


Science Robotics                                               Manuscript Template                                                                           Page 2 of 24 

 

MAIN TEXT 

 

Introduction 

 

Autonomous mobile robots, such as drones, rovers, and legged robots, promise to perform a wide 

range of tasks, from autonomously monitoring crops in greenhouses to last-kilometer delivery. 

These applications require robots to operate for extended periods while performing complex tasks, 

often in unknown, changing, and complicated environments. This brings great challenges [1], 

among which the difficulty of executing a rich repertoire of autonomous, robust and adaptive 

behaviors with onboard resources. This challenge is exemplified by the task of navigation. The state 

of the art typically relies on Simultaneous Localization and Mapping (SLAM) algorithms, which 

require more computational resources than can be mustered by many processors embedded onboard 

robots [2]. More than 10 years ago it was reasonable to anticipate that further improvements to 

microprocessors would soon close this performance gap. At that time processor development still 

kept pace with Moore’s law, which predicted a doubling of the number of transistors in a dense 

integrated circuit (IC) about every two years. However, with the end of Moore’s law in sight [3], 

[4], we can no longer count on this. Hence, we need to explore alternative approaches to both the 

computing hardware and the AI of small, autonomous robots.  

In this viewpoint article, we argue that inspiration from insect intelligence represents an important 

alternative route to achieving artificial intelligence (AI) in small, mobile robots. Here we adopt the 

view that AI is the “pursuit of intelligent behavior by artificial methods” [5], explicitly 

acknowledging that insect behaviors are intelligent [6]. If we succeed in harnessing insect-inspired 

AI, small robots will be able to tackle difficult tasks while staying within their limited 

computational and memory budget. We first discuss the main aspects of insect intelligence that 

make it so appealing for small robots. Next, we reflect on the state of the art in this area and identify 

the main challenges on the road to its more widespread adoption. Finally, we discuss how insect AI 

can be implemented on various types of computing hardware. 

Insect intelligence  

 

Insects diverged around 480 million years ago [7] within the group of arthropods. They form a 

dominant phylum among animals, with roughly one million species identified and an expected 5.5 

million overall, compared to only 70,000 known species of vertebrates [8]. Thanks to their 

proliferation, insects have developed a wide range of adaptations to different environments. These 

include diverse locomotion strategies such as crawling, flying, and swimming, complex visual 

systems [9], [10], robust navigation strategies [11]–[14], and even cooperative social behaviors 

[15], [16]. Furthermore, their behaviors are implemented by a very limited number of neurons, with 

approximately 1M neurons for the honeybee [12] and, astonishingly, fewer than 10,000 in the 

smallest flying wasps, Megaphragma mymaripenne [17]. Although neurons are not identical and 

hence not directly comparable between species [18], these small numbers of neurons are indicative 

of the processing efficiency of insect intelligence. Especially in the light of this processing 

efficiency, iInsects’ amazing capabilities represent a rich source of inspiration for the design of 

robotic solutions [19], [20]. 
 

The main property of insect intelligence is its parsimony [21], that is, the way in which; insects 

employ minimalistic yet robust solutions to achieve successful behavior in complex, dynamic and 

sometimes hostile environments. Parsimony “Minimalistic” here should be interpreted as a high 

level of efficiency in the required resources, with energy as one of the prime resources. Since the 

brain consumes considerable energy [22], it may come as no surprise that evolution has driven 

insects and other animals to achieve their repertoire of behaviors with as small a brain as possible, 
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for which the energy consumption reaches only a few milliwatts of power. Important in achieving 

this parsimony is that insect intelligence – just like that of more complex animals like humans – is 

characterized by “embodied cognition” [23], [24]. This refers to the recognition that intelligence 

does not depend only on the brain, but is crucially shaped by the insect’s embodiment, that is, its 

body and sensory apparatus. Furthermore, it implies that insect intelligence builds on the capability 

to interact with the world, combining feedback from a diverse array of sensors and exploiting the 

closed loop of sensory inputs and actions to simplify the cognitive operations performed by the 

brain. Finally, social insects live together in colonies and are thus able to perform tasks that go 

beyond the limits of their individual capabilities. Figure 1 shows three key aspects (embodiment, 

sensory-motor coordination, and swarming) that contribute to the parsimony of insect intelligence. 

Please note that these three aspects are commonly ignored in robotics studies, with a focus on 

developing software for standard robot hardware, passive sensing (e.g., detecting cars in pre-

recorded video sequences [25]), and an emphasis on single-robot intelligence. Below, we discuss 

these aspects from an insect point of view and illustrate them with examples from robotics. 

 

Figure 1: Insect intelligence is characterized by parsimonious solutions to achieve successful 

behavior in complex, dynamic and sometimes hostile environments. Three key aspects to 

parsimony are: embodiment, sensory-motor coordination, and swarming. These are illustrated with 

robotic studies. (A) “Antbot” is a hexapod robot, which is equipped with a UV sensor for detecting 
the polarization of the sky for improved navigation skills [26]. (B) “Smellicopter” is a tiny, 
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biohybrid drone equipped with moth antennae to sense odor and fins that passively align it with the 

wind [27]. (C) The honeybee-sized “Robobee” [28], which was successfully miniaturized by having 

a passive mechanism for varying the wing angle while only the wing stroke angle is actively 

controlled. (D) In [29] a drone uses the oscillations that arise during active optic flow control to 

estimate distances to objects in its environment. (E) In [30] an artificial compound eye is actively 

controlled to remain parallel to the ground surface, allowing the robot to deal with oncoming slopes. 

(F) The “Swarm gradient bug algorithm” (SGBA) enables a swarm of tiny drones to explore 
unknown environments and return to the base location [31]. (G) Tiny “Kilobots” [32] used in a 

study on foraging with virtual pheromone trails [33]. (H) A swarm of drones flying as a flock in the 

presence of no-fly-zones [34]. 

Embodiment 

Evolution simultaneously adapts the bodies, sensory systems, and brains of animals to their 

ecological niche. In many cases, “intelligent behaviorce” and parsimony is achieved within the 

mechano-sensory apparatusby means of the “embodiment” itself, here interpreted as the design of 

the body, including the sensor and actuator apparatus. By doing so, cognitive load can be reduced 

or even eliminated entirely, reducing or even removing cognitive load. This idea is exemplified by 

passive dynamic walking robots [35]. In insect robotics, a decisive advance in robotic flies occurred 

when researchers removed active actuation of the wing angle of attack. By simplifying the 

mechanism to allow it to passively rotate, mass was reduced allowed the angle of attack of the wing 

to rotate passively rather than actuating it. This simplification reduced mechanism weight while 

retaining while the unsteady lift-producing leading-edge vortex aerodynamics observed in insect 

flight were retained [36]. This realized lift greater than weight at insect scale for the first time [37], 

and paved the way for subsequent controlled flight [28]. The aerodynamics of the flapping wings 

of insects can also play a role in the exploitation of passive effects. For instance, with the help of a 

flapping wing drone it was shown that fruit flies passively turn into the flight direction after rapid 

escape maneuvers [38]. Beyond purely passive mechanisms, simple neuron-mediated reflexes 

underly many behaviors such as flight stabilization. Such active reflexes do depend on a co-

evolution of body and sensors, though. To illustrate, flight stabilization is also facilitated by 

mechanosensory structures on the wing, campaniform sensilla, which encode  information on wing 

deformation and consequently on the flight dynamics [39]. Hence, insect wings are not merely 

actuators, but also influence sensing and consequent active control. Small sizeThe scale of insects 

also fundamentally affects insects’ their body design and tradeoffs in cognition. For example, the 

efficiency of flapping wing motion for propulsion heavily depends on the Reynolds number 

(viscosity of the air) [40], with small flying insects such as Drosophila relying on higher frequency 

flapping [41] than larger ones, which even rely on gliding [42]. These differences are reflected in 

robotic designs [28], [38], [43]. Similarly, scale influences limb tip contact forces and the potential 

to adhere to vertical surfaces, influencing walking gaits exhibited by insects [44]. Furthermore, 

Mmuch like how ants can carry many times their body weight, insects’ small scale protects them 
from collision damage. This makes occasional mistakes or inaccuracies in motion control less 

problematic. For example, honeybees do make crash-landings, e.g., [45]. This has inspired 

collision-resilient robot designs [46]–[48], allowing for a less computationally-expensive AI.  

The sensory apparatus of insects is also tailored to the tasks they need to perform. Their compound 

eyes have a low resolution compared to human vision, wide field of view, and a high temporal 

bandwidth [10], [49], exceeding a 200 Hz flicker fusion frequency in some species [50]. These eyes 

are particularly suited for capturing fast motion cues that are relevant for agile flight, capturing prey 

[51], and avoiding predators [52]. In robotics, it is common to have cameras with a 30 Hz frame 

rate, limiting response speed. Inspired by insects, lightweight artificial compound eyes (ACEs) with 
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a high frame rate and wide field of view have been produced [53]–[55]. It is also possible to use 

arrays of smaller cameras for an omnidirectional view [56] or down-sample a standard 

omnidirectional camera [57] at the cost of a heavier system. Event-based cameras are highly 

promising as neuromorphic vision sensors, since they asynchronously register per-pixel changes in 

illumination, resulting in a large dynamic range and high temporal rate [58].  

Insects combine vision with multiple other sensors to achieve parsimonious motion control. They 

have one pair of antennae, which are sensitive to airflow and function as olfactory organs [59]. In 

translatory motion, flies linearly combine low-latency mechanosensory feedback from their wind-

sensing antennae with higher-latency visual feedback to control their flight velocity [60]. A 

strikingly similar superposition exists for the gyroscopic mechanosensory halteres and vision in 

rotatory motion [61].  Currently, antennae have a far superior performance for olfaction compared 

to artificial sensors, which has led to bio-hybrid robot designs incorporating live tissue from, e.g., 

moths, for odor source localization [27], [62]. However, the antennae are also sensitive to airflow 

[60], [63], something which is also hard to measure onboard small robots. Promising airflow sensor 

designs have been demonstrated [64]–[66], but they are not yet widely available for robotic 

integration. Sensing airflow is not only important for flight control, but also for tasks such as odor 

source localization. Flying insects like moths and fruit flies are known to find odor sources by 

interleaving casting (flying orthogonally to the wind direction to detect an odor) and surging (flying 

upwind when sensing the odor) [67]–[69]. In [27], wind sensing and processing was bypassed by 

means of a physical design that passively steered the robot into the wind.  

In general, the robotic equivalent to the evolutionary co-development of both the body and brain 

can take the shape of an artificial evolution [70], [71] or an extensive investigation of existing 

hardware and software options [72]. 

Sensory-motor coordination 

The brain evolved to control motion as organisms gained the ability to move; conversely, evolution 

drove animals to move in such a way as to make the task of the brain easier. Active vision is an 

important example and entails moving the visual system to simplify visual processing [73]–[75]. 

Many flying insects use their neck muscles to maintain a constant head orientation, known as gaze 

stabilization, during flight maneuvers. This ensures that compound eyes capture the translational 

and not the rotational flow, since only the former carries distance information [76]. Gaze 

stabilization also reduces visual processing requirements, something that has been exploited in few 

published robotic studies because it has traditionally requireds heavier hardware [30], [77]–[79]. 

Interestingly, active vision in the form of micro-saccades allows insects to resolve objects with an 

acuity beyond that expected from the coarse layout of their ommatidia [80], [81]. This has been 

used exploited on robotic platforms [82], [83]. The breakthrough for this type of hyperacuity – and 

active vision in general – to  micro-robots, though, will may depend on scaling down the hardware 

for performing these micro-saccades [75], [79]. Also motions of the full body can be useful to insect 

and robot vision. For example, in [84], a flying robot moved actively up and down in order to induce 

clear translational flow for identifying gaps to fly through, which was similar to the peering 

behaviors observed in bumblebees attempting to cross a gap [85]. Moreover, in [86] it was shown 

that the oscillations inherent to optic flow control can be used for gauging distances.  

Another example of how sensory-motor coordination can simplify required processing comes from 

insect navigation. One theory on ant navigation postulates that they use a visual guidance in which 

they move towards the most familiar view [87]. From time to time, ants rotate on the spot to find 

which viewing direction is most familiar to them. They physically perform an action (rotation of 
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the view) that would require additional cognitive capabilities if it had to be performed mentally. 

Moreover, in [88] it was observed that ants often deviate from the straight-line path. Modeling this 

behavior has led to the insight that if the magnitude of the oscillations correlates with the uncertainty 

of view recognition, it leads to much more robust navigation [89], [90]. Also in flying animals, 

motion is essential to navigation. For instance, honeybees and wasps perform elaborate maneuvers 

around their nest termed “learning flights”, which facilitate homing in on the nest when returning 

[91], [92]. Although the examples given here have focused on vision, insects also make use of other 

senses, such as that of touch [93], [94]. Touching offers the possibility of active tactile sensing or 

even “interactive perception”, in which perception is facilitated by moving objects in the 

environment [95].  

Swarming 

In order to transcend their individual limitations, social insects live together in colonies. Social 

insects have inspired the design of computational models [96] and have led to the field of swarm 

robotics [97]. Swarming allows for parsimonious solutions to robotic tasks, as these can be achieved 

by robots with much fewer resources than a comparable single-robot system. Moreover, performing 

tasks with swarms holds the promise of The promises of swarm robotics include (i) robustness (e.g., 

failing robots do not immediately endanger the mission), (ii) scalability (i.e., the local perception 

and actions of robots allow adding more robots to, e.g., explore a larger area in an exploration task), 

and (iii) flexibility (just as in insect colonies, different proportions of these robots can be assigned 

to different tasks depending on the need). Swarm robotics examples include crossing gaps [98], 

shortest-path finding [33], global decision making [99], surveillance [100], exploration of 

unknown, cluttered environments [31], and gas source localization [101]. 

Parsimony 

The three aspects of embodiment, sensory-motor coordination and swarming all feed into the 

parsimony of the solutions employed by insects to solve complex tasks. Let us take navigation as 

an example. A well-known example of a highly skilled navigator is the desert ant Cataglyphis. It is 

able to forage for hundreds of meters along meandering paths, and then travel back home in a 

straight line [102]. Thanks to the large body of biological work in this area, it has become clear that 

the underlying mechanisms consist mostly of path integration (odometry) and visual guidance 

[103], [104]. Moreover, insects’ parsimonious solution to navigation relies on the exploitation of 

specific characteristics of the environment. For example, when navigating outdoors they use the 

polarization of the light for better path integration [26], [105]–[108]. 

However, there is still a debate about the exact mechanisms involved in navigation in any particular 

exemplar species. The well-known “snapshot theory” [105], [109] proposes that ants compare 

stored, coarse omnidirectional views with their current percepts, allowing them to move in 

directions that minimize the difference. A more recent familiarity-based theory [87] states that ants 

follow the most familiar view, rotating physically to move into the best matching direction. This 

removes the need to explicitly recall views. In a similar vein, it has been asked whether a neural 

network can directly map percepts to a motion direction [110]. Recently, a nest-centric coordinate 

scheme has been proposed that suggests how ants can travel from one feeding place to another, 

without having travelled such a route before [103]. Multiple robotics studies have drawn inspiration 

from these navigation schemes. Path integration has been successfully implemented onboard 

wheeled and legged robots with remarkable accuracy [26], [106]. Several different approaches have 

been proposed for how to incorporate visual guidance [106], [111], [112]. In one of the most 

advanced published studies in terms of real-world experiments, [112], a robot travelled outdoor 
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paths of ~100 m with a memory requirement of 3 MB/km. By comparison, a typical SLAM solution 

constructs 3D metric maps, which requires hundreds of MBs, even for datasets consisting of a single 

room [2]. 

Parsimonious solutions used by insects exist for many other tasks that are relevant to robotics. These 

include optic-flow-based visual navigation for obstacle avoidance [56], [78], [113]–[115], target 

following [116], altitude control [117], [118], and landing [119]. For many of these tasks, the main 

principles are known but the exact mechanism that should be implemented in robots are an area of 

active research. For example, it has been found that honeybees use optic flow divergence for landing 

[120], [121], but the algorithms for successfully executing such landings remain an active area of 

research are the subject of ongoing study [29]. For some tasks, such as the detection of looming 

objects by locusts, the neural basis is quite well-understood [122]–[125]. Understanding the locust’s 
Lobula Giant Movement Detector (LGMD) neuron has led to computationally efficient neural 

models, which have been tested on mobile robots and lend themselves well to implementation with 

neuromorphic vision sensors and processors [126]–[131]. Detection and avoidance of dynamic 

obstacles is one of the areas where the low latency of event-based vision can make a difference, as 

has been recently demonstrated by drones capable of avoiding thrown objects or other drones [115], 

[132], [133]. Other tasks for which relevant insect behaviors are known include odor source 

localization [67], [68], and various forms of learning and classification [134], [135].  

The emphasis on parsimony should not be misinterpreted as an argument against cognitive 

capabilities. Insects and robots alike can definitely benefit from more processing, for instance to 

allow for the interpretation of more complex visual information [136] or to accommodate various 

forms of learning, such as in the mushroom bodies [137]–[140]. Also for more advanced cognitive 

capabilities, insect intelligence can serve as inspiration for robot AI. For instance, a model of 

olfactory learning of the Drosophila  [141] has recently been used for creating a computationally 

highly efficient algorithm for visual place recognition [142].  

HenceIt may be clear that, it is clear that findings from insects can provide ample inspiration for 

parsimonious robot solutionsthe parsimonious nature of insect intelligence is of considerable 

interest for autonomous robots. However, in order to fully exploit this, we need to tackle a few hard 

challenges. 

Challenges on the road to insect-inspired AI for autonomous robots  

 

We have sketched the potential of insect-inspired AI for creating autonomous, small robots with 

extremely limited computational resources. However, the advantages of insect-inspired AI have 

been heralded before [5], [6], [143], [144]. Here, we reflect on why insect-inspired AI has not yet 

been adopted more widely. We identify two main challenges that have been holding this approach 

back, but on which accelerating progress is being made. 

1. Designing insect-inspired AI 

We have given many examples of how different aspects of insect-inspired AI have been applied to 

small autonomous robots. Still, it may be unclear to a designer how to apply “insect-inspired AI” 

to a new robotic task that has not yet been treated before in the literature. In [145] three types of 

design methods are discussed: (1) Manual design following the typical divide-and-conquer 

approach to engineering, (2) Manual design following findings from biology, and (3) Automatic 

design by machine learning.  
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The first approach typically follows a divide-and-conquer strategy to split up, separating the 

solution problem neatly into sub-problemsmodules. A commonly used division is that in perception, 

state estimation, and control modules, each of which is then developed in isolation without 

exploiting sensory-motor coordination. The problem with this is that it typically does not lead to a 

parsimonious solution in which simple elements interact in a complex manner to give rise to the 

desired robot behavior. Rethinking manual design methodology may be a solution. For example in 

[95] it is proposed to split up the solution in sub-modules consisting of active sensorimotor loops, 

forming a hierarchy of complexity. 

The second approach is to draw inspiration from a biological analogue of the robotic task. The main 

challenge here is that insects themselves are highly complex systems, for which it is difficult to 

reveal the exact mechanisms underlying their behaviors. Consider navigation, in which the main 

ingredients are clear (cf. [103], [146]), but many of the details are unknown that are required for 

devising a full algorithm or robotic implementation are not fully known. Additionally, natural 

evolution involves implicit constraints such as those for growth and procreation, leading to, for 

example, courtship displays or metabolic transitions from larval to adult life stages. Such implicit 

constraints and the multiple objectives optimized by an insect’s body and behavior make it difficult 

to identify which elements may be informative for a robot design. The typical approach in biologyto 

draw inspiration from biology is to identify a virtuoso, an animal that excels in that some specific 

behavior [14]. This may be a Cataglyphis ant [105] or honeybee [147] in the case of navigation, or 

a fruit fly for maneuvering [52]. This must be combined with a design process in which knowledge 

gaps are filled by the designer. This second approach benefits from novel techniques that are 

accelerating the scientific endeavor of understanding insect intelligence. Advances in computing 

and graphics now allow us to place free-moving animals in virtual reality [60], [148], enabling us 

to precisely probe a mobile animal’s input-output mapping. Moreover, deep machine learning 

methods and tools like Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) have recently 

immensely accelerated the construction of obtaining full connectomes [149]. This enabled the 

construction of a complete map of the entire central brain region of Drosophila, containing 25,000 

neurons and 2M synapses. Another relatively recent technique is optogenetics, which allows for 

more fine-grained, non-invasive control and analysis of neurons inside insects brains [150]. For 

instance, this technique has revealed the neural basis for heading integration in fruit flies, which 

turns out to work by means of ring attractors [151]. This finding has led to new computational 

models for path integration [131], [146]. We expect that these novel techniques will fill in the 

knowledge gaps more quickly and at a much more detailed level than ever before, facilitating 

manual insect-inspired design. 

The third approach tries to circumvent the difficulties associated with complexity by automatically 

designing the solution. A main approach to achieving automatic design of bio-inspired intelligence 

is to use evolutionary robotics [145], [152], [153], which typically entails evolving a neural network 

in simulation. There is a considerable parallel with reinforcement learning [154], although evolution 

can comply with all aspects of parsimonious solutions by evolving not only the controller [155] but 

also the sensors [156] and body [70], [71]. An advantage compared with the bio-informed approach 

2 discussed above is that evolutionary robotics can make better use of the available technological 

building blocks, which may be far behind their biological counterparts (e.g. olfaction and efficient 

parallel processing in the brain) or far ahead (e.g. efficiency of electric motors compared to muscle 

and capability of fast serial computations in silicon). A major challenge in evolutionary robotics is 

to find solutions to difficult tasks while starting evolution from scratch. As a consequence, evolution 

can become stuck in unsatisfying, local optima. This problem can be tackled with varying success 

by adapting the selective pressure on evolution [153], growing the controller’s size and complexity 
over evolution [157], scaffolded learning [158], or novelty search [159]. Moreover, simulation 
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necessarily abstracts away from many properties of the real world. This means that if a successful 

solution is found by evolution, it still has to cross the reality gap [160]. This can be tackled by 

incorporating improved models of the most relevant real-world properties, combining evolution 

with online learning or development [161], randomizing factors that may not be modelled well 

[160], and abstracting away from sensory inputs and control actions in evolution, so that already 

working low-level perception and control modules can cover the reality gap [34], [101], [162], 

[163]. Finally, both failures and successes of automatic design present challenges. On the one hand, 

in case of failure, the causes for this are difficult to identify. The cause may lie in the 

representational complexity of the solution (e.g., the size of a neural network), the learning process 

(e.g., the number of individuals or the mutation rate), or the sensory information available to the 

robot. Many choices made by the designer lead to implicit constraints on the learning process and 

solution, which may prevent success. On the other hand, if automatic design succeeds, it may beis 

still necessary to analyze the solution to understand how it works and characterize its weaknesses. 

Although such artificial solutions are more accessible than a live biological organism, the analysis 

of an evolved complex system can be challenging as well, potentially requiring many of the same 

statistical and experimental methods used in biologythe scientific analysis of living organisms. 

Figure 2 illustrates complexity at various levels, from a single neuron to networks of neurons, brain 

regions, and the complexity of interactions with other agents and the environment. When designing 

insect-inspired AI, each level plays a role. 
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2. Full-stack autonomy solution 

Mobile robots that autonomously perform real-world tasks need a “full-stack” autonomy solution. 
This means they must be able to move, avoid collisions, navigate to places of interest for the task 

including recharging, and they need to take actions to achieve their assigned goals. The mainstream 

approach in robotics to navigation, SLAM [165], creates a metric map of the environment and uses 

it for localization and motion planning. This resource-intensive process is then complemented with 

additional, specific task capabilities. If small, resource-constrained autonomous robots are to be 

fully autonomous, they will have to follow an alternative approach. 

Insect-inspired AI entails one such alternative approach that avoids detailed world modeling [143]. 

Instead, different behaviors are tightly interlinked in a sophisticated way to achieve complex tasks 

[166]. The design of such AI – with extreme resource constraints – is challenging for single tasks, 

but even more so for a full-stack autonomy solution. Indeed, insect-inspired AI until now has mostly 

produced studies on individual tasks such as landing [119], obstacle avoidance [113], [114], or odor 

source finding [27]. Moreover, these studies often take place in simplified environments. For 

example, studies on the use of optic flow often use spaces with ample texture, as optic flow becomes 

harder to determine when texture is lacking. Part of the reason for this is that engineered visual 

sensors are currently outclassed by insect eyes – they have a smaller field of view and slower update 

rates. Multiple successful designs for artificial compound eyes have been proposed in the academic 

literature [54], [167], but the lack of mass production and hence wide availability of such sensors 

is related to the absence of the full autonomy stack – and hence the promise of widespread real-

world application. 

Most importantly, there are no scientific studies yet that demonstrate insect-inspired navigation 

methods working robustly over longer distances and time scales in large, real-world environments. 

There are multiple reasons for this. First, as stated before, the exact navigation mechanisms in 

different insects are not yet knownstill being researchedinvestigated. Existing Published theories 

leave out important elements that must be implemented for robotic applications.  Second, most 

insect-inspired navigation methods have only been tested in simulation or in environments of 

limited size or scope, like lab environments. Benchmark real-world data sets that are well-accepted 

by the majority of the robotics community, like the KITTI car data set [25], are typically not suitable 

for employing insect-based navigation. The sensors are different from those required (e.g., they 

employ small field-of-view cameras). However, even more importantly, insect-inspired methods 

vitally depend on active interaction with the environment, which is not possible with a passive data 

set. Finally, since insect-inspired navigation makes a different choice at the highest abstraction 

level, different performance metrics need to be employed as well. For instance, instead of the error 

between estimated and real position, one should look at the percentage of runs in which a robot 

successfully returns to within a few meters of the base station. State-of-the-art studies on insect-

inspired navigation strategies, e.g., [112], are very close to having viable strategies for large real-

world environments. Interestingly, they will likely have properties that mainstream SLAM research 

is still striving to achieve [168], [169]. For example, the coarse resolution and omnidirectional 

vision of insects is robust against dynamic objects that may confound SLAM algorithms. Moreover, 

their parsimonious nature permits execution even on very small, embedded processors, leaving 

computation resources available for other processes such as visual object recognition.  

Successful navigation is the key to achieving a full-stack autonomy of robots endowed with insect-

inspired AI. It will lead to more successful applications of insect-inspired AI to complex, real-world 

tasks. Of course, there are already such applications, with as most compelling example the Roomba 

robotic vacuum cleaner, which performed a biology-inspired random walk to cover the floor of a 
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room [170]. We hope that advances in insect-inspired navigation will allow for more complex and 

spatially extended tasks, and stimulate the production and availability of sensing and computing 

hardware specifically tailored to the autonomous navigation of small robots. 

Computing Hardware  

 

We set out to argue that drawing inspiration from insects is a way to create parsimonious solutions 

for the AI of small, autonomous robots. This raises the question what kind of processors are suitable 

for a full autonomy stack. Marr’s levels of abstraction [171] help us to tease apart the problem. 

They are: (i) the computational level, specifying which problem is solved and why this problem is 

relevant, (ii) the algorithmic level, capturing how the problem is solved, e.g., what representations 

are used and how they are processed, and (iii) the implementation / physical level, being the 

physical realization of the system. The type of processor concerns the third layer of abstraction. 

Choosing a processor will determine the types of autonomy algorithms that can be implemented 

and the corresponding time and energy efficiency. Figure 3 shows various types of computing 

hardware with a coarse indication of their energy expenditure and processing speed (assuming 

parallel computing as with neural networks). We will discuss the types of processors shown in the 

figure below.  

 

 
Figure 3: Computing hardware used for insect-inspired AI, illustrated with highly resource-

restricted, flying robots. The central graph gives a very coarse indication of the energy expenditure 

and processing speed of different types of computing hardware, with processing speed including 

the parallel nature of processing in architectures such as the GPU, FPGA, and neuromorphic chips. 

Around the graph, examples are given in which the computing hardware is used for achieving 

insect-inspired AI. (A) In [101], an STM32F4 microcontroller was used for a fully autonomous 

swarm of tiny drones to explore an unknown, cluttered environment and collaboratively localize a 

gas source. (B) In [84] the GPUs on a NVidia TX 2 were used to determine dense flow with a deep 

neural network. An active vision strategy allowed for a drone to pass through gaps of different, 
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unknown shapes. (C) Design of the MiniBee [57], which has been equipped with FPGA-based optic 

flow for autonomous navigation (inset, Opteran’s FPGA-based visual navigation kit). (D) In [172], 

an onboard Loihi neuromorphic chip (Kaphoho bay) was used for controlling autonomous constant 

divergence optic flow landings. (E) In [173] a Loihi chip was used for the complete perception-to-

action pipeline for the attitude control of a drone clamped to allow for rotation as the single degree 

of freedom. 

 

Let us start with microcontrollers. Microcontrollers contain one or more central processing units 

(CPUs), which are general-purpose, von Neumann architectures, executing computations one after 

another in series. Microcontrollers draw comparatively little energy, have limited memory, and – 

compared to modern-day desktop/laptop processors – have a slow processing speed. For instance, 

an STM32F04 has 192 kB of RAM, has a 168 MHz processor, and draws ~0.4W of power. For the 

sake of comparison, state-of-the-art CPUs such as AMD Ryzen 9 features 12 cores (cache memory 

of 64 MB) with a base clock frequency as high as 3.7 GHz, drawing 105W of power. We have 

shown multiple examples though, in which insect-inspired AI has enabled small robots with 

microcontrollers to perform complex tasks [31], [101], [174]. The key here was making different 

choices at Marr and Poggio’s first and second abstraction levels. For example, in [31] 

implementation of swarm exploration on a microcontroller was made possible by accepting that, in 

terms of navigation, the robots will only be able to come back to the base station (first level) and 

that behaviors are represented using a finite state machine (second level). We think that insect-

inspired AI can extend the autonomy of robots equipped with microcontrollers far beyond what is 

generally thought possible. The limits of microcontrollers lie largely in the processing of high-

dimensional sensor data such as visual data. In principle, insect vision is characterized by low-

resolution visual sensors. For instance, fruit flies have ~800 ommatidia with 8 photoreceptors per 

ommatidium [49], [175]. Processing in the order of thousands or a few tens of thousands of pixels 

at the frame rate of a normal CMOS camera is possible, cf. [174], as well as with insect-inspired 

artificial retinas as demonstrated with the CurvACE (Curved Artificial Compound Eye) visual 

sensor [54]. However, for faster sensors like event-based cameras, or more elaborate processing 

such as deep convolutional neural networks, the limited von Neumann processor on a 

microcontroller may become a bottleneck. A similar line of reasoning goes for more powerful 

CPUs, although the limits are less severe. 

 

This is where parallel processing – a fundamental feature of processing in the brain – comes into 

the picture. Graphical processing units (GPUs) are an alternative computing architecture that is 

explicitly designed to perform parallel computations using many parallel processors. Notably, they 

can readily implement traditional (i.e., non-neuromorphic) artificial neural network inference. This 

speeds up the execution of deep neural networks, making it possible to operate in real time even on 

onboard embedded devices such as the NVidia TX 2. For instance, in [84] a TX 2 was used to 

determine dense optic flow, enabling a drone to detect and fly through gaps. However, existing 

embedded GPUs are still relatively heavy and consume a substantial amount of energy. The NVidia 

TX 2 weighs 85 g and consumes 7.5W of power, which is unacceptable for many of the small robots 

discussed in this article. The size and energy consumption of GPUs has been improving at a faster 

rate than CPUs in recent years (see [72] for a thorough investigation of various embedded 

processors for running deep neural networks), but both are restricted by the physical limits that limit 

indefinite extension of Moore’s Law. Exploiting potential sparsity in neural networks can make 
their implementation on GPUs more energy efficient, e.g., [176], but other processor architectures 

in which low power and high throughput have been at the core of the design from the start promise 

even greater gains. 
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An alternative for parallel processing with very high throughput is to use a Field Programmable 

Gate Array (FPGA). In addition to their widespread availability on the market, FPGAs offer noise 

robustness, and, most importantly, high implementation flexibility [177]. This flexibility allows for 

example for the implementation of spiking neural networks (SNNs) [178] on FPGAs to obtain low 

latency and energy efficiency [177], [179]–[181] or computing dense optic flow [182], [183]. A 

disadvantage of FPGAs with respect to CPUs or GPUs is that programming them is more 

burdensome. Traditionally, floating-point math operations were inefficient on FPGAs, but new 

designs now incorporate built-in floating-point units. We believe the extra effort required for 

FPGAs is justified if one needs to specialize beyond the traditional deep neural networks. A similar 

line of reasoning can be followed for Application Specific Integrated Circuits (ASICs), for which 

the engineering effort and especially the costs of production are orders of magnitude higher. 

 

Neuromorphic processors represent an important alternative with significant promise. These 

processors are aimed specifically at implementing the parallel, sparse and asynchronous processing 

of SNNs [178] and/or exploiting other desirable characteristics of transistors. The latter includes  

operating in their efficient subthreshold regime [184] or using floating-gate arrays to compute the 

harmonic mean for low-power localization [185]. SNNs have temporal dynamics that more closely 

model natural neurons. For instance, in the so-called leaky-integrate-and-fire (LIF) model, the 

neurons integrate incoming weighted input currents in the membrane voltage, which decays over 

time and produces a spike when it exceeds a threshold [186]. In real brains, spikes have likely 

evolved to transmit information over longer distances [22]. Each spike consumes considerable 

energy, so the spike rate is minimized, which leads to sparse, energy efficient processing. Examples 

of neuromorphic processors include Intel’s Loihi [187], IBM’s TrueNorth [188], HICANN [189], 

NeuroGrid [190], and SpiNNaker [191]. There is an increasing number of examples that show the 

potential of these processors both in terms of energy expenditure and in execution speed. For 

instance, in [172] an SNN composed of only 35 spiking neurons controlled a flying robot for 

performing optic flow landings, with the controller running onboard the Loihi neuromorphic 

processor at 265 kHz. In [173], an on-chip SNN model of a PID controller was used to control a 1-

DOF quadrotor arm at 1 kHz, with an average 0.0126 mW power consumption per timestamp for a 

total of 40 thousand neurons. However, there remain obstacles that must be overcome to realize 

neuromorphic processing’s full potential, both in terms of software (how to have SNNs learn 
robustly, preferably online in the neuromorphic hardware) and in terms of hardware (how to 

interface neuromorphic processors with a robot’s sensors and actuators so that the energy efficiency 

and execution speed is not lost). 

 

Finally, also for the choice of a processor, the scale of envisaged robots is essential. For tiny insects 

the neural elements start to hit biophysical limits related to channel noise, leading to different neural 

solutions [17], [22]. For example, the tiny wasp Megaphragma caribea (average body length of 

170 μm) has many neurons without a nucleus [192]. If we intend to design robots at such tiny scales, 

they may require custom processors that deal with similar physical phenomena, and that are 

currently beyond the horizon. 

 

Conclusion 

 

In this article, we have argued that drawing inspiration from insect intelligence will enable reaching 

higher autonomy levels, even with modest processing capabilities available on small robots and 

devices. In order to achieve this, we argue that the right approach is not to implement existing 

autonomy algorithms in novel processors. Instead, the robot engineer will have to strive for the 

same kind of parsimony that is found in insect intelligence. This will be vital for small robots with 

limited resources, like tiny, insect-like flying drones [28], [193], but it will also be important for 
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larger robots when they will have to execute many complex tasks, when their bodies are covered 

with tiny sensors, and when energy efficiency is an overriding concern. Indeed, in nature, 

parsimony is not reserved for insects alone, it is a governing principle for all animals. 
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