increase in

ectricity consumption from 6 to 8 pm due to EV charging in the summer months, during which the system peak
rally happens in our study region. We  multiply this increase in electricity consumption by the number of EV

ds assuming a 10 % EV diffusion rate to calculate the increase in electricity generation capacity needed. We then
the monetary cost associated with this additional generation capacity using data on the costs of natural gas power
m EIA.

imate the environmental benefits, we use the marginal environmental damage factors from electricity generation at
vel in our study region from Holland et al. (2016) which consider the damages from CO2, NOx, SO2, and particulate
y hour of day. We  multiply these damage factors with our estimated changes in electricity consumption from
ing to obtain the environmental damages from driving EVs. We  then use the estimated changes in electricity
tion  to infer the mileage driven by EVs, convert the mileage to be driven by a typical gasoline car, and then infer
onmental damages from driving the same mileage from a gasoline car. The difference between the environmental

 from driving an EV versus a gasoline car is the environmental benefit from EV in-home charging.
imate the private bill savings, we first calculate the extra electricity expenditure by multiplying the hourly electricity
h the hourly increase in electricity consumption due to EV charging. Then using the inferred driving mileage, we

 the expenditure on gasoline. The difference between the expenditures on electricity versus gasoline is the private
rom bill savings. Details of these calculations can be found in Section 5.

ts

ct of EV charging on electric load profiles

timate how adopting EV in-home chargers can impact the electricity consumption by hour of day and thus the
ad profiles. As discussed in the program background and data section, the majority of EV in-home charging con-

ere on the two base electricity price plans (IBT and TOU) before they adopted the chargers. We  analyze the impacts
mers with these two base rates (an IBT/non-TOU and an TOU rate) separately. The control group for each base rate
t group also shares the same base electricity rate. In other words, for the EV treatment group with IBT or TOU as
rate, the control consumers always stay in IBT or TOU, respectively, in our study period.

6
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Fig. 2. Event study analysis of impact of EV in-home charging adoption. Notes: PSM is for the samples after propensity score matching. CEM is for the
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tudy results

shows the event study results of impact of EV charging. The average hourly electricity consumption increased
tly  after adopting the chargers in both of the two base rate cases. In terms of the parallel trend, the difference
the EV and non-EV consumers prior to the EV adoption is in general not statistically significant.
e event study analysis of samples with matching (panels b, c, e, and f), the pre-treatment parallel trends are
tisfied given the close-to-zero coefficients in the pre-treatment periods and the non-statistical-significance of
fficients. As we will show later, the results using matched samples are very similar to the results using unmatched
helping eliminate any concern about the different trends in the pre-treatment periods of the unmatched sample.
ent study analysis of the samples without matching, although in the pre-treatment period the coefficients are

 not statistically significant (indicating no differential trends in the pre-treatment period), the non-zero values
coefficients are worth further checks. To further eliminate any potential concerns about the differential trends
e-treatment period of the unmatched sample, in one robustness check, we include a group-specific time trend
ction term between the treatment group indicator and the day-of-sample variable) to control for any potential
al trends in the pre-treatment period, a method similar to the one used in Davis et al. (2014).

 on Fig. 2, on average, EV charging increases electricity consumption by 0.31 kW h/hour, or 7.59 kW h/day for
mers (approximately 15 % increase in average daily consumption). For TOU consumers, EV charging increases

y consumption by 0.30 kW h/hour, or 7.18 kW h/day (approximately 12 % increase in average daily consumption).
gher than that from Burlig et al. (2021) in which approximately 0.121 kW h per hour or 2.9 kW h per day of

as observed. However, our estimates are similar to the 7.2−8 kWh  per day increase reported by California Energy
ion (CEC, 2019) which relies on residential charging data. This again highlights the importance of conducting such
l analysis in different regions.

 for consumers with the base rate being increasing block pricing

nsumers whose base rate is the increasing block tariff (IBT), the impact of EV in-home charging adoption is illustrated
Detailed coefficients and model results can be found in Supplementary Information Table S3). In this figure, three
sent graphs of “All seasons”, “Summer”, and “Winter,” while three columns present groups of “all consumers,”

ers  who did not switch to the EV rate,” and “consumers who  switched.” First, all consumers in all seasons show
se in electricity consumption between 3 pm and 4am, implying charging activities in these hours. There is also
e in electricity consumption in the morning hours from 8am to 10am, possibly due to the rebound in driving7 .

 we  do not have the direct data on driving millage changes of EV households, to better support our claim of rebound effects, we compare the
icle miles traveled (eVMT) per year for EVs with the average light duty vehicle miles traveled (VMT) in the US. According to the FHA (2020),

7
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Fig. 3. Impact of EV in-home charging adoption on load profiles for consumers with increasing block rate as the base rate (IBT). Notes: The dots are the
point  estimates that measure the change in hourly electricity consumption due to EV charging. Vertical lines measure the 95 % confidence intervals. EV
consumers  can choose to switch to an EV rate which is a TOU price plan with super off-peak hours in all seasons from 11 pm-5am. The summer months are
May-Octob
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er  and the rest are winter months. The orange bars indicate the peak hours and the blue bars indicate the super off-peak hours for the EV rate.
r of each type of consumers in this figure: IBT control consumers- 1315, IBT EV consumers 876, IBT EV consumers staying with base rate-549,
umers switching to EV rate - 327.

nsumers adopt in-home EV charging, it becomes cheaper to drive, resulting in more driving. This in turn makes
s drive further away from home and contribute to the reduction of electricity consumption during these hours.
xplanation of the drop in electricity in certain hours could be that households are more aware of their electricity
ow it impacts their bills after purchasing an EV. Based on Fig. 3 for consumers with increasing block rate as the
, the reduction in electricity consumption in the morning hours happen for consumers both switching to EV TOU
d staying with the original rate, especially in the summer months. This implies that such an alternative behavioral

 could happen for both non-TOU and TOU consumers.

ty vehicles were driven 11,467 miles in 2017 and 11,599 miles in 2019 on average. Some empirical studies have estimated the eVMT using
, electricity consumption data, and data loggers (Davis, 2019; Tal et al., 2021; Burlig et al., 2021). These studies are based on different data time
hile the proportion of different models of EVs is changing fast and the eVMT by different models could vary a lot (Callaway and Fowlie, 2021).

stent with the time window in our sample (2014−2019), we compare the US light duty VMT  with the estimated eVMT by the PHEV center,
oggers from 2015 to 2020. The PHEV center tracks miles driven by 358 California EV drivers and estimates an eVMT of 12,900 miles per year

 which is larger than the US average light duty VMT and indirectly supports our claim of the potential rebound effects in the paper. The PHEV
imate may  have a limitation in its small and non-random sample, and the best data of eVMT is held by EV manufacturers themselves. Thus, to
ort our claim, we also compare the light duty VMT  with the estimate of eVMT using data provided by Tesla (Callaway and Fowlie, 2021). Since
V is connected to the internet, Tesla can collect the data of eVMT from each individual vehicle. More importantly, Tesla occupies a large US  EV

re, so using the eVMT of Tesla is meaningful. The sales of Tesla increase drastically since 2018 and then dominate the US EV market. In 2018, the
la models (including Model 3, Model S, and Model X) account for 80% of national battery EV sales (AFDC, 2021). From 2014 to 2019, the total
la account for 65%. Using the data provided by Tesla, Callaway and Fowlie estimate an eVMT of about 12,000 miles per year on average, which
gher than a typical light-duty vehicle in the US. Also, they find that the median eVMT of Tesla per year is larger than the median gas-powered

 up, EV owners could drive more than typical light duty vehicles, particularly after 2018, in which Tesla models started to dominate the US EV
s, more driving of EV owners could lead to decreased electricity consumption in certain hours, which is what we called rebound effects in this

8
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Fig. 4. Impact of EV in-home charging adoption on load profiles for consumers with TOU rate as the base rate. Notes: The dots are the point estimates that
measure  the change in hourly electricity consumption due to EV charging. Vertical lines measure the 95 % confidence intervals. The base rate TOU rate has
peak  hours 2-8 pm in summer months, and the peak hours 5-9am & 5-9 pm in winter months. EV consumers can choose to switch to an EV rate which is
a  TOU price plan with super off-peak hours in all seasons from 11 pm-5am. The orange bars indicate the peak hours and the blue bars indicate the super
off-peak  ho
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909, TOU EV consumers 813, TOU EV consumers staying with base rate-399, TOU EV consumers switching to EV rate-414.

rther breakdown the analysis by season and by whether EV consumers switch to the EV-specific rate. For consumers
with their base rate and do not switch to the EV rate, in the summer months, the increase in electricity consumption
from 2 pm-2am. The highest increase happens in the evening between 7−9 pm after people return home from work,
e about 0.665 kW h/hr/consumer in these hours, which can increase the pressure of the system during peak hours

ectric grid. System peak hours (the highest electricity demand for the whole year) tend to happen during summer
n early evenings and can impose significant pressure on the generating capacity and grid management in these
ere is a reduction in consumption between 8am-10am, possibly due to rebound effects in driving as discussed
r winter months, the increase in electricity happens for longer hours from noon-3am. The highest increase also

in the evening between 7−10 pm.  There is no reduction in electricity during the winter months, indicating no
effects in driving during the winter.
nsumers that eventually switch to the EV rate, there is a much larger increase in electricity consumption from 11

 which coincides with the super off-peak hours of the EV rate. Similar to the consumers staying with the base rate,
 rebound effect in driving for longer hours from 6 am to 11 am during summer months. There is also no rebound

 driving during the winter for consumers switching to the EV rate.

 for consumers with the base rate being TOU pricing

nsumers whose base rates are the TOU rate, the impact of EV in-home charging adoption is illustrated in Fig. 4

 coefficients and model results can be found in Supplementary Information Table S4). For all consumers in all
n average there is an increase in electricity consumption between 12 pm-5am, longer than the hours for consumers

IBT base rate. There is no decrease in electricity consumption, indicating no rebound effects in driving.

9
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Fig. 5. Event study analysis of impact of switching to EV pricing. Notes: X-axis measures the number of weeks to EV pricing. Weeks prior to the pricing
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n between the treatment and control groups; the difference is normalized to be zero at time -1. IBT and TOU indicate consumers with these

nt base rates.

nsumers that stay with their base rate and do not switch to the EV rate, in summer months, the electricity consump-
ases from 4pm-5am, even including the peak hours of the base rate TOU price plan (2−8 pm). The consumption
ases from 12 pm-1 pm,  which may  be due to efforts to avoid charging EVs during peak hours. The largest increase
between 10−11 pm after the summer peak hours, on average about 1.18 kW h/hr/consumer in these hours, which
ue to increased charging after the peak hours end and before people go to bed. For winter months, the increase
city happens for longer hours in almost all hours. The increase in consumption is also much higher in late evening
m 9 pm-midnight.
nsumers that eventually switch to the EV specific rate, there is a much larger increase in electricity consumption
m-5am, which coincides with the super off-peak hours of the EV rate. There is no increase in consumption in most
rs except for 8−9 pm in the winter.

 using propensity score and coarsened exact matching

ther eliminate any potential systematic differences between EV and non-EV consumers, we conduct an analysis
tistical matching to make the EV consumers and the control consumers more comparable in terms of the pre-
t electricity consumption profiles. We  randomly assign a hypothetical EV charging date for each non-EV consumer.
alculate the average summer and winter electricity consumption for each EV and non-EV consumers, which we use

o variables as well as zip-code in the matching process. The matching process makes the EV and non-EV consumers
 terms of the pre-treatment electricity consumption levels. We  use both propensity score matching (PSM, which
61 treated and 1076 untreated consumers for IBT base rate and 619 treated and 768 untreated consumers for TOU

) and coarsened exact matching (CEM, which gives us 728 treated and 1311 untreated consumers for IBT base rate
reated and 900 untreated consumers for TOU base rate). The event study analysis of the matched samples (Fig. 2
c, e, and f) show clear parallel trends in the pre-treatment periods, justifying the use of the DID method. Figs. S12 &
ble S8 in the Supplementary Information show the matching results. The results on the electric grid impact are very

 the main results using the randomly selected non-EV consumers as the control group, indicating the robustness
in results.

ct of EV-specific pricing on electric load profile

ners can opt into an EV pricing plan, which has significantly lower prices from 11 pm-5am year-round. There were
 few months lag between the charging start dates and the dates of switching to the EV pricing. We  utilize this time
re-treatment period” to estimate the impact of pricing via DID, where the control group consists of EV homes that

ayed with the regular price plans. The treatment is switching to EV pricing in this analysis.

tudy evidence

 we first conduct an event study analysis to examine the difference in the post-charging electricity consumption
the two groups of EV consumers who switch to the EV rate and those who do not after starting in-home charging.

ws that there is no statistically significant difference between these two  groups of consumers both before and
treatment. This justifies the parallel trend assumption in consumption profiles. The insignificant change after the
t in this analysis indicates that the EV pricing affects only intra-day shifting of EV charging but does not influence
gate amount of charging.
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 super off-peak hours. The summer months are May-October and the rest are winter months.

 of switching to EV pricing

s in Fig. 6 indicate that EV consumers are responding to electricity price signals (Detailed coefficients and model
n be found in Supplementary Information Table S5). We  find that EV owners under the EV pricing plan increase

rging from 11 pm-5am which is exactly the super off-peak hours of the EV pricing, compared to EV owners who
 their base price plans (more than 50 % of EV consumers).
cally, for EV consumers with the non-TOU IBT base rate, switching to EV pricing reduces electricity consumption
uring peak hours from 2−8 pm but also from 5am-2 pm in summer months. In winter months, there is no significant

 consumption throughout 24 h. For EV consumers with the TOU base rate, switching to EV pricing reduces electricity
tion between 9 pm and 11 pm but not before these hours in the evening in summer months. This implies that the
g in this case may  not serve the purpose of shaving the system peak demand from EV consumers during early
ours. In winter months, switching to EV pricing reduces consumption by EV consumers with the TOU base rate
ak hours from 5 pm to 9 pm.8

 to analyze the causal impact of retail electricity tariffs on EV in-home charging timing, researchers need to ran-
ocate customers to different tariffs. In our setting, customers self-selected into the different tariffs. Customers that

ted into the EV tariff could be the ones who were most likely to benefit from this tariff structure and were able
t these benefits by adjusting their consumption and charging patterns. This can lead to the over-estimation of the
f EV pricing on the shifts of in-home charging timing. This endogeneity could also spill over into the estimated

inter month figure for consumers with IBT base rate, there is a strong increase in consumption in super off-peak hours but no reduction in other
onduct a separate event study for the winter months of consumers with IBT base rate, and indeed the event study shows an average increase

lectricity consumption due to switching to EV pricing. This, however, does not contradict with the original event study figure which shows no
nge in consumption if we include both winter and summer months. This is because in the summer months, there is an overall reduction in
onsumption due to EV pricing. The different directions of the overall electricity consumption changes in summer versus winter months could
e fact that outdoor activities are more popular during winter months with mild temperature in Arizona.
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t effects of EV charging on electricity consumption if those who  can benefit the most from the EV tariff tend to
 EVs and install in-home chargers. This spillover can lead to an over-estimation of the increase in electricity con-

 due to EV charging. In our paper we  tried to use several methods to correct for such biases. We first use fixed
 control for unobserved confounding factors at consumer-level that do not change over time such as environmental
gy awareness and can influence the selection into EV pricing. We  then use event study to check for parallel trend
city consumption behaviors in the pre-EV-pricing period between EV consumers who switched to EV pricing and
o did not.

rogeneity

ow examine whether the impact of EV in-home charging differs by type of charger and by weekend versus
s9,10 .

 by types of charger

 are mainly two  types of EV chargers for home use: level-1 charger and level-2 charger. A level-1 charger is plugged
ndard household outlet with 120-volt alternating-current (AC) at home, while a level-2 charger requires a 240-volt
, which is typically used for high-voltage household appliances, such as clothes driers, and installed in a garage in
mong the 684 EV consumers in our dataset who  use a level-1 charger, 362 and 322 of them purchased electricity
-TOU base rate (IBT) and the TOU base rate respectively. Among the 1005 consumers11 who  use a level-2 charger,

he non-TOU base rate, while 491 had the TOU base rate.
 in Supplementary Information compares the impact on load profiles by type of charger, by whether or not to

 an EV rate, and by season for consumers who  initially had the non-TOU base rate IBT. The left four graphs show
-2 charger users who stayed on the non-TOU base rate (IBT) show fewer hours of charging because of the charger’s
pacity. In the right four graphs, for consumers who initially had the non-TOU base rate (IBT) but switched to the
he hours of charging do not differ significantly between level-1 and level-2 charger users. As expected, per-hour
y consumption is higher for a level-2 charger. In particular, level-2 charger users increase electricity consumption
ally from 11 pm-3am, taking advantage of the super off-peak rate. In terms of reduction in electricity consumption
rebound effects in driving, level-2 charger users who  switched to the EV rate reduce electricity consumption from
1am in summer and from 1 pm to 5 pm in winter. There is no reduction of consumption by level-2 charger users
ed with the base rate, perhaps because those who  chose to switch to EV pricing are those who  want to charge more
drive more.

 in Supplementary Information compares the impact on load profiles by type of charger, by whether or not to
 an EV rate, and by season among consumers who  initially had the TOU base rate. Among those who stayed with
base rate, level-2 charger users have higher per-hour consumption, particularly from 10 pm to 3am. Similarly,
nsumers who switched to the EV rate, level-2 charger users have higher per-hour consumption from 11 pm to

kend/weekday

 in Supplementary Information shows the impact on load profiles by type of initial electricity rate and by season
cus on differences between weekend and weekdays. It shows that consumers charge for more hours and more

 throughout the day during the weekend than on weekdays. In addition, in terms of the total amount of kWh

EV consumers charge more during weekdays compared to the weekend, possibly because people drive more during
s than on weekend (as illustrated by the average travel patterns by day of the week in Fig. S11 in the Supplementary
on).

at in the heterogeneity analysis and robustness checks, for the purpose of computation efficiency, we replace day-of-sample fixed effects with
dicator, holiday indicator, year-of sample fixed effects, and month-of-year fixed effects. Comparing our main results using day-of-sample fixed
gs. 3–5 with the results using these new indicators and fixed effects in Figs. S14−16 in Supplementary Information, it shows that these two
ed effects generate very similar results.

 examine the cluster of electricity consumption behaviors of EV consumers using a machine learning approach. Please refer to Supplementary
ine learning clustering analysis for details.
ght argue that since level 2 chargers are more expensive than level 1 chargers, it indicates that our sample of EV consumers might be a selected
h wealthier EV consumers. However, as indicated in Supplementary Table S11, we compare the socio-demographics of our EV consumers with
V consumers from the EIA RECS survey, which shows that our EV sample is similar to the RECS EV sample. This indicates that the selection to

 2 chargers does not bias our sample.

12



Y.L. Qiu, Y.D.

4.4. Robu

We  co
control fo
Informati
awarenes
charging 

a robustn
DID analy
(those w
the contr
(an intera
differenti
the EV ch
can happ
the same
of househ
versus tre
checks ar

5. Grid i

• Impact

In  mo
particula
network 

increase 

the electr
and Augu
respectiv
% increas
increase 

from 6−8
previousl

There
means th
6−8 pm i
the incre
size of a s
the incre

The co
nameplat
generatio
Future w

• Enviro

The el
gas. In thi
and GHG
by hour o
due to EV
we multi
pollution
(Holland 

12 The ass
separate  co
 Wang, H. Iseki et al. Resource and Energy Economics 67 (2022) 101275

stness checks

nducted four robustness checks to help justify our main results. First, we  include zip code-year fixed effects to
r any unobservable confounding factors that change over time at the zip code level (Fig. S7 in Supplementary
on).  Such zip code-year fixed effects can control for factors that change at a community level over time, such as EV
s campaigns or infrastructure development. These factors can influence consumers on both the decision to adopt EV
and electricity consumption. Second, some EV users have only the post-treatment data in our dataset. We conduct
ess check using only EV users that have records on both of the pre-treatment and post-treatment data in a strict
sis (Fig. S8 in Supplementary Information). Third, we  conduct a robustness check using only the treatment group

ho eventually adopted EV chargers) to further eliminate any concerns about the systemic differences between
ol and treatment groups (Fig. S9 in Supplementary Information). Lastly, we  include a group-specific time trend
ction term between the treatment group indicator and the day-of-sample variable) to control for any potential
al trends in the pre-treatment period as well as to control for any time-variant unobservable differences between
arging and non-EV consumers (Fig. S10 in Supplementary Information), such as contemporaneous changes that

en around the same time of adopting EV charging. For example, individuals might adopt other technologies around
 time as adopting in-home EV charging. They might also experience a change in housing retrofits or the number
olds around the same time. All of these can impact electricity consumption profiles. The group-specific (control
atment groups) time trend can help control for these confounding factors. The results from these four robustness
e consistent with our main results.

mpacts and environmental and private benefits

 on the grid and role of pricing

st regions such as in Arizona and California, the system peak hours can happen between 4−9 pm in summer,
rly  in July and August. These are the hours of the highest electricity demand of the whole year. The electric power
infrastructure needs to be sized to meet this system peak demand. To a manager of power infrastructure, the
in electricity consumption during the system peak hours is most important when analyzing the impact of EV on
ic grid. Focusing on the hours from 6 to 8 pm in summer, the average electricity demand of EV consumers in July
st before the adoption of EV charging is 4.8 kW and 5.4 kW for non-TOU base rate and TOU base rate consumers,
ely. Our results show that an average consumer on the non-TOU base rate can increase the load by 0.66 kW (or 14
e from pre-charging average consumption), while an average consumer on the TOU rate with peak hours 2−8 pm
the load by 0.38 kW (or 7%). Switching to an EV rate with the super off-peak hours reduces the load by 0.21 kW

 pm for consumers who were previously on the increasing block rate, but has no impact for consumers who  were
y on the TOU rate.

 are currently about 1000 increasing block rate EV-charging consumers and 800 TOU EV-charging consumers. This
at without an EV rate, these existing EV-charging consumers in total increase the system peak demand between
n the summer by 964 kW.  If 10 % of SRP’s total number of residential consumers (10 %* 690,200) install EV chargers,
ase in peak hours will equal approximately 36,964 kW for a single utility’s system peak load, which is about the
mall natural gas power plant.12 A time-of-use rate that has peak hours during the system peak hours can reduce

ase in load from EV-charging.
st of this additional small natural gas generator is equal to about $39.9 million (calculated from the per installed
e capacity cost: $1,078/kW* 36,946 kW)  (EIA, 2021, 55). Here we  only focus on the impact on the cost of building
n capacity. However, the distribution network upgrade is also a major concern with coincidental EV charging.
ork needs to be done to quantify this important additional benefit of EV load shifting using empirical analysis.

nmental benefit

ectric grid is associated with environmental pollution because of burning fossil fuels, such as coal, oil, and natural
s study, we conduct a back-of-the-envelope calculation of the environmental impact and consider major pollutants

 emissions, including CO2, NOx, SO2, and PM (particulate matter). The amounts of emissions of these pollutants vary
f the day because the marginal fuel consumed to supply electricity is different. The change in electric load profiles

 charging will thus change environmental pollution from the electric grid. To calculate the environmental impact,

ply the change in hourly electricity consumption estimated from our empirical analysis by the hourly marginal

 emission factors from the electric grid. Using the hourly carbon and environmental marginal damage factors from
et al., 2016), we estimate that average EV consumers, who  use a level-1or level-2 charger with the non-TOU base

umed natural gas plant is a combined cycle single shaft technology, the use of which has steadily increased in the U.S. EIA does not provide the
st of a peaker unit versus a base unit.
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ease environmental damage from the electric grid by $61/consumer/year; EV consumers with the TOU base rate
environmental damage by $72/consumer/year.
sing the carbon and environmental damage estimated for gasoline-vehicle driving from (Holland et al., 2019; Parry
7), we calculate the damage from gasoline vehicles. Our estimated kWh  charged per day can sustain driving for 20
average for non-TOU EV consumers and 23 miles for TOU EV consumers (Table S6 in Supplementary Information
details of calculation). If these miles were driven by a typical gasoline vehicle, it will generate environmental
f about $163/consumer/year and $185/consumer/year, respectively. Therefore, the environmental benefit from

EV charging is 163−61=$101/customer/year, and 185−72=$113/customer/year, for non-TOU and TOU consumers,
ely. The detailed calculation of the environmental impact can be found in Table S6 in Supplementary Information.

 benefit

ved expenditure on gasoline is the major private benefit of EV consumers with in-home chargers. We  take the
 three steps to conduct a back-of-the-envelope calculation of the saved expenditure. We first calculate the increase
city expenditure resulting from an increase in electricity consumption due to EV charging. Second, we estimate
iles traveled (VMT) that could be driven with the amount of consumed electricity, and then convert this VMT
ount of gasoline consumed. Then we calculate the difference in expenditure between driving on gasoline versus

icity. The detailed calculation of the private benefits can be found in Table S7 in Supplementary Information. Our
 of the private benefit of in-home EV charging are on average $517/consumer/year for consumers with the non-TOU

 and $640/consumer/year for consumers with the TOU base rate.

red to existing simulation studies

w compare our empirically estimated changes in electric load profiles due to EV charging with those estimated
w engineering studies. Two of the NREL simulation-based studies provide the charging profiles of various types
rgers including level-1 and level-2 home chargers, workplace chargers, and public chargers (McLaren et al., 2016;
al., 2018). There are two major differences between our empirically estimated changes in electric load profiles
esults of residential charging by the NREL. First, the NREL studies indicate that residential charging starts around

 peaks between 7pm-10 pm.  While our empirical results also show a peak charging hours from 7 pm to 10 pm
OU consumers, the charging peaks around 10 pm-midnight for consumers on TOU pricing as the base rate. This
e tells us the importance of simulation-based studies to incorporate consumers’ charging behavior changes in

 to electricity price signals. Second, the NREL studies primarily focus on the amount of electricity charged by EVs
not include electricity consumption for other purposes at home. However, the need for EV charging can further
sumers’ electricity consumption for other purposes. Our empirical results on the net electricity consumption show
tion in electricity consumption for EV charging in certain hours possibly resulted from rebound effects in driving.
ation-based studies currently consider such behavioral changes.
ition to different EV charging timing, we also compare the magnitude, benefits, and costs of our estimated in-

 charging’ impact with those generated from the NREL simulation study by Muratori (2017). Detailed calculation
 in Supplementary Tables S9 & 10. Muratori (2017) estimates an average electricity consumption increase of 12.3

 from EV in-home charging, while our estimate is only 7.1–7.6 kWh/day. The annual environmental benefit of
lated in-home charging profile of an average EV household is $196, compared to $102 for IBT and $113 for TOU
rs estimated from our empirical analysis. The simulated annual customers’ private savings are $909 for IBT and
TOU consumers, respectively, compared to $516 and $640 estimated from our empirical analysis. In terms of the
ide costs, using the simulated EV in-home charging profile, the added demand during 6−8 pm assuming 10 %
V penetration rate is equal to 63,997 kW,  compared to 36,964 kW estimated using our empirical results. This

on shows that simulation approach can over-estimate the environment benefits, system wide costs, and consumer
vings of in-home charging.13

 the broader literature
udy is relevant to the strand of energy economics and systems literature that examines the impacts of different
y rates on consumers with distributed energy resources (DERs). The impacts on consumers’ behaviors are assessed

pirical study by Holland et al. (2016) estimated that on average in Phoenix Arizona, the environmental benefit of an EV relative to a 2014 Ford
ine car is equal to 0.74 cents per mile. According to Muratori (2017), an average EV household has 1.74 number of EVs. Based on our estimated
electricity consumption, an average EV household drives about 8,027 miles per year. Thus if we  directly use the estimates from Holland et al.,
d to an annual environmental benefit of $103 (0.74 cents * 1.74*8,027), which is of similar magnitude to and only slightly lower than our
f $110-$113. The difference is mainly due to the assumption of the cost of gasoline. Another engineering study (Rosato et al., 2017) uses the
attplan calculator to estimate that the private fuel savings of a Nissan Leaf compared to a Honda Civic are $275 per year, which is equivalent

 year at household level (assuming 1.74 EVs/household). This is lower than our estimates of private energy cost savings of $516−640, which
e to the assumptions of mileage driven and energy prices used in the engineering study.
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th tariffs defined exogenously (Ansarin et al., 2020; Avau et al., 2021; Backe et al., 2020; Gomes et al., 2021) or
ilibrium models in which grid tariffs are determined endogenously (Askeland et al., 2021; Hoarau and Perez, 2019;
tte and Meeus, 2020). Hoarau and Perez (2018) analyze the interaction between tariff design and DERs with EVs to
the most cost efficient and fairest configuration for heterogeneous agents. Askeland et al. (2021) highlight that an
can spread the EV charging evenly throughout the day to minimize the agents’ individual peak load regardless of the
ad situation. This can be problematic since the coincident peak can go up followed by a tariff increase. Schittekatte
s (2020) point out that cost-reflective tariffs can benefit both prosumers who  can invest in DERs and consumers
ot able to (Hildermeier et al., 2019) argue that customer education is key to attract new EV user groups. Mayol and

 (2021) find that if adequate information about tariffs and behavior is provided, users usually choose more complex
feoğlu et al. (2019) support the idea that energy utilities must offer consumers more options for TOU tariffs, not
ing for greater demand-side management but also encouraging uptake of vehicle-to-grid (V2G) technology. King

 (2018) point out that submetering is a far less expensive option than the installation of a separate meter for the
 purpose of appropriate billing of EV consumers.
udy is also related to a second strand of literature studying EV demand-side flexibility which raises attention to
nges and opportunities expected during EV uptake. Knezović et al. (2017) provide a roadmap with key recommen-
r supporting active EV involvement in grids to provide flexibility services such as investment deferral, load, and

ervices. Thompson and Perez (2020) discuss the value streams of numerous V2G services. Salah et al. (2015) argue
 incentives can help to exploit available load flexibility embedded in EV charging, whilst if ill-designed, they can
ignificant increase of peak loads in times of low prices. Network investment deferral supported by EV flexibility in a
ith renewable energy as explored by Hemmati and Mehrjerdi (2020), can contribute to an accessible cost-reflective

usions and policy implications

rrent literature has a critical gap, that is, the lack of empirical assessment of the impact of in-home EV charging on
rids, as well as associated social and environmental impacts. Using a rich dataset with hourly smart meter data of
consumers and a comparable number of non-EV consumers, the timing of EV charging adoption, and information
city pricing plan enrollment, we provide empirical evidence on the impact of in-home EV charging on residential
ad profiles and how such impact responds to various electricity price plans.
alysis has four key findings. First, using panel regression and difference-in-differences methods, we find that an
esidential EV charging consumer can increase the electricity demand by 7–14 % during the system peak hours

 8 pm in summer. A 10 % residential penetration rate of a single utility’s service territory implies that a new
as power plant is needed to meet the additional demand during the system peak hours. In other hours, EV con-
crease electricity in the afternoon, evening, and midnight, with charging most around midnight. Second, we find

onsumers respond to electricity pricing signals by increasing charging during the super off-peak hours in an EV-
ime-of-use (TOU) pricing. EV consumers with the regular TOU pricing also behave differently, compared to EV
rs with the non-TOU pricing; TOU EV consumers charge more during their regular off-peak hours. Third, our empir-
ates of changes in electric load profiles due to EV charging are different from the charging profiles found in the
simulation studies, highlighting the importance of empirical studies due to behavioral changes. One such behav-
ge is rebound effects in driving which leads to a reduction in electricity usage in some hours of the day. Lastly,

ate that the environmental benefit of in-home EV charging is $101-113/consumer/year and the private benefit is
/consumer/year.
sults have important implications for energy policymakers and electricity industry practitioners. First, our results

 potentially large impact on the electricity demand during system peak hours, which requires the expansion of the
acity of the electric infrastructure and better grid management in response to increasing penetration of in-home
ng. Second, we  show that in-home EV charging behaviors respond to electricity pricing. Our empirically-estimated

 to pricing helps policymakers and utilities to adopt and evaluate pricing tools to help shift the EV charging load
k hours from peak hours, to flatten the electric load curve, and to induce the highest social benefits of EVs. Third,

ts show that it is important to provide empirical assessment instead of relying only on simulation studies because
mulation studies do not take into the effects of consumer behavioral changes, such as response to pricing or rebound

 driving. Such deviations between predicted and actual behaviors imply potential adjustment of relevant policy
ions. Our paper illustrates the critical needs for more empirical assessments of EV in-home charging in broader
ical areas in the future.
l disclosure statement

 is financial disclosure applicable.
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