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Abstract

The rapid evolution of HIV is constrained by interactions between mutations which affect
viral fitness. In this work, we explore the role of epistasis in determining the mutational fit-
ness landscape of HIV for multiple drug target proteins, including Protease, Reverse Tran-
scriptase, and Integrase. Epistatic interactions between residues modulate the mutation
patterns involved in drug resistance, with unambiguous signatures of epistasis best seen in
the comparison of the Potts model predicted and experimental HIV sequence “prevalences”
expressed as higher-order marginals (beyond triplets) of the sequence probability distribu-
tion. In contrast, experimental measures of fithess such as viral replicative capacities gener-
ally probe fitness effects of point mutations in a single background, providing weak evidence
for epistasis in viral systems. The detectable effects of epistasis are obscured by higher evo-
lutionary conservation at sites. While double mutant cycles in principle, provide one of the
best ways to probe epistatic interactions experimentally without reference to a particular
background, we show that the analysis is complicated by the small dynamic range of mea-
surements. Overall, we show that global pairwise interaction Potts models are necessary for
predicting the mutational landscape of viral proteins.

Introduction

A major challenge in biological research, clinical medicine, and biotechnology is how to deci-
pher and exploit the effects of mutations [1]. In efforts ranging from the identification of
genetic variations underlying disease-causing mutations, to the understanding of the geno-
type-phenotype mapping, to development of modified proteins with useful properties, there is
a need to rapidly assess the functional effects of mutations. Experimental techniques to assess
the effect of multiple mutations on phenotype have been effective [2-5], but functional assays
to test all possible combinations are not possible due to the vast size of the mutational land-
scape. Recent advances in biotechnology have enabled deep mutational scans [6] and multi-
plexed assays [7] for a more complete description of the mutational landscapes of a few
proteins, but remain resource intensive and limited in scalability. The measured phenotypes
depend on the type of experiment and are susceptible to changes in experimental conditions
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making the comparison between measurements difficult [8]. These methodologies are also uti-
lized under externally applied conditions, but how in vitro selection pressures can be extended
to the interpretation of pressures in vivo is not always clear [9].

Potts sequence covariation models have been developed for the identification of spatial con-
tacts in proteins from sequence data [10-19] by exploiting the wealth of information available
in protein sequences observed in nature, and have also been successfully used to infer the fit-
ness landscape and study mutational outcomes in a wide variety of protein families in viruses
to humans [1, 20-29]. The Potts model is a generative, global pairwise interaction model that
induces correlations between residues to all orders, such as triplet and quadruplet correlations.
Given a multiple sequence alignment (MSA) of related protein sequences, the Potts probabilis-
tic model of the network of interacting protein residues can be inferred from the pair correla-
tions encoded in the MSA, and can be used to assign scores to individual protein sequences.
The extent to which sequence scores correlate with experimental measures of fitness can then
be analyzed. The context dependence of a mutation, termed “epistasis”, determines the favor-
ability/disfavorability of the mutation in a given genomic sequence background, and the Potts
model predictions can be used to predict the likelihoods of mutations in a variety of sequence
backgrounds.

The HIV pandemic is the result of a large, genetically diverse, and dynamic viral population
characterized by a highly mutable genome that renders efforts to design a universal vaccine a
significant challenge [30] and drives the emergence of drug-resistant variants upon antiretrovi-
ral (ARV) therapy. Gaining a comprehensive understanding of the mutational tolerance, and
the role of epistatic interactions in the fitness landscape of HIV is important for the identifica-
tion and understanding of mutational routes of pathogen escape and resistance.

In this work, we explore the limits to detecting epistasis and the role of epistatic interactions
between sites in modulating the fitness landscape of HIV with many mutations, focusing on
the drug target proteins, protease (PR), reverse transcriptase (RT), and integrase (IN), as well
as the emerging target protein of capsid (CA). We first show that the evidence for long-range
epistasis is strong (in HIV) based on the analysis of the high-order marginals of the MSA dis-
tribution (up to subsequences of length 14). The observed effects of epistasis in determining
the higher-order mutational patterns, however, differs significantly between drug-resistance-
associated residues, and non-drug-resistance-associated sites due to the higher “evolutionary
conservation” at sites not associated with drug resistance. In contrast to the effects of epistasis
on higher-order marginals, we find, in accordance with the current literature [31], that the evi-
dence for epistasis from experimental measures of HIV fitness, such as viral replicative capaci-
ties, is weak; as both a correlated Potts and a site-independent model (devoid of interactions
between sites) can capture replicative capacities almost equally well. This is primarily because
experimental fitness measurements are generally carried out for single-point (or few-point)
mutations in specific laboratory molecular clones, that are close in sequence to the consensus
sequence. Instead, in the comparison of higher-order marginals, unambiguous signatures of
epistasis are observed. Although double mutant cycle experiments in principle provide the
classic, biophysical way to examine epistasis, we demonstrate with numerical examples that
accurate predictions of double mutant cycles are difficult due to the small dynamic range of
the measurements making them much more susceptible to noise. While fitness measures such
as thermostability, activity, or binding energetics, etc. of a protein generally do not all contrib-
ute to fitness in the same way, we further find that the Potts model provides a more general
representation of the protein fitness landscape capturing contributions from different features
of the landscape, replicative capacities and folding energetics, that are not fully captured by
either measurement on their own.
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Results and discussion

Protein sequence covariation models have been extensively used to study networks of interact-
ing residues for inference of protein structure and function. The Potts model is a maximum-
entropy model based on the observed mutational correlations in a multiple sequence align-
ment (MSA) and constrained to accurately capture the bivariate (pairwise) residue frequencies
in the MSA. A central quantity known as the “statistical” energy of a sequence E(S) (Eq 2,
Methods) is commonly interpreted to be proportional to fitness; the model predicts that
sequences will appear in the dataset with probability P(S) oc e, such that sequences with
favorable statistical energies are more prevalent in the MSA. P(S) describes the “prevalence”
landscape of a protein and the marginals of P(S) can be compared with observed frequencies
in a multiple sequence alignment. Previous studies have indicated that the Potts model is an
accurate predictor of “prevalence” in HIV proteins [20, 21, 23, 32-36]; “prevalence” is often
used as a proxy for “fitness” with covariation models serving as a natural extension for mea-
sures of “fitness” based on experiments and model predictions have been compared to differ-
ent experimental measures of “fitness” with varying degrees of success [1, 21, 23, 28, 32, 34,
36]. Site-independent models, devoid of interactions between sites have also been reported to
capture experimentally measured fitness well, in particular for viral proteins [1, 31] with stud-
ies (on HIV Nef and protease) implying that the dominant contribution to the Potts model
predicted sequence statistical energy comes from site-wise “field” parameters #; (see Methods)
in the model [28, 36]. In this study, we show that interaction between sites is necessary to cap-
ture the higher order (beyond pairwise) mutational landscape of HIV proteins for functionally
relevant sites, such as those involved in engendering drug resistance, and cannot be predicted
by a site-independent model. The correspondence between model predictions of fitness based
on “prevalences” in natural sequences with experimentally measured “fitness” is however, con-
founded by a number of different factors. Here, we explore comparisons between model pre-
dictions and “fitness” experiments (Fig 1) focusing primarily on three HIV enzymes: Protease

Potts Model

Ps o exp[—E;]
Probability

The higher the likelihood
of observing a sequence
in the MSA (prevalence),
the higher the fitness of
that sequence. Prevalence
is a proxy for fitness, but
some experiments are
inconsistent.

Fig 1. The correspondence between sequence covariation models and sequence statistics in multiple sequence
alignments is very strong across different HIV proteins. The correspondence between either covariation models, or
“prevalences” in multiple sequence alignments, with other experimental measures of “fitness” is less clear and often
inconsistent between different statistics and measures of fitness.

https://doi.org/10.1371/journal.pone.0262314.9001
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Probability of observation

(PR), Reverse Transcriptase (RT), and Integrase (IN) that have been targets of antiretroviral
therapy (ART) over the past several decades, as well as viral Capsid (CA), which is fast emerg-
ing as a promising new target for drug therapy.

“Prevalence” landscape of HIV proteins and the role of correlations
between residues

An important statistic of the multiple sequence alignment is the sequence diversity and the
level of conservation in the protein or protein family which is represented in the distribution
of the number of mutations in the constituent sequences. Fig 2 shows the distribution of the
number of mutations (hamming distances) from the HIV-1 subtype B wild-type consensus
sequence in MSAs containing drug-experienced HIV-1 sequences, and distributions predicted
by the Potts and independent models. The Potts model predicts a distribution of mutations
that closely represents the dataset distribution, whereas the independent model predicts a dis-
tribution that differs especially near the the ends of the distribution where the number of
mutations is either very low or very high. This provides support for the importance of epistasis
in these datasets. However, in Fig 9 of S1 File we also show that for some datasets the difference
between the Potts and Independent distributions is small, and so may be a less reliable test of
the importance of epistasis. The importance of pairwise interactions is also apparent through
the fact that the Potts model also accurately predicts the likelihoods and “entrenchment” of
mutations based on the sequence background, as has been verified using aggregate sequence
statistics from the MSA [35].

But the most direct and strongest evidence of the ability of the Potts model to capture epi-
static interactions is seen in its ability to reproduce the higher-order marginals of the MSA,
upto order 14 in Fig 3, much beyond the pairwise marginals which the model is parameterized
to capture. While the prevalence of sequence marginals (subsequence frequencies) can be com-
pared directly with Potts model predictions, this is not possible for predictions for complete
sequence probabilities because most sequences in an unbiased MSA are observed only once
due to the minuscule sample size in comparison to the vast size of sequence space. Only
sequence marginals up to sizes ~ 14 residues, depending upon protein family, are observed
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Fig 2. Distribution of the number of mutations (hamming distances) in drug-experienced HIV-1 sequences as captured by the
Potts and independent models. Probabilities of observing sequences with any k number of mutations relative to the HIV-1 subtype
B wild-type consensus sequence as observed in original MSA (black) and predicted by the Potts (blue) and independent (gray)
models are shown for HIV-1 protease (PR) in (A), and reverse transcriptase (RT) in (B), respectively. The independent model
predicted distribution does not accurately capture the distribution of hamming distances in the dataset MSA, especially near the
ends of the distribution with either very low or very high number of mutations, where the epistatic effects can be more significant.

https://doi.org/10.1371/journal.pone.0262314.9002
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Fig 3. Potts model is predictive of higher-order marginals in the sequence MSA. For each subsequence of length 2 to 14, marginal frequencies are
determined by counting the occurrences in the MSA and computed for 500 randomly picked subsequences. They are compared with the
corresponding predictions of marginal probabilities by the Potts model (blue) and a site-independent model (gray). The Spearman p* between the
dataset marginal frequencies and the Potts and independent model predictions for all marginal frequencies above 2% are shown for subsequences
picked at random from different combinations of 36 Protease-inhibitor or PI-associated positions in PR (A), 24 Nucleoside-reverse-transcriptase-
inhibitor or NRTI-associated positions in RT (C), and 31 Integrase-strand-transfer-inhibitor or INSTI-associated positions in IN (E). Shown in (B),
(D), (F), are the same but the subsequences are picked at random from non resistance-associated sites in PR, RT, and IN, respectively. The blue
dashed line represents perfect correlation of p> = 1. In all, the Potts model accurately captures the higher-order marginals in the dataset; the
independent model however gets progressively worse in capturing the higher-order marginals for resistance-associated sites in (A), (C), and (E). The
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role of epistatic interactions is strongly manifested in the effect on drug-resistance-associated positions (DRAPs) (indicating the strong role of
correlations at functional positions within the protein). For residue positions not associated with drug resistance, epistatic interactions between sites
appear to play a less important role and the site-independent model is sufficient to model the higher-order marginals in the MSA.

https://doi.org/10.1371/journal.pone.0262314.9003

with sufficient frequencies such that their marginal counts are a good proxy for the marginal
probabilities predicted by the Potts model. Fig 3 shows the rank-correlation between model
predicted marginal probabilities and marginal frequencies in the MSA for subsequences of
lengths 2-14, with a subsequence being the concatenation of amino acid characters from an
often nonconsecutive subset of residue positions. With further increase in the subsequence
length, data limitations due to finite sampling become more prominent and the observed and
model predicted marginals become dominated by noise. The Potts model’s ability to predict
higher-order marginals, much beyond the pairwise, for drug-resistance associated sites, while
the independent model cannot, provides the most direct evidence of the ability of the Potts
model to accurately capture the long-range epistatic interactions that modulate the “preva-
lence” of amino acid residues at connected sites in the protein. The Potts model is able to accu-
rately predict the higher-order marginal frequencies (which have not been directly fit) at drug-
associated sites with a Spearman p* = 0.95 for the longest subsequence (of length 14) in PR,
whereas, the correlation for the independent model deteriorates sharply with subsequence
length (Fig 3A, 3C and 3E) with a Spearman p” ~ 0.34 for the longest subsequence in PR.

The strongly interacting nature of the sites in HIV that are involved in engendering drug
resistance, is also evident from Fig 3A, 3C and 3E, where the role of epistatic interactions
between residues is more pronounced and the site-independent model is not able to capture
the higher-order marginals. In contrast, for residue positions that are not associated with drug
resistance, the site-independent model can sufficiently recover the higher order marginals in
the MSA. Sites in the protein associated with drug resistance, also however, exhibit consider-
ably more variability contributing to their higher site-entropies (Fig 2A of S1 File). The lack of
variability at sites can obscure the effect of correlations. To test for this, we selected protease-
inhibitor associated and non-associated sites with site-entropy distributions similar to that of
the drug-resistance associated sites (Fig 2B of S1 File) and compared their higher order mar-
ginals as predicted by the Potts and site-independent models (Fig 2C and 2D of S1 File, respec-
tively). When marginals are chosen from non-drug associated positions with site entropies
more similar to those of the drug-associated positions, the role of correlations is more appar-
ent. This is suggestive of strong couplings between sites that are likely to co-mutate, allow for
mutations at lesser costs to fitness than the individual mutations alone, resulting in mutational
pathways selected for pathogen escape. Such sets of sites are more likely to be associated with
resistance, as resistance cannot be achieved through selectively neutral mutations at single
sites, in which case drug treatment would likely be ineffective [37].

In contrast to Fig 3A for HIV PR, Fig 3E shows the somewhat improved predictive capacity
of a site-independent model in capturing the higher order sequence statistics for drug-resis-
tance associated positions in HIV IN. This is indicative that correlations between drug-resis-
tance-associated sites appear to play a stronger role in protease than in IN. This is also in line
with the fact that the IN enzyme is more conserved than PR (Fig 1 of S1 File). Amongst the
three drug-target proteins, PR, RT, and IN, the degree of “evolutionary conservation” is con-
siderably higher in IN than in the others. The lack of variability at sites or considerably smaller
site-entropies in IN plays a role in obscuring the effect of correlations, as discussed. Further-
more, the MSA depth for IN is also considerably lower than in PR or RT, which adversely
affects the quality of the Potts model fit, further making the correlated model less distinguish-
able from a site-independent one [38].
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The majority of the literature on HIV discusses drug resistance in relation to correlated
mutations limited to primary/accessory pairs. Fig 3 depicts the effect of correlated mutations
on the “prevalence” landscape of HIV well beyond pairwise interactions, upto the 14" order,
that is captured accurately by the Potts model. This illustrates the existence of correlated net-
works of long-range interactions between sites in HIV, which play an important role in deter-
mining its evolutionary fitness landscape. The entrenchment of primary resistance mutations
in HIV was shown to be contingent on the presence of specific patterns of background muta-
tions beyond the well studied primary/accessory compensatory pairs, and could not be pre-
dicted on the basis of the number of background mutations alone [35], also indicating that
long-range correlations involving many sites can potentially shape the evolutionary trajectory
of the virus.

From sequence covariation to “fitness”

The Potts model predicted statistical energies E(S) have been established to be a good indicator
of the likelihoods (P(S) ox e *)) or “prevalence” of natural sequences in multiple sequence
alignments; prevalence has often been characterized as a proxy for fitness with sequences more
prevalent in the MSA likely to have a fitness advantage over others. But depending on context,
the notion of fitness can entail a variety of experimental measures from replicative capacity
(RC), to protein stability, catalytic efficiency, molecular recognition, drug-resistance values,
etc., each of which may capture different features of the fitness landscape, and can have varying
degrees of correspondence to observed likelihoods in MSAs of natural sequences. In this sec-
tion, we explore the correspondence between measures of fitness based on experimental repli-
cative capacities of HIV mutants and the Potts model predicted likelihoods in an MSA. The
correspondence is confounded by a number of factors such as the reproducibility of experi-
ments, the quality of inferred Potts models, the degree of evolutionary conservation in the pro-
teins amongst others.

Fig 4 shows the correlation between model predicted likelihoods of HIV mutant proteins
and measures of fitness based on/related to replicative capacities for four HIV proteins, PR,
RT, IN, and p24 CA. The independent model generally performs on par or marginally worse
than the Potts model in capturing experimental replicative capacity measurements. Although
the difference is somewhat larger for measurements focusing on only drug-resistance-associ-
ated mutations indicated with “D” in Fig 4 rather than random mutations or mutations at
non-resistance-associated positions indicated with “R”, along the lines of Fig 3 for marginal
statistics, the difference is not as clear as for marginal statistics. It has been suggested that the
independent model performs on par with correlated Potts or advanced machine learning mod-
els in capturing experimental fitness measurements for viral proteins, possibly as a conse-
quence of limited diversity of the sequence alignments or, due to a discrepancy between the
proxy for viral fitness in the laboratory and the in vivo fitness of the virus [1, 9]. Overall, we
find that the evidence for epistasis from measures of fitness based on experimental replicative
capacities is much weaker compared to that available from the higher-order marginal
statistics.

The Potts model is affected by the degree of conservation in the respective proteins which
can, not only affect the quality of the model as reflected in the signal-to-noise ratio or SNR (see
Methods), but also obscure the effect of correlations between sites. To check how the Potts
model predictions may be affected by the quality and sample sizes of the underlying multiple
sequence alignments, we look at the effect of using Potts models built on MSAs that all have
the same depth but contain different sequences (randomly subsampled from a larger dataset)
on the correspondence between experimental and model predictions of fitness (Fig 5). The
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Fig 4. Survey of correlation between sequence-based predictions and experimental measures of “fitness” based on
replicative capacity. Spearman correlation coefficients, p between prevalence-based measures of fitness as predicted
by the Potts (blue) and independent (gray) models and experimental measurements related to replicative capacities are
shown across four different HIV proteins: PR, RT, IN, and p24 CA. Experimental data are obtained from [3, 21, 28,
39-41]. Experiments reporting fitness measurements for random mutations are marked with an “R” and experiments
reporting drug-resistance only mutations are marked with a “D”. Correlation is not consistent between different
experiments for the same protein. The Potts model generally (marginally) outperforms the independent model in
capturing experimentally measured replicative capacities or measures related to replicative capacities.

https://doi.org/10.1371/journal.pone.0262314.g004

correlation also decreases slightly because MSAs of depth half that of the original (reference
Potts) are used for mutational fitness predictions. Overall, this gives an estimate that the statis-
tical error associated with Potts model predictions of fitness is low. The correspondence
between the predicted fitness based on Potts prevalence and on experiment also depends in
part on which experimental assays are chosen as a proxy for fitness and the extent to which
they can capture phenotypes that are under direct, long-term selection [42], as illustrated in
Figs 3 and 4 of S1 File. Fig 3 of S1 File shows little correlation between two closely related
experimental measures of fitness for HIV PR; one based on replicative capacity [5] and the
other based on selection coefficients [40]. Interestingly, the Potts model predictions correlate
well with one of the datasets. More careful analysis is needed to improve our understanding of
which experimental measures contribute most to the “prevalence” landscape captured by Potts
models.

Effect of epistasis on measurements of fitness and double mutant cycles in HIV. Dou-
ble mutant cycles provide a biophysical means to interrogate epistatis without reference to a
specific sequence background [43]. For a pair of mutations a, § at positions i, j in the protein
respectively, the strength of epistatic interactions can be quantified using the difference
between the sum of the independent mutational effects, AE! 4+ AE), and the effect of the corre-

sponding double mutation, AEZﬁ.
AAE], = AE), — (AE, + AE)) (1)

If AAE # 0, then the two mutations are epistatically coupled, whereas if AAE = 0, then the
mutations are mutually independent. As fitness is inversely proportional to the Potts energy,
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Fig 5. Error estimate in Potts model predictions of fitness. Figure shows replicative capacity based experimental
fitness measurements (from [21]) compared to Potts model predicted likelihoods of mutations in HIV-1 CA. The Potts
model predicted values shown in “blue circles” correspond to the mean of 3 predictions based on jackknife tests with
error bars indicating the standard deviations. Random values are then picked from within each standard deviation to
represent each Potts model prediction (shown as “orange triangles”) and the corresponding effect on the correlation
coefficient is observed. Spearman rank-order correlation p = 0.8 for mean of 3 predictions, and p = 0.78 for random
selection of data from within the margin of error. For jackknife tests, three sets of ~1024 weighted patient sequences
are subsampled at random from the original MSA of <2200 weighted sequences, and new Potts models are then
inferred based on each set. For comparison, the Spearman rank-order correlation is p = 0.85 for the original Potts
model (based on an MSA of 2200 sequences) predictions compared to experimental values (Fig 5A of S1 File).

Figure shows an estimate of the error associated with Potts model predictions of likelihoods of mutants stemming
from sampling of sequences in the MSA and its effect on the correspondence with experimental measures of fitness.

https://doi.org/10.1371/journal.pone.0262314.9005

AAE > 0 implies that the mutations are beneficial/co-operative to each other and vice versa.
The dynamic range of double mutant cycles is an order-of-magnitude smaller than the predic-
tions/measurements of likelihoods/fitness effects of mutations (AEs), shown in Fig 6A. Double
mutant cycle measurements/predictions (AAEs) are therefore, much more susceptible to noise,
and strongly affected by both the quality of the experimental measurements, as well as finite
sampling errors that affect the Potts model fit, making accurate numerical predictions very dif-
ficult. The MSA depth also plays a role in degrading the quality of the Potts model double
mutant cycle predictions, AAEs much faster than the fitness effect of point mutations, AEs (Fig
6 of S1 File). The sensitivity and possible interpretation of experimental measurements for
very detrimental mutational changes is crucial for accurate prediction of double mutant cycles.
When experimental replicative capacities for example, of a single and a double mutant(s) are
both zero (the virus is dead), there is no comparative experimental data to inform if and which
mutation(s) are more deleterious. In contrast, the calculated likelihoods from the Potts model
are quantifiable for both.

The correspondence between the AAE values predicted by the Potts model and the equiva-
lent experimental values would provide a strong confirmation of epistasis that can be directly
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Fig 6. (A) The dynamic range of the measurements (experimental) or predictions (model) of the epistatic effects through the use of double mutant
cycles is an order of magnitude smaller than the range of measurements/predictions of the fitness/likelihoods of point mutations. This makes
predictions for double mutant cycles more susceptible to noise. (B) Simulation of the expected correlation of the Potts model prediction to experimental
values for AE and AAE as a function of simulated experimental noise 77, showing that the the correlation for AAE drops much more quickly. The dotted
section of the curves show where the p-value for the AAE correlation is >0.05, or insignificant, showing that noise can make it impossible to verify AAE
values even when AE values are well predicted. The level of noise corresponding to AE correlation of p =~ 0.8, as in Fig 4 column 6 for Capsid, is shown
in dashed black.

https://doi.org/10.1371/journal.pone.0262314.9006

experimentally measured; but in practice, such a comparison is often statistically not possible
due to experimental and statistical uncertainties(s). In Fig 6B, we illustrate how error in individ-
ual fitness measurements can cause the double mutant cycle predictions to be unverifiable even
when there exists good correspondence between Potts model and experimental fitness predic-
tions. In this simulated test, the Potts model AE predictions for capsid (for mutation datapoints
shown in Fig 4 (column 6) are rescaled to have the same range and scale as experimental repli-
cative capacity values, and are used as simulated replicative capacity values. Varying amounts of
random noise representing experimental error(s) and modelled as Gaussian white noise with
mean 0 and standard deviation 7 are added to each AE value, which are then interpreted as sim-
ulated experimental RC values. The simulated RC values are taken to be the “ground truth”
which are used to evaluate double mutant cycles, to compare to the Potts predictions. The
Spearman rank-order correlation coefficients between the Potts model predicted and simulated
experimental RC values, as well as double mutant cycle values, are then computed for the muta-
tion residue-identities as available in our experimental dataset, and the process is repeated for
varying degrees of noise strength (specified by varying 7), representing varying degrees of
experimental uncertainty. The correlation between model predicted and simulated experimen-
tal RC values are shown in Fig 6B. We see that even when the AE correlation with the simulated
RC s as high as ~ 0.8 (as is observed for capsid), the corresponding AAE correlation with differ-
ences in Replicative Capacity between double mutants and the corresponding sum of single
mutants is very low, ~0.1 and is typically not statistically significant. For a correlation between
model and experimental RC values ~ 0.6 as observed for HIV protease (Fig 4 column 3), the
same result is obtained, namely double mutant cycle analysis can not be used to verify epistatic
interactions for HIV protease (Fig 7A of S1 File). Indeed, the correlation with double mutant
cycles computed from the experimental values in Fig 4 is very low and statistically insignificant
(Fig 7B of S1 File) in agreement with this test. Nevertheless, many of the strongest predicted (by
the Potts model) double mutant cycles in HIV proteins, indeed qualitatively agree with the
effects studied in the literature, especially amongst those involving compensatory pairs of drug-
resistance mutations in HIV drug-target proteins (S2A and S2B Fig, S2A and S2B of S2 File).
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Contribution of the changes in structural stability due to a mutation to the predicted
likelihoods of mutant sequences. In this section, we explore the contribution from changes
in structural stability due to a mutation to its Potts model predicted likelihood(s). To explore
the impact of a mutation on structural stability, we employ a well-known protein design algo-
rithm called FoldX [44, 45], which uses an empirical force field to determine the energetic
effects of a point mutation. FoldX mutates protein side chains using a probability-based rota-
mer library while exploring alternative conformations of the surrounding side chains, in order
to model the energetic effects of a mutation. We observe good correspondence between Potts
model predicted likelihoods and FoldX predicted changes in structural stabilities of mutations
in Fig 7B, and Fig 8B of S1 File for a set of multiple inhibitor-associated mutations (from [28])
in PR. There also exists statistically significant correlation between experimentally measured
replicative capacities of these mutations and their Potts model predicted likelihoods (Fig 7A,
and Fig 8A of S1 File), but the FoldX predicted changes in structural stabilities do not correlate
so well with experimentally measured replicative capacities (Fig 7C, Fig 8C of S1 File). This is
indicative that different measures of fitness such as thermostability, activity, or folding energet-
ics of a protein do not generally contribute to fitness in the same way [1]. While some mea-
sures or properties being tested may only have an indirect context-dependent impact on
fitness, “prevalence” in multiple sequence alignments of thousands of protein sequences may
be more reflective of the overall survival fitness. Fig 7 and Fig 8 of S1 File show that the Potts
model can capture contributions to fitness from both structural stabilities measured by FoldX,
and from other aspects of the viral replicative life-cycle measured by replicative capacity exper-
iments, which are not captured completely by either measurement on its own.

Conclusion

Fitness is a complex concept at the foundation of ecology and evolution. The measures of fit-
ness range from those such as replicative capacity, protein stability, catalytic efficiency, that
can be determined experimentally in the lab to measures stemming from the “prevalence” in
collections of sequences obtained from nature, that can be quantified and compared using pre-
dictions of coevolutionary models which encode mutational patterns in multiple sequence
alignments. For viral fitness measurements, the large majority of studies focus on measures
like selection coefficients or replicative fitness within hosts or cells in culture. Potts models of
sequence co-variation provide a measure of fitness tied to the frequency of sequences appear-
ing after longer in vivo evolutionary times in the virus’ natural environment.

The functions of proteins are defined by the collective interactions of many residues, and
yet many statistical models of biological sequences consider sites nearly independently [31].
While studies [1] have demonstrated the benefits of including interactions to capture pairwise
covarijation in successfully predicting the effects of mutations across a variety of protein fami-
lies and high-throughput experiments, for viral proteins, the predictions of mutational fitness
by pairwise or latent-space models often fall short of predictions by site-independent models.
It has been suggested that this could be a consequence of the limited diversity of the sequence
alignments [1] or due to a discrepancy between the proxy for viral fitness in the laboratory and
the in vivo fitness of the virus [9]. Here, we show that the signatures of epistasis are best mani-
fested for viruses like HIV in the comparison of the Potts model predicted and experimental
HIV sequence “prevalences” when expressed as higher-order marginals of the sequence proba-
bility distribution. Gupta and Adami have shown that epistasis in HIV can also be detected
using a different metric, the pairwise mutual information [46]. The approach presented here
goes further and accurately describes the higher order mutational landscape of the virus in
response to external selection pressures such as drug exposure.
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Fig 7. Potts model captures different features of the fitness landscape. Figure shows that the Potts model predicted
AEs can capture different features of the fitness landscape that may be orthogonal, and may not correlate well with each
other. (A) Relative fitness (replicative capacity) measurements obtained from deep mutational scanning of HIV-1

variants [28] involving combinations (of three or lesser) of mutations in protease associated with resistance to

(particularly second-generation) inhibitors in clinic, are compared to changes in Potts statistical energies, AEs with a
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Spearman rank-order correlation, p = 0.66 (p < 0.001). [28] also report statistically significant correlation (|p| = 0.46)
with a Potts model inferred using the Adaptive Cluster Expansion (ACE) algorithm. (B) FoldX predicted changes in
folding energies, AAGs (PDB: 3585) of the mutations also correlate well with Potts predicted changes in statistical
energies, AEs for the same (Spearman p = —0.57). The HIV-1 protease structure (PDB: 3585) is used as reference,
repaired using the RepairPDB function in the FoldX suite, and the free energy of mutants is calculated with the
BuildModel function under default parameters. Changes in structural stability due to mutations correlate well with
their predicted likelihoods (estimated by the Potts model AEs) as seen here with a Spearman rank-order correlation, p
=-0.57 (p < 0.001) between the two. However, FoldX calculations are susceptible to small changes in structure that
can be caused by the presence of small-molecule ligands, etc. For another PDB:4LL3, we still find statistically
significant correlation between the two (p = —0.64). (C) Experimental relative fitness measurements however, do not
correlate as well with FoldX predicted changes in folding energies due to the mutations (p = —0.36).

https://doi.org/10.1371/journal.pone.0262314.9007

The model, which is parameterized to reproduce the bivariate marginals in the MSA, also
accurately captures the higher order marginal probabilities (seen in Fig 3A, 3C and 3E, upto
the 14" order) in the MSA for sets of drug-resistance associated positions; whereas, the fidelity
of a site-independent model decreases much more rapidly with the size of the marginal. We
further show that epistatic interactions are particularly important in determining the higher
order mutation patterns of drug-resistance-associated sites in HIV; in clear contrast with non-
drug-resistance-associated positions, as the virus evolves under drug pressure employing the
most strongly interacting positions in mutational pathways.

It has been suggested that the success of models based on sequence covariation at recapitu-
lating high-throughput mutation experiments depends in part on the extent to which experi-
mental assays can capture phenotypes that are under direct, long-term selection [1]. For some
proteins, such as nonessential peripheral enzymes or signaling proteins, the property being
tested in the laboratory may only have an indirect, context-dependent impact on the organism.
We observe higher correlation between Potts model and experiment for the structural protein
Capsid than other enzymatic proteins like PR, RT, or IN. A similar correlation has been
observed for Capsids of other types of viruses [47]. This indicates that changes in CA perhaps
have a more direct effect on the viral lifecycle than enzymatic proteins. However, the evidence
for epistasis from fitness measurements based on replicative capacity experiments remains
weak as both the Potts and independent models often show comparable degrees of correlation
with experiment, and the distinction may not be statistically significant. While double mutant
cycles provide a well established biophysical way to probe epistatic effects without reference to
a particular sequence background, the order-of-magnitude smaller dynamic range makes
accurate quantitative predictions very difficult and we only see weak evidence for epistasis
through double mutant cycles.

Different measures may also contribute to fitness in different ways. In this study, we employ
FoldX to probe the contribution of structural changes and folding energetics due to mutations
to their predicted/observed likelihoods, finding that the Potts model predicted likelihoods of
mutations in HIV correlate well with FoldX predicted changes in free energies. FoldX predic-
tions, however, do not correlate well with experimental replicative capacity measurements.
This is suggestive that the overall fitness landscape predicted by the Potts model includes con-
tributions from many different features, some may even be orthogonal and thus, may not nec-
essarily correlate well with each other.

The evolution of viruses like HIV under drug and immune selection pressures induces cor-
related mutations due to constraints on the structural stability and fitness (ability to assemble,
replicate, and propagate infection) of the virus [48]. This is a manifestation of the epistatic
interactions in the viral genome. The analysis presented here provides a framework based on
sequence prevalence to examine the role of correlated mutations in determining the structural
and functional fitness landscape of HIV proteins, especially under drug-selection pressure.
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Epistatic effects are vital in shaping the higher order (well beyond pairwise) “prevalence” land-
scape of HIV proteins involved in engendering drug resistance. Identifying/elucidating the
epistatic effects for key resistance mutations can help in designing better experiments to probe
epistasis and has the potential to impact future HIV drug therapies.

Materials and methods

The Potts Hamiltonian model of protein sequence covariation is a probabilistic model built
from the single and pairwise site amino-acid frequencies in a protein multiple sequence align-
ment, and aimed at describing the probabilities of observing different sequences in the MSA.
To approximate the unknown empirical probability distribution P(S) that best describes a
sequence S of length L with each residue encoded in a Q-letter alphabet using a model proba-
bility distribution P"(S), we choose the maximum entropy or least biased distribution as the
model distribution. Similar distributions that maximize the entropy, with the constraint that
the empirical univariate and bivariate marginal distributions are preserved, have been derived
in [10, 11, 22, 32, 49]. We follow a derivation of the maximum entropy model in [32, 50],
which takes the form of an exponential distribution:

ES) =300+ S @

i=1 j=1

P(S) o< eHS) (3)

where the quantity E(S) is the Potts statistical energy of a sequence S of length L; the model
parameters h called “fields” represent the contribution to statistical energy from a residue S;

at position i in S, and ]g s, called “couplings” represent the energy contribution from a pair of

residues at positions i, j. In this form, the Potts Hamiltonian consists of LQ “field” terms and
(E) Q’ “coupling” terms. For the distribution P o ™%, negative fields and couplings indicate

favored amino acids. The change in Potts energy for a mutation o — f at position i in S is
given by:

L
AE(S, ;) = E(S}) — E(S}) = B, — i+ > Tl —Jjs (4)

j#i
In this form, AE(S],
given position and vice versa.

While the original model developed by Potts et al. only included nearest neighbor interac-
tions and spin state vectors distributed across a hypersphere [51-53], in contrast, the “spin”
models used in biological physics which correspond to global models of protein sequence-
covariation, are generalizations of the Potts model with each “spin” state representing the
amino-acid character at a given position in the protein, and able to interact with every other
“spin” (“infinite range”). Such spin-models have been well established in the maximum
entropy protein sequence-covariation literature and are often referred to simply as the Potts or
Ising (in case of just two spins or amino-acid residues, wildtype and mutant) model [17, 20-
23,25, 33-35, 37, 38, 54]. In accordance with the literature, we refer to this model concisely as
simply the Potts model.

) > 0 implies that residue 8 is more favorable than residue « at the
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Data processing

HIV protein multiple sequence alignments for protease, reverse transcriptase, and integrase
are obtained from the Stanford University HIV Drug Resistance Database (HIVDB, https://
hivdb.stanford.edu) [55, 56] using the genotype-rx search (https://hivdb.stanford.edu/pages/
genotype-rx.html) (alternatively, downloadable datasets are also available at https://hivdb.
stanford.edu/pages/geno-rx-datasets.html) and filtered using the criteria HIV-1 subtype B
and nonCREF, drug-experienced (# of protease inhibitors or PIs = 1-9 for PR, # of nucleoside
analog reverse transcriptase inhibitors or NRTIs = 1-9 and # of non-nucleoside analog
reverse transcriptase inhibitors or NNRTIs = 1-4 for RT, and # of integrase strand-transfer
inhibitors or INSTIs = 1-3 for IN); and we remove sequences with mixtures or ambiguous
amino acids. Complete sequences with any insertions ('#’) or deletions (' ~”) are removed.
Such sequences form a small (<1%) fraction of the MSA and removing them doesn’t signifi-
cantly affect the MSA statistics. MSA columns with more than 1% “dots” (.”) which represent
unsequenced positions in the sequences are removed to avoid spurious correlations in the
subsequent Potts model built on the MSA. Remaining sequences with any “dots” or unse-
quenced positions are then removed. This resulted in a final MSA size of N = 5710 sequences
of length L = 99 for PR, N = 19194 sequences of length L = 188 for RT, and N = 1220
sequences of length L = 263 for IN. For RT, sequences with exposure to both NRTIs and
NNRTTs were selected due to much lesser number of sequences exposed to only NRTIs or
only NNRTIs being available. Multiple sequence alignments for the p24 Capsid protein are
obtained from the the Los Alamos HIV Sequence Database [57] using the customizable
advanced search interface https://www.hiv.lanl.gov/components/sequence/HIV/asearch/
map_db.comp and selecting for subtype B and nonCREF, etc. Sequences with inserts/deletions
are filtered out. For capsid, drug exposure data and a comprehensive list of drug-resistance
mutations are not yet available; drug-naive sequences are used. The subtype B consensus
sequence is obtained from the Los Alamos HIV sequence database [57] consensus and ances-
tral sequence alignments (https://www.hiv.lanl.gov/content/sequence/HIV/CONSENSUS/
Consensus.html, last updated August 2004). The subtype B consensus sequence is referred to
as the ‘consensus/wild-type’ throughout the text.

It has been previously established that phylogenetic corrections are not required for HIV
patient protein sequences [23, 32] as they exhibit star-like phylogenies [46, 58]. For model
inference, HIV patient sequences, are given sequence weights such that the effective number
of sequences obtained from any single patient is 1. Sequences obtained from different patients
are considered to be independent.

Mutation information

Drug resistance information, including a list of drug-resistance associated mutations are
obtained from the Stanford HIVDB (https://hivdb.stanford.edu/dr-summary/resistance-
notes) and from [59]. Mutations in HIV are generally classified into three categories: primary,
accessory, and polymorphic. Mutations occurring as natural variants in drug-naive individuals
are referred to as polymorphic mutations. Mutations affecting in vitro drug-susceptibility,
occurring commonly in patients experiencing virological failure, and with fairly low extent of
polymorphism are classified as major or primary drug-resistance mutations. In contrast, muta-
tions with little or no effect on drug susceptibility directly but reducing drug susceptibility or
increasing fitness in combination with primary mutations are classified as accessory. For this
work, mutations classified as both primary/accessory are considered as drug-resistance associ-
ated mutations.
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Alphabet reduction

A reduced grouping of alphabets based on statistical properties can capture most of the infor-
mation in the full 20 letter amino acid alphabet while decreasing the dimensionality of the
parameter space leading to more efficient model inference [17, 19, 22]. All possible alphabet
reductions from a Q-letter alphabet to a Q — 1 letter alphabet at a site i are enumerated for all
pairs of positions i, j (j # i) by summing the bivariate marginals for each of the Q2 possible
combinations and selecting the alphabet grouping that minimizes the root mean square differ-
ence (RMSD) in the mutual information (MI):

1 ij VERY)
Mlyysp = K]Z(MIC]Q — Mg ,) (5)
i

The process is then iteratively carried out until the desired reduction in amino acid charac-
ters is achieved. Using the reduced alphabet, the original MSA is then re-encoded and the
bivariate marginals are recalculated. Small pseudocounts are added to the bivariate marginals,
as described in [17, 23, 35] to make up for sampling biases, or to limit divergences in the infer-
ence procedure.

Due to residue conservation at many sites in HIV-1, several studies have used a binary
alphabet to extract meaningful information from sequences ([32, 60, 61]). A binary alphabet
however, marginalizes the information at a site to only the wild-type and mutant residues with
the loss of some informative distinctions between residues at sites acquiring multiple muta-
tions. To strike a balance between loss of information and the reduction of the number of
degrees of freedom, we choose a reduced alphabet of 4 letters. Our 4 letter alphabet reduction
gives a Pearson’s R* coefficient of 0.995, 0.984, 0.980, and 0.992, for protease, reverse transcrip-
tase, integrase, and p24 capsid protein, respectively between the MI of bivariate marginal dis-
tributions with the full 21 letter alphabet and the reduced 4 letter alphabet, representing
minimal loss of information due to the reduction.

Due to reduction in alphabet, some mutations may not be amenable to our analysis when
comparing to experimental fitness measurements such as replicative capacities, etc. We choose
mutations corresponding to marginals with higher values in the MSA to be more representa-
tive of the model predictions.

Model inference

The goal of the Potts model inference is to find a suitable set of fields and couplings {A, J}
parameters that fully determine the Potts Hamiltonian E(S), and best reproduce the empirical
bivariate marginals.

A number of techniques have been developed for inferring the model parameters previously
[10, 11, 22, 32, 49, 62-66]. The methodology followed here is similar to the one in [32], where,
the bivariate marginals are estimated by generating sequences through a Markov Chain Monte
Carlo (MCMC) sampling procedure, given a set of fields and couplings. The Metropolis crite-
rion for the generated sequence(s) is proportional to their Potts energies. This is followed by a
gradient descent step using a multidimensional Newton search, to determine the optimal set
of Potts parameters that minimizes the difference between the empirical bivariate marginal
distribution and the bivariate marginal estimates from the MCMC sample. The scheme for
choosing the Newton update step is important. A quasi-Newton parameter update approach
determining the updates to ];’ 5, and hy by inverting the system’s Jacobian was developed in

[32], which we follow here. Although the methodology involves approximations during the
computation of the Newton steps, the advantage of the methodology is that it avoids making
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explicit approximations to the model probability distribution at the cost of being heavily com-
putationally intensive. We have employed a GPU implementation of the MCMC methodology,
which makes it computationally tractable without resorting to more approximate inverse
inference methods. The MCMC algorithm implemented on GPUs has been previously used to
infer accurate Potts models in [17, 23, 35, 38, 54, 67].

The computational cost of fitting (%) * (4 — 1) + L * (4 — 1) model parameters for the
smallest protein in our analysis, PR, on 2 NVIDIA K80 or 4 NVIDIA TitanX GPUs is ~20h.
For a more detailed description of data preprocessing, model inference, and comparison with
other methods, we refer the reader to [19] and [17, 23, 38, 54]. A repository containing the
final MSAss is available at https://github.com/ComputationalBiophysicsCollaborative/HIV_
MSAs.

The site-independent model is inferred based on the univariate marginals, or the residue
frequencies, ! (for a residue o at position 7) in the MSA alone, giving the “field” parameters as:

K, = —Inf; (6)

A small pseudo-count is added to the f! to avoid indeterminate logarithms. The indepen-
dent model energies of a sequence S are given as E(S) = Y. hi., where i is a position in the

sequence, and L is the length of the sequence.

Prediction of higher order marginals

The Potts model inferred using the methodology described above is generative, allowing for
generation of new synthetic sequences which very closely represent the sequences in the MSA
of protein sequences obtained from HIV patients. For prediction and comparison of the
higher-order marginals, both the Potts and independent models are used to generate new
sequences, and subsequence frequencies (marginals) are compared between the dataset MSA
and the Potts/independent model generated MSAs. For each subsequence of length 2-14, the
process is repeated for 500 randomly picked subsequences and the Spearman correlation coef-
ficient is calculated for all subsequences which appear with a frequency greater than the thresh-
old (to avoid noise).

Statistical robustness of HIV Potts models

Finite sampling and overfitting can affect all inference problems, and the inverse Ising infer-
ence is no exception. In case of the Potts model, the number of model parameters can vastly
outsize the number of sequences in the MSA, yet it is possible to fit accurate Potts models [54]
to those MSAs, as the model is not directly fit to the sequences but to the bivariate marginals of
the MSA. However, finite sampling can affect the estimation of the marginal distributions,
which, in turn, affects model inference. In fact, overfitting in the inverse Ising inference arises
due to the finite-sampling error in the bivariate marginals estimated from a finite-sized MSA.
The degree of overfitting can be quantified using the “signal-to-noise ratio” (SNR), which is a
function of the sequence length L, alphabet size g, number of sequences in the MSA N, and the
degree of evolutionary conservation in the protein. The SNR for Potts models fit to protein
sequences is discussed in more detail in [54]. If the SNR is small, the Potts model is unable to
reliably distinguish high scoring sequences in the data set from low-scoring sequences. If SNR
is close to or greater than 1, then overfitting is minimal and the Potts model is more reliable.
In the analysis presented here, IN has the lowest SNR (0.14 compared to 43.7 for RT, and 21.6
for PR) on account of being one of the more conserved proteins with the lowest number of
sequences in the MSA, and may be more affected by overfitting. Different predictions of the
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Potts model, however are differently affected by finite sampling errors with predictions of AEs
which form the basis of Potts model “fitness” predictions among the more robust [54]. The
Potts model is also able to accurately capture the higher-order marginals in the MSA. Thus, we
conclude that the MSA sample sizes used in this study are sufficiently large to construct Potts
models for these HIV proteins that adequately reflect the effect of the sequence background on
mutations.

Protein stability analysis

The changes in folding free energies due to mutations are analyzed using FoldX [44, 45],
which uses an empirical force field to determine the energetic effects of point mutations. The
HIV-1 protease structure (PDB: 3S85) is used as reference, repaired using the RepairPDB func-
tion in the FoldX suite, and the free energy of mutants is calculated with the BuildModel func-
tion under default parameters. For each mutation, the mean of 10 FoldX calculations is used as
the AAG value.

Supporting information

S1 File. Supplementary methods, details and figures. Details of the evolutionary conserva-
tion in different HIV enzymatic proteins and its effect on the observable evidence for epistasis
is given in Section 1. Details on comparison with different experimental measures of fitness
and Potts and independent models, along with comparisons with FoldX predicted changes in
folding energetics due to mutations are given in Section 2, as well as details of why compari-
sons for double mutant cycles are difficult. Details of the weak evidence for epistasis that can
be drawn from hamming distance distributions are given in Section 3.

(PDF)

S2 File. Supplementary figures and tables for double mutant cycles. Figures and tables
showing the distribution of Potts model predicted double mutant cycle effects for all double
mutations indicating the strongest, predicted double mutant cycle effects involving mutations
(at least one amongst the pair) at drug-resistance-associated sites and corresponding literature
references in HIV-1 protease and integrase are given.

(PDF)
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