
NFLOW and MVT Abstractions for NFV Scaling
Ziyan Wu∗, Yang Zhang∗, Wendi Feng†, Zhi-li Zhang∗

∗University of Minnesota – Twin Cities
†Beijing Infomation Science and Technology University

Abstract—The ability to dynamically scale in/out network
functions (NFs) on multiple cores/servers to meet traffic de-
mands is a key benefit of network function virtualization (NFV).
The stateful NF operations make NFV scaling a challenging
task: if care is not taken, NFV scaling can lead to incorrect
operations and poor performance. We advocate two general
abstractions, NFLOW and Match-Value Table (MVT), for NFV
packet processing pipelines. We present formal definitions of the
abstractions and discuss how they can facilitate NFV scaling by
minimizing or eliminating shared states. Using NFs implemented
with the proposed abstractions, we conduct extensive experiments
and demonstrate their efficacy in terms of correctness and
performance of NFV scaling.

I. INTRODUCTION

By running network functions as software on commodity
servers instead of on expensive dedicated hardware middle-
boxes, network function virtualization (NFV) offers many
benefits. It provides flexible control of network functions
(NFs), and lowers the network management and deployment
costs. In particular, NFV makes it easier and cheaper to scale-
out to meet growing traffic demands by deploying more NF
instances on more CPU cores and servers. These benefits
notwithstanding, recent studies have shown that correctness,
scalability and robustness of NFV hinge critically on NF
state management [1]–[5]. This is because most (interesting)
NFs are stateful, which introduces dependency among packet
streams and how they are processed. For example, in the
case of a “hole punching” NAT (network address translation)
NF, the arrival of a packet from an outgoing “flow” in
a network may lead to the modification/creation of a new
state entry that allows packets from a reverse (incoming)
“flow” to enter the network. Likewise, in the case of network
monitoring/metering (NM) NF, once the arrival of a packet
from a source host (specified by a source IP address) triggers
the packet counter (the NF state) to reach a threshold, the
subsequent packets from the same source may be throttled or
dropped. Scaling out stateful NFs to multiple NF instances
requires sharing/duplicating/sharding the NF state among the
cores/servers and splitting/steering the traffic to the correct in-
stances. If done improperly, shared states can lead to incorrect
NF operations [5]; even if correctness is ensured, shared states
can incur significantly performance penalty – in the worst case,
completely negates the benefit of scaling out [6].

While there has been a flurry of academic research on NFV,
relatively few attempts have been made to provide general
abstractions for NFV. Most relevant work has focused on NFV
frameworks and various state management issues (see §II). In
contrast, software defined networking (SDN) provides several

useful abstractions: i) a flow table abstraction whose entries
define the (“informal”) notion of flows and how packets of
the flows are processed (e.g., forwarded or dropped); and
ii) a match-action abstraction [7] which defines the (generic)
operations on incoming packets: packets are matched against
the table; if an appropriate entry is found (we note that
SDN flow table entries), the specified action is performed on
the packet. The SDN match-action abstraction is inherently
stateless in that processing of (matched) packets does not
induce an update of the flow table that affects the processing
of subsequent packets. These abstractions further enable a
(logically) centralized control plane abstraction that maintains
network-wide visibility and is responsible for generating flow
tables, e.g., generating and installing a flow table entry upon
the arrival (of the first packet/packets) of a new flow. All these
lead to a unified programmable network data (forwarding)
plane and help simplify network management tasks, e.g., via
the development of higher-level languages for programming
SDN switches and network OSes for running network control
programs [8]–[12].

In this paper, we make the first attempt in developing
general abstractions for NFV, with an emphasis on scaling
the NFV software processing pipeline on multi-core servers.
Clearly, NFV is far more complicated than SDN, as NFs
(as virtualization of hardware “middleboxes”) perform diverse
and complex (stateful) operations on packets that go beyond
packet forwarding. In other words, “actions” performed on
packets are NF-specific; new actions will be often introduced
when new NFs are developed or existing ones upgraded.
Likewise, the actions (updates) performed on the NF state
are also specific to each (type of) NF. We do not intend to
standardize the “actions” (on packets and state) for NFV (in
contrast to SDN). Nonetheless each NF follows a general
packet processing pipeline: upon arrival of a packet, it is
matched against a state table (or whatever its representation in
software code) using certain header fields (and other metadata
attributes); the matched state entry dictates what actions to be
performed on the packet, and an update to the state may also
be performed. Therefore we focus on developing useful (and
formal) abstractions for the general NFV packet processing
pipeline – the NF state representation and the induced traffic
associated with each state entry. The goal is to help facilitate
NFV scaling to tackle the aforementioned correctness and
performance issues.

In particular, we propose two novel abstractions, NFLOW
and Match-Value Table (MVT), as generalizations to the
notions of flow and flow table in SDN (but also with several

key differences). Intuitively, given an NF and its state (and
actions), a sequence of packets that match a single NF state
entry form an NFLOW. As a general NF state representation,
each entry of MVT contains a match field (a predicate defined
on packet headers and related metadata) and a value field1

which represents the value of an NF state entry. Using these
abstractions, the general packet processing pipeline is as fol-
lows: A packet to be processed is matched against the MVT,
the matched entry determines the NFLOW it belongs to and the
actions to be performed; the corresponding value field of the
MVT entry may also be updated accordingly that affect the
processing of subsequent packets in the same NFLOW. Clearly,
different (types of) NFs define different kinds of NFLOWs. For
example, an NFLOW defined by the stateful “hole-punching”
NAT NF is bidirectional: it consists of packets from an outgo-
ing UDP/TCP (5-tuple) flow and an incoming UDP/TCP flow
with the same and reverse source/destination IP address and
port number pairs. An NFLOW defined by the aforementioned
NM NF consists of packets from the same source IP addresses
(including all 5-tuple flows from the same source).

Unlike an SDN flow table which associate priorities to flow
table entries – in other words, a packet may match multiple
entries (we refer to these entries as “entangled”), with the one
of highest priority determining the action on the packet, we
impose a uniqueness condition on MVT (NF state) entries:
each packet (of an NFLOW) can match one and only one
entry in MVT. As such, we see that both the MVT entries and
NFLOW’s defined by each NF are independent of each other.
MVT can be efficiently implemented as, for example, a key-
value store, with one get operation and at one most one put
operation per packet. These properties offer key benefits in
terms of ensuring NFV scaling correctness and performance.
When scaling an NF to multiple instances (whether across
cores within a single server or across servers), we can arbi-
trarily partition a large MVT into smaller (sub-)tables (one
per instance) while ensuring correctness of stateful packet
processing. The NFLOW abstraction makes it easy to split and
steer the corresponding NFLOW’s to the right instances. As the
partitioned MVT tables are independent, there are no shared
state among the NF instances. Furthermore, we can shard the
MVT in such a manner that each shard fits the L1/L2 caches
dedicated to each core. These are crucial in ensuring high
NFV scaling performance [6] especially when the line rate
requirements of packet processing is 100 Gbps and beyond.
The independence of MVT entries and NFLOW’s enables
dynamic NFV scaling without compromising correctness and
performance that are otherwise not guaranteed with flow/state
tables with entangled entries.

The remainder of this paper is organized as follows. In §II,
we further motivate the two proposed abstractions and discuss
related work. In §III, we provide a formal formulation of the
NFLOW and MVT abstractions and present how to composite
MVT. In §IV, we present the MVT partitioning problem. It

1The value field is a general object that may correspond to a single variable,
e.g., packet counter, a list or array of variables, or contain other more complex
data structures.

#1 16.0.0.0/24 0
����������������
ŏ

Dependent Table Match Fields

Instance 2

#1 16.0.0.0/28 1

Instance 1

#1 16.0.0.0/24 0

Partition the de‐
pendent table

Traffic
Dispatcher

16.0.0.4 16.0.0.10

❌

Traffic

Fig. 1: Dependent table splitting without entry dependency
considerations result in incorrect packet processing.

studies how to partition the MVT to multiple shards which
can be placed across NF instances. In §V we demonstrate
the performance benefits and correctness guarantees provided
by NFLOW and MVT abstractions. Finally, we conclude the
paper by summarizing its contributions.

II. MOTIVATION AND RELATED WORK

NFs are programs that receive packets and process them
based on state. This process can be formally represented as
(statesnew, pktout) = NF (statecur, pktin). In other words,
an NF transforms (“actions”) an incoming packet to an outgo-
ing packet based on the information carried on the incoming
packet as well as the (current) state. A key distinction between
a stateful NF from a stateless NF lies in that the former
may also modify the state – the state is used by a stateful
NF to track the changes and guide how subsequent packets
are processed. Hence how to manage the state for efficient
processing and scaling is a critical part of the design of NFs.

A. Need for New Abstractions for NFV Scaling

In order to attain near line-speed NFV packet processing
to meet growing traffic demands, we need better state and
traffic abstractions to effectively leverage multi-core servers
for NFV scaling. We argue that the “flow table” abstraction
used for SDN (which is implicitly adopted by many existing
NFV platforms and NF implementation) is not best suited for
NFs running on multi-core servers. As the “state” for (mostly)
stateless data plane operations, the flow table abstraction (with
“entangled” flow entries or rules with priority) is designed
for SDN switches and can be viewed as an abstraction for
hardware TCAM2, which can simultaneously match a packet
against multiple entries and outputs the best-matched entry
(with the highest priority) with one operation. In other words,
looking up a packet that matches multiple entangled entries
(“rules”) and deciding on the best entry using rule priorities
incurs no additional costs in hardware switches (or NICs).
Performing the same function in software requires multiple

2The generalizations of the openflow protocol to include multiple flow
tables and those of P4 to support more general programmable switches with
limited stateful operations again reflect switch hardware which often includes
multiple TCAMs in the hardware packet processing pipeline.

1.x.x.x core 1
2.x.x.x core n

rte_flow api

1.1.1.1 value 1
1.2.2.2 value 2

CPU cores,
L1/L2 caches,
LLC and MM

State Shard #1

2.2.2.2 value 3
2.3.3.3 value 4

NF
State

(smart)
NIC

Packets

State Shard #n

…...

Fig. 2: Problem setting for scaling general NFs

memory accesses, which can significantly slow down the
software NFV packet processing.

The entangled flow table can create more severe problems
when scaling NF to multiple cores. As illustrated in Fig. 1,
we scale an NF by running two NF instances, each with its
own flow table. Two “entangled” flow entries, 16.0.0.0/24
and 16.0.0.0/28, are split into separate tables, which can
cause incorrect operations if packets are steered to the wrong
instance (by mechanism such as RSS [13]). For stateless
NFs such as layer-3 forwarding, one might simply replicates
the read-only flow table; nonetheless, if it is too large, it
may slow down the packet processing – ensuring the state
table is relatively small (e.g., to fit with the caches) is a
key reason for NFV scaling. For stateful NFs, replicating the
read/write state creates shared states that requires consistency
checks [5], leading poor scaling performance [6]. Hence
we need better abstractions to facilitate NFV scaling in a
correct and scalable manner, namely, to guide the NF state
sharding and traffic splitting/steering. By studying a number
of existing NFs [14]–[21], we find that “entangled” flow tables
with entangled rules are common; some even use multiple
dependent tables. This is likely a legacy of “virtualizing” (by
emulating) hardware middleboxes in software. This motivates
us to develop new abstractions for effectively scaling the
NFV software packet processing pipeline on multi-core servers
by eliminating unnecessary state dependency and minimizing
shared state. In §III-B we will present methods to convert
dependent/entangled flow/state tables in an NF to a single
MVT with disjoint entries.

B. Problem Setting

Fig. 2 illustrates the problem setting for scaling general NFs.
To scale out the NFs, we partition the NF state into different
shards for dedicated cores to process. When NIC receives the
packets, it distributes incoming packets into different queues
owned by dedicated CPU cores based on the rules installed
in the NICs. Then the problem is to design an algorithm
that efficiently partitions the NF state, and a dispatching
mechanism in the NIC. More specifically, given NF state, the
algorithm is to calculate the tables (NF state tables and NIC
dispatching table) in Fig. 2, and the dispatching mechanism is
to distribute incoming packets accordingly.

C. NF State Management and Related Work

Several NFV frameworks [21]–[29] have been developed
in recent years, with an emphasis on speeding NFV packet
processing using multi-core and multiple servers for elastic
scaling. Most do not explicitly address the state management
issues, implicitly assuming that NFV scaling can be performed
using 5-tuple flows (as in the conventional cloud computing
systems). The authors in [1], [4] were perhaps the first to
study the state management issues in NFV and their impact
on NFV scaling, where they classified various NF state into
“partitioned” state (related to per 5-tuple flow) and “shared”
state and developed a framework for managing and replicated
these two types of state. OpenNF and related efforts [2],
[5], [30] aim to build a SDN-like centralized plane for NFV
management and orchestration, with a focus on robustness
issues via state replication, migration and recovery. A rollback
mechanism is developed in [3] for NFV state recovery. The
authors in [31] propose a “stateless” framework for main-
taining and performing all NF state operations in a central
server, whereas the authors [32] employ distributed hashing
table (DHT) for managing the NF state as a distributed key-
value store.

To meet the increasing traffic demands, switches and servers
with 100 Gbps and higher-speed ports and network interface
cards (NICs) are becoming more common. This poses more
challenges in performing NFV packet processing at near line-
speeds. Several recent studies [6], [33], [34] have examined the
impact of server microprocessor architecture on NFV scaling
performance. For example, NFV performance profiling in [6]
shows that it is critical to maintain the NF state within the
L1/L2 caches that are dedicated to individual cores to reap
the benefits of scaling NF instances on multiple cores. When
the NF state grows too large and cannot fit into the L1/L2
caches, NFV scaling performance degrades quickly, as access
speeds to the LLC/L3 cache (shared among all cores on the
same NUMA node) and the main memory can be 10s to 100s
slower. Worst, shared state with locking (for consistency and
correctness [5]) completely negates the benefits of scaling NF
instances to more than two cores. Clearly, with at least 1s and
10s millisecond latency, accesses to NF states maintained on
another server via centralized or distributed state management
frameworks [31], [32] will further degrade NFV scaling.

III. NF MODEL AND NFV ABSTRACTIONS FOR SCALING

In this section, we present a formal model for representing
stateful NFs and introduce several important abstractions.

A. NF Model: MVT, NFlows and Atomic State Units

We model each network function abstractly as a mapping,
NF : { In, State } → Out , where In and Out represent
the input and output packet streams, and State denotes the
NF state. We represent the NF state as a table of tuples
(“entries”): ⟨pred, value⟩, where pred is a predicate defined

NF logic
(behavior)

packet (ext) header space

NFlow1

NFlow2

NFlow3

NFlown

Network Function (NF)

NF state (MVT)

input packet stream (Nflow)

output
packets(1) match

(2) read (3) update
(4) modify pkt

& perform action

.

. .
.

(a)

(b)

NF
logic

<latexit sha1_base64="YsH39to53Jq2M3P64gPbsF6sLyQ=">AAACF3icdVDLSsNAFJ3UV62vWJduBlvBVUhiaeuu4MZlBfuANoTJdNIOnTyYmRRL6Ie4cat/4U7cuvQn/AYnbQSreGDgcM69lzPHixkV0jQ/tMLG5tb2TnG3tLd/cHikH5e7Iko4Jh0csYj3PSQIoyHpSCoZ6cecoMBjpOdNrzO/NyNc0Ci8k/OYOAEah9SnGEkluXq5OgyQnHh+OkMsIa5YVF29YhpXzbpdq0PTMM2GZVsZsRu1yxq0lJKhAnK0Xf1zOIpwEpBQYoaEGFhmLJ0UcUkxI4vSMBEkRniKxmSgaIgCIpx0mX0Bz5Uygn7E1QslXKo/N1IUCDEPPDWZBRW/vUz8z8suitxcTyH9ppPSME4kCfEqhJ8wKCOYlQRHlBMs2VwRhDlV/4B4gjjCUlVZWha0agH+Jd8FdW3DqhvmrV1p2XlVRXAKzsAFsEADtMANaIMOwOAePIIn8Kw9aC/aq/a2Gi1o+c4JWIP2/gXUH6AH</latexit>

values

<latexit sha1_base64="YsH39to53Jq2M3P64gPbsF6sLyQ=">AAACF3icdVDLSsNAFJ3UV62vWJduBlvBVUhiaeuu4MZlBfuANoTJdNIOnTyYmRRL6Ie4cat/4U7cuvQn/AYnbQSreGDgcM69lzPHixkV0jQ/tMLG5tb2TnG3tLd/cHikH5e7Iko4Jh0csYj3PSQIoyHpSCoZ6cecoMBjpOdNrzO/NyNc0Ci8k/OYOAEah9SnGEkluXq5OgyQnHh+OkMsIa5YVF29YhpXzbpdq0PTMM2GZVsZsRu1yxq0lJKhAnK0Xf1zOIpwEpBQYoaEGFhmLJ0UcUkxI4vSMBEkRniKxmSgaIgCIpx0mX0Bz5Uygn7E1QslXKo/N1IUCDEPPDWZBRW/vUz8z8suitxcTyH9ppPSME4kCfEqhJ8wKCOYlQRHlBMs2VwRhDlV/4B4gjjCUlVZWha0agH+Jd8FdW3DqhvmrV1p2XlVRXAKzsAFsEADtMANaIMOwOAePIIn8Kw9aC/aq/a2Gi1o+c4JWIP2/gXUH6AH</latexit>

values

<latexit sha1_base64="r3+CeHo+UaqrU8I4GWUlfcghCq8=">AAACF3icdVDLSsNAFJ3UV62vWJduBlvBVUhiaeuu4MZlBfuANoTJdNIOnTyYmRRL6Ie4cat/4U7cuvQn/AYnbQSreGDgcM69lzPHixkV0jQ/tMLG5tb2TnG3tLd/cHikH5e7Iko4Jh0csYj3PSQIoyHpSCoZ6cecoMBjpOdNrzO/NyNc0Ci8k/OYOAEah9SnGEkluXq5OgyQnHh+OkMsIa61qLp6xTSumnW7VoemYZoNy7YyYjdqlzVoKSVDBeRou/rncBThJCChxAwJMbDMWDop4pJiRhalYSJIjPAUjclA0RAFRDjpMvsCnitlBP2IqxdKuFR/bqQoEGIeeGoyCyp+e5n4n5ddFLm5nkL6TSelYZxIEuJVCD9hUEYwKwmOKCdYsrkiCHOq/gHxBHGEpaqytCxo1QL8S74L6tqGVTfMW7vSsvOqiuAUnIELYIEGaIEb0AYdgME9eARP4Fl70F60V+1tNVrQ8p0TsAbt/QtoW5/F</latexit>

value1
<latexit sha1_base64="HwHCfB7uGucVowkin+siIsrt4yY=">AAACFnicdVDLSsNAFJ3UV62vVJduBlvBVUhiaeuu4MZlBVsLbQiTyaQdOnkwM1FK6H+4cat/4U7cuvUn/AYnbQSreGDgcM69lzPHSxgV0jQ/tNLa+sbmVnm7srO7t3+gVw/7Ik45Jj0cs5gPPCQIoxHpSSoZGSScoNBj5NabXub+7R3hgsbRjZwlxAnROKIBxUgqydWr9VGI5MQLMrXmu9a87uo107hoN+1GE5qGabYs28qJ3WqcN6CllBw1UKDr6p8jP8ZpSCKJGRJiaJmJdDLEJcWMzCujVJAE4Skak6GiEQqJcLJF9Dk8VYoPg5irF0m4UH9uZCgUYhZ6ajLPKX57ufifl18UhbmaQgZtJ6NRkkoS4WWIIGVQxjDvCPqUEyzZTBGEOVX/gHiCOMJSNVlZFLRsAf4l3wX1bcNqGua1XevYRVVlcAxOwBmwQAt0wBXogh7A4B48gifwrD1oL9qr9rYcLWnFzhFYgfb+BYLpn0k=</latexit>

pred1

<latexit sha1_base64="nO1lRnPDPUZW79WRfQ3gmEorNww=">AAACFnicdVDLSsNAFJ3UV62vVJduBlvBVUhiaeuu4MZlBVsLbQiTyaQdOnkwM1FK6H+4cat/4U7cuvUn/AYnbQSreGDgcM69lzPHSxgV0jQ/tNLa+sbmVnm7srO7t3+gVw/7Ik45Jj0cs5gPPCQIoxHpSSoZGSScoNBj5NabXub+7R3hgsbRjZwlxAnROKIBxUgqydWr9VGI5MQLMrXmu2Jed/WaaVy0m3ajCU3DNFuWbeXEbjXOG9BSSo4aKNB19c+RH+M0JJHEDAkxtMxEOhnikmJG5pVRKkiC8BSNyVDRCIVEONki+hyeKsWHQczViyRcqD83MhQKMQs9NZnnFL+9XPzPyy+KwlxNIYO2k9EoSSWJ8DJEkDIoY5h3BH3KCZZspgjCnKp/QDxBHGGpmqwsClq2AP+S74L6tmE1DfParnXsoqoyOAYn4AxYoAU64Ap0QQ9gcA8ewRN41h60F+1Ve1uOlrRi5wisQHv/Au6tn4s=</latexit>

preds

<latexit sha1_base64="nO1lRnPDPUZW79WRfQ3gmEorNww=">AAACFnicdVDLSsNAFJ3UV62vVJduBlvBVUhiaeuu4MZlBVsLbQiTyaQdOnkwM1FK6H+4cat/4U7cuvUn/AYnbQSreGDgcM69lzPHSxgV0jQ/tNLa+sbmVnm7srO7t3+gVw/7Ik45Jj0cs5gPPCQIoxHpSSoZGSScoNBj5NabXub+7R3hgsbRjZwlxAnROKIBxUgqydWr9VGI5MQLMrXmu2Jed/WaaVy0m3ajCU3DNFuWbeXEbjXOG9BSSo4aKNB19c+RH+M0JJHEDAkxtMxEOhnikmJG5pVRKkiC8BSNyVDRCIVEONki+hyeKsWHQczViyRcqD83MhQKMQs9NZnnFL+9XPzPyy+KwlxNIYO2k9EoSSWJ8DJEkDIoY5h3BH3KCZZspgjCnKp/QDxBHGGpmqwsClq2AP+S74L6tmE1DfParnXsoqoyOAYn4AxYoAU64Ap0QQ9gcA8ewRN41h60F+1Ve1uOlrRi5wisQHv/Au6tn4s=</latexit>

preds

pkt
IN

pkt
OUT

Fig. 3: NF model: MVT, NFlows and atomic state units

on the extended3 packet header space, and value can be any
struct (e.g., integer, float, Boolean, list, finite state machine,
etc.) that is used to keep track of the state or state transition
that governs the actions on packets matching pred (see Fig. 3).

Definition 1 (Match Value Table (MVT)). Given a table of
S tuples, {⟨preds, values⟩ : s ∈ S}, representing the state
of an NF , we say it is a match value table (MVT) if it
satisfies the following condition: for any input packet p of
the NF , it matches one and only one predicate: namely, if
preds(p)=true, then preds′(p)=false for any s′ ̸= s, and
∨spreds(p)=true.

We remark that the condition we pose on the predicates (on
the extended packet header space) of the MVT corresponds
to the notion of atomic predicates introduced in [35]. In
other words, the MVT entry predicates form a set of atomic
predicates. By abuse of notation, we will also refer to a data
structure (e.g., a hash lookup table) implementing an NF MVT
state representation, i.e., its entries satisfying the same atomic
predicate condition, as an MVT.

Definition 2 (NF Flows & Atomic State Units). We refer to
a sequence of input packets matching each predicate preds in
an MVT defined above for an NF as an NFlow of the NF, and
each tuple ⟨preds, values⟩ as an atomic state unit of the NF.

As an example, consider a “hole-punching” network address
translation (NAT) NF. An NFlow of this NF corresponds to a
pair of incoming and outgoing TCP/UDP flows with matching
(public) source and destination IP addresses and port numbers.
In the case of a network monitor (NM) NF which tracks and
counts the number of packets coming from outside hosts (e.g.,
for DDoS detection), an NFlow contains all packets with the
same source IP address.

We can view an MVT as a (state) table or data structure that
matches NFLOWs to their states uniquely (with one lookup

3The extended header space includes not only the standard header fields
defined by SDN or P4 programmable switches and used in, e.g., header space
analysis-based stateless network verification, but also special tags, meta-data,
application-layer protocol header fields, even certain payload that are specified
and operated on by various NFs.

operation): each entry in the MVT comprises of two fields:
the matching field and the value field. The uniqueness of the
MVT ensures that the matched NFLOWs for different entries
are disjoint. This property guarantees that each packet can only
match one MVT entry: this facilitates software-based packet
table-lookup, as the one-to-one matching eliminates the need
for comparing the priority of multiple “entangled” entries that
one packet may match, as in existing SDN systems which
require multiple lookup operations, slowing down the software
packet processing pipeline. As each entry is an atomic state
unit, the MVT can be arbitrarily partitioned/sharded for NFV
scaling on multi-core servers such that each NF state shard can
be, e.g., fitted into the core-dedicated L1/L2 caches without
shared state to ensure high NFV scaling performance [6].

Formally, with the notions of NFlows and atomic state units,
we can decompose or “slice” an NF into disjoint elements,
NF = ⊎sNFs, by simultaneously partitioning the input
(extended) packet header space and the state of NF : Here ⊎
represents disjoint union, and NFs = ⟨preds, values⟩, with
{preds}’s satisfying the atomic predicate condition above.
We will use preds as a short hand for an NFlow, namely,
a sequence of packets pi’s for which preds(pi)=true for all
the packets. In a sense, we can regard our notions of NFlows
and atomic state units as generalization and extension of
SDN “flows” and “atomic predicates” introduced in [35] for
stateless networks and operations to stateful NFV and network
functions. By refactoring NF as ⊎sNFs, each disjoint ele-
ment NFs operates on its own NFlow (specified by preds)
independently – performing transformation (e.g., re-writing
headers) on packets of the NFlow and updating its state entry
values based on the NF logic (see the bottom part in Fig. 3).

B. MVT Composition

The disjoint nature of MVT brings benefits for software-
based packet-entry matching in NFV systems. However, it
shifts the complexity to the composition of an MVT compared
to the composition of a traditional dependent table. Thus, we
present the two methods for composing MVT in this section:
a pro-active method and a reactive method.

1) Pro-active Composition: The pro-active method is ap-
plied for composing MVT when NF rules are pre-defined. For
example, access control has pre-defined rules to block certain
traffic. Such NF rules are defined based on users’ intents, and
thus they may be entangled with each other, as illustrated in
the above L3FWD example. We rely on multi-dimensional
traffic classification mechanism [36] to decouple them.

2) Reactive Composition: NF state is not only generated
from pre-defined rules, but also created at the packet process-
ing stage. In the case of a “hole punching” NAT, the arrival
of a packet from an outgoing “flow” creates a new state entry
that allows packets from a reverse (incoming) “flow” to enter
the network. Thus, in reactive composition method, it creates
an MVT entry for each NFLOW. This method is often used
by NFs whose NFLOW predicates are defined by the same set
of packet fields and/or metadata attributes that the NFLOWs
are guaranteed to be disjoint.

alert tcp $HTTP_SERVERS $HTTP_PORTS -> $EXTERNAL_NET any (pcre:"/ˆCommand\s+?\b/sm";)

Fig. 4: A SNORT Rule Example.

A Real-world NF Example: We present a real-world
example – SNORT [19], a rule-based Intrusion Detection
System (IDS), to show how an MVT is constructed by
combining both pro-active and reactive methods.

SNORT identifies intrusion by matching (suspicious) sig-
natures against packet payload. As shown in Fig. 4,
each rule comprises three parts, a predicate (“tcp
$HOME_NET 2589 -> $EXTERNAL_NET any”), a sig-
nature (“/ˆCommand\s+?\b/sm”), and an action (alert).
SNORT filters incoming packets by predicates to retrieve
signatures. SNORT keeps track of flow status (per predicate)
by maintaining a finite state machine (FSM). For example,
in Fig. 4, the signature is a regular expression containing the
suspicious “Command” keyword. A real SNORT data pattern
part may be very long depending on its internal signatures.
One packet payload may not be long enough to match till the
end of the signatures. Thus, the FSM is used to keep track
of the status of matching (e.g., where the matching has been
reached) for the following packets to continue the matching.
During the arrival of a packet, SNORT looks for two types
of information based on packet predicate: one is signature in
the user defined rule, while the other one is FSM which keeps
track of the signature matched so far. Then, SNORT continues
the pattern matching and updates FSM. If no corresponding
FSM is found, SNORT creates a new FSM with initial state for
the new predicate. When the FSM reaches the termination state
(i.e., matching till the end of a signature), the corresponding
action (e.g., alert) is triggered.

Hence, SNORT maintains two MVTs according to the
proposed abstraction: a rule MVT and an FSM MVT. The
rule MVT is constructed pro-actively and converted from pre-
defined rules (e.g., Fig. 4), while the FSM MVT is generated
by a reactive method during packet processing. When we
compose the rule MVT, the predicate of each user defined
rule is used as the key in the rule MVT, and its corresponding
signature-action pair is stored as the value. In contrast, when
we compose the FSM MVT, the predicate of each incoming
packet is taken as key, and its associated FSM state is stored
as the value in the FSM MVT.

IV. PARTITIONING MVT FOR NFV SCALING

As the entries of the MVT are mutually exclusive, we
can freely partition it to be processed in parallel in multiple
instances running in different cores on multi-core systems
for higher performance. Besides, we need to ensure that the
packets are steered to the instance directly that contains the
corresponding entry to avoid inter-core transfer of software
dispatching overhead for optimal performance. Thus, the steer-
ing rules calculated from the partition should be installed in
the NIC to facilitate hardware dispatching.

A. Problem Statement
The purpose of MVT is to make entries independent and

enable them to be partitioned freely into multiple MVT shards,

so that different shards can be placed on different instances
for the benefits of scaling-out. MVT itself can be partitioned
freely, but two requirements make it challenging to apply on
real-world NFV platforms: (i) the traffic should be dispatched
to the correct instance that has its MVT entry, and, (ii) the
workload should be evenly distributed to each instance. We
next describe why these two requirements are essential.

Consider the case of running an NFV system on a multi-
core CPU server equipped with 100 Gbps DPDK-enabled NIC
cards that support the Receiver-Side Scaling (RSS) function-
ality. Each NF instance is deployed on a dedicated CPU core,
and each core has its dedicated L1/L2 caches. Processing
packets at 100 Gbps or above line-rate speed requires fetching
data (states and packets) directly from L1/L2 caches (whose
access latency should be L1/L2 bound [33]) as the average
packet processing latency for 64B Ethernet packets is only
5.7ns. However, the L1/L2 cache have limited capacity (e.g.,
32KB L1-D cache and 1MB L2 cache on our server with Xeon
Platinum 8168 @2.7GHz). Because it is crucial to exploit
L1/L2 for every core, we need to ensure that workload is
distributed evenly among all the available cores.

Modern servers are often equipped with (DPDK) NICs that
employ hardware mechanisms to dispatch packets to different
NF instances running on different CPU cores. DPDK provides
a flexible interface to manipulate these hardware mechanisms.
DPDK rte flow API enables installing rules for different items
and actions on packets – it is more flexible compared to
RSS that uses only 5-tuple TCP/UDP/IP header fields. Items
here refer to the headers of common protocols or bit-strings
starting from a certain offset; actions refer to operations such
as dispatching packets to different queues, dropping some of
them, etc. If the NIC has enough (hardware memory) capacity
to install rules that map each NFLOW to a physical core, it
is then trivial to implement the dispatching mechanism. The
challenge, however, lies in how to use the limited NIC rules
for partitioning MVT to meet our design goal.

B. Problem Formulation

Terminology: Given a MVT, we can define an incompletely
specified Boolean function fmvt : Bn 7→ {0, 1,−}, B =
{0, 1} where n is the number of bits to specify a predicate.
For a vector v ∈ Bn, if there is a predicate pred in the
MVT such that pred(v) = 1, we assign 1 to it, otherwise we
assign − to it. Given the assignment, we can have two subsets
of Bn: the on-set, f1 = {x|f(x) = 1}, and don’t-care-set
fDC = {x|f(x) = −}. A cube c is set of points in Bn defined
by the function fc : {0, 1, ..., n − 1} 7→ {0, 1,−}, which can
be represented as a vector vc = (fc(0), fc(1), fc(2), ..., fc(n−
1)) ∈ {0, 1,−}n.

Partitioning f1: In order to create NIC rules for correctly
dispatching traffic, we need to find a non-overlapping partition
of the cover (or cube) for f1. The result of the process should
satisfy the following conditions:

1) The cardinality of the cover should be less than the
maximum number of rules that the NIC supports

2) The cardinality of the partition should be equal to the
number of instances and each partition is assigned to one
NF instance only.

3) The workload corresponding to each partition should be
as even as possible to efficiently utilize the L1/L2 cache.

To satisfy the constraints and requirements, we need a
process to reduce the number of products in the cover because
the initial number of products is equal to the number of atomic
predicates, which is often much larger than the number of NIC
rules. After the process, the dispatching policy as a collection
of products should be able to be installed into the NIC. Next,
we introduce the basic idea of the process.

1) MVT as a BDD with CE: We start by constructing
a BDD (Binary Decision Diagram [37]) with CE (Comple-
mented Edges) for the Boolean function. We use it because
its ability to provide a canonical form for the Boolean function,
its compactness compared to the BDD and it is trivial to
obtain the cover for the Boolean function in the form of DSOP
(Disjoint Sum of Products) by extracting the ”1-path”. Then
we apply the techniques of [37] to minimize the number of
products by minimizing the number of paths. After this step,
we can get a cover equal to f1. Each product in the cover
can be installed as a rule in the NIC. However, the result may
not be acceptable because the number of entries may still be
larger than the available entries in the NIC.

2) Merging products by leveraging don’t-care-set: The
intuition for the step is that we can leverage the points in
the don’t-care-set to expand the cover to reduce the number
of products in the cover. We introduce following notations to
analyze the cover.

Definition 3 (Connected Cubes). Two cubes c1, c2 are con-
nected if c1 ∩ c2 ̸= ∅.

Definition 4 (Path). There exists a path between two cubes c1
and cn if there is a list of cubes (c1, c2, c3, ..., cn) such that
∀k∈ {1, 2, ..., n− 1}, ck and ck+1 are connected.

Definition 5 (Component). A set of cubes {c1, c2, c3, ..., cn}
form a component if ∀k,j∈ {1, 2, ..., n−1}, there exists a path
from ck and cj .

To install a list of products as rules in the NIC, we need to
ensure that the packets of one component are dispatched to one
instance. Otherwise, a packet may be included in the predicates
of two partitions which may result in the incorrect behaviour of
dispatching traffic. Hence, an element of the resulting partition
should be a union of a collection of components.

Definition 6 (Centroid of a Cube). Given a cube c1, the
centroid of a cube Centroid(c1) is a vector an where a ∈
{0, 0.5, 1}, the mean of the extreme value of each dimension.

Definition 7 (Distance of Two Cubes). Given two cube c1, c2,
the distance of two cubes is the distance of their centroid.

Given a cube, when we want to select another cube to merge

them together, we always choose the closest cube to merge.
The result of the merging should be a supercube which is the
smallest cube that contains both cubes.

Definition 8 (Supercube). Given two cube c1, c2 defined by
fc1 and fc2 , the function of supercube cs is defined as follows:

fcs(i) :=

{
0 fc1(i) = fc2(i) = 0
1 fc1(i) = fc2(i) = 1
− otherwise

3) Balancing the Workload among the Instances: As ex-
plained by the previous section, we need to balance the work-
load for different partitions for better utilization of the L1/L2
cache since each partition are assigned to one instance. To
characterize the workload, we develop the concept of weight
of the cube based on the number of packets it contains, the
related traffic pattern, priority of the corresponding NFLOWs.

Definition 9 (Weight of the Cube). For each point t in the
Boolean space we assign a value v ∈ R such that weight(t) =
v based on whether it corresponds to an NFLOW, characteris-
tics related to its traffic pattern (pps, throughput) and priority
and any other metrics that influence its processing overhead.
The weight of the cube weight(c) = sum({weight(t)|t ∈ c}).

Ideally, for a balanced partition, each element of the parti-
tion should have around the same weight. For the partitioning
problem for multiple servers, we can create a partition accord-
ing to the capabilities of different instances.

4) NIC Entry Constraint: The number of traffic steering
entries should not exceed the number of NIC entries. This is
written as: k ≤ m.

5) Formulation: To summarize formally, we need to find a
partition P for cover C = {c1, c2, c3, ...ck}, such that f1 ⊆
C ⊆ f1 ∪ fDC , with the goals and constraints as follows:

min

(
V ariance({

∑
c∈p

weight(c)|p ∈ P})

)
s.t. ∀p1, p2 ∈ P, p1 ̸= p2 ⇒

⋃
p1 ∩

⋃
p2 = ∅,

k ≤ m and |P| = ni

(P)

C. Solution

We propose a heuristic algorithm called Roger to solve
the problem. The algorithm is a three-stage approach: it first
extracts DSOP form of the Boolean function by constructing
BDD-CE (binary decision diagram with complemented edges),
then it merges the cube with its closest cube to reduce the
number of rules, the last step is to minimizing variance of
the weight of the partitions. The Roger algorithm is not an
optimal solution, but it solves Problem P in polynomial time
complexity.

The Roger algorithm is detailed in 1. Line 1 constructs a
BDD-CE for the Boolean function corresponding to the MVT.
At Line 2, we extract the minimal sum of products using the
algorithm in [37]. After this step, we obtain a cover for the
f1 , but it cannot satisfy either the constraint from the NIC or
the goal of balancing the workload. In lines 4-6, we calculate

Algorithm 1: The Roger Algorithm.
Input: T
/* Constructing a binary decision diagram

for the Boolean function */
1 BDDce ← BDDCE(fmvt)
/* Use the algorithm in [37] to minimize

the number of products */

2 BDD
′
ce ←Minimize path(BDDce)

/* Extract the disjoint sum of products
from the minimized BDD */

3 S ← Extract DSOP (BDD
′
ce)

4 Initialize an array W S to store the weight of each cube.
5 for i ∈ S do
6 append (i, weight(i)) to W S

/* Merge to reduce the number of rules */
7 while |WS | ≥ m do
8 c1 ←min(WS)
9 c2 ←ClosestCube(WS , c1)

10 cs ←Supercube(c1, c2)
11 Delete c1, c2 from W S
12 Insert cs
13 Update the W S

14 Initialize an array C to store the components.
15 Initialize an set P to store the partition.
16 C = Get Component(W S)
17 Using C, traverse the combinations of partitions to

search the solution with the lowest variance.
18 Apply P to the NIC traffic steering rule.

the weight for each cube. In lines 7-14, we merge the cubes to
reduce the number of products by eliminating the cube with
the lowest weight. By calculating the supercube of two cubes,
we can reduce one cube. The iteration ends until the constraint
of the NIC is met. Then we traverse all the possible partitions
for the cover to: 1. minimize the variance of the sum of the
weight of cubes in each element of the partition. 2. ensure that
each component is contained in one partition. At the last step,
we install the NIC rules according to the solution we have
found. As a result, the workloads among instance are well-
balanced and no state-sharing exists among instances, which
improves the scalability of the system.

Discussion: The goal of the algorithm is to balance the
workload among the instances, but the problem could be more
complex. Considering the different capabilities of different
instances, we can limit how much weight of cubes that one
instance can handle. When dealing with NFLOW with higher
priority hence requiring more processing capability, we assign
more weights to this NFLOW which leads to a deployment
plan where fewer NFLOWs have exclusive usage of L1/L2
cache. If users have different requirements, the problem is
transformed into different combinatorial optimization prob-
lems. For NICs that supports real-time update of the NIC rules,
the above methods can be applied periodically to adjust for
dynamic traffic similar to RSS++ [38].

V. EVALUATION

Testbed Setup: Our testbed consists of two dual-socket
Dell R740 servers. One is used for generating packets using

TABLE I: NFs used in expressiveness evaluation.

Name Description State Entry Dependency

NM Network monitor that counts the num-
ber of packets for each source host. Independent state table

NAT Translates addresses between inter-
nal/external addresses.

Independent state table
+ shared state

L3FWD Forwards packets based on layer-3 ad-
dress using Longest Prefix Match. Dependent state table

SNORT Rule-based IDS. Dependent state table

TRex [39], and another is the Device Under Test (DUT)
running the NFs. Each server is equipped with Intel Xeon
Platinum 8168 @2.7GHz (24 cores) on each NUMA [40]
socket, 384GB DRAM and a (DPDK-capable) dual-port Mel-
lanox ConnectX-5 EN 100Gbps NIC. All the experiments are
NUMA-aware to avoid NUMA penalties [6]. We connect both
the servers back-to-back [41]. On the DUT, we run each NF
instance on a dedicated CPU core isolated from kernel sched-
uler4. We evaluate the correctness and performance benefits of
NFLOW and MVT abstractions.

A. Correctness

We show that dependent table can result in incorrect packet
processing due to wrong state entry accesses in multi-instance
NFV systems. We then demonstrate how MVT can avoid
it. We implement the example shown in §II and Fig. 1
with DPDK-based L3FWD. We place the “16.0.0.0/24 0” on
instance 1 and “16.0.0.0/28 1” on instance 2. We then use the
traffic generator to generate flows from 16.0.0.0 − 16.0.0.15
and send these to this DUT. The traffic steering side do
not consider the entry dependency and arbitrarily “sprays”
different flows across instances. We can observe that port 0
can receive packets from the traffic generator side. However,
according to the LPM mechanism, all packets should match
“16.0.0.0/28 1” and send the packets to port 1.

In contrast, our MVT-based L3FWD can ensure the
correctness. We construct the MVT from the two rules
and identify the finest-granularity NFLOW is 16.0.0.0/28,
we spawn the 16.0.0.0/24 NFLOW to #1 16.0.0.0/28 1,
#2 16.0.0.16/28 0, #3 16.0.0.32/27 0, #4 16.0.0.64/26 0,
and #5 16.0.0.128/25 0, no dependency among them. The
entries are arbitrarily placed on different instances.

B. Performance

We evaluate the performance of the proposed NFLOW
and MVT abstractions with the NFs shown in TABLE I on
the following grounds: i) the performance improvement of
MVT due to the elimination of entry comparison using a
single NM instance; ii) the performance improvement of MVT
because of the solve of entry dependencies when scaling-out to
multiple NM instances; iii) the performance improvement of
MVT-based NAT after eliminating the shared resource pool;
and iv) the scalability evaluation of the MVT-based NFs.

4Kernel parameters on the DUT server is set to the following: “isolcpus=1-
47 intel idle.max cstate=0 processor.max cstate=0 intel pstate=disable
nohz full=1-47 rcu nocbs=1-47 rcu nocb poll default hugepagesz=1G
hugepagesz=1G hugepages=256 vt.handoff=1”

104 105 106 107

Number of Entries

4

5

6

7

8

T
hr

ou
gh

pu
t(

M
pp

s)
MVT
10%
20%
30%
40%
50%

60%
70%
80%
90%
100%

(a) Throughput of different ratio of “entangled” entries in the
dependent table-based NM and MVT-based NM.

0 5 10 15 20
Number of instances

20

40

60

80

100

120

T
hr

ou
gh

pu
t(

M
pp

s)

MVT
100%

(b) Throughput of MVT-based NM and all entries are “entan-
gled” (100%) dependent table-based NM.

0 5 10 15 20
Number of Instances

20

40

60

80

100

120

T
hr

ou
gh

pu
t(

M
pp

s)

MVT NAT
Traditional NAT

(c) Throughput of shared resource pool NAT (Traditional NAT)
and no shared states NAT (MVT).

0 5 10 15 20 25
Number of Instances

20

40

60

80

100

120

140

T
hr

ou
gh

pu
t(

M
pp

s)

L2FWD
NM
NAT
L3FWD
SNORT

(d) Throughput of MVT-based NFs using different numbers
of instances.

Fig. 5: Performance experimental results.

Overhead Due to Priority Comparison: We evaluate
dependent table overheads introduced by entry priority com-
parisons, which are caused when a single packet matches
multiple “entangled” entries. We vary the ratio of the number
of “entangled” entries (over the total number of entries) in the
dependent table and evaluate the throughput under different
ratios. We use NM to conduct the experiments due to its
simplicity. NM originally does not have dependent entries. We
perform the priority comparison operations across the matched
table entries to emulate the overheads in locating the entry with
highest priority. Fig. 5a depicts the throughput performance
comparisons between MVT and dependent-table-based NM
using a single instance. We can see that the MVT-based
NM outperforms dependent-table-based NM by a margin of
56.6% . We also observe the performance differences between
different ratios of “entangled” entries in dependent tables
are insignificant. This is because of the entry comparison
procedure requires loading all the “entangled” entries to the
L1 cache. But due to its limited capacity, loading of these
entries leads to L1 cache misses, and the CPU core will
have to swap entries with L2. This is the dominating reason
behind the degraded performance. As shown in the figure,
with less than 50,000 total entries, all the ratio configurations
can fetch the entries from the L2 cache, and hence their
throughput performances are roughly the same. As the number
of entries increases, the number of “entangled” entries also
increases, and the L2 and even L3 can not store the entries
leading to DRAM-bound memory access, which results in

further degrading the throughput performance. We confirm
this behavior by using Intel VTune [42], a tool that exposes
the L1/L2/L3 cache hits/misses and DRAM accesses. Overall,
the “entangled” entries of dependent tables downgrade the
performance of NFs, while MVT entries can reach the optimal
performance due to the elimination of “entangled” entries.

“Entangled” Entries Correctness Overhead: We then
consider the performance overhead by sharing the “entangled”
entries of the table to guarantee the correctness of packet
processing. Without careful consideration, separating the “en-
tangled” entries and placing them on different instances could
result in incorrect packet processing behavior (see §V-A). We
now consider an extreme condition where all entries in the
dependent table are “entangled”. We use NM NF to illustrate
the impact of sharing the dependent state table in memory
across all the NF instances. We compare the packet processing
performance of this version against the MVT version. The
traffic generator generates a workload of 100K synthesized
NFLOWs at 100 Gbps line rate speed towards the DUT. We
generate 64-byte packets to evaluate the packet processing
performance. Fig. 5b shows MVT-based NM achieves a linear
performance increase while the shared dependent-table-based
NM peaks at 11.96Mpps with 2 instances. Further increasing
the number of instances degrades the throughput by over 40%
before stabilizing the throughput at about 6.83Mpps. This is
because updates made by the instances to the NM counters
associated with the “entangled” entries lead to gaining exclu-
sive state access (using locks) thus compromising the benefits
envisioned to be gained by scaling to multiple instances.

<123.2.3.56,7586>
<192.168.0.35,1245>

Match Field

<123.2.3.56,7587>
<192.168.0.36,22>

ŏ
�

NULL
NULLŏ

�

NULL
NULLŏ

�
ŏ
�

<192.168.0.35,1245>
<123.2.3.56,7586>

Value Field

<192.168.0.36,22>
<123.2.3.56,7587>

ŏ
�

<123.2.3.56,7588>
<123.2.3.56,7589>ŏ

�

<123.2.3.57,2000>
<123.2.3.57,2001>ŏ
�

ŏ
�

9
>>>>>>>>=
>>>>>>>>;

<latexit sha1_base64="QSzVUx3V7nAwd07DAAirMuHpR8Y=">AAACVHicbVFNS8NAEN3E7/hV9ehlsSieSiKKHkUvHhWsCk0pm80kXbrZxN2JUEJ/pB4Ef4kXD27b4Ed1YODx3pud3bdRIYVB339z3Ln5hcWl5RVvdW19Y7OxtX1n8lJzaPNc5vohYgakUNBGgRIeCg0siyTcR4PLsX7/BNqIXN3isIBuxlIlEsEZWqrXGIQRpEJV8FhOmJEXSkiw5dU8kyJVEI+8AxqG3sFseyGo+NsUapH2MbRA5cjSqfp1dK/R9Fv+pOhfENSgSeq67jVewjjnZQYKuWTGdAK/wG7FNAouwW4pDRSMD1gKHQsVy8B0q0koI7pvmZgmubatkE7YnxMVy4wZZpF1Zgz7ZlYbk/9pnRKTs24lVFEiKD5dlJSSYk7HCdNYaOAohxYwroW9K+V9phlH+w+eDSGYffJfcHfUCo5bJzdHzfOLOo5lskv2yCEJyCk5J1fkmrQJJ8/k3SGO47w6H+6cuzC1uk49s0N+lbvxCcSIsTE=</latexit> 9
>>>>>>>>=
>>>>>>>>;

<latexit sha1_base64="QSzVUx3V7nAwd07DAAirMuHpR8Y=">AAACVHicbVFNS8NAEN3E7/hV9ehlsSieSiKKHkUvHhWsCk0pm80kXbrZxN2JUEJ/pB4Ef4kXD27b4Ed1YODx3pud3bdRIYVB339z3Ln5hcWl5RVvdW19Y7OxtX1n8lJzaPNc5vohYgakUNBGgRIeCg0siyTcR4PLsX7/BNqIXN3isIBuxlIlEsEZWqrXGIQRpEJV8FhOmJEXSkiw5dU8kyJVEI+8AxqG3sFseyGo+NsUapH2MbRA5cjSqfp1dK/R9Fv+pOhfENSgSeq67jVewjjnZQYKuWTGdAK/wG7FNAouwW4pDRSMD1gKHQsVy8B0q0koI7pvmZgmubatkE7YnxMVy4wZZpF1Zgz7ZlYbk/9pnRKTs24lVFEiKD5dlJSSYk7HCdNYaOAohxYwroW9K+V9phlH+w+eDSGYffJfcHfUCo5bJzdHzfOLOo5lskv2yCEJyCk5J1fkmrQJJ8/k3SGO47w6H+6cuzC1uk49s0N+lbvxCcSIsTE=</latexit>

N
AT table part

Resource pool part

Fig. 6: The MVT of NAT’s states. This MVT consolidates
the NAT table and the resource pool. The gray shaded part is
the NAT table, and the white part is the resource pool.

Eliminating Shared States: We use a bidirectional dynamic
Network Address Translation (NAT) to demonstrate how NAT
constructs the MVT eliminates the shared states, and fuses
the two types of states as a single MVT. The NAT translates
the internal source network address5 to the mapped external
source network address. In the reverse direction, it translates
the external destination network address to the mapped internal
destination network address. When a new internal NFLOW is
generated (e.g., a new internal host is added), the NAT needs
to allocate a new external network address for the translation.
Hence, the NAT uses two types of states: the NAT table, and
the network address resource pool.

Each NAT table entry comprises of two parts: a packet pred-
icate (source IP address) and a translated IP address. Each NAT
entry is an MVT entry in the reactive method. The NFLOW of
each NAT entry is defined by the either (direction=inbound,
destination network address) or (direction=outbound, source
network address), and hence, NFLOWs of different NAT
entries are disjoint. Therefore, the NAT table is an MVT.
The network address resource pool (shorthanded as resource
pool) can also be represented by MVT. Conceptually, the
resource pool is accessed by all new NFLOWs, and thus,
existing work [17], [21] shared it across NFLOWs. But the
semantic of the resource pool is a set of network addresses.
Where each element is an unmatched network address and will
be dedicated to an NFLOW after being matched.

When implementing the MVT on NAT, we pre-generate the
network addresses in the resource pool and initialize it as an
empty MVT. In the empty MVT the match field is set as
NULL, and value field is set as a particular network address.
We construct the resource pool MVT at the initialization stage
of NAT. At this stage, the MVT is a pure resource pool MVT,
and each entry is an available network address (resource) to
be mapped. When a new NFLOW come, the NAT matches the
NFLOW and hashes it to locate its MVT entry. As the coming
NFLOW is new, NAT cannot find the entry in the MVT (the
match field of the indexed entry is NULL). Then, NAT modifies
the match field of the entry and makes the entry as a NAT table

5We use “network address” to represent the ⟨IP Address, Port
Number⟩ pair.

entry (see Fig. 6). Hence, the MVT can not only represent the
resource pool, but also can fuse the two state types as a single
MVT. The number of available resources in the resource
pool is determined by the user configuration. Using the MVT
to represent the resource pool will only pre-generate all the
resources that will be used based on the configuration. Hence,
pre-generating all resources are reasonable.

The partitionable MVT eliminates the need for sharing
the resource pool state across multiple instances. Next, we
evaluate the impact of this elimination of shared state over
the performance by using MVT. Fig. 5c shows the perfor-
mance comparisons between MVT-based NAT and the range-
structure-based NAT (traditional NAT) implementations. We
can see that the MVT-based NAT is able to outperform
traditional NAT by a factor of up to 62.5%. Increasing the
number of instances shows a linear performance increase for
both versions, with MVT-based NAT achieving line-rate with
16 instances. The performance degradation of the range-based
NAT is mainly attributed to the shared resource pool which is
completely eliminated by MVT-based NAT.

Scalability Evaluation: Fig. 5 shows the scalability per-
formance of all the four NFs (L2FWD, NM, NAT, L3FWD
and SNORT) using MVT. We vary the number of instances
and evaluate the overall packet processing throughput. The
traffic generator generates 100K synthesized (NF specific)
NFLOWs at 100 Gbps (i.e., 148Mpps) line rate speed. With
the least packet processing overheads, we consider L2FWD as
the baseline to represent the hardware platform’s performance
capacity. We find that the performance of all NFs increase
linearly as they are scaled out to more NF instances. Un-
doubtedly, L2FWD is the fastest to reach line rate with just
14 instances. Next in line are NM, NAT and L3FWD reaching
the line rate with 16 instances, while SNORT requiring almost
24 instances. These differences between the NFs are due to
different packet processing complexities and state sizes. More
in-depth studies on packet processing overheads [6], [34], [43]
are out of the scope of this paper.

VI. CONCLUSION

Performance and scalability are key enablers for large adop-
tion of NFV systems. We motivated and presented two novel
abstractions, NFLOW and MVT. For each of the abstractions,
we provided formal definitions, and discussed methods of con-
structing and partitioning MVT, and traffic steering based on
NFLOW for NFV scaling. In order to demonstrate the efficacy
of the proposed abstractions by effectively leveraging multi-
core servers for NFV scaling, we implemented four common
NFs using MVT and conducted extensive experiments. The
results show that the performance of NFs implemented using
our abstractions can scale with the number of cores, attaining
the line speed while ensuring correctness.

ACKNOWLEDGEMENT

The research was supported in part by NSF under Grants
CNS-1814322, CNS-1831140, CNS-1836772, CNS-1901103,
CNS-2106771 and CCF-2123987.C

REFERENCES

[1] S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield,
“Split/merge: System support for elastic execution in virtual middle-
boxes,” in Presented as part of the 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 13), 2013, pp.
227–240.

[2] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid,
S. Das, and A. Akella, “OpenNF: Enabling innovation in network func-
tion control,” in ACM SIGCOMM Computer Communication Review.
ACM, 2014.

[3] J. Sherry, P. X. Gao, S. Basu, A. Panda, A. Krishnamurthy, C. Maciocco,
M. Manesh, J. a. Martins, S. Ratnasamy, L. Rizzo, and S. Shenker,
“Rollback-recovery for middleboxes,” in Proceedings of the 2015 ACM
Conference on Special Interest Group on Data Communication, ser.
SIGCOMM ’15. London, United Kingdom: ACM, 2015.

[4] S. Rajagopalan, D. Williams, and H. Jamjoom, “Pico replication: A
high availability framework for middleboxes,” in Proceedings of the 4th
annual Symposium on Cloud Computing. ACM.

[5] J. Khalid and A. Akella, “Correctness and performance for stateful
chained network functions,” in 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19). Boston, MA: USENIX
Association, 2019, pp. 501–516.

[6] P. Zheng, W. Feng, A. Narayanan, and Z.-L. Zhang, “Nfv performance
profiling on multi-core servers,” in 2020 IFIP Networking Conference
(Networking). IEEE, 2020, pp. 91–99.

[7] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Iz-
zard, F. Mujica, and M. Horowitz, “Forwarding metamorphosis: Fast
programmable match-action processing in hardware for sdn,” ACM
SIGCOMM Computer Communication Review, vol. 43, no. 4, pp. 99–
110, 2013.

[8] J. Reich, C. Monsanto, N. Foster, J. Rexford, and D. Walker, “Modular
sdn programming with pyretic,” Technical Reprot of USENIX, 2013.

[9] F. Németh, M. Chiesa, and G. Rétvári, “Normal forms for match-action
programs,” in Proceedings of the 15th International Conference on
Emerging Networking Experiments And Technologies, 2019.

[10] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and
S. Shenker, “Nox: towards an operating system for networks,” ACM
SIGCOMM Computer Communication Review, vol. 38, no. 3, pp. 105–
110, 2008.

[11] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow et al., “Onos: towards
an open, distributed sdn os,” in Proceedings of the third workshop on
Hot topics in software defined networking, 2014, pp. 1–6.

[12] M. T. Arashloo, Y. Koral, M. Greenberg, J. Rexford, and D. Walker,
“Snap: Stateful network-wide abstractions for packet processing,” in
Proceedings of the 2016 ACM SIGCOMM Conference, 2016, pp. 29–43.

[13] T. Barbette, G. P. Katsikas, G. Q. Maguire Jr, and D. Kostić, “Rss++
load and state-aware receive side scaling,” in Proceedings of the 15th
International Conference on Emerging Networking Experiments And
Technologies, 2019, pp. 318–333.

[14] Inlab Networks, “Balance,” 2019, https://www.inlab.net/balance/. Ac-
cessed: 2019-11-11.

[15] W. Tarreau et al., “Haproxy-the reliable, high-performance tcp/http load
balancer,” https://www.haproxy.org. Accessed: 2020-07-11.

[16] “squid : Optimising web delivery,” https://www.squid-cache.org/, ac-
cessed: 2020-07-11.

[17] Linux Community, “Netfilter - Firewalling, NAT, and Packet Mangling
for Linux,” https://www.netfilter.org. Accessed: 2020-07-11.

[18] Mazu Networks, Inc., “Mazu NAT,” https://github.com/kohler/click/
blob/master/conf/mazu-nat.click. Accessed: 2020-07-11.

[19] M. Roesch et al., “Snort: Lightweight intrusion detection for networks.”
in Lisa, 1999, pp. 229–238.

[20] gamelinux, “PRADS - Passive Real-time Asset Detection System,” http:
//gamelinux.github.io/prads/. Accessed: 2020-07-11.

[21] S. Han, K. Jang, A. Panda, S. Palkar, D. Han, and S. Ratnasamy,
“Softnic: A software nic to augment hardware,” EECS Department,
University of California, Berkeley, Tech. Rep. UCB/EECS-2015-155,
2015.

[22] J. Hwang, K. K. Ramakrishnan, and T. Wood, “Netvm: High per-
formance and flexible networking using virtualization on commodity
platforms,” in 11th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 14). Seattle, WA: USENIX Association,
2014, pp. 445–458.

[23] A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy, and S. Shenker,
“Netbricks: Taking the v out of NFV,” in 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 16). Savannah,
GA: USENIX Association, 2016, pp. 203–216.

[24] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Ratnasamy, L. Rizzo,
and S. Shenker, “E2: a framework for nfv applications,” in Proceedings
of the 25th Symposium on Operating Systems Principles, 2015, pp. 121–
136.

[25] A. Bremler-Barr, Y. Harchol, and D. Hay, “Openbox: A software-defined
framework for developing, deploying, and managing network functions,”
in Proceedings of the 2016 ACM SIGCOMM Conference. ACM, 2016,
p. 511–524.

[26] Y. Zhang, B. Anwer, V. Gopalakrishnan, B. Han, J. Reich, A. Shaikh,
and Z.-L. Zhang, “Parabox: Exploiting parallelism for virtual network
functions in service chaining,” in Proceedings of the Symposium on SDN
Research, 2017, pp. 143–149.

[27] G. P. Katsikas, T. Barbette, D. Kostić, R. Steinert, and G. Q. M.
Jr., “Metron: NFV service chains at the true speed of the underlying
hardware,” in 15th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 18). Renton, WA: USENIX Association,
Apr. 2018, pp. 171–186.

[28] X. Fei, F. Liu, H. Xu, and H. Jin, “Adaptive vnf scaling and flow
routing with proactive demand prediction,” in IEEE INFOCOM 2018-
IEEE Conference on Computer Communications. IEEE, 2018, pp. 486–
494.

[29] X. Fei, F. Liu, H. Jin, and B. Li, “Flexnfv: Flexible network service
chaining with dynamic scaling,” IEEE Network, vol. 34, no. 4, pp. 203–
209, 2020.

[30] J. Khalid, A. Gember-Jacobson, R. Michael, A. Abhashkumar, and
A. Akella, “Paving the way for NFV: Simplifying middlebox modi-
fications using statealyzr,” in 13th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 16), 2016, pp. 239–253.

[31] M. Kablan, A. Alsudais, E. Keller, and F. Le, “Stateless network
functions: Breaking the tight coupling of state and processing,” in 14th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 17), 2017, pp. 97–112.

[32] S. Woo, J. Sherry, S. Han, S. Moon, S. Ratnasamy, and S. Shenker,
“Elastic scaling of stateful network functions,” in 15th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 18),
2018, pp. 299–312.

[33] P. Zheng, A. Narayanan, and Z.-L. Zhang, “A closer look at nfv
execution models,” in Proceedings of the 3rd Asia-Pacific Workshop on
Networking 2019, ser. APNet ’19. Beijing, China: ACM, 2019, pp.
85–91.

[34] A. Manousis, R. A. Sharma, V. Sekar, and J. Sherry, “Contention-aware
performance prediction for virtualized network functions,” in Proc. of
SIGCOMM’20. ACM, 2020, p. 270–282.

[35] H. Yang and S. S. Lam, “Real-time verification of network properties us-
ing atomic predicates,” IEEE/ACM Transactions on Networking, vol. 24,
no. 2, pp. 887–900, 2015.

[36] S. Singh, F. Baboescu, G. Varghese, and J. Wang, “Packet classification
using multidimensional cutting,” in Proceedings of the 2003 Conference
on Applications, Technologies, Architectures, and Protocols for Com-
puter Communications, ser. SIGCOMM ’03. New York, NY, USA:
Association for Computing Machinery, 2003, p. 213–224.

[37] G. Fey and R. Drechsler, “Minimizing the number of paths in bdds:
Theory and algorithm,” IEEE Transactions on Computer-Aided Design
of Integrated circuits and systems, vol. 25, no. 1, pp. 4–11, 2005.

[38] T. Barbette, G. P. Katsikas, G. Q. Maguire Jr, and D. Kostić, “RSS++
load and state-aware receive side scaling,” in Proceedings of the 15th
International Conference on Emerging Networking Experiments And
Technologies, 2019, pp. 318–333.

[39] The TRex Comunity, “TRex,” 2019, https://trex-tgn.cisco.com. Ac-
cessed: 2019-10-11.

[40] C. Lameter, “Numa (non-uniform memory access): An overview,”
Queue, vol. 11, no. 7, pp. 40:40–40:51, Jul. 2013.

[41] Wikipedia, “Back-to-back Connection,” 2019, https://en.wikipedia.org/
wiki/Back-to-back connection. Accessed: 2020-07-11.

[42] “Intel VTune Profiler,” https://software.intel.com/content/www/us/en/
develop/tools/vtune-profiler.html, accessed: 2020-08-11.

[43] C. Sieber, R. Durner, M. Ehm, W. Kellerer, and P. Sharma, “Towards
optimal adaptation of nfv packet processing to modern cpu memory
architectures,” in Proceedings of the 2nd Workshop on Cloud-Assisted
Networking, 2017, pp. 7–12.

