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Abstract

This paper presents improvements upon methods that explore rare process trajectories leading to rare
safety and reliability events. It applies forward-flux sampling (FFS) from the family of sampling
algorithms developed to discover rare molecular dynamics pathways. For a relatively simple, dynamic
exothermic CSTR model with noisy feed concentration, it shows how to apply the FFS algorithm to
simulate and analyze rare trajectories between high- and low-conversion steady states. First, it
compares results with a less efficient brute-force (BF) method, and then with a transition-path sampling
(TPS) method applied in simulation studies for an exothermic CSTR. The effects of varying key process
parameters, i.e., the residence time, 7, noise variance, 0'772 , and the controller gain, K¢, which impact
the rareness of an event, are investigated. Rates of rare-path transition between high- and low-
conversion steady states, forward and backward, are shown to exhibit equilibrium ratios independent of

0',72, with the forward rates decreasing with 7 and Kc, and the backward rates increasing with Kc,

whereas both increase with anz.
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1. Introduction

Safety and reliability events are of primary concern in the process and manufacturing industries, where
safety issues can cause pernicious impacts on human health and environment due to extreme operating
conditions, such as high temperatures and pressures and the presence of hazardous chemicals and

materials. Fortunately, it is possible to mitigate these risks.

Near the vicinities of unsafe operation, it is imperative to utilize automated safety interlocks, which
have the capability to shutdown plants, thereby avoiding the related consequences. These measures,
however, can increase unreliability with production-time losses due to shutdowns, maintenance, and
start-up delays. Moreover, they may disrupt routine procedures, adversely impacting human health and
the environment. Hence, there is a strong motivation to develop strategies to avert more effectively

unsafe operations.

Alarm management schemes are a key to ensure the safety and reliability of manufacturing plants and
processes. They aid in mitigating losses by ensuring that the concerned process variables remain within
bounds of safe operation by triggering actionable alarms when these variables individually approach
the vicinities of unsafe regions, following which, adequate steps can be taken through intervention by
the operator (Mehta and Reddy, 2015). Such alarm schemes prove to be effective in tackling commonly
occurring ‘postulated’ events that lead to interlock activation, but often fail to predict the rare ‘un-
postulated’ event trajectories that result in abnormal events. Hence, the design of alarms based upon
the detection of such rare, un-postulated event trajectories, is beneficial to ensure plant safety and

reliability (Moskowitz et al., 2018).

This paper introduces two methods to detect the pathways leading to rare, un-postulated events: (1) an
illustrative but inefficient brute-force (BF) method, and (2) a forward-flux sampling (FFS) method that
is capable of estimating rates of rare-events. The latter is shown to trace pathways to rare events,
triggering alarms that enable immediate operator interventions. The FFS method is an alternative to
the transition-path sampling (TPS) method, whose application was discussed and applied by Moskowitz
et al. (2018) for operation of a CSTR with an exothermic R->P reaction and an air-separation system
to produce oxygen, nitrogen, and argon. Both FFS and TPS methods have been employed routinely in
molecular dynamics (MD) simulations to locate rare events in stochastic non-equilibrium systems
(Allen et al., 2006), including nucleation rates of hard spheres (Filion et al., 2010), methane hydrate
nucleation (Bi and Li, 2014) and homogeneous nucleation of sodium chloride crystals (Jiang et al.,
2018). To our knowledge, this is the first application of the FFS method for detecting rare-event
pathways in process operations. Herein, the analysis of rare-event pathways by the BF and FFS methods
is demonstrated using a CSTR with noisy feed concentration to carry out an exothermic R->P reaction,
thereby facilitating inter-basin transition(s) between the high conversion-high temperature basin ‘A’
and low conversion-low temperature basin ‘B’. This analysis consists of studying the effects observed
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by varying key process parameters; i.e. the residence time, 7, and the noise variance, an, and are hence
instrumental in dictating the rarity of a particular process trajectory. This analysis using BF and FFS
methods is conducted for two process configurations for the exothermic CSTR — one without a control
system and another inclusive of proportional P-control, where a third process parameter — the controller
gain, Kc, becomes critical in estimating the rarity of a particular event. Lastly, a dynamic analysis is
conducted for long process trajectories near the vicinity of the transition to investigate their cause and
study how the key process variables, such as the process temperature and the outlet concentration,
respond to the changes caused by the noise, where it is observed that the process temperature responds

first to the noise.

2. Description of the Exothermic CSTR
Consider a jacketed exothermic CSTR model with reaction:
R->P (D

Figure 1 shows a schematic of the model. The feed temperature and inlet concentration of A are 7%, Car
and the outlet temperature and concentration; i.e., 7, Ca, are computed to be functions of time. The
model is simplified by assuming ideal mixing, completely back-mixed, with a constant residence time,
and incompressible flow. The cooling water-jacket is assumed to be sufficiently large such that the
cooling water temperature, 7c, changes negligibly (for the uncontrolled process). The model also
includes a temperature controller (TC) that controls 7' by manipulating the inlet cooling water flow-rate,

Fc. The kinetics of the reaction are elementary with the intrinsic rate of reaction:
—1 = koexp (= =) C )
= Ko€Xp{— 77 ) ta

where k,is the Arrhenius pre-exponential factor, E is the activation energy, and R is the universal gas

constant.
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Figure 1. Schematic of the exothermic CSTR
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The governing mass and energy balance equations for the uncontrolled process are:

dcC 74 E
Za = L (Car— Ca) — Vkoexp (— =) Ca 3)
ar Ve E
PV Cy o =22 (Tg = T) — VAHkg exp (——) Ca + UA(T, = T) )

where V is the reactor volume, 7 is the residence time, U is the overall heat-transfer coefficient, A4 is the

heat-transfer area, AH is the heat of reaction, p is the feed density, and Cj, is the heat capacity of the

feed stream. Table 1 contains the constants and parameters utilized in this study.

Table 1. Process Constants and Parameters

Parameter Value Unit
A 30 m?
Car 2 kmol/m?
Co=Cow 4 kJ/(kg-K)
E 1.50E+04 kJ/kmol
Fco 30 m’/min
ko 17.038 1/min
R 8.314 kJ/(kmol-K)
Teo 300 K
Tt 300 K
Tsp 800 K
U 100 kJ/(min-K-m?)
V=1, 10 m’
AH -2.20E+06 kJ/kmol
p=pw 1,000 kg/m?

Egs. (3) and (4) are solved simultaneously to determine steady-state values for the outlet concentration
and outlet temperature. This procedure is repeated for residence times ranging fromt =0 to T = 1
minutes, with multiple steady states detected for T = 0.47-0.56 min, with stable steady states at the high
conversion-high temperature basin ‘A’ and low conversion-low temperature basin ‘B’ (Balakotaiah &
Luss, 1983). The state variables; i.e., the conversion and outlet temperature, are shown as functions of
residence time, in familiar S-shaped curves, in Figure 2a, with the black rectangle signifying the range
of residence times for which multiple steady states are detected. Figure 2b shows the magnified view

of the same, with colored solid lines depicting the residence times considered for analysis.
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Figure 2. State variables as functions of residence time at steady state and magnified view of the

To facilitate inter-basin transitions, random, non-parametric noise, 1, is added to the inlet concentration.
This noise variable is sampled from a Gaussian distribution having mean, u = 0, and variance, an.

Note that the noise is sampled at every integration time-step (2 = 0.01 min) and scaled appropriately.

rectangle showing the multiple steady-state range of ¢

The dynamic integrations are conducted using the explicit-Euler method within acceptable bounds of

numerical stability and accuracy. With noise, the governing equations are:

dcp

dat

ar _ pv

pV

c
b = Tp(Tf—T)—VAHkOeXp

|4 E
Z(Cas + 1= Ca) = Vkoexp (= =) Ca

(— %) Cp+ UA(T, — T)

)

(6)

Next, using proportional P-control to regulate the reactor temperature, 7, by manipulating the cooling

water flow rate, F¢, in a jacket, three controller gains are considered; Kc = 0.02, 0.05, and 0.1. The

governing equations that model the P-controlled process are:

dcCa _
dat
dr
VC,— =
PYCp dt
dTc
dt

F
= 7? (Teo —T¢) —

PwViCpw

Fg = Feo + Kc(T — Tsp)

(Tc—T)

|4 E
Z(Car— Ca+ m) = Vkoexp (= =) Ca

22 (T; = T) — VAHko exp (— =) Ca + UA(Te = T)
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Temperature (K)

where Fco is the cooling water flow rate at steady state, Kc is the controller gain, 7co is the inlet
temperature of the cooling water, Tsp is the set-point temperature for the controller, V; is the volume of
the cooling-water jacket, p,y is the density of the cooling water, and cp,, is the specific-heat capacity
of the cooling water (refer to Table 1 above). Note that Tsp is maintained constant throughout,

regardless of trajectories initiating in either basin.

Figures 3a,b show the temperature profiles for two typical dynamic trajectories for 0',72 =0.02, for the
uncontrolled process. The time spent by the process trajectory in basin A increases with t for fixed
0,,2; i.e., it becomes more difficult for the process to transition out of basin A, but the time taken to
transition from basin A to basin B, tag, is found to be independent of 1, with
tag = 13 min. Note that before conducting the analyses using BF and FFS methods, the lower-bound
temperature for basin A, i.e., the minimum temperature required for the process to be in basin A, needs
to be estimated. As a first approximation, this lower-bound temperature is adjusted iteratively to center
the distribution of temperatures attained in basin A over multiple trajectories at 800 K, thereby
generating a mean, i ~ 800 K, and the standard deviation, g ~ 75 K. Note that the same lower bound
is used for all considered values of 7 and 0,72. Multiplying by two, using a heuristic, the lower bound

temperature for basin A is adjusted to:

Lower bound for basin A = u — (207) ~ 650 K (11)
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Figure 3. Temperature profiles for dynamic trajectories with noise added to inlet concentration,
showing the mean, u ~ 800 K, and the standard deviation, o ~ 75 K
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3. Brute-force (BF) Method

Example applications for the BF method include simulation of homogeneous nucleation during the
condensation of supersaturated vapors of methane, ethane, and carbon dioxide (Horsch et al., 2008),

and an investigation of the association of methane in water (Zhang and McCammon, 2003).

Consider the BF method for simulation of the exothermic CSTR, which is used to compute the rate of
transition from basin A to basin B as the rate of exponential decay of the survival probability of the
process to remain in basin A, for rare events. The survival probability, in general, is defined as the
probability of the process remaining (or ‘surviving’) in a particular basin (A or B) over a continuous
time interval. Note that survival probabilities have been routinely studied in various domains, such as
in the analysis of stochastic non-equilibrium systems with absorbing states (Mufioz et al., 1997), and to
investigate the loop-closure kinetics of penta- and octa-peptides Cys-(Ala-Gly-Gln), -Trp (n =1 and 2)
(Yeh and Hummer, 2002).

Therefore, assuming that the inter-basin transition follows first-order kinetics, the survival probability

within basin A, pa (t), is:

pa(t) = exp(—k""t) (12)

where kP is the BF rate of transition. Herein, to determine £, at each residence time, ~100 trajectories

are generated that trace the transition from basin A to B. To achieve this, several steps are followed:

1) To calculate the survival probability for the reactor to remain in basin A, two main conditions are
checked to conclude it has descended to basin B:
1) A base temperature, ~ 500 K, is set below which the reactor can be considered to have descended
to basin B.
i) A retention time, ~2tg, is identified beyond which the reactor lies below 500 K. This condition

is more important and critical than condition i.

2) For each of 100 trajectories, the survival probabilities are calculated along the dynamic profile.
Then average probabilities are computed along the dynamic profiles, and, by regression, the BF

rate of transition; i.e., X%F in Eq. (12), is determined.

3) Next, the average survival time of the reactor in basin A, t4 , is computed:
A= TBF (13)
Like the survival probability, the average survival time, t4, is defined as the average time during

which the reactor remains or ‘survives’ in basin A before transitioning to basin B. For instance, it
b
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can be seen in Figure 3a, for T = 0.5 min, the survival time for this process trajectory is ~ 350 min,
with £, being the average survival time for the 100 trajectories. Figures 4a,b show an example of
how the rate of transition is computed using the BF algorithm for a specific process configuration
of 7= 0.5 min and anz =0.02, computed over 100 trajectories, on linear and semi-log scales. It
can be seen here that the data validates the first-order kinetics for the transition that was assumed
in Eq. (12). The linear fit showed in Figure 4b appears to decrease in accuracy with time due to the

small probabilities computed at higher times.

Data Data

y = exp(-0.002807 * t) Fitted exponential Linear fit

y =-0.002807 * t

"ﬁ?: 107
Q
0 500 1000 1500 2000 2500 3000 3500 4000 o 0 200 400 600 800 1000 1200 1400
Time (min) Time (min)
(a) Survival probability, pa(f) on linear scale (b) pa(?) on semi-log scale

Figure 4. Example of a BF simulation showing pa(¢) on linear and semi-log scales at = 0.5 min and

o,° =0.02

Note that for the purpose of conducting the BF methods for rare events, multiple trajectories are
required to be simulated. For not so rare events; i.e., for cases where multiple inter-basin back-and-
forth transitions are observed, the same BF method can be applied for a long, single trajectory.
Figure 5 shows an example of one such trajectory for the uncontrolled exothermic CSTR process

at 7= 0.53 min and Unz =0.2.
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Figure 5. Long trajectory showing multiple back-and-forth, inter-basin transitions at = 0.53 min and
0,2=0.2
n .

The survival probability, p(#), is defined as the probability that a trajectory in a basin, initially at time
t, remains continuously in that basin (i.e., ‘survives’ in the basin) over the interval [t,, t, +t]. To
obtain p(f), this analysis is conducted for various intervals along a single trajectory at a given ¢ by
varying t, from ty = 0 to ty = tsjm — t, where tg;, is the simulation duration of the trajectory. In this
way, p(t) is computed for a particular # as the number of intervals that successfully survive in the basin,
divided by the total number of intervals. For instance, the trajectory shown in Figure 5 has t;,, = 1000
min. At ¢ =20 min, the various intervals for which the survival probability analysis is conducted in a
basin proceed as [0, 20], [0.01, 20.01], [0.02, 20.02], ..., [979.99,999.99],[980, 1000]; i.e, ~
98,000 intervals. Amongst these intervals, only N; begin in basin A. Of these, there are n; intervals
that successfully survive throughout, over # = 20 min, in basin A. Hence, the survival probability at ¢
=20 min is computed as ny/N,. This analysis is conducted at all times, #, in a practical range; e.g., from
¢t =0.01 to ~ 65 min for basin A —until the survival probability approaches zero. For basin B, however,
an identical analysis is carried with all intervals beginning in basin B and successfully surviving in

basin B.

4. Forward-Flux Sampling (FFS) Method

FFS has been utilized by the MD community to reduce the computational time and effort required to
simulate rare molecular events, where the initiation times are greater than the event times by orders of
magnitude; e.g., in the dissociation of a weak acid, where the initiation time (i.e., the frequency with
which dissociation occurs — once per millisecond) is much greater than the 1-nanosecond dissociation

time-scale (Bolhuis et al., 2002) Consequently, to counter this, FFS simulates process trajectories in a
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piecewise manner, between initial and final basins, using evenly-spaced interfaces, positioned at order
parameters, 4, i = 1, ..., n -1. The initial basin (i.e., basin A) is bounded by ¢ and the final basin (i.e.,
basin B) is bounded by 4,, with the intermediate interfaces bounding the intermediate basins (Allen et
al., 2009). Various FFS variants have been developed; such as the branched-growth (BG) method the
Rosenbluth (RB) method, and the pruning method, to name a few (Allen et al., 2006). The specific
variant applied herein is the classical Direct Forward-Flux Sampling (DFFS) technique, shown

schematically in Figure 6.

For this analysis, the order parameter, /, is the reactor temperature, 7. For each residence time, the steps

involved (illustrated for the CSTR with the exothermic reaction R>P) are:

1) Generate a long, initial trajectory of the process from a starting point lying in basin A. Because it
was decided that the lower bound of basin A, ~ 650 K, the starting point for this initial trajectory
was chosen to be 660 K. The FFS method requires a simulation time, tgj,, (~ t4), to be selected for

the long, initial trajectory.

High temperature-high conversion
Basin A

Low temperature - low conversion
Basin B

Figure 6. DFFS schematic

2) Compute the number of initial crossings, Ny, as the number of times this long trajectory, having
simulation time tg;.y,, crosses the zeroth order parameter, A = 650 K. Save T and Ca at every

crossing point.

3) Repeat step 2 for multiple trajectories to generate a sufficient number of crossings, typically ~100

crossings. In this case, ~10 trajectories are considered, giving ~ No = 100 initial crossings.

4) Calculate the initial rate of transition across Ag, 17:
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5)

6)

7)

8)

9)

3Ny
21121 tA(l)

&1 (14)
where No(i) is the initial crossings generated for trajectory i and t,() is the time spent by
trajectory i in basin A. This approach, not only ensures a sufficient number of crossings, but

generalizes as r; represents an average computed over 10 trajectories.

Next, to calculate the probability of transitioning from one order parameter to another, the
number of interfaces and the interface spacing is chosen. The interface spacing is chosen to be
70 K (typically close to the standard deviation, o7, computed for basin A, which is 75 K), and
consequently, the number of interfaces from basin A to basin B = Njpterface = 4. Based on this,
the transitioning from basin A to basin B is in 70 K increments from 650 K to 370 K (which lies
within basin B), with order parameter values: (i) 1, = 650K, (ii)) 1; = 580 K, (iii) 4, = 510 K,
(iv) A3 = 440K, (v) 4, = 370 K.

A random crossing point is chosen from the saved crossings as the initial point, and a trajectory is
initiated from this point. This trajectory is terminated when A, has been crossed, with the crossing

point values saved. It is important to efficiently select the length for this trajectory, which is:

Length of each trajectory = 3 X _fta (15)

Ninterface

where tpg = transition time = 13 min and Njpterface = Number of interfaces = 4. The heuristic

factor 3 provides sufficient time for the trajectories to transition from A; to A;, 1.

Repeat step 6 for IV (~No) trajectories and calculate the probability of transition over A4 :

N.
py="2 (16)

where N; is the number of trajectories, out of N, which are successful in crossing 4.

Repeat steps 6 and 7 for each order parameter, 4;, to the last order parameter, 4,,. In this case, 1,, =

e

The overall probability of transition is the product of all the probabilities of local transition

computed:

Overall probability of transition = pgyeran = [lie Pi a7
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10) The overall rate of transition from basin A to B is:

kFFS

Overall rate of transition = = 11 X Poverall (18)

Table 2 summarizes the key steps in the FFS algorithm. Note that this method is conducted in the same

2

manner for all an (including higher 0,° values, as seen in Figure 5) , tracking the forward and

backward transitions — for backward transitions, the starting point is in the B basin and the direction of
transition is reversed (i.e., with temperature increases from Ao = 370 K to A4 = 650 K). The n values of
pi; 1.e., the local probability of transition across interface, 4;, is used to calculate commitment
probabilities at different points within the transition landscape. The committers show the likelihood of
interlock activation increasing as the process moves away from normal operation towards the B basin.
Committers are used to improve alarms by indicating the temperatures (and other variable values) along
the transition landscape as probabilities of reaching basin B approach 100%, with high rates, 7;. Also,
under these conditions, a switch to a more rigorous model can be achieved; e.g., involving a residence-

time distribution.

Table 2. Summary of Steps in the FFS Algorithm

1. Generate a long, initial trajectory starting in the A basin to generate initial crossings of A;.

2. Record the number of initial crossings, No. Save T and Ca at every crossing.

3. Repeat step 2 for multiple trajectories to generate a sufficient number of initial crossings.

4. Compute the initial rate of transition across A , 1y, by dividing the total number of initial crossings, ). No(i),
by the total time spent by each trajectory i in basin A, ¥ t,®.

5. Position the order parameters, A4, ..., A,

6. Choose random crossing points from among the saved crossings and generate a trajectory which continues
until A, is crossed. Save the T and C, at this crossing.

7. Repeat step 6 for N (~ Ny) trajectories

8. Repeat steps 6-7 at each A; until A, is reached.

9. Compute the overall probability of transitioning from A to B, pgyeran, by taking the product of the
probabilities for each A;=» A1 transition.

10. Compute the overall rate of transition as the product of the overall probability, poyeran, and the initial rate
of transition, 7y.

© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0
license https://creativecommons.org/licenses/by-nc-nd/4.0/



https://creativecommons.org/licenses/by-nc-nd/4.0

5. Results and Discussion

Consider the rare-event analyses by the BF and FFS methods for two classes of data-sets with:

i.  Noise variance fixed at 0,72 =0.02, and the residence time varied over 7= 0.5-0.53 min, and

11. Residence time fixed at 7 = 0.53 min and the noise variance increased over

ay% = 0.04-0.2.

These data-sets have been chosen to investigate the variation of the transition rates and their related
variables with both a key process variable, residence time, and the noise variance, which together

dictate the rarity of each trajectory.

Furthermore, as mentioned previously, for this rare-event analysis, two process configurations are

considered involving an:

i.  Uncontrolled exothermic CSTR process,

ii.  Exothermic CSTR process with proportional (P) control

5.1. Process Analysis Without Control

For the uncontrolled process, just the dynamic mass and energy balances, Eqs. (5) and (6), with
stochastic noise, 1, added to C,¢, are integrated using the explicit-Euler method, having step-size,
h =0.01 min. Multiple trajectories are generated using the BF and FFS methods to compute the rates

of transition between the A and B basins.

5.1.1. Noise Variance Fixed at g,,% = 0.02, Vary

Initially, the BF and FFS methods are carried out for the uncontrolled process with 0,72 =0.02,as T1is
varied from 0.5-0.53 min. Figure 7 shows the average survival probability, p, (t), as a function of time
t, on a semi-log scale, for residence times T = 0.5, 0.51, and 0.52 min, computed using the BF algorithm.
Each trajectory experiences a typical exponential decay (on a linear scale), with the magnitude of the
exponential argument, k%, being the BF rate of transition from basin A to basin B. It is observed that
as T increases, k®F decreases because the reactor spends more time in basin A. In other words, the
increase in T causes an increase in the average survival time, t4, increasing the stability of the process
in basin A. Note that, due to excessive computation times, BF analysis could not be conducted at T =

0.53 min and 0,)* = 0.02.

© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0
license https://creativecommons.org/licenses/by-nc-nd/4.0/



https://creativecommons.org/licenses/by-nc-nd/4.0

0 T
10 \

“\
y=-0.002807*t "
y =-0.000801 * t \‘\

y =-0.000207 * t

Data for = 0.5
Fitfor = 0.5
Data for 7 = 0.51
Fit for = = 0.51
Data for = 0.52
Fit for ~ = 0.52

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time (min)

Figure 7. Average survival probability in basin A, p,(t), on a semi-log scale for three residence

times, computed by BF algorithm

Similarly, the FFS transition rates agree with those computed by the BF method, with the FFS method
providing measurable and realistic transition rates at T = 0.53 min, as well as low computational costs,
showing the power of the FFS method for truly rare events. Figure 8 shows the variation of the local
interface probabilities at A;, as interface temperatures vary, as an illustration, for T = 0.5 min. While the
local interface probabilities vary with the interface temperatures for every simulation run, the overall
probabilities of transition; i.e., the products of the individual interface probabilities, do not change

significantly.
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Figure 8. Probability of transition across 4; as a function of temperature at A; for T = 0.5 min with

g% = 0.02
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Table 3 summarizes the results of the BF and FFS algorithms at 0,72 = (.02, where it can be seen that
the initial rate of transition, 7y, the overall probability of transition, pyyerann, and the FFS overall
transition rate, A'*5, decrease as T increases, it becoming more difficult to transition out of basin A.

Having computed the transition rates, a dimensionless activation energy barrier, E,, can be expressed

as:
kFFS = ko exp(—E,) (19)
and,
kFFS
Ey=—In( . ) (20)

where k is a pre-exponential factor. Figure 9 shows the natural logs of £ and kBF as functions of the
residence time, 7, where it can be seen that both In(AF%) and In(k®F) decrease linearly with 7. Hence,
given the decreasing dependence of kS on 7, and from Eq. (19), it can be concluded that E, has an

increasing dependence on 7.

7, min T4, min! Poverall kS, min-t kB, min-t
0.5 6.12E-02 5.46E-02 3.34E-03 2.81E-03
0.51 2.95E-02 2.79E-02 8.23E-04 8.01E-04
0.52 2.00E-02 9.51E-03 1.90E-04 2.07E-04
0.53 8.91E-03 3.37E-03 3.00E-05 -

Table 3. Summary of Results for the Uncontrolled Process at o, = 0.02
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Figure 9. Natural log of FFS and BF rates of transition as functions of the residence time, T

© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0
license https://creativecommons.org/licenses/by-nc-nd/4.0/



https://creativecommons.org/licenses/by-nc-nd/4.0

5.1.2. Residence Time Fixed at 7 = 0.53 min, Vary anz

At 7= 0.53 min, the noise variance is increased over 0,72 =0.04-0.2. And, at lower noise variances; i.e.,
0',72 < 0.1, the BF algorithm is carried out using multiple trajectories. In these cases, forward A-B
transition rates, kg, are computed, as are backward B-A transition rates, kj,, yielding an equilibrium

constant:

= ke
K= Q1)

However, for higher noise variances, 0,72 = 0.1, the BF algorithm yields single long trajectories
consisting of multiple back-and-forth, inter-basin transitions. Figure 10 shows the average survival

probabilities; i.e., pa (t) and pg(t), at T = 0.53 min and 0,72 = 0.2, computed using the BF method.

10° N

y = -0.047929 * 1)

y = -0.114034 * t

P (D) & pylt)
/

Data points for basin A
Linear fit for basin A
Data points for basin B
Linear fit for basin B

0 10 20 30 40 50 60 70
Time (min)

Figure 10. Survival probabilities for basins A, pa(t), and B, pg(t), as functions of time at T = 0.53
min and ¢,*> = 0.2, computed using BF method

To further analyze trajectories with inter-basin, back-and-forth transitions, Figure 11 shows the
probability at different temperatures, p(T), for the single trajectory at T = 0.53 min and anz =0.2.
Also, Figure 12 shows -In (p(T)); that is, the Gibbs free-energy landscape of the process, where the

two minima represent the most probable temperatures in the A and B basins.
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Figures 13a,b show In (k) and In (k) as linearly decreasing functions of the reciprocal of noise

variance, 1/ 0,,2, generated by BF and FFS analyses. Both the forward and backward transition rates
increase with an, as expected, due to the increased instability. Figure 14 shows the weak dependence
of the equilibrium constant, K, on Unz, for both BF and FFS methods, where it can be seen that K
remains fairly constant in the range of 0.4-0.5 regardless of the value of 0',72. Note that the transition

rates and the equilibrium constant, K, computed by the BF method agree fairly with those computed by

the FFS method. Also, at 7=0.53 min and 0772 =0.03, FFS was able to compute transition rates for this

truly rare transition, which could not be computed by the BF method, due to excessive computational

cost.
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Figure 14. The weak dependence of the equilibrium constant, K, on the noise variance, 0772, for both

BF and FFS methods.

Next, it is possible to quantify approximately the experimental dependence of the equilibrium constant

K on the noise variance, 0,72. The latter can be thought to add thermal effects to the process. Note that

the following equations are proposals validated by our data and need not be true for any process, in

general. Therefore, in accordance with statistical mechanics, 0,72 can be described as:
2 2 _
o,“ X RT, or g,“ = cRT, (22)

where R is the universal gas constant, T, is the absolute temperature, and c is a proportionality constant.

The forward and backward transition rates; i.e., kr and ks, can be quantified using the Arrhenius

equation:

ke = ko exp(—E¢/RT;)

23
ko = kop exp(~Ey/RT,) 23
Therefore, the equilibrium constant, K, can be expressed as:
— ke _ Kor _ (Ef—Ep)
K= Ko~ Fop exp( RT, ) (24)

where k,¢ and k), are the forward and backward pre-exponential factors, and Ef and Ey, are the
forward and backward activation energies. The difference between the forward and backward
activation energies; i.e., Ef — Ep = AG. Next, substituting RT,, from Eq. (22) into Eq. (24):

K= Xt = Kor exp (—CA—G) (25)

kp ko,b 0'772

The slope and intercept are used to compute the forward and backward pre-exponential factors; i.e., k¢
and k,,, and the forward and backward activation energies, E¢ and E},. Note that the linear equations
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obtained from the BF and FFS methods are sufficiently close for both the forward and backward
transitions. These equations are equivalent to the natural log of Eq. (23), and consequently, yield k, ¢

and k, . Then, the difference between the slopes of In (k) and In (ky,), provides Er— Ey, = AG.

Table 4 below shows the quantitative parameters computed using the linear equations of In (k¢) and
In (k) as functions of 1/ 0,72. It can be observed that AG is negative and of smaller magnitudes,
~O(107). Also, for both the BF and FFS methods, the ratio of the pre-exponentials, i.e., ko ¢/kop is
similar to the K values seen previously in Figure 14; i.e., in the range of 0.4-0.5. Hence, as observed

previously in Figure 14, the equilibrium constant is a very weak function of the noise variance, 0,72, and

strongly depends on the ratio of the forward and backward pre-exponential factors; i.e., ko ¢/ko 1.

Table 4. Computed Parameters from In (k) and In (k) as Functions of 1/ anz at 7=0.53 min

Method ko,f ko,b ko,f/ko,b Ef Eb AG
BF 0.1285 0.2862 0.449 0.1969 0.1981 -1.2E-03
FFS 0.1282 0.2922 0.4387 0.1959 0.2 -1.87E-03

5.2. Process Analysis with P-Control
5.2.1. Noise Variance Fixed at anz =0.02, Vary

In the first class of data-sets, the analyses of the forward A-B transitions by the BF and FFS
algorithms are employed as described at fixed 0,72 = (.02, with t varied from 0.5-0.53 min, and
considering K¢ = 0.02, 0.05 and 0.1. Note that for the high control action at Kz = 0.1, in the FFS
algorithm, the probability of transitioning from 1; = 440 K to 4, = 370 K was computed to be zero
at all residence times. Also, note that the last order parameter was moved to 390 K (from 370 K) since
below this temperature, the transition probabilities were computed to be zero. Hence, to conduct FFS
analysis, the order parameters were further discretized between 440 and 390 K: (i) 1, = 650 K, (ii)
A1 =580K, (i) A, = 510K, (iv) 13 = 440K, (v) 4, = 420K, (vi) 45 = 400 K, (vii) 1¢ = 390 K.

Figure 15 shows In (k"*%) as a function of the residence time without control and for three controller
gains, Kc. The overall rates of transition decrease with increased residence time, t, at constant K, as
the stability of the process in basin A increases. Also, the magnitude of the slope and intercept is highest
for K¢ = 0.1, as the high control action makes it harder for the process to transition out of the A basin.
Figure 16 shows In (k') as a function of the controller gain, K, for the four residence times, where
non-linear decreasing behaviors for all four residence times can be observed. At constant t, the overall
transition rates decrease with increased K, also due to increased stabilization of the process in basin A.

This decrease is observed to be more prominent at K- = 0.1, due to the high control action. Note that
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the FFS algorithm computes transition rates at T = 0.53 min and K = 0.1, truly rare transitions,
considering the high stability of the process in basin A. But, as for the process without control, the BF

analysis is unable to track them due to excessive computational costs.
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Figure 15. In (kFFS) as a function of the residence time, 7, as the controller gain, K, varies, for 0',72 =
0.02 using the FFS method
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Figure 16. In (kFFS) as a function of the controller gain, K, as residence time, 7, varies, for

0',72 = 0.02 using the FFS method

5.2.2. Residence Time Fixed at 7 = 0.53 min, Vary g,°

For the P-controlled process with 7 fixed at 0.53 min, analysis by the BF algorithm, as previously

conducted for the uncontrolled process, is carried out using multiple trajectories when 0,72 <0.1,and a
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long, single trajectory with multiple back-and-forth inter-basin transitions when 0,72 = 0.1. Similarly,
for the FFS method, the last basin between 440 K and 390 K is further discretized when K¢ = 0.1.
Figure 17 shows the decreasing trends for In (k7) and In (k) as functions of 1/(7,72 for the FFS method,

for K. = 0.02 and 0.05. Figures 18a,b shows the non-linear dependence of In (kr) and In (kv) on the
FFS

b

controller gain, K. for fixed 0772 , where it can be observed that the forward transition rates, k¢
decrease with increasing K, as the increased control action increases the stability of the process in
basin A. On the other hand, the backward transition rates, kaFS, increase with increasing K¢, as the
increased control action decreases the stability of the process in basin B. Additionally, it can be observed

that at K. = 0.1, In (ky, FFS) appear close to one another for all 0'772.
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Figure 19 shows the weak dependence of K on 0,72 for the uncontrolled and two P-controlled
configurations. Consequently, K decreases with increasing control action. Note that, as without control,
the BF method does not compute the transition rates at Kc = 0.1 due to excessive computational costs.
In contrast to prior observations, at K¢ = 0.1, Figure 20 shows the strong linear dependence of In (K) on
1/0,72. In this case, as seen in Figure 21, kfFFS increases significantly with a,2, but kaFS does not
change significantly because the added control action, at K- = 0.1, does not significantly increase the

instability of the B basin — thus causing K to change significantly with 0772. At such high control action,

the process is already very unstable in the B basin — hence, increases in 0,72 do not affect kaFS

significantly.
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Figure 19. K as a weak function of O'nz for the three process configurations
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Figure 20. In (K) as a function of 1/(7,72 for Kc=0.1 Figure 21. In (kfFFS) and In (kaFS) as functions of
1/ 0)* for Kc = 0.1

As shown previously, the dependence of K on anz is quantified from plots of In (k¢ FFS) and In (ky, FFS)

as functions of 1/ 0,,2 in Figure 17. As seen in Figure 20, because K is a strong function of anz for
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Kc = 0.1, the linear equation quantitatively relates K and 0,]2, with the slope equaling cAG, and the

exponential of the intercept equaling ko ¢/ ko p.

Table 5 shows the quantitative parameters computed using the linear equations for In (kg FFS) and In
(ky FFS) as functions of 1/ O'nz. For all cases except K¢ = 0.1, ko ¢/kop decreases with increasing
control action, with k,¢/k,}, similar to the K values seen previously and the magnitude of the small,
negative AG (~ O(10?) ) increases with increasing control action. For K; = 0.1, AG is observed to be
positive, with a much higher magnitude. Therefore, K is a very weak function of the noise variance,

0',72, for all cases except for P-control with K¢ = 0.1.

Table 5. Computed Parameters from In (47) and In (k) as Functions of 1/ 0',72 at 7= 0.53 min for

the P-controlled Process, Using FFS

Kc ko ko kog/kop E¢ Ey AG

- 0.1282 0.2922 0.4387 0.1959 0.2 -1.87E-03
0.02 0.1162 0.3268 0.3556 0.1989 0.2021 -3.17E-03
0.05 0.0958 0.3624 0.2644 0.1949 0.1982 -3.3E-03
0.1 - - 0.4034 - - +0.2454/c

5.3. Dynamic Analyses Tracking Long Process Trajectories

To understand better the behavior of the long process trajectories, key process variables were examined
as dynamic profiles proceeded in the vicinity of transitions from basin-to-basin. For t = 0.53 min and
0,72 =(.04, trajectories for uncontrolled and P-controlled processes, with Kc= 0.05 and Fco =30 m*/min,
were studied. Figures 22a,b show the temperature profile and a magnified plot of the normalized
temperature and concentration between ¢ = 154 and 159 min, where the first forward transition is
initiated. Note that the temperature, 7, and the outlet concentration, Ca, are normalized using their high
temperature-high conversion steady states; i.e., 77800 and Ca/1.05. It can be observed here that as Ca
decreases, due to high conversion, 7T increases, and as Ca increases, due to low conversion, 7 decreases.
Hence, increases/decreases in concentration, Ca, impacted more directly by concentration noise, lead
to low and high peaks in temperature. The first temperature local maximum is observed at f = 155.5
min, followed by the first local concentration minimum, observed at ¢t = 156 min. This appears to
indicate that the temperature changes first followed by a short lag in concentration. This can also be
seen when the first local temperature minimum is observed at ¢ = 156.4 min, followed by the first local
concentration maximum at # = 156.6 min. To validate this observation, multiple long trajectories were

initiated, with each trajectory consisting of finite back-and-forth inter-basin transitions, and for each
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Temperature (K)

transition region of every trajectory, the temperature appeared to lead the concentration. Because the
noise is added directly to the concentration, it was expected that the concentration would lead the
temperature — but because the temperature leads the concentration, the thermal effects brought by the

noise, affect the temperature before the concentration, and thereby, cause the transition.
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Figure 22. Temperature profile and magnified plot of the normalized dynamic variables for the

uncontrolled process at T=0.53 min and 0772 =0.04

Figure 23a.b similarly show the temperature profile and the magnified plot of the normalized dynamic
variables between ¢ = 1568 and 1575 min for the P-controlled process with Kc= 0.05 and Fco = 30
m’/min, with the two additional dynamic variables being the normalized cooling water (CW)
temperature and normalized CW flow-rate, normalized respectively at their steady state values, i.e.,
T¢/300 and F¢/30. It can be observed that T continues to lead Ca, and Tc does not respond to changes
in T and Cs. Fc responds almost immediately to the changes in the process temperature, 7, with

maximum and minimum peaks for each observed at nearly equal time instants.

© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0
license https://creativecommons.org/licenses/by-nc-nd/4.0/



https://creativecommons.org/licenses/by-nc-nd/4.0

Temperature (K}

n

1300 T
A
1200 A\
g [ 7\
2 s I \
1100 kS Sy - / i -
= 1
1000 = \\h\ " 5
= A\ / I \\\
2 N ! ER
900 £ 08 k- I \\\
(3] | T
800 = } N
700 S8 ‘
g MM, |
i 1y
600 © 0.4 Normalized Temperature h
g Normalized Concentration |
500 (=] -~ Normalized CW Tem perature 1
= i Normalized CW Flow-rate ]
400 .| 0.2 — — — -Local Tmax and Fc‘max att=1572.1 min } ‘
— — — - Local Cmman='\5725m|n 1 ]
0 L s n 0 L L i i il 1 L L
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 1567 1568 1569 1670 1571 1572 1573 1574 1675
Time (min) Time (min)
(a) Temperature profile (b) Normalized dynamic variables, magnified to ¢ =

1568 and 1575 min

Figure 23. Temperature profile and magnified plot of the normalized dynamic variables for the

P-controlled process at T=0.53 min, 0,72 =0.04, Kc = 0.05 and Fco = 30 m*/min

5.4. Comparison with Transition-Path Sampling (TPS)

Rare-event analysis by FFS yields numerous benefits beyond TPS. First, TPS requires that an initial
trajectory be generated that transitions between basins of normal operation and interlock activation.
Then, additional trajectories are generated by random perturbations from the initial trajectory. But,
these may require high computational costs, especially when transition probabilities are very small.
Also, each new trajectory, from its perturbation point, must be integrated forward and backward over a
pre-specified simulation time. Often, however, the trajectories are too similar to the initial trajectory.
More significantly, the backward integrations often encounter numerical instability, requiring
boundary-value optimization techniques such as the “shooting” (Bock et al., 2000) and orthogonal
collocation (Cuthrell and Biegler, 1989) methods, adding to the computational costs. Also, because
TPS does not generate trajectories in a piece-wise manner, it is difficult to use for rate or committer

analysis, which is achieved easily using FFS.

To circumvent these disadvantages, by integrating solely forward from the initial basin to the final
basin, FFS generates more independent rare paths — each having different time durations, while TPS
rare paths have the same duration. This broader distribution of rare paths can lead to improved alarm

systems, to be demonstrated in future research.
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6. Conclusions

The FFS method, in particular the DFFS variant, can simulate and detect rare-event transitions between
normal and abnormal operating conditions resulting in automated plant shutdowns, which adversely
impact plant reliability. It generates numerous rapid-transition trajectories, that occur rarely, sharply
reducing their discovery time, as shown herein, from weeks to just a few minutes. Transitions away
from normal operation are made either by adding noise directly to the operating parameters affecting
multiple balance equations, called ‘parametric noise’, or by adding properly-scaled ‘non-parametric’

noise terms in single balance equations.

Hence, the stochastic nature of the FFS method and its ability to generate large numbers of rare-event
trajectories have been demonstrated herein using a simple, dynamic exothermic CSTR model with non-

parametric noise added to the inlet concentration. At increased noise variance, 0,,2, the inter-basin

back-and-forth transitions observed for not-so-rare events are noteworthy. Results generated by the
FFS method are clearly more reliable than those by the BF method, achieved at lower computational
costs — with the largest differences being for truly rare-events. While the weak dependence of K on

0,72 at fixed 7 was anticipated (because increases in anz cause increases to both &r and k), the strong

dependence of K on anz at high control action (i.e., at Kc = 0.1) was unanticipated.

Given the simplicity of the exothermic CSTR model, investigations of rare-event pathways for more
rigorous CSTR models are justified. Also, applications of the FFS method to explore rare-events in
complex large-scale processes, such as steam-methane reformers (SMRs) and air-separation units
(ASUs) are justified. Note that, for the latter, transition-path sampling (TPS) was utilized to trace rare-
event paths (Moskowitz et al., 2018).

7. Acronyms

Acronym Term

ASU Air-separation Unit

BF Brute-force

BG Branched-growth
CSTR Continuous Stirred Tank Reactor
DFFS Direct Forward-Flux Sampling
FFS Forward-Flux Sampling

MD Molecular Dynamics
MPS Model-Predictive Safety

PI Proportional-Integral

RB Rosenbluth

SIS Safety Instrumented System
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SMR
TPS

Steam-Methane Reformer

Transition-Path Sampling

8. Nomenclature

English
Variables Quantity Units
A Heat Transfer Area m’
Ca Outlet concentration of Reactant A kmol m™
Car Feed Concentration of Reactant A kmol m™
Gy Specific Heat Capacity of Feed kJ kg K
Cow Specific Heat Capacity of Water kJ kg K
E Activation Energy kJ kmol!
E, Dimensionless Activation Barrier -
Ey, Backward Activation Energy kJ kmol!
E¢ Forward Activation Energy kJ kmol!
e; Integral Error K min
F Feed Flow-rate kmol min’!
Fc Cooling Water (CW) Flow-rate m’ min’!
Fco Steady State CW Flow-rate m’ min’!
Femax Maximum Saturated CW Flow-rate m® min’!
h Integration Step-size min
K Equilibrium Constant -
Kgr Brute-force Equilibrium Constant -
Kc Controller Gain m’ mol! K!
KFrs FFS Equilibrium Constant -
kBT Brute-force Rate of Transition min’!
KFFS FFS Rate of Transition min’!
ky BF BF Backward Transition Rate min’!
k¢ BF BF Backward Transition Rate min’!
ke FFS FFS Forward Transition Rate min’!
ky FFS FFS Backward Transition Rate min’!
kop Backward Pre-exponential Factor min’!
ko s Forward Pre-exponential Factor min!
N Number of Trajectories -
Ny Number of Initial Crossings -
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N interface

Number of Interfaces

M Number of Intervals Beginning in Basin A -

n; Number of Intervals Surviving in Basin A -
p(T) Probability at Different Temperatures -
p(t) Survival Probability -
pa(t) Survival Probability within A Basin -
pa(t) Survival Probability within B Basin -

Poverall Overall Probability of Transition -

R Universal Gas Constant kJ kmol ! K!

-r Rate of Reaction kmol m> min!

1 Initial Rate of Transition min’!

T Outlet Temperature K

Tpase Base Temperature K

T. CW Temperature K

Tco Inlet CW Temperature K
Tcmax Maximum Saturated CW Temperature K

Tt Feed Temperature K

Tsp Set-point Temperature K

T, Absolute Temperature K

t Time Variable min

to Initial Time min
AB Transition Time min
tsim Simulation Duration of Trajectory min

t, Survival Time in A Basin min

U Overall Heat Transfer Coefficient kJ min! K-' m?

14 Reactor Volume m?

Vi Jacket Volume m?

Greek
Variables Quantity Units
AG Change in Gibbs Free Energy kJ kmol!
AH Heat of Reaction kJ kmol!

n Noise kmol m?

y) Order Parameter K

U Mean kmol m™
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p Feed Density kg m3
Water Density kg m3
oT Standard Deviation K
0,° Noise Variance kmol? m®
T Residence Time min
T, Transition Time Constant min!
T Integral Time Constant min

9. References

Allen, R.J., Frenkel, D., ten Wolde, P.R., 2006. Simulating rare events in equilibrium or
nonequilibrium stochastic systems. Journal of Chemical Physics.
https://doi.org/10.1063/1.2140273

Allen, R.J., Valeriani, C., Rein Ten Wolde, P., 2009. Forward flux sampling for rare event
simulations. Journal of Physics Condensed Matter 21. https://doi.org/10.1088/0953-
8984/21/46/463102

Bi, Y., Li, T., 2014. Probing methane hydrate nucleation through the forward flux sampling method,
in: Journal of Physical Chemistry B. https://doi.org/10.1021/jp503000u

Bock, H.G., Diehl, M.M., Leineweber, D.B., Schldder, J.P., 2000. A Direct Multiple Shooting
Method for Real-Time Optimization of Nonlinear DAE Processes, in: Nonlinear Model
Predictive Control. https://doi.org/10.1007/978-3-0348-8407-5_14

Bolhuis, P.G., Chandler, D., Dellago, C., Geissler, P.L., 2002. Throwing Ropes Over Rough
Mountain Passes, in the Dark. Annual Review of Physical Chemistry 53.
https://doi.org/10.1146/annurev.physchem.53.082301.113146

Cuthrell, J.E., Biegler, L.T., 1989. Simultaneous optimization and solution methods for batch reactor
control profiles. Computers and Chemical Engineering 13. https://doi.org/10.1016/0098-
1354(89)89006-4

Filion, L., Hermes, M., Ni, R., Dijkstra, M., 2010. Crystal nucleation of hard spheres using molecular
dynamics, umbrella sampling, and forward flux sampling: A comparison of simulation
techniques. Journal of Chemical Physics. https://doi.org/10.1063/1.3506838

Horsch, M., Vrabec, J., Bernreuther, M., Grottel, S., Reina, G., Wix, A., Schaber, K., Hasse, H., 2008.
Homogeneous nucleation in supersaturated vapors of methane, ethane, and carbon dioxide
predicted by brute force molecular dynamics. Journal of Chemical Physics 128.
https://doi.org/10.1063/1.2907849

Jiang, H., Haji-Akbari, A., Debenedetti, P.G., Panagiotopoulos, A.Z., 2018. Forward flux sampling
calculation of homogeneous nucleation rates from aqueous NaCl solutions. Journal of Chemical
Physics 148. https://doi.org/10.1063/1.5016554

Mehta, B.R., Reddy, Y.J., 2015. Alarm management systems, in: Industrial Process Automation
Systems. https://doi.org/10.1016/b978-0-12-800939-0.00021-8

© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0
license https://creativecommons.org/licenses/by-nc-nd/4.0/



https://creativecommons.org/licenses/by-nc-nd/4.0

Moskowitz, I.H., Seider, W.D., Patel, A.J., Arbogast, J.E., Oktem, U.G., 2018. Understanding rare
safety and reliability events using transition path sampling. Computers and Chemical
Engineering. https://doi.org/10.1016/j.compchemeng.2017.06.016

Muioz, M.A., Grinstein, G., Tu, Y., 1997. Survival probability and field theory in systems with
absorbing states. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related
Interdisciplinary Topics 56. https://doi.org/10.1103/PhysRevE.56.5101

Yeh, I.C., Hummer, G., 2002. Peptide loop-closure kinetics from microsecond molecular dynamics
simulations in explicit solvent. Journal of the American Chemical Society 124.
https://doi.org/10.1021/ja025789n

Zhang, Y., McCammon, J.A., 2003. Studying the affinity and kinetics of molecular association with
molecular-dynamics simulation. Journal of Chemical Physics 118.
https://doi.org/10.1063/1.1530162

10. Acknowledgments

The NSF CBET funding for our EAGER GOALI grant, 1839535, is greatly appreciated. Also, the
suggestions and advice of Dr. lan Moskowitz, Prof. Masoud Soroush, and Dr. Ulku Oktem were very
helpful. The initial descriptions by Nick Baylis were also helpful and very much appreciated.

© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0
license https://creativecommons.org/licenses/by-nc-nd/4.0/



https://creativecommons.org/licenses/by-nc-nd/4.0

