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Abstract 

This paper presents improvements upon methods that explore rare process trajectories leading to rare 

safety and reliability events.  It applies forward-flux sampling (FFS) from the family of sampling 

algorithms developed to discover rare molecular dynamics pathways.  For a relatively simple, dynamic 

exothermic CSTR model with noisy feed concentration, it shows how to apply the FFS algorithm to 

simulate and analyze rare trajectories between high- and low-conversion steady states.  First, it 

compares results with a less efficient brute-force (BF) method, and then with a transition-path sampling 

(TPS) method applied in simulation studies for an exothermic CSTR. The effects of varying key process 

parameters, i.e., the residence time, τ, noise variance, 𝜎𝜎𝜂𝜂2 , and the controller gain, KC, which impact 

the rareness of an event, are investigated. Rates of rare-path transition between high- and low-

conversion steady states, forward and backward, are shown to exhibit equilibrium ratios independent of 

𝜎𝜎𝜂𝜂2, with the forward rates decreasing with τ and KC, and the backward rates increasing with KC, 

whereas both increase with 𝜎𝜎𝜂𝜂2. 
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1. Introduction 

Safety and reliability events are of primary concern in the process and manufacturing industries, where 

safety issues can cause pernicious impacts on human health and environment due to extreme operating 

conditions, such as high temperatures and pressures and the presence of hazardous chemicals and 

materials.  Fortunately, it is possible to mitigate these risks. 

Near the vicinities of unsafe operation, it is imperative to utilize automated safety interlocks, which 

have the capability to shutdown plants, thereby avoiding the related consequences.  These measures, 

however, can increase unreliability with production-time losses due to shutdowns, maintenance, and 

start-up delays.  Moreover, they may disrupt routine procedures, adversely impacting human health and 

the environment.  Hence, there is a strong motivation to develop strategies to avert more effectively 

unsafe operations. 

Alarm management schemes are a key to ensure the safety and reliability of manufacturing plants and 

processes.  They aid in mitigating losses by ensuring that the concerned process variables remain within 

bounds of safe operation by triggering actionable alarms when these variables individually approach 

the vicinities of unsafe regions, following which, adequate steps can be taken through intervention by 

the operator (Mehta and Reddy, 2015).  Such alarm schemes prove to be effective in tackling commonly 

occurring ‘postulated’ events that lead to interlock activation, but often fail to predict the rare ‘un-

postulated’ event trajectories that result in abnormal events.  Hence, the design of alarms based upon 

the detection of such rare, un-postulated event trajectories, is beneficial to ensure plant safety and 

reliability (Moskowitz et al., 2018). 

This paper introduces two methods to detect the pathways leading to rare, un-postulated events: (1) an 

illustrative but inefficient brute-force (BF) method, and (2) a forward-flux sampling (FFS) method that 

is capable of estimating rates of rare-events. The latter is shown to trace pathways to rare events, 

triggering alarms that enable immediate operator interventions.  The FFS method is an alternative to 

the transition-path sampling (TPS) method, whose application was discussed and applied by Moskowitz 

et al. (2018) for operation of a CSTR with an exothermic RP reaction and an air-separation system 

to produce oxygen, nitrogen, and argon.  Both FFS and TPS methods have been employed routinely in 

molecular dynamics (MD) simulations to locate rare events in stochastic non-equilibrium systems 

(Allen et al., 2006), including nucleation rates of hard spheres (Filion et al., 2010), methane hydrate 

nucleation (Bi and Li, 2014) and homogeneous nucleation of sodium chloride crystals (Jiang et al., 

2018).  To our knowledge, this is the first application of the FFS method for detecting rare-event 

pathways in process operations.  Herein, the analysis of rare-event pathways by the BF and FFS methods 

is demonstrated using a CSTR with noisy feed concentration to carry out an exothermic RP reaction, 

thereby facilitating inter-basin transition(s) between the high conversion-high temperature basin ‘A’ 

and low conversion-low temperature basin ‘B’. This analysis consists of studying the effects observed 
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by varying key process parameters; i.e. the residence time, τ, and the noise variance, 𝜎𝜎𝜂𝜂2, and are hence 

instrumental in dictating the rarity of a particular process trajectory.  This analysis using BF and FFS 

methods is conducted for two process configurations for the exothermic CSTR – one without a control 

system and another inclusive of proportional P-control, where a third process parameter – the controller 

gain, KC, becomes critical in estimating the rarity of a particular event.  Lastly, a dynamic analysis is 

conducted for long process trajectories near the vicinity of the transition to investigate their cause and 

study how the key process variables, such as the process temperature and the outlet concentration, 

respond to the changes caused by the noise, where it is observed that the process temperature responds 

first to the noise. 

 

2. Description of the Exothermic CSTR 

 Consider a jacketed exothermic CSTR model with reaction: 

                                                                        R →  P                                                                    (1) 

Figure 1 shows a schematic of the model.  The feed temperature and inlet concentration of A are Tf, CAf 

and the outlet temperature and concentration; i.e., T, CA, are computed to be functions of time. The 

model is simplified by assuming ideal mixing, completely back-mixed, with a constant residence time, 

and incompressible flow. The cooling water-jacket is assumed to be sufficiently large such that the 

cooling water temperature, TC, changes negligibly (for the uncontrolled process). The model also 

includes a temperature controller (TC) that controls T by manipulating the inlet cooling water flow-rate, 

FC. The kinetics of the reaction are elementary with the intrinsic rate of reaction: 

                                                       −𝑟𝑟 = 𝑘𝑘0exp �− 𝐸𝐸
𝑅𝑅𝑅𝑅
�𝐶𝐶A                                                           (2) 

where ko is the Arrhenius pre-exponential factor, E is the activation energy, and R is the universal gas 

constant. 

 

Figure 1. Schematic of the exothermic CSTR  
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The governing mass and energy balance equations for the uncontrolled process are: 

                                        𝑉𝑉 𝑑𝑑𝐶𝐶A
𝑑𝑑𝑑𝑑

= 𝑉𝑉
𝜏𝜏

(𝐶𝐶Af − 𝐶𝐶A) − 𝑉𝑉𝑉𝑉0 exp �− 𝐸𝐸
𝑅𝑅𝑅𝑅
�𝐶𝐶A                                            (3) 

                       𝜌𝜌𝜌𝜌𝐶𝐶p
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜌𝜌𝜌𝜌𝐶𝐶p
𝜏𝜏

(𝑇𝑇f − 𝑇𝑇) − 𝑉𝑉∆𝐻𝐻𝑘𝑘0 exp �− 𝐸𝐸
𝑅𝑅𝑅𝑅
�𝐶𝐶A + 𝑈𝑈𝑈𝑈(𝑇𝑇c − 𝑇𝑇)                          (4)                

where V is the reactor volume, τ is the residence time, U is the overall heat-transfer coefficient, A is the 

heat-transfer area,  ∆𝐻𝐻 is the heat of reaction,  𝜌𝜌 is the feed density, and 𝐶𝐶p is the heat capacity of the 

feed stream.  Table 1 contains the constants and parameters utilized in this study. 

Table 1.  Process Constants and Parameters 

Parameter Value Unit 

A 30 m2 

CAf 2 kmol/m3 

Cp = Cpw 4 kJ/(kg-K) 
E 1.50E+04 kJ/kmol 

FC0 30 m3/min 
k0 17.038 1/min 
R 8.314 kJ/(kmol-K) 

Tco 300 K 
Tf 300 K 

TSP 800 K 
U 100 kJ/(min-K-m2) 

V = Vj 10 m3 

∆H -2.20E+06 kJ/kmol 
ρ = ρw 1,000 kg/m3 

 

Eqs. (3) and (4) are solved simultaneously to determine steady-state values for the outlet concentration 

and outlet temperature. This procedure is repeated for residence times ranging from τ = 0 to τ = 1 

minutes, with multiple steady states detected for 𝜏𝜏 = 0.47-0.56 min, with stable steady states at the high 

conversion-high temperature basin ‘A’ and low conversion-low temperature basin ‘B’ (Balakotaiah & 

Luss, 1983).  The state variables; i.e., the conversion and outlet temperature, are shown as functions of 

residence time, in familiar S-shaped curves, in Figure 2a, with the black rectangle signifying the range 

of residence times for which multiple steady states are detected. Figure 2b shows the magnified view 

of the same, with colored solid lines depicting the residence times considered for analysis.  
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(a) State variables as functions of residence time at steady 

state 

 
 

(b)  Magnified view of the rectangle showing the range 

of τ for which multiple steady states are detected 

 

Figure 2. State variables as functions of residence time at steady state and magnified view of the 

rectangle showing the multiple steady-state range of τ 

To facilitate inter-basin transitions, random, non-parametric noise, η, is added to the inlet concentration.  

This noise variable is sampled from a Gaussian distribution having mean, 𝜇𝜇 = 0, and variance, 𝜎𝜎𝜂𝜂2.  

Note that the noise is sampled at every integration time-step (h = 0.01 min) and scaled appropriately.  

The dynamic integrations are conducted using the explicit-Euler method within acceptable bounds of 

numerical stability and accuracy.  With noise, the governing equations are: 

                                𝑉𝑉 𝑑𝑑𝐶𝐶A
𝑑𝑑𝑑𝑑

= 𝑉𝑉
𝜏𝜏

(𝐶𝐶Af +  𝜂𝜂 − 𝐶𝐶A)− 𝑉𝑉𝑉𝑉0 exp �− 𝐸𝐸
𝑅𝑅𝑅𝑅
�𝐶𝐶A                                    (5) 

                     𝜌𝜌𝜌𝜌𝐶𝐶p
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜌𝜌𝜌𝜌𝐶𝐶p
𝜏𝜏

(𝑇𝑇f − 𝑇𝑇) − 𝑉𝑉∆𝐻𝐻𝑘𝑘0 exp �− 𝐸𝐸
𝑅𝑅𝑅𝑅
�𝐶𝐶A + 𝑈𝑈𝑈𝑈(𝑇𝑇c − 𝑇𝑇)                     (6) 

Next, using proportional P-control to regulate the reactor temperature, T, by manipulating the cooling 

water flow rate, 𝐹𝐹C, in a jacket, three controller gains are considered; 𝐾𝐾C = 0.02, 0.05, and 0.1.  The 

governing equations that model the P-controlled process are: 

                                       𝑉𝑉 𝑑𝑑𝐶𝐶A
𝑑𝑑𝑑𝑑

= 𝑉𝑉
𝜏𝜏

(𝐶𝐶Af − 𝐶𝐶A +  𝜂𝜂) − 𝑉𝑉𝑉𝑉0 exp �− 𝐸𝐸
𝑅𝑅𝑅𝑅
�𝐶𝐶A                                   (7) 

                     𝜌𝜌𝜌𝜌𝐶𝐶p
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜌𝜌𝜌𝜌𝐶𝐶p
𝜏𝜏

(𝑇𝑇f − 𝑇𝑇) − 𝑉𝑉∆𝐻𝐻𝑘𝑘0 exp �− 𝐸𝐸
𝑅𝑅𝑅𝑅
�𝐶𝐶A + 𝑈𝑈𝑈𝑈(𝑇𝑇c − 𝑇𝑇)                         (8)      

                                       𝑑𝑑𝑇𝑇C
𝑑𝑑𝑑𝑑

=  𝐹𝐹C
𝑉𝑉j

 (𝑇𝑇C0 − 𝑇𝑇C)−  𝑈𝑈𝑈𝑈
𝜌𝜌w𝑉𝑉j𝐶𝐶pw

(𝑇𝑇C − 𝑇𝑇)                                             (9) 

                                                   𝐹𝐹C = 𝐹𝐹C0 + 𝐾𝐾C( 𝑇𝑇 −  𝑇𝑇SP)                                                          (10) 
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where FC0 is the cooling water flow rate at steady state, KC is the controller gain, TC0 is the inlet 

temperature of the cooling water, TSP is the set-point temperature for the controller, Vj is the volume of 

the cooling-water jacket, 𝜌𝜌w is the density of the cooling water, and 𝑐𝑐pw  is the specific-heat capacity 

of the cooling water (refer to Table 1 above).  Note that TSP is maintained constant throughout, 

regardless of trajectories initiating in either basin.  

Figures 3a,b show the temperature profiles for two typical dynamic trajectories for 𝜎𝜎𝜂𝜂2 = 0.02, for the 

uncontrolled process.  The time spent by the process trajectory in basin A increases with τ for fixed 

𝜎𝜎𝜂𝜂2; i.e., it becomes more difficult for the process to transition out of basin A, but the time taken to 

transition from basin A to basin B, 𝑡𝑡AB, is found to be independent of τ, with  

𝑡𝑡AB = 13 min.  Note that before conducting the analyses using BF and FFS methods, the lower-bound 

temperature for basin A, i.e., the minimum temperature required for the process to be in basin A, needs 

to be estimated. As a first approximation, this lower-bound temperature is adjusted iteratively to center 

the distribution of temperatures attained in basin A over multiple trajectories at 800 K, thereby 

generating a mean, 𝜇𝜇 ~ 800 K, and the standard deviation, 𝜎𝜎𝑇𝑇 ~ 75 K.  Note that the same lower bound 

is used for all considered values of τ and 𝜎𝜎𝜂𝜂2. Multiplying by two, using a heuristic, the lower bound 

temperature for basin A is adjusted to: 

                               Lower bound for basin A = 𝜇𝜇 − (2𝜎𝜎𝑇𝑇) ~ 650 𝐾𝐾                                    (11) 

 

  
 

(a) 𝜏𝜏 = 0.5 min, 𝜎𝜎𝜂𝜂2= 0.02 

 

(b) 𝜏𝜏 = 0.51 min, 𝜎𝜎𝜂𝜂2 = 0.02 

Figure 3. Temperature profiles for dynamic trajectories with noise added to inlet concentration, 
showing the mean, 𝜇𝜇 ~ 800 K, and the standard deviation, 𝜎𝜎𝑇𝑇 ~ 75 K 
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3. Brute-force (BF) Method 

Example applications for the BF method include simulation of homogeneous nucleation during the 

condensation of supersaturated vapors of methane, ethane, and carbon dioxide (Horsch et al., 2008), 

and an investigation of the association of methane in water (Zhang and McCammon, 2003).   

Consider the BF method for simulation of the exothermic CSTR, which is used to compute the rate of 

transition from basin A to basin B as the rate of exponential decay of the survival probability of the 

process to remain in basin A, for rare events.  The survival probability, in general, is defined as the 

probability of the process remaining (or ‘surviving’) in a particular basin (A or B) over a continuous 

time interval.  Note that survival probabilities have been routinely studied in various domains, such as 

in the analysis of stochastic non-equilibrium systems with absorbing states (Muñoz et al., 1997), and to 

investigate the loop-closure kinetics of penta- and octa-peptides Cys-(Ala-Gly-Gln)n -Trp (n = 1 and 2) 

(Yeh and Hummer, 2002).   

Therefore, assuming that the inter-basin transition follows first-order kinetics, the survival probability 

within basin A, 𝑝𝑝A(𝑡𝑡), is: 

 
                                                    𝑝𝑝A(𝑡𝑡) = 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑘𝑘BF𝑡𝑡)                                                         (12) 

where kBF is the BF rate of transition.  Herein, to determine k, at each residence time, ~100 trajectories 

are generated that trace the transition from basin A to B.  To achieve this, several steps are followed: 

1) To calculate the survival probability for the reactor to remain in basin A, two main conditions are 

checked to conclude it has descended to basin B: 

i)  A base temperature, ~ 500 K, is set below which the reactor can be considered to have descended 

to basin B. 

ii) A retention time, ~2𝑡𝑡AB, is identified beyond which the reactor lies below 500 K. This condition 

is more important and critical than condition i. 

 

2) For each of 100 trajectories, the survival probabilities are calculated along the dynamic profile.  

Then average probabilities are computed along the dynamic profiles, and, by regression, the BF 

rate of transition; i.e., kBF in Eq. (12), is determined. 

 

3) Next, the average survival time of the reactor in basin A, 𝑡𝑡𝐴𝐴�  , is computed: 

                                                                          𝑡𝑡𝐴𝐴� =  1
𝑘𝑘BF

                                                                      (13) 

Like the survival probability, the average survival time, 𝑡𝑡𝐴𝐴� , is defined as the average time during 

which the reactor remains or ‘survives’ in basin A before transitioning to basin B.  For instance, it 
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can be seen in Figure 3a, for τ = 0.5 min, the survival time for this process trajectory is ~ 350 min, 

with  𝑡𝑡A�  being the average survival time for the 100 trajectories.  Figures 4a,b show an example of 

how the rate of transition is computed using the BF algorithm for a specific process configuration 

of τ = 0.5 min and  𝜎𝜎𝜂𝜂2 = 0.02, computed over 100 trajectories, on linear and semi-log scales.  It 

can be seen here that the data validates the first-order kinetics for the transition that was assumed 

in Eq. (12).  The linear fit showed in Figure 4b appears to decrease in accuracy with time due to the 

small probabilities computed at higher times. 

 

  
 

(a) Survival probability, pA(t) on linear scale  

 

(b) pA(t) on semi-log scale  

Figure 4. Example of a BF simulation showing pA(t) on linear and semi-log scales at τ = 0.5 min and 

 𝜎𝜎𝜂𝜂2 = 0.02 

 

Note that for the purpose of conducting the BF methods for rare events, multiple trajectories are 

required to be simulated.  For not so rare events; i.e., for cases where multiple inter-basin back-and-

forth transitions are observed, the same BF method can be applied for a long, single trajectory.  

Figure 5 shows an example of one such trajectory for the uncontrolled exothermic CSTR process 

at τ = 0.53 min and 𝜎𝜎𝜂𝜂2 = 0.2. 
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Figure 5. Long trajectory showing multiple back-and-forth, inter-basin transitions at τ = 0.53 min and 
𝜎𝜎𝜂𝜂2 = 0.2 

 

The survival probability, p(t), is defined as the probability that a trajectory in a basin, initially at time 

t0, remains continuously in that basin (i.e., ‘survives’ in the basin) over the interval [𝑡𝑡0, 𝑡𝑡0 + 𝑡𝑡].  To 

obtain p(t), this analysis is conducted for various intervals along a single trajectory at a given t by 

varying 𝑡𝑡0 from 𝑡𝑡0 = 0 to 𝑡𝑡0 = 𝑡𝑡sim − 𝑡𝑡, where 𝑡𝑡sim is the simulation duration of the trajectory.  In this 

way, p(t) is computed for a particular t as the number of intervals that successfully survive in the basin, 

divided by the total number of intervals.  For instance, the trajectory shown in Figure 5 has 𝑡𝑡sim = 1000 

min.  At t = 20 min, the various intervals for which the survival probability analysis is conducted in a 

basin proceed as [0, 20], [0.01, 20.01], [0.02, 20.02], …, [979.99, 999.99], [980, 1000]; i.e, ~ 

98,000 intervals.  Amongst these intervals, only 𝑁𝑁t begin in basin A.  Of these, there are 𝑛𝑛t intervals 

that successfully survive throughout, over t = 20 min, in basin A.  Hence, the survival probability at t 

= 20 min is computed as 𝑛𝑛t/𝑁𝑁t.  This analysis is conducted at all times, t, in a practical range; e.g., from 

t = 0.01 to ~ 65 min for basin A – until the survival probability approaches zero.  For basin B, however, 

an identical analysis is carried with all intervals beginning in basin B and successfully surviving in  

basin B. 

 

4. Forward-Flux Sampling (FFS) Method  

FFS has been utilized by the MD community to reduce the computational time and effort required to 

simulate rare molecular events, where the initiation times are greater than the event times by orders of 

magnitude; e.g., in the dissociation of a weak acid, where the initiation time (i.e., the frequency with 

which dissociation occurs – once per millisecond) is much greater than the 1-nanosecond dissociation 

time-scale (Bolhuis et al., 2002) Consequently, to counter this, FFS simulates process trajectories in a 

https://creativecommons.org/licenses/by-nc-nd/4.0


© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 
license https://creativecommons.org/licenses/by-nc-nd/4.0/ 
 

piecewise manner, between initial and final basins, using evenly-spaced interfaces, positioned at order 

parameters, λi, i = 1, …, n -1.  The initial basin (i.e., basin A) is bounded by λ0 and the final basin (i.e., 

basin B) is bounded by λn, with the intermediate interfaces bounding the intermediate basins (Allen et 

al., 2009).  Various FFS variants have been developed; such as the branched-growth (BG) method the 

Rosenbluth (RB) method, and the pruning method, to name a few (Allen et al., 2006).  The specific 

variant applied herein is the classical Direct Forward-Flux Sampling (DFFS) technique, shown 

schematically in Figure 6. 

For this analysis, the order parameter, λ, is the reactor temperature, T. For each residence time, the steps 

involved (illustrated for the CSTR with the exothermic reaction RP) are: 

1) Generate a long, initial trajectory of the process from a starting point lying in basin A.  Because it 

was decided that the lower bound of basin A, ~ 650 K, the starting point for this initial trajectory 

was chosen to be 660 K.  The FFS method requires a simulation time, 𝑡𝑡sim (~ 𝑡𝑡𝐴𝐴���), to be selected for 

the long, initial trajectory. 

 

 
 

Figure 6. DFFS schematic 
 

2) Compute the number of initial crossings, N0, as the number of times this long trajectory, having 

simulation time 𝑡𝑡sim, crosses the zeroth order parameter, 𝜆𝜆0 = 650 K.  Save T and CA at every 

crossing point. 

 

3) Repeat step 2 for multiple trajectories to generate a sufficient number of crossings, typically ~100 

crossings.  In this case, ~10 trajectories are considered, giving ~ N0 = 100 initial crossings. 

 

4) Calculate the initial rate of transition across 𝜆𝜆0, 𝑟𝑟1:                                              
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                                         𝑟𝑟1 =  ∑ 𝑁𝑁0(𝑖𝑖)10
𝑖𝑖=1

∑ 𝑡𝑡A(𝑖𝑖)10
𝑖𝑖=1

                                                   (14) 

where 𝑁𝑁0(𝑖𝑖) is the initial crossings generated for trajectory i and 𝑡𝑡A(𝑖𝑖) is the time spent by  

trajectory i in basin A. This approach, not only ensures a sufficient number of crossings, but 

generalizes as 𝑟𝑟1 represents an average computed over 10 trajectories. 



5)  Next, to calculate the probability of transitioning from one order parameter to another, the 

number of interfaces and the interface spacing is chosen.  The interface spacing is chosen to be  

70 K (typically close to the standard deviation, 𝜎𝜎𝑇𝑇 , computed for basin A, which is 75 K), and 

consequently, the number of interfaces from basin A to basin B = 𝑁𝑁interface = 4 .  Based on this, 

the transitioning from basin A to basin B is in 70 K increments from 650 K to 370 K (which lies 

within basin B), with order parameter values:  (i) 𝜆𝜆0 = 650 K, (ii) 𝜆𝜆1 = 580 K, (iii) 𝜆𝜆2 = 510 K, 

(iv) 𝜆𝜆3 = 440 K, (v) 𝜆𝜆4 = 370 K. 

 

6) A random crossing point is chosen from the saved crossings as the initial point, and a trajectory is 

initiated from this point.  This trajectory is terminated when 𝜆𝜆1 has been crossed, with the crossing 

point values saved.  It is important to efficiently select the length for this trajectory, which is: 

                                                Length of each trajectory = 3 × 𝑡𝑡AB
𝑁𝑁interface

                                       (15) 

where 𝑡𝑡AB = transition time = 13 min and  𝑁𝑁interface = number of interfaces = 4.  The heuristic 

factor 3 provides sufficient time for the trajectories to transition from 𝜆𝜆i to 𝜆𝜆i+1. 

 

7) Repeat step 6 for N (~N0) trajectories and calculate the probability of transition over 𝜆𝜆1: 

                                                                          𝑝𝑝1 = 𝑁𝑁1
𝑁𝑁

                                                                    (16) 

where 𝑁𝑁1 is the number of trajectories, out of 𝑁𝑁, which are successful in crossing 𝜆𝜆1. 

 

8) Repeat steps 6 and 7 for each order parameter, 𝜆𝜆𝑖𝑖, to the last order parameter, 𝜆𝜆𝑛𝑛.  In this case, 𝜆𝜆𝑛𝑛 =

 𝜆𝜆4.   

 
9) The overall probability of transition is the product of all the probabilities of local transition 

computed: 

                                  Overall probability of transition = 𝑝𝑝overall =  ∏ 𝑝𝑝𝑖𝑖4
𝑖𝑖=1                                (17) 
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10)   The overall rate of transition from basin A to B is: 

 

                                           Overall rate of transition = 𝑘𝑘FFS =  𝑟𝑟1 × 𝑝𝑝overall                               (18) 

 

Table 2 summarizes the key steps in the FFS algorithm.  Note that this method is conducted in the same 

manner for all 𝜎𝜎𝜂𝜂2 (including higher 𝜎𝜎𝜂𝜂2 values, as seen in Figure 5) , tracking the forward and 

backward transitions – for backward transitions, the starting point is in the B basin and the direction of 

transition is reversed (i.e., with temperature increases from λ0 = 370 K to λ4 = 650 K).  The n values of 

pi; i.e., the local probability of transition across interface, 𝝀𝝀𝒊𝒊, is used to calculate commitment 

probabilities at different points within the transition landscape.  The committers show the likelihood of 

interlock activation increasing as the process moves away from normal operation towards the B basin.  

Committers are used to improve alarms by indicating the temperatures (and other variable values) along 

the transition landscape as probabilities of reaching basin B approach 100%, with high rates, 𝑟𝑟𝑖𝑖.  Also, 

under these conditions, a switch to a more rigorous model can be achieved; e.g., involving a residence-

time distribution.  

Table 2. Summary of Steps in the FFS Algorithm 

1.  Generate a long, initial trajectory starting in the A basin to generate initial crossings of 𝜆𝜆0. 

2. Record the number of initial crossings, N0. Save T and CA at every crossing. 

3.  Repeat step 2 for multiple trajectories to generate a sufficient number of initial crossings. 

4.  Compute the initial rate of transition across 𝜆𝜆0 , 𝑟𝑟1, by dividing the total number of initial crossings, ∑𝑁𝑁0(𝑖𝑖), 
by the total time spent by each trajectory i in basin A, ∑𝑡𝑡A(𝑖𝑖).  

5.  Position the order parameters,  𝜆𝜆1, …, 𝜆𝜆𝑛𝑛 

6.  Choose random crossing points from among the saved crossings and generate a trajectory which continues 
until 𝜆𝜆1 is crossed.  Save the T and CA at this crossing. 

7.  Repeat step 6 for N (~ N0) trajectories 

8.  Repeat steps 6-7 at each λi until λn is reached. 

9.  Compute the overall probability of transitioning from A to B,  𝑝𝑝overall, by taking the product of the 
probabilities for each λiλi+1 transition. 

10.  Compute the overall rate of transition as the product of the overall probability, 𝑝𝑝overall,  and the initial rate 
of transition, 𝑟𝑟1. 
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5.  Results and Discussion 

Consider the rare-event analyses by the BF and FFS methods for two classes of data-sets with: 

i. Noise variance fixed at 𝜎𝜎𝜂𝜂2 = 0.02, and the residence time varied over τ = 0.5-0.53 min, and 

ii. Residence time fixed at τ = 0.53 min and the noise variance increased over 

 𝜎𝜎𝜂𝜂2 = 0.04-0.2. 

These data-sets have been chosen to investigate the variation of the transition rates and their related 

variables with both a key process variable, residence time, and the noise variance, which together 

dictate the rarity of each trajectory. 

Furthermore, as mentioned previously, for this rare-event analysis, two process configurations are 

considered involving an: 

i. Uncontrolled exothermic CSTR process, 

 

ii. Exothermic CSTR process with proportional (P) control 

 
 

5.1. Process Analysis Without Control 

For the uncontrolled process, just the dynamic mass and energy balances, Eqs. (5) and (6), with 

stochastic noise, η, added to 𝐶𝐶Af, are integrated using the explicit-Euler method, having step-size,  

h = 0.01 min.  Multiple trajectories are generated using the BF and FFS methods to compute the rates 

of transition between the A and B basins. 

 

5.1.1. Noise Variance Fixed at 𝝈𝝈𝜼𝜼𝟐𝟐 = 0.02, Vary τ 

Initially, the BF and FFS methods are carried out for the uncontrolled process with 𝜎𝜎𝜂𝜂2 = 0.02, as τ is 

varied from 0.5-0.53 min.  Figure 7 shows the average survival probability, 𝑝𝑝A(𝑡𝑡), as a function of time 

𝑡𝑡, on a semi-log scale, for residence times 𝜏𝜏 = 0.5, 0.51, and 0.52 min, computed using the BF algorithm.  

Each trajectory experiences a typical exponential decay (on a linear scale), with the magnitude of the 

exponential argument, kBF, being the BF rate of transition from basin A to basin B.  It is observed that 

as 𝜏𝜏 increases, kBF decreases because the reactor spends more time in basin A.  In other words, the 

increase in 𝜏𝜏 causes an increase in the average survival time, 𝑡𝑡A� , increasing the stability of the process 

in basin A.  Note that, due to excessive computation times, BF analysis could not be conducted at 𝜏𝜏 = 

0.53 min and 𝜎𝜎𝜂𝜂2 = 0.02.  
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Figure 7. Average survival probability in basin A, 𝑝𝑝A(𝑡𝑡), on a semi-log scale for three residence 

times, computed by BF algorithm 

 

Similarly, the FFS transition rates agree with those computed by the BF method, with the FFS method 

providing measurable and realistic transition rates at 𝜏𝜏 = 0.53 min, as well as low computational costs, 

showing the power of the FFS method for truly rare events.  Figure 8 shows the variation of the local 

interface probabilities at λi, as interface temperatures vary, as an illustration, for τ = 0.5 min.  While the 

local interface probabilities vary with the interface temperatures for every simulation run, the overall 

probabilities of transition; i.e., the products of the individual interface probabilities, do not change 

significantly.  

 

Figure 8. Probability of transition across 𝜆𝜆𝑖𝑖 as a function of temperature at 𝜆𝜆𝑖𝑖 for 𝜏𝜏 = 0.5 min with 

𝜎𝜎𝜂𝜂2 = 0.02 
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Table 3 summarizes the results of the BF and FFS algorithms at 𝜎𝜎𝜂𝜂2 = 0.02, where it can be seen that 

the initial rate of transition, 𝑟𝑟1, the overall probability of transition, 𝑝𝑝overall, and the FFS overall 

transition rate, kFFS, decrease as τ increases, it becoming more difficult to transition out of basin A. 

Having computed the transition rates, a dimensionless activation energy barrier, 𝐸𝐸a, can be expressed 

as: 

                                                             𝑘𝑘FFS = 𝑘𝑘o exp(−𝐸𝐸a)                                                        (19) 

and, 

                                                               𝐸𝐸a = −𝑙𝑙𝑙𝑙 �𝑘𝑘
FFS

𝑘𝑘o
�                                                             (20) 

where 𝑘𝑘0 is a pre-exponential factor.  Figure 9 shows the natural logs of kFFS and kBF as functions of the 

residence time, τ, where it can be seen that both ln(kFFS) and ln(kBF) decrease linearly with τ. Hence, 

given the decreasing dependence of kFFS on τ, and from Eq. (19), it can be concluded that Ea has an 

increasing dependence on τ. 

Table 3. Summary of Results for the Uncontrolled Process at 𝜎𝜎𝜂𝜂2 = 0.02 

 

 

 

 

Figure 9. Natural log of FFS and BF rates of transition as functions of the residence time, 𝜏𝜏 

𝝉𝝉, min 𝒓𝒓𝟏𝟏, min-1 𝒑𝒑𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨 kFFS, min-1 kBF, min-1 

0.5 6.12E-02 5.46E-02 3.34E-03 2.81E-03 

0.51 2.95E-02 2.79E-02 8.23E-04 8.01E-04 

0.52 2.00E-02 9.51E-03 1.90E-04 2.07E-04 

0.53 8.91E-03 3.37E-03 3.00E-05 - 
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5.1.2. Residence Time Fixed at τ = 0.53 min, Vary 𝝈𝝈𝜼𝜼𝟐𝟐  

At τ = 0.53 min, the noise variance is increased over 𝜎𝜎𝜂𝜂2 = 0.04-0.2. And, at lower noise variances; i.e., 

𝜎𝜎𝜂𝜂2 < 0.1, the BF algorithm is carried out using multiple trajectories.  In these cases, forward A-B 

transition rates, 𝑘𝑘f,  are computed, as are backward B-A transition rates, 𝑘𝑘b, yielding an equilibrium 

constant: 

                                                                        𝐾𝐾 =  𝑘𝑘f
𝑘𝑘b

                                                                   (21) 

However, for higher noise variances, 𝜎𝜎𝜂𝜂2 ≥ 0.1, the BF algorithm yields single long trajectories 

consisting of multiple back-and-forth, inter-basin transitions.  Figure 10 shows the average survival 

probabilities; i.e., 𝑝𝑝A(𝑡𝑡) and 𝑝𝑝B(𝑡𝑡), at 𝜏𝜏 = 0.53 min and 𝜎𝜎𝜂𝜂2 = 0.2, computed using the BF method.  

 

 

 

Figure 10. Survival probabilities for basins A, 𝑝𝑝A(𝑡𝑡), and B, 𝑝𝑝B(𝑡𝑡), as functions of time at 𝜏𝜏 = 0.53 
min and 𝜎𝜎𝜂𝜂2 = 0.2, computed using BF method 

 

To further analyze trajectories with inter-basin, back-and-forth transitions, Figure 11 shows the 

probability at different temperatures, 𝑝𝑝(𝑇𝑇), for the single trajectory at 𝜏𝜏 = 0.53 min and 𝜎𝜎𝜂𝜂2 = 0.2.  

Also, Figure 12 shows -ln (𝑝𝑝(𝑇𝑇)); that is, the Gibbs free-energy landscape of the process, where the 

two minima represent the most probable temperatures in the A and B basins.   
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Figure 11. Probability 𝑝𝑝(𝑇𝑇); 𝜏𝜏 = 0.53 min and 𝜎𝜎𝜂𝜂2 = 

0.2 

 

Figure 12. -ln 𝑝𝑝(𝑇𝑇); 𝜏𝜏 = 0.53 min and 𝜎𝜎𝜂𝜂2 = 0.2 

Figures 13a,b show ln (𝑘𝑘f) and ln (𝑘𝑘b) as linearly decreasing functions of the reciprocal of noise 

variance, 1 𝜎𝜎𝜂𝜂2⁄ , generated by BF and FFS analyses.  Both the forward and backward transition rates 

increase with 𝜎𝜎𝜂𝜂2, as expected, due to the increased instability.  Figure 14 shows the weak dependence 

of the equilibrium constant, K, on 𝜎𝜎𝜂𝜂2, for both BF and FFS methods, where it can be seen that K 

remains fairly constant in the range of 0.4-0.5 regardless of the value of 𝜎𝜎𝜂𝜂2. Note that the transition 

rates and the equilibrium constant, K, computed by the BF method agree fairly with those computed by 

the FFS method.  Also, at τ = 0.53 min and 𝜎𝜎𝜂𝜂2 = 0.03, FFS was able to compute transition rates for this 

truly rare transition, which could not be computed by the BF method, due to excessive computational 

cost. 

 

  
 

(a) BF  

 

(b) FFS  

Figure 13.  ln (kf) and ln (kb) as functions of 1 𝜎𝜎𝜂𝜂2�  for BF and FFS methods at τ = 0.53 min 

https://creativecommons.org/licenses/by-nc-nd/4.0


© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 
license https://creativecommons.org/licenses/by-nc-nd/4.0/ 
 

 

Figure 14. The weak dependence of the equilibrium constant, K, on the noise variance, 𝜎𝜎𝜂𝜂2, for both 

BF and FFS methods. 

 

Next, it is possible to quantify approximately the experimental dependence of the equilibrium constant 

K on the noise variance, 𝜎𝜎𝜂𝜂2.  The latter can be thought to add thermal effects to the process.  Note that 

the following equations are proposals validated by our data and need not be true for any process, in 

general.  Therefore, in accordance with statistical mechanics,  𝜎𝜎𝜂𝜂2 can be described as: 

                                                     𝜎𝜎𝜂𝜂2  ∝ 𝑅𝑅𝑇𝑇𝜂𝜂  or  𝜎𝜎𝜂𝜂2 = 𝑐𝑐𝑐𝑐𝑇𝑇𝜂𝜂                                                    (22) 

where R is the universal gas constant, 𝑇𝑇𝜂𝜂 is the absolute temperature, and 𝑐𝑐 is a proportionality constant. 

The forward and backward transition rates; i.e., kf and kb, can be quantified using the Arrhenius 

equation: 

                                                        
𝑘𝑘f = 𝑘𝑘o,f exp(−𝐸𝐸f 𝑅𝑅𝑇𝑇𝜂𝜂)⁄
𝑘𝑘b = 𝑘𝑘o,b exp(−𝐸𝐸b 𝑅𝑅𝑇𝑇𝜂𝜂⁄ )                                                    (23)                  

Therefore, the equilibrium constant, K, can be expressed as: 

                                               𝐾𝐾 =  𝑘𝑘f
𝑘𝑘b

=  𝑘𝑘o,f
𝑘𝑘o,b

 exp �− (𝐸𝐸f − 𝐸𝐸b)
𝑅𝑅𝑇𝑇𝜂𝜂

�                                                  (24) 

where 𝑘𝑘o,f   and  𝑘𝑘o,b are the forward and backward pre-exponential factors, and 𝐸𝐸f and 𝐸𝐸b are the 

forward and backward activation energies.  The difference between the forward and backward 

activation energies; i.e., 𝐸𝐸f  −  𝐸𝐸b =  Δ𝐺𝐺.  Next, substituting 𝑅𝑅𝑇𝑇𝜂𝜂 from Eq. (22) into Eq. (24): 

                                                      𝐾𝐾 =  𝑘𝑘f
𝑘𝑘b

=  𝑘𝑘o,f
𝑘𝑘o,b

 exp �− 𝑐𝑐Δ𝐺𝐺
𝜎𝜎𝜂𝜂2

�                                                  (25) 

The slope and intercept are used to compute the forward and backward pre-exponential factors; i.e., 𝑘𝑘o,f 

and 𝑘𝑘o,b, and the forward and backward activation energies, 𝐸𝐸f and 𝐸𝐸b.  Note that the linear equations 
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obtained from the BF and FFS methods are sufficiently close for both the forward and backward 

transitions.  These equations are equivalent to the natural log of Eq. (23), and consequently, yield 𝑘𝑘o,f 

and 𝑘𝑘o,b.  Then, the difference between the slopes of ln (𝑘𝑘f) and ln (𝑘𝑘b), provides Ef – Eb = Δ𝐺𝐺.  

Table 4 below shows the quantitative parameters computed using the linear equations of ln (𝑘𝑘f) and 

ln (𝑘𝑘b) as functions of 1 𝜎𝜎𝜂𝜂2⁄ .  It can be observed that Δ𝐺𝐺 is negative and of smaller magnitudes,  

~O(10-3).  Also, for both the BF and FFS methods, the ratio of the pre-exponentials, i.e., 𝑘𝑘o,f 𝑘𝑘o,b⁄  is 

similar to the K values seen previously in Figure 14; i.e., in the range of 0.4-0.5.  Hence, as observed 

previously in Figure 14, the equilibrium constant is a very weak function of the noise variance, 𝜎𝜎𝜂𝜂2, and 

strongly depends on the ratio of the forward and backward pre-exponential factors; i.e., 𝑘𝑘o,f 𝑘𝑘o,b⁄ . 

Table 4. Computed Parameters from ln (kf) and ln (kb) as Functions of 1/ 𝜎𝜎𝜂𝜂2 at τ = 0.53 min 

 

5.2. Process Analysis with P-Control  

5.2.1. Noise Variance Fixed at 𝝈𝝈𝜼𝜼𝟐𝟐 = 0.02, Vary τ 

In the first class of data-sets, the analyses of the forward A-B transitions by the BF and FFS 

algorithms are employed as described at fixed 𝜎𝜎𝜂𝜂2 = 0.02, with τ varied from 0.5-0.53 min, and 

considering 𝐾𝐾C = 0.02, 0.05 and 0.1.  Note that for the high control action at 𝐾𝐾C = 0.1, in the FFS 

algorithm, the probability of transitioning from 𝜆𝜆3 = 440 K to 𝜆𝜆4 = 370 K was computed to be zero 

at all residence times. Also, note that the last order parameter was moved to 390 K (from 370 K) since 

below this temperature, the transition probabilities were computed to be zero. Hence, to conduct FFS 

analysis, the order parameters were further discretized between 440 and 390 K: (i) 𝜆𝜆0 = 650 K,  (ii) 

𝜆𝜆1 = 580 K,  (iii) 𝜆𝜆2 = 510 K,  (iv) 𝜆𝜆3 = 440 K,  (v) 𝜆𝜆4 = 420 K, (vi) 𝜆𝜆5 = 400 K, (vii) 𝜆𝜆6 = 390 K. 

Figure 15 shows ln (kFFS) as a function of the residence time without control and for three controller 

gains, 𝐾𝐾C.  The overall rates of transition decrease with increased residence time, 𝜏𝜏, at constant 𝐾𝐾C, as 

the stability of the process in basin A increases.  Also, the magnitude of the slope and intercept is highest 

for 𝐾𝐾C = 0.1, as the high control action makes it harder for the process to transition out of the A basin. 

Figure 16 shows ln (kFFS) as a function of the controller gain, 𝐾𝐾C, for the four residence times, where 

non-linear decreasing behaviors for all four residence times can be observed.  At constant 𝜏𝜏, the overall 

transition rates decrease with increased 𝐾𝐾C, also due to increased stabilization of the process in basin A. 

This decrease is observed to be more prominent at 𝐾𝐾C = 0.1, due to the high control action.  Note that 

Method 𝒌𝒌𝐨𝐨,𝐟𝐟 𝒌𝒌𝐨𝐨,𝐛𝐛 𝒌𝒌𝐨𝐨,𝐟𝐟 𝒌𝒌𝐨𝐨,𝐛𝐛⁄  𝑬𝑬𝐟𝐟 𝑬𝑬b ∆G 

BF 0.1285 0.2862 0.449 0.1969 0.1981 -1.2E-03 

FFS 0.1282 0.2922 0.4387 0.1959 0.2 -1.87E-03 
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the FFS algorithm computes transition rates at τ = 0.53 min and 𝐾𝐾C =  0.1, truly rare transitions, 

considering the high stability of the process in basin A.  But, as for the process without control, the BF 

analysis is unable to track them due to excessive computational costs. 

 

 

 

Figure 15.  ln (𝑘𝑘FFS) as a function of the residence time, 𝜏𝜏, as the controller gain, 𝐾𝐾C, varies, for 𝜎𝜎𝜂𝜂2 =
 0.02 using the FFS method 

 

 

Figure 16. ln (𝑘𝑘FFS) as a function of the controller gain, 𝐾𝐾C, as residence time, 𝜏𝜏, varies, for 

 𝜎𝜎𝜂𝜂2 = 0.02 using the FFS method 

5.2.2. Residence Time Fixed at τ = 0.53 min, Vary 𝝈𝝈𝜼𝜼𝟐𝟐 

For the P-controlled process with τ fixed at 0.53 min, analysis by the BF algorithm, as previously 

conducted for the uncontrolled process, is carried out using multiple trajectories when 𝜎𝜎𝜂𝜂2 < 0.1, and a 
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long, single trajectory with multiple back-and-forth inter-basin transitions when 𝜎𝜎𝜂𝜂2 ≥ 0.1.  Similarly, 

for the FFS method, the last basin between 440 K and 390 K is further discretized when 𝐾𝐾C = 0.1.  

Figure 17 shows the decreasing trends for ln (kf) and ln (kb) as functions of 1/𝜎𝜎𝜂𝜂2 for the FFS method, 

for Kc = 0.02 and 0.05.  Figures 18a,b shows the non-linear dependence of ln (kf) and ln (kb) on the 

controller gain, Kc, for fixed 𝜎𝜎𝜂𝜂2 , where it can be observed that the forward transition rates, 𝑘𝑘f
FFS, 

decrease with increasing 𝐾𝐾C, as the increased control action increases the stability of the process in 

basin A.  On the other hand, the backward transition rates, 𝑘𝑘b
FFS, increase with increasing 𝐾𝐾C, as the 

increased control action decreases the stability of the process in basin B. Additionally, it can be observed 

that at Kc = 0.1, ln (𝑘𝑘b 
FFS) appear close to one another for all 𝜎𝜎𝜂𝜂2. 

 

Figure 17. ln (kf) and ln (kb) as functions of 1/𝜎𝜎𝜂𝜂2 for the FFS method for Kc = 0.02 and 0.05 

  
 

(a) ln (𝑘𝑘f
FFS) 

 

 

(b) ln (𝑘𝑘b
FFS)  

Figure 18. ln (𝑘𝑘f
FFS) and ln (𝑘𝑘b

FFS) as functions of the controller gain, KC, for fixed 𝜎𝜎𝜂𝜂2 
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Figure 19 shows the weak dependence of K on 𝜎𝜎𝜂𝜂2 for the uncontrolled and two P-controlled 

configurations.  Consequently, K decreases with increasing control action.  Note that, as without control, 

the BF method does not compute the transition rates at KC = 0.1 due to excessive computational costs. 

In contrast to prior observations, at KC = 0.1, Figure 20 shows the strong linear dependence of ln (K) on 

1/𝜎𝜎𝜂𝜂2. In this case, as seen in Figure 21, 𝑘𝑘f
FFS increases significantly with 𝜎𝜎𝜂𝜂2, but 𝑘𝑘b

FFS does not 

change significantly because the added control action, at 𝐾𝐾C = 0.1, does not significantly increase the 

instability of the B basin – thus causing K to change significantly with 𝜎𝜎𝜂𝜂2.  At such high control action, 

the process is already very unstable in the B basin – hence, increases in 𝜎𝜎𝜂𝜂2 do not affect 𝑘𝑘b
FFS 

significantly. 

 

Figure 19. K as a weak function of 𝜎𝜎𝜂𝜂2 for the three process configurations 

 

      
 

Figure 20. ln (K) as a function of 1/𝜎𝜎𝜂𝜂2 for KC = 0.1 
 

 

Figure 21. ln (𝑘𝑘f
FFS) and ln (𝑘𝑘b

FFS) as functions of  
1/ 𝜎𝜎𝜂𝜂2 for KC = 0.1 

 

As shown previously, the dependence of K on 𝜎𝜎𝜂𝜂2 is quantified from plots of ln (𝑘𝑘f 
FFS) and ln (𝑘𝑘b 

FFS) 

as functions of  1 𝜎𝜎𝜂𝜂2⁄  in Figure 17.  As seen in Figure 20, because K is a strong function of 𝜎𝜎𝜂𝜂2 for 
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𝐾𝐾C = 0.1, the linear equation quantitatively relates K and 𝜎𝜎𝜂𝜂2, with the slope equaling 𝑐𝑐Δ𝐺𝐺, and the 

exponential of the intercept equaling 𝑘𝑘o,f 𝑘𝑘o,b⁄ . 

Table 5 shows the quantitative parameters computed using the linear equations for ln (𝑘𝑘f 
FFS) and ln 

(𝑘𝑘b 
FFS) as functions of 1 𝜎𝜎𝜂𝜂2⁄ .  For all cases except 𝐾𝐾C = 0.1, 𝑘𝑘o,f 𝑘𝑘o,b⁄  decreases with increasing 

control action, with 𝑘𝑘o,f 𝑘𝑘o,b⁄  similar to the K values seen previously and the magnitude of the small, 

negative Δ𝐺𝐺 (~ O(10-3) ) increases with increasing control action.  For 𝐾𝐾C = 0.1, Δ𝐺𝐺 is observed to be 

positive, with a much higher magnitude. Therefore, K is a very weak function of the noise variance, 

𝜎𝜎𝜂𝜂2, for all cases except for P-control with 𝐾𝐾C = 0.1.  

 

Table 5. Computed Parameters from ln (kf) and ln (kb) as Functions of 1/ 𝜎𝜎𝜂𝜂2 at τ = 0.53 min for  

the P-controlled Process, Using FFS 

 

5.3. Dynamic Analyses Tracking Long Process Trajectories 

To understand better the behavior of the long process trajectories, key process variables were examined 

as dynamic profiles proceeded in the vicinity of transitions from basin-to-basin.  For τ = 0.53 min and 

𝜎𝜎𝜂𝜂2 = 0.04, trajectories for uncontrolled and P-controlled processes, with KC = 0.05 and FC0 = 30 m3/min, 

were studied.  Figures 22a,b show the temperature profile and a magnified plot of the normalized 

temperature and concentration between t = 154 and 159 min, where the first forward transition is 

initiated.  Note that the temperature, T, and the outlet concentration, CA, are normalized using their high 

temperature-high conversion steady states; i.e., T/800 and CA/1.05.  It can be observed here that as CA 

decreases, due to high conversion, T increases, and as CA increases, due to low conversion, T decreases. 

Hence, increases/decreases in concentration, CA, impacted more directly by concentration noise, lead 

to low and high peaks in temperature. The first temperature local maximum is observed at t = 155.5 

min, followed by the first local concentration minimum, observed at t = 156 min. This appears to 

indicate that the temperature changes first followed by a short lag in concentration. This can also be 

seen when the first local temperature minimum is observed at t = 156.4 min, followed by the first local 

concentration maximum at t = 156.6 min.  To validate this observation, multiple long trajectories were 

initiated, with each trajectory consisting of finite back-and-forth inter-basin transitions, and for each 

KC 𝒌𝒌𝐨𝐨,𝐟𝐟 𝒌𝒌𝐨𝐨,𝐛𝐛 𝒌𝒌𝐨𝐨,𝐟𝐟 𝒌𝒌𝐨𝐨,𝐛𝐛⁄  𝑬𝑬𝐟𝐟 𝑬𝑬𝐛𝐛 ∆G 

- 0.1282 0.2922 0.4387 0.1959 0.2 -1.87E-03 

0.02 0.1162 0.3268 0.3556 0.1989 0.2021 -3.17E-03 

0.05 0.0958 0.3624 0.2644 0.1949 0.1982 -3.3E-03 

0.1 - - 0.4034 - - +0.2454/c 
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transition region of every trajectory, the temperature appeared to lead the concentration.  Because the 

noise is added directly to the concentration, it was expected that the concentration would lead the 

temperature – but because the temperature leads the concentration, the thermal effects brought by the 

noise, affect the temperature before the concentration, and thereby, cause the transition. 

  

      
 

(a) Temperature profile 
 

 

(b) Normalized dynamic variables, magnified from  
t = 154 to 159 min 

 

Figure 22. Temperature profile and magnified plot of the normalized dynamic variables for the 

uncontrolled process at τ = 0.53 min and 𝜎𝜎𝜂𝜂2 = 0.04 

 

Figure 23a.b similarly show the temperature profile and the magnified plot of the normalized dynamic 

variables between t = 1568 and 1575 min for the P-controlled process with KC = 0.05 and  FC0 = 30 

m3/min, with the two additional dynamic variables being the normalized cooling water (CW) 

temperature and normalized CW flow-rate, normalized respectively at their steady state values, i.e., 

TC/300 and FC/30. It can be observed that T continues to lead CA, and TC does not respond to changes 

in T and CA.  FC responds almost immediately to the changes in the process temperature, T, with 

maximum and minimum peaks for each observed at nearly equal time instants.  
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(a) Temperature profile 
 

 

(b) Normalized dynamic variables, magnified to t = 
1568 and 1575 min 

 

Figure 23. Temperature profile and magnified plot of the normalized dynamic variables for the  

P-controlled process at τ = 0.53 min, 𝜎𝜎𝜂𝜂2 = 0.04, KC = 0.05 and FC0 = 30 m3/min 

 

5.4. Comparison with Transition-Path Sampling (TPS) 

Rare-event analysis by FFS yields numerous benefits beyond TPS.  First, TPS requires that an initial 

trajectory be generated that transitions between basins of normal operation and interlock activation.  

Then, additional trajectories are generated by random perturbations from the initial trajectory.  But, 

these may require high computational costs, especially when transition probabilities are very small.  

Also, each new trajectory, from its perturbation point, must be integrated forward and backward over a 

pre-specified simulation time.  Often, however, the trajectories are too similar to the initial trajectory.  

More significantly, the backward integrations often encounter numerical instability, requiring 

boundary-value optimization techniques such as the “shooting” (Bock et al., 2000) and orthogonal 

collocation (Cuthrell and Biegler, 1989) methods, adding to the computational costs.  Also, because 

TPS does not generate trajectories in a piece-wise manner, it is difficult to use for rate or committer 

analysis, which is achieved easily using FFS. 

To circumvent these disadvantages, by integrating solely forward from the initial basin to the final 

basin, FFS generates more independent rare paths – each having different time durations, while TPS 

rare paths have the same duration.  This broader distribution of rare paths can lead to improved alarm 

systems, to be demonstrated in future research. 
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6. Conclusions 

The FFS method, in particular the DFFS variant, can simulate and detect rare-event transitions between 

normal and abnormal operating conditions resulting in automated plant shutdowns, which adversely 

impact plant reliability.  It generates numerous rapid-transition trajectories, that occur rarely, sharply 

reducing their discovery time, as shown herein, from weeks to just a few minutes.  Transitions away 

from normal operation are made either by adding noise directly to the operating parameters affecting 

multiple balance equations, called ‘parametric noise’, or by adding properly-scaled ‘non-parametric’ 

noise terms in single balance equations.   

Hence, the stochastic nature of the FFS method and its ability to generate large numbers of rare-event 

trajectories have been demonstrated herein using a simple, dynamic exothermic CSTR model with non-

parametric noise added to the inlet concentration.  At increased noise variance, 𝜎𝜎𝜂𝜂2, the inter-basin 

back-and-forth transitions observed for not-so-rare events are noteworthy.  Results generated by the 

FFS method are clearly more reliable than those by the BF method, achieved at lower computational 

costs — with the largest differences being for truly rare-events.  While the weak dependence of K on 

𝜎𝜎𝜂𝜂2 at fixed τ was anticipated (because increases in 𝜎𝜎𝜂𝜂2 cause increases to both kf and kb), the strong 

dependence of K on 𝜎𝜎𝜂𝜂2 at high control action (i.e., at KC = 0.1) was unanticipated.   

Given the simplicity of the exothermic CSTR model, investigations of rare-event pathways for more 

rigorous CSTR models are justified.  Also, applications of the FFS method to explore rare-events in 

complex large-scale processes, such as steam-methane reformers (SMRs) and air-separation units 

(ASUs) are justified.  Note that, for the latter, transition-path sampling (TPS) was utilized to trace rare-

event paths (Moskowitz et al., 2018). 

7. Acronyms         

Acronym Term 

ASU Air-separation Unit 

BF Brute-force 

BG Branched-growth 

CSTR Continuous Stirred Tank Reactor 

DFFS Direct Forward-Flux Sampling 

FFS Forward-Flux Sampling 

MD Molecular Dynamics 

MPS Model-Predictive Safety 

PI Proportional-Integral 

RB Rosenbluth 

SIS Safety Instrumented System 
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SMR Steam-Methane Reformer 

TPS Transition-Path Sampling 

 

8. Nomenclature 

English 

Variables Quantity Units 

A Heat Transfer Area m2 

CA Outlet concentration of Reactant A kmol m-3 

CAf Feed Concentration of Reactant A kmol m-3 

Cp Specific Heat Capacity of Feed kJ kg-1 K-1 

Cpw Specific Heat Capacity of Water kJ kg-1 K-1 

E Activation Energy kJ kmol-1 

𝑬𝑬𝐚𝐚 Dimensionless Activation Barrier - 

𝑬𝑬𝐛𝐛 Backward Activation Energy kJ kmol-1 

𝑬𝑬𝐟𝐟 Forward Activation Energy kJ kmol-1 

𝒆𝒆𝑰𝑰 Integral Error K min 

F Feed Flow-rate kmol min-1 

FC Cooling Water (CW) Flow-rate m3 min-1 

FC0 Steady State CW Flow-rate m3 min-1 

FCmax Maximum Saturated CW Flow-rate m3 min-1 

h Integration Step-size min 

K Equilibrium Constant - 

KBF Brute-force Equilibrium Constant - 

KC Controller Gain m3 mol-1 K-1 

KFFS FFS Equilibrium Constant - 

kBF 

kFFS 

Brute-force Rate of Transition 

FFS Rate of Transition 

min-1 

min-1 

kb 
BF BF Backward Transition Rate  min-1 

kf 
BF BF Backward Transition Rate  min-1 

kf 
FFS 

kb 
FFS 

FFS Forward Transition Rate 

FFS Backward Transition Rate 

min-1 

min-1 

𝒌𝒌𝒐𝒐,𝒃𝒃 Backward Pre-exponential Factor min-1 

𝒌𝒌𝒐𝒐,𝒇𝒇 Forward Pre-exponential Factor min-1 

𝑵𝑵 Number of Trajectories - 

𝑵𝑵𝟎𝟎 Number of Initial Crossings - 
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𝑵𝑵𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢 Number of Interfaces - 

Nt Number of Intervals Beginning in Basin A - 

𝒏𝒏𝐭𝐭 Number of Intervals Surviving in Basin A - 

𝒑𝒑(𝑻𝑻) Probability at Different Temperatures - 

p(t) Survival Probability - 

pA(t) Survival Probability within A Basin - 

pB(t) Survival Probability within B Basin - 

𝒑𝒑𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨 Overall Probability of Transition - 

R Universal Gas Constant kJ kmol-1 K-1 

-r Rate of Reaction kmol m-3 min-1 

𝒓𝒓𝟏𝟏 Initial Rate of Transition min-1 

T Outlet Temperature K 

𝑻𝑻𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 Base Temperature K 

Tc CW Temperature K 

TC0 Inlet CW Temperature K 

TCmax Maximum Saturated CW Temperature K 

Tf Feed Temperature K 

TSP Set-point Temperature K 

𝑻𝑻𝜼𝜼 Absolute Temperature K 

t Time Variable min 

t0 Initial Time min 

tAB Transition Time min 

𝒕𝒕𝐬𝐬𝐬𝐬𝐬𝐬 Simulation Duration of Trajectory min 

𝒕̅𝒕𝑨𝑨 Survival Time in A Basin min 

U Overall Heat Transfer Coefficient kJ min-1 K-1 m-2 

V Reactor Volume m3 

Vj Jacket Volume m3 

 

Greek 

Variables Quantity Units 

𝚫𝚫𝑮𝑮 Change in Gibbs Free Energy  kJ kmol-1 

𝚫𝚫𝑯𝑯 Heat of Reaction kJ kmol-1 

𝜼𝜼 Noise kmol m-3 

𝝀𝝀 Order Parameter K 

µ Mean kmol m-3 
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ρ Feed Density kg m-3 

ρw Water Density kg m-3 

𝝈𝝈𝐓𝐓 Standard Deviation K 

𝝈𝝈𝜼𝜼𝟐𝟐 Noise Variance kmol2 m-6 

𝝉𝝉 Residence Time min 

𝝉𝝉𝐜𝐜 Transition Time Constant min-1 

𝝉𝝉𝑰𝑰 Integral Time Constant min 
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