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Abstract (209 / 200-250 words)

Autonomous robots are expected to perform a wide range of sophisticated tasks in complex,
unknown environments. However, available onboard computing capabilities and algorithms
represent a considerable obstacle to reaching higher levels of autonomy, especially as robots
get smaller and the end of Moore’s law approaches. In this viewpoint, we argue that
inspiration from insect intelligence is a promising alternative to classic methods in robotics
for the artificial intelligence (Al) needed for the autonomy of small, mobile robots. The
advantage of insect intelligence stems from its parsimony, i.e., its resource efficiency,
especially in terms of power and mass. First, we discuss the main aspects of insect
intelligence underlying this parsimony: embodiment, sensory-motor coordination, and
swarming. Then, we take stock of where insect-inspired Al stands as an alternative to other
approaches to important robotic tasks such as navigation and identify open challenges on
the road to its more widespread adoption. Finally, we reflect on the types of processors that
are suitable for implementing insect-inspired Al, from more traditional ones such as micro-
controllers and field-programmable gate arrays (FPGAs) to novel, neuromorphic
processors. We argue that even for neuromorphic processors, one should not just employ
existing Al algorithms but exploit insights from natural insect intelligence to get maximally
efficient Al for robot autonomy.

Summary (123 / 125 characters + spaces)

We discuss insect-inspired artificial intelligence as the key to autonomous robots with
extremely limited processing power.
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MAIN TEXT
Introduction

Autonomous mobile robots, such as drones, rovers, and legged robots, promise to perform a wide
range of tasks, from autonomously monitoring crops in greenhouses to last-kilometer delivery.
These applications require robots to operate for extended periods while performing complex tasks,
often in unknown, changing, and complicated environments. This brings great challenges [1],
among which the difficulty of executing a rich repertoire of autonomous, robust and adaptive
behaviors with onboard resources. This challenge is exemplified by the task of navigation. The state
of the art typically relies on Simultaneous Localization and Mapping (SLAM) algorithms, which
require more computational resources than can be mustered by many processors embedded onboard
robots [2]. More than 10 years ago it was reasonable to anticipate that further improvements to
microprocessors would soon close this performance gap. At that time processor development still
kept pace with Moore’s law, which predicted a doubling of the number of transistors in a dense
integrated circuit (IC) about every two years. However, with the end of Moore’s law in sight [3],
[4], we can no longer count on this. Hence, we need to explore alternative approaches to both the
computing hardware and the Al of small, autonomous robots.

In this viewpoint article, we argue that inspiration from insect intelligence represents an important
alternative route to achieving artificial intelligence (Al) in small, mobile robots. Here we adopt the
view that Al is the “pursuit of intelligent behavior by artificial methods” [5], explicitly
acknowledging that insect behaviors are intelligent [6]. If we succeed in harnessing insect-inspired
Al,_small robots will be able to tackle difficult tasks while staying within their limited
computational and memory budget. We first discuss the main aspects of insect intelligence that
make it so appealing-forsmallrobots. Next, we reflect on the state of the art in this area and identify
the main challenges on the road to its more widespread adoption. Finally, we discuss how insect Al
can be implemented on various types of computing hardware.

Insect intelligence

Insects diverged around 480 million years ago [7] within the group of arthropods. They form a
dominant phylum among animals, with roughly one million species identified and an expected 5.5
million overall, compared to only 70,000 known species of vertebrates [8]. Thanks to their
proliferation, insects have developed a wide range of adaptations to different environments. These
include diverse locomotion strategies such as crawling, flying, and swimming, complex visual
systems [9], [10], robust navigation strategies [11]-[14], and even cooperative social behaviors
[15], [16]. Furthermore, their behaviors are implemented by a very limited number of neurons, with
approximately 1M neurons for the honeybee [12] and, astonishingly, fewer than 10,000 in the
smallest flying wasps, Megaphragma mymaripenne [17]._Although neurons are not identical and
hence not directly comparable between species [18], these small numbers of neurons are indicative
of the processing efficiency of insect intelligence. Especially in the light of this processing
efficiency, iinsects’ amazing capabilities represent a rich source of inspiration for the design of
robotic solutions [19], [20].

The main property of insect intelligence is its parsimony [21]. that is, the way in which: insects
employ minimalistic yet robust solutions to achieve successful behavior in complex, dynamic and
sometimes hostile environments. Parsimeny—"Minimalistic” here should be interpreted as a high
level of efficiency in the required resources, with energy as one of the prime resources. Since the
brain consumes considerable energy [22], it may come as no surprise that evolution has driven
insects and other animals to achieve their repertoire of behaviors with as small a brain as possible,
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for which the energy consumption reaches only a few milliwatts of power. Important in achieving
this parsimony is that insect intelligence — just like that of more complex animals like humans — is
characterized by “embodied cognition” [23], [24]. This refers to the recognition that intelligence
does not depend only on the brain, but is crucially shaped by the insect’s embodiment, that is, its
body and sensory apparatus. Furthermore, it implies that insect intelligence builds on the capability
to interact with the world, combining feedback from a diverse array of sensors and exploiting the
closed loop of sensory inputs and actions to simplify the cognitive operations performed by the
brain. Finally, social insects live together in colonies and are thus able to perform tasks that go
beyond the limits of their individual capabilities. Figure 1 shows three key aspects (embodiment,
sensory-motor coordination, and swarming) that contribute to the parsimony of insect intelligence.
Please note that these three aspects are commonly ignored in robotics studies, with a focus on
developing software for standard robot hardware, passive sensing (e.g., detecting cars in pre-
recorded video sequences [25]). and an emphasis on single-robot intelligence. Below, we discuss
these aspects from an insect point of view and illustrate them with examples from robotics.
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Figure 1: Insect intelligence is characterized by parsimonious solutions to achieve successful
behavior in complex, dynamic and sometimes hostile environments. Three key aspects to
parsimony are: embodiment, sensory-motor coordination, and swarming. These are illustrated with
robotic studies. (A) “Antbot” is a hexapod robot, which is equipped with a UV sensor for detecting
the polarization of the sky for improved navigation skills [26]. (B) “Smellicopter” is a tiny,
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biohybrid drone equipped with moth antennae to sense odor and fins that passively align it with the
wind [27]. (C) The honeybee-sized “Robobee” [28], which was successfully miniaturized by having
a passive mechanism for varying the wing angle while only the wing stroke angle is actively
controlled. (D) In [29] a drone uses the oscillations that arise during active optic flow control to
estimate distances to objects in its environment. (E) In [30] an artificial compound eye is actively
controlled to remain parallel to the ground surface, allowing the robot to deal with oncoming slopes.
(F) The “Swarm gradient bug algorithm” (SGBA) enables a swarm of tiny drones to explore
unknown environments and return to the base location [31]. (G) Tiny “Kilobots” [32] used in a
study on foraging with virtual pheromone trails [33]. (H) A swarm of drones flying as a flock in the
presence of no-fly-zones [34].

Embodiment

Evolution simultaneously adapts the bodies, sensory systems, and brains of animals to their
ecological niche. In many cases, “intelligent behavioree™ and-parsimony-is achieved within-the
mechano-sensory-apparatusby means of the “embodiment” itself, here interpreted as the design of
the body, including the sensor and actuator apparatus. By doing so, cognitive load can be reduced
or even eliminated entirely;redueingorevenremovingcognitive-load. This idea is exemplified by
passive dynamic walking robots [35]. In insect robotics, a decisive advance in robotic flies occurred
when researchers removed active actuation of the wing angle of attack. By simplifying the

mechanism to allow it to passively rotate mass was reduced al—leweektheaﬂg}eef—att&eleef—th%&ng

fetammg—whlle the &Hsteady— 1ft—producmg leadmg-edge Vortex aerodynamlcs observed in insect
flight were retained [36]. This realized lift greater than weight at insect scale for the first time [37],
and paved the way for subsequent controlled flight [28]. The aerodynamics of the flapping wings
of insects can also play a role in the exploitation of passive effects. For instance, with the help of a
flapping wing drone it was shown that fruit flies passively turn into the flight direction after rapid
escape maneuvers [38]._Beyond purely passive mechanisms, simple neuron-mediated reflexes

underly many behaviors such as flight stabilization. Such active reflexes do depend on a co-
evolution of body and sensors, though. To illustrate, flight stabilization is also facilitated by
mechanosensory structures on the wing, campaniform sensilla, which encode- information on wing
deformation and consequently on the flicht dynamics [39]. Hence, insect wings are not merely
actuators, but also influence sensing and consequent active control. Small-sizeThe scale of insects
also fundamentally affects nseets™their body design and tradeeffsin-cognition. For example, the
efficiency of flapping wing motion for propulsion heavily depends on the Reynolds number
(viscosity of the air) [40], with small flying insects such as Drosophila relying on higher frequency
flapping [41] than larger ones, which even rely on gliding [42]. These differences are reflected in
robotic designs [28], [38], [43]. Similarly, scale influences limb tip contact forces and the potential
to _adhere to vertical surfaces, influencing walking eaits exhibited by insects [44]. Furthermore,
Mmuch like how ants can carry many times their body weight, insects’ small scale protects them
from collision damage. This makes occasional mistakes or inaccuracies in motion control less
problematic. For example, honeybees do make crash-landings;—e-g- [45]. This has inspired
collision-resilient robot designs [46]-[48], allowing for a less computationally-expensive Al.

The sensory apparatus of insects is also tailored to the tasks they need to perform. Their compound
eyes have a low resolution compared to human vision, wide field of view, and a high temporal
bandwidth [10], [49], exceeding a 200 Hz flicker fusion frequency in some species [50]. These eyes
are particularly suited for capturing fast motion cues that are relevant for agile flight, capturing prey
[51], and avoiding predators [52]. In robotics, it is common to have cameras with a 30 Hz frame
rate, limiting response speed. Inspired by insects, lightweight artificial compound eyes (ACEs) with
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a high frame rate and wide field of view have been produced [53]-[55]. It is also possible to use
arrays of smaller cameras for an omnidirectional view [56] or down-sample a standard
omnidirectional camera [57] at the cost of a heavier system.—Event-based cameras are highly
promising as neuromorphic vision sensors, since they asynchronously register per-pixel changes in
illumination, resulting in a large dynamic range and high temporal rate [58].

Insects combine vision with multiple other sensors to achieve parsimonious motion control. They
have one pair of antennae, which are sensitive to airflow and function as olfactory organs [59]. In
translatory motion, flies linearly combine low-latency mechanosensory feedback from their wind-
sensing antennae with higher-latency visual feedback to control their flight velocity [60]. A
strikingly similar superposition exists for the gyroscopic mechanosensory halteres and vision in
rotatory motion [61]. Currently, antennae have a far superior performance for olfaction compared
to artificial sensors, which has led to bio-hybrid robot designs incorporating live tissue from, e.g.,
moths, for odor source localization [27], [62]. However, the antennae are also sensitive to airflow
[60], [63], something which is also hard to measure onboard small robots. Promising airflow sensor
designs have been demonstrated [64]-[66], but they are not yet widely available for robotic
integration. Sensing airflow is not only important for flight control, but also for tasks such as odor
source localization. Flying insects like moths and fruit flies are known to find odor sources by
interleaving casting (flying orthogonally to the wind direction to detect an odor) and surging (flying
upwind when sensing the odor) [67]-[69]. In [27], wind sensing and processing was bypassed by
means of a physical design that passively steered the robot into the wind.

In general, the robotic equivalent to the evolutionary co-development of both the body and brain
can take the shape of an artificial evolution [70], [71]_or an extensive investigation of existing
hardware and software options [72].

Sensory-motor coordination

The brain evolved to control motion as organisms gained the ability to move; conversely, evolution
drove animals to move in such a way as to make the task of the brain easier. Active vision is an
important example and entails moving the visual system to simplify visual processing [73]-[75].
Many flying insects use their neck muscles to maintain a constant head orientation, known as gaze
stabilization, during flight maneuvers. This ensures that compound eyes capture the translational
and not the rotational flow, since only the former carries distance information [76]. Gaze
stabilization also reduces visual processing requirements, something that has been exploited in few
published robotic studies because it has traditionally requireds heavier hardware [30], [77]-[79].
Interestingly, active vision in the form of micro-saccades allows insects to resolve objects with an
acuity beyond that expected from the coarse layout of their ommatidia [80], [81]. This has been
used-exploited on robotic platforms [82], [83]. The breakthrough for this type of hyperacuity — and
active vision in general — to -micro-robots, though, wit-may depend on scaling down the hardware
for performing these micro-saccades [75], [79]. Also motions of the full body can be useful to insect
and robot vision. For example, in [84], a flying robot moved actively up and down in order to induce
clear translational flow for identifying gaps to fly through, which was similar to the peering
behaviors observed in bumblebees attempting to cross a gap [85]. Moreover, in [86] it was shown
that the oscillations inherent to optic flow control can be used for gauging distances.

Another example of how sensory-motor coordination can simplify required processing comes from
insect navigation. One theory on ant navigation postulates that they use a visual guidance in which
they move towards the most familiar view [87]. From time to time, ants rotate on the spot to find
which viewing direction is most familiar to them. They physically perform an action (rotation of
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the view) that would require additional cognitive capabilities if it had to be performed mentally.
Moreover, in [88] it was observed that ants often deviate from the straight-line path. Modeling this
behavior has led to the insight that if the magnitude of the oscillations correlates with the uncertainty
of view recognition, it leads to much more robust navigation [89], [90]. Also in flying animals,
motion is essential to navigation. For instance, honeybees and wasps perform elaborate maneuvers
around their nest termed “learning flights”, which facilitate homing in on the nest when returning
[91], [92]. Although the examples given here have focused on vision, insects also make use of other
senses, such as that of touch [93], [94]. Touching offers the possibility of active tactile sensing or
even ‘“‘interactive perception”, in which perception is facilitated by moving objects in the
environment [95].

Swarming

In order to transcend their individual limitations, social insects live together in colonies. Social
insects have inspired the design of computational models [96] and have led to the field of swarm
robotics [97]. Swarming allows for parsimonious solutions to robotic tasks, as these can be achieved
by robots with much fewer resources than a comparable single-robot system. Moreover, performing
tasks with swarms holds the promise of Fhe-promises-of swarmrobeties-inelude-(i) robustness (e.g.,
failing robots do not immediately endanger the mission), (ii) scalability (i.e., the local perception
and actions of robots allow adding more robots to, e.g., explore a larger area in an exploration task),
and (iii) flexibility (just as in insect colonies, different proportions of these robots can be assigned
to different tasks depending on the need). Swarm robotics examples include crossing gaps [98],
shortest-path finding [33], global decision making [99], surveillance [100], exploration of
unknown, cluttered environments [31], and gas source localization [101].

Parsimony

The three aspects of embodiment, sensory-motor coordination and swarming all feed into the
parsimony of the solutions employed by insects to solve complex tasks. Let us take navigation as
an example. A well-known example of a highly skilled navigator is the desert ant Cataglyphis. It is
able to forage for hundreds of meters along meandering paths, and then travel back home in a
straight line [102]. Thanks to the large body of biological work in this area, it has become clear that
the underlying mechanisms consist mostly of path integration (odometry) and visual guidance
[103], [104]._Moreover, insects’ parsimonious solution to navigation relies on the exploitation of
specific characteristics of the environment. For example, when navigating outdoors they use the
polarization of the light for better path integration [26], [105]-[108].

However, there is still a debate about the exact mechanisms involved in navigation in any particular
exemplar species. The well-known “snapshot theory” [105], [109] proposes that ants compare
stored, coarse omnidirectional views with their current percepts, allowing them to move in
directions that minimize the difference. A more recent familiarity-based theory [87] states that ants
follow the most familiar view, rotating physically to move into the best matching direction. This
removes the need to explicitly recall views. In a similar vein, it has been asked whether a neural
network can directly map percepts to a motion direction [110]. Recently, a nest-centric coordinate
scheme has been proposed that suggests how ants can travel from one feeding place to another,
without having travelled such a route before [103]. Multiple robotics studies have drawn inspiration
from these navigation schemes. Path integration has been successfully implemented onboard
wheeled and legged robots with remarkable accuracy [26], [106]. Several different approaches have
been proposed for how to incorporate visual guidance [106], [111], [112]. In one of the most
advanced published studies in terms of real-world experiments, [112], a robot travelled outdoor
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paths of ~100 m with a memory requirement of 3 MB/km. By comparison, a typical SLAM solution
constructs 3D metric maps, which requires hundreds of MBs, even for datasets consisting of a single
room [2].

Parsimonious solutions used by insects exist for many other tasks that are relevant to robotics. These
include optic-flow-based visual navigation for obstacle avoidance [56], [78], [113]-[115], target
following [116], altitude control [117], [118], and landing [119]. For many of these tasks, the main
principles are known but the exact mechanism that should be implemented in robots are an area of
active research. For example, it has been found that honeybees use optic flow divergence for landing
[120], [121], but the algorithms for successfully executing such landings remain-an-active-area-of
research-are the subject of ongoing study [29]. For some tasks, such as the detection of looming
objects by locusts, the neural basis is quite well-understood [122]-[125]. Understanding the locust’s
Lobula Giant Movement Detector (LGMD) neuron has led to computationally efficient neural
models, which have been tested on mobile robots and lend themselves well to implementation with
neuromorphic vision sensors and processors [126]-[131]. Detection and avoidance of dynamic
obstacles is one of the areas where the low latency of event-based vision can make a difference, as
has been recently demonstrated by drones capable of avoiding thrown objects or other drones [115],
[132], [133]. Other tasks for which relevant insect behaviors are known include odor source
localization [67], [68], and various forms of learning and classification [134], [135].

The emphasis on parsimony should not be misinterpreted as an argument against cognitive
capabilities. Insects and robots alike can definitely benefit from more processing, for instance to
allow for the interpretation of more complex visual information [136] or to accommodate various
forms of learning, such as in the mushroom bodies [137]-[140]. Also for more advanced cognitive
capabilities, insect intelligence can serve as inspiration for robot Al. For instance, a model of
olfactory learning of the Drosophila [141] has recently been used for creating a computationally
highly efficient algorithm for visual place recognition [142].

Heneelt may be clear that, ttis clear that findings from insects can provide ample thspiration for
parsirmonious—robet—selutionsthe parsimonious nature of insect intelligence is of considerable

interest for autonomous robots. However, in order to fully exploit this, we need to tackle a few hard
challenges.

Challenges on the road to insect-inspired Al for autonomous robots

We have sketched the potential of insect-inspired Al for creating autonomous, small robots with
extremely limited computational resources. However, the advantages of insect-inspired Al have
been heralded before [5], [6], [143], [144]. Here, we reflect on why insect-inspired Al has not yet
been adopted more widely. We identify two main challenges that have been holding this approach
back, but on which accelerating progress is being made.

1. Designing insect-inspired Al

We have given many examples of how different aspects of insect-inspired Al have been applied to
small autonomous robots. Still, it may be unclear to a designer how to apply “insect-inspired AI”
to a new robotic task that has not yet been treated before in the literature. In [145] three types of
design methods are discussed: (1) Manual design following the typical divide-and-conquer
approach to engineering, (2) Manual design following findings from biology, and (3) Automatic
design by machine learning.
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The first approach typically follows a divide-and-conquer strategy—te—sphit—up, separating the
solution preblemneathinto sub-preblemsmodules. A commonly used division is that in perception
state estimation, and control modules, each of which is then developed in isolation without
exploiting sensory-motor coordination. The problem with this is that it typically does not lead to a
parsimonious solution in which simple elements interact in a complex manner to give rise to the
desired robot behavior. Rethinking manual design methodology may be a solution. For example in
[95].it is proposed to split up the solution in sub-modules consisting of active sensorimotor loops,
forming a hierarchy of complexity.

The second approach is to draw inspiration from a biological analogue of the robotic task. The main
challenge here is that insects themselves are highly complex systems, for which it is difficult to
reveal the exact mechanisms underlying their behaviors. Consider navigation, in which the main
ingredients are clear (cf. [103], [146]), but many of the details are-unknown-that are required for
devising a full algorithm or robotic implementation_are not fully known. Additionally, natural
evolution involves implicit constraints such as those for growth and procreation, leading to, for
example, courtship displays or metabolic transitions from larval to adult life stages. Such implicit
constraints and the multiple objectives optimized by an insect’s body and behavior make it difficult
to identify which elements may be informative for a robot design. The typical approach #-bielegyto
draw inspiration from biology is to identify a virtuoso, an animal that excels in that-some specific
behavior [14]. This may be a Cataglyphis ant [105] or honeybee [147] in the case of navigation, or
a fruit fly for maneuvering [52]. This must be combined with a design process in which knowledge
gaps are filled by the designer. This second approach benefits from novel techniques that are
accelerating the scientific endeavor of understanding insect intelligence. Advances in computing
and graphics now allow us to place free-moving animals in virtual reality [60], [148], enabling us
to precisely probe a mobile animal’s input-output mapping. Moreover, deep machine learning
methods and tools like Focused lon Beam Scanning Electron Microscopy (FIB-SEM) have recently
immensely accelerated the construction of obtaining full connectomes [149]. This enabled the
construction of a complete map of the entire central brain region of Drosophila, containing 25,000
neurons and 2M synapses. Another relatively recent technique is optogenetics, which allows for
more fine-grained, non-invasive control and analysis of neurons inside insects brains [150]. For
instance, this technique has revealed the neural basis for heading integration in fruit flies, which
turns out to work by means of ring attractors [151]. This finding has led to new computational
models for path integration [131], [146]. We expect that these novel techniques will fill in the
knowledge gaps more quickly and at a much more detailed level than ever before, facilitating
manual insect-inspired design.

The third approach tries to circumvent the difficulties associated with complexity by automatically
designing the solution. A main approach to achieving automatic design of bio-inspired intelligence
is to use evolutionary robotics [145], [152], [153], which typically entails evolving a neural network
in simulation. There is a considerable parallel with reinforcement learning [154], although evolution
can comply with all aspects of parsimonious solutions by evolving not only the controller [155] but
also the sensors [156] and body [70], [71]. An advantage compared with the bio-informed approach
2 discussed above is that evolutionary robotics can make better use of the available technological
building blocks, which may be far behind their biological counterparts (e.g. olfaction and efficient
parallel processing in the brain) or far ahead (e.g. efficiency of electric motors compared to muscle
and capability of fast serial computations in silicon). A major challenge in evolutionary robotics is
to find solutions to difficult tasks while starting evolution from scratch. As a consequence, evolution
can become stuck in unsatisfying, local optima. This problem can be tackled with varying success
by adapting the selective pressure on evolution [153], growing the controller’s size and complexity
over evolution [157], scaffolded learning [158], or novelty search [159]. Moreover, simulation
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necessarily abstracts away from many properties of the real world. This means that if a successful
solution is found by evolution, it still has to cross the reality gap [160]. This can be tackled by
incorporating improved models of the most relevant real-world properties, combining evolution
with online learning or development [161], randomizing factors that may not be modelled well
[160], and abstracting away from sensory inputs and control actions in evolution, so that already
working low-level perception and control modules can cover the reality gap [34], [101], [162],
[163]. Finally, both failures and successes of automatic design present challenges. On the one hand,
in case of failure, the causes for this are difficult to identify. The cause may lie in the
representational complexity of the solution (e.g., the size of a neural network), the learning process
(e.g.. the number of individuals or the mutation rate), or the sensory information available to the
robot. Many choices made by the designer lead to implicit constraints on the learning process and
solution, which may prevent success. On the other hand, if automatic design succeeds, it may-beis
still necessary to analyze the solution to understand how it works and characterize its weaknesses.
Although such artificial solutions are more accessible than a live biological organism, the analysis
of an evolved complex system can be challenging as well, potentially requiring many of the same
statistical and experimental methods used in bielogythe scientific analysis of living organisms.

Figure 2 illustrates complexity at various levels, from a single neuron to networks of neurons, brain
regions, and the complexity of interactions with other agents and the environment. When designing
insect-inspired Al, each level plays a role.

Science Robotics Manuscript Template Page 9 of 24



¥
¢4
A

.~

BIOLOGICAL

LIF Neuron ...l v

ARTIFICIAL

0

Brain region —— “—— Neuron models —

Figure 2: Insect-inspired Al aims to solve complicated tasks with parsimonious solutions, which
rely on complex systems at multiple scales. These systems consist of many components that interact
with each other to give rise to a (desired) global behavior. Understanding and harnessing this
complexity lies at the heart of the challenges faced by the insect-inspired approach. In the figure,
we show biological and artificial elements side by side, where the latter are typically abstract
versions of the former: (A) At the macro-scale, the insect or robot interacts with the environment
and other agents. (B) Different brain regions / functional neural modules connect and interact to
give rise to the full behavioral repertoire. (C) A single part of the brain / neural network can perform
a function, such as extracting global optic flow fields from local optic flow measurements. (D) A
single biological neuron is a complex system in itself, which can implement sophisticated functions
[164]. In computational models, artificial neurons are typically the lowest level of complexity, and
by themselves often still have relatively simple dynamics, representing simple functions. Here an
Integrate and Fire (IF) a Leaky Integrate and Fire (LIF) neural model are shown, which lead to
different dynamic behaviors and hence a different information processing capability.
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2. Full-stack autonomy solution

Mobile robots that autonomously perform real-world tasks need a “full-stack™ autonomy solution.
This means they must be able to move, avoid collisions, navigate to places of interest for the task
including recharging, and they need to take actions to achieve their assigned goals. The mainstream
approach in robotics to navigation, SLAM [165], creates a metric map of the environment and uses
it for localization and motion planning. This resource-intensive process is then complemented with
additional, specific task capabilities. If small, resource-constrained autonomous robots are to be
fully autonomous, they will have to follow an alternative approach.

Insect-inspired Al entails one such alternative approach that avoids detailed world modeling [143].
Instead, different behaviors are tightly interlinked in a sophisticated way to achieve complex tasks
[166]. The design of such Al — with extreme resource constraints — is challenging for single tasks,
but even more so for a full-stack autonomy solution. Indeed, insect-inspired Al until now has mostly
produced studies on individual tasks such as landing [119], obstacle avoidance [113], [114], or odor
source finding [27]. Moreover, these studies often take place in simplified environments. For
example, studies on the use of optic flow often use spaces with ample texture, as optic flow becomes
harder to determine when texture is lacking. Part of the reason for this is that engineered visual
sensors are currently outclassed by insect eyes — they have a smaller field of view and slower update
rates. Multiple successful designs for artificial compound eyes have been proposed in the academic
literature [54], [167], but the lack of mass production and hence wide availability of such sensors
is related to the absence of the full autonomy stack — and hence the promise of widespread real-
world application.

Most importantly, there are no scientific studies vet that demonstrate insect-inspired navigation
methods working robustly over longer distances and time scales in large, real-world environments.
There are multiple reasons for this. First, as stated before, the exact navigation mechanisms in
different insects are not-yetknownstill being researchedinvestigated. Existing-Published theories
leave out important elements that must be implemented for robotic applications. Second, most
insect-inspired navigation methods have only been tested in simulation or in environments of
limited size or scope, like lab environments. Benchmark real-world data sets that are well-accepted
by the majority of the robotics community, like the KITTI car data set [25], are typically not suitable
for employing insect-based navigation. The sensors are different from those required (e.g., they
employ small field-of-view cameras). However, even more importantly, insect-inspired methods
vitally depend on active interaction with the environment, which is not possible with a passive data
set. Finally, since insect-inspired navigation makes a different choice at the highest abstraction
level, different performance metrics need to be employed as well. For instance, instead of the error
between estimated and real position, one should look at the percentage of runs in which a robot
successfully returns to within a few meters of the base station. State-of-the-art studies on insect-
inspired navigation strategies, e.g., [112], are very close to having viable strategies for large real-
world environments. Interestingly, they will likely have properties that mainstream SLAM research
is still striving to achieve [168], [169]. For example, the coarse resolution and omnidirectional
vision of insects is robust against dynamic objects that may confound SLAM algorithms. Moreover,
their parsimonious nature permits execution even on very small, embedded processors, leaving
computation resources available for other processes such as visual object recognition.

Successful navigation is the key to achieving a full-stack autonomy of robots endowed with insect-
inspired Al It will lead to more successful applications of insect-inspired Al to complex, real-world
tasks. Of course, there are already such applications, with as most compelling example the Roomba
robotic vacuum cleaner, which performed a biology-inspired random walk to cover the floor of a
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room [170]. We hope that advances in insect-inspired navigation will allow for more complex and
spatially extended tasks, and stimulate the production and availability of sensing and computing
hardware specifically tailored to the autonomous navigation of small robots.

Computing Hardware

We set out to argue that drawing inspiration from insects is a way to create parsimonious solutions
for the Al of small, autonomous robots. This raises the question what kind of processors are suitable
for a full autonomy stack. Marr’s levels of abstraction [171] help us to tease apart the problem.
They are: (i) the computational level, specifying which problem is solved and why this problem is
relevant, (ii) the algorithmic level, capturing how the problem is solved, e.g., what representations
are used and how they are processed, and (iii) the implementation / physical level, being the
physical realization of the system. The type of processor concerns the third layer of abstraction.
Choosing a processor will determine the types of autonomy algorithms that can be implemented
and the corresponding time and energy efficiency. Figure 3 shows various types of computing
hardware with a coarse indication of their energy expenditure and processing speed (assuming
parallel computing as with neural networks). We will discuss the types of processors shown in the
figure below.

Ne-uromorph‘._

| <—paads Burssasoid

0 5 10 15 20 25 30 35 40 45
\ Time (s)

Figure 3: Computing hardware used for insect-inspired Al. illustrated with highly resource-
restricted, flying robots. The central graph gives a very coarse indication of the energy expenditure
and processing speed of different types of computing hardware, with processing speed including
the parallel nature of processing in architectures such as the GPU, FPGA, and neuromorphic chips.
Around the graph, examples are given in which the computing hardware is used for achieving
insect-inspired Al. (A) In [101], an STM32F4 microcontroller was used for a fully autonomous
swarm of tiny drones to explore an unknown, cluttered environment and collaboratively localize a
gas source. (B) In [84] the GPUs on a NVidia TX 2 were used to determine dense flow with a deep
neural network. An active vision strategy allowed for a drone to pass through gaps of different,
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unknown shapes. (C) Design of the MiniBee [57], which has been equipped with FPGA-based optic
flow for autonomous navigation (inset, Opteran’s FPGA-based visual navigation kit). (D) In [172],
an onboard Loihi neuromorphic chip (Kaphoho bay) was used for controlling autonomous constant
divergence optic flow landings. (E) In [173] a Loihi chip was used for the complete perception-to-
action pipeline for the attitude control of a drone clamped to allow for rotation as the single degree
of freedom.

Let us start with microcontrollers. Microcontrollers contain one or more central processing units
(CPUs), which are general-purpose, von Neumann architectures, executing computations one after
another in series. Microcontrollers draw comparatively little energy, have limited memory, and —
compared to modern-day desktop/laptop processors — have a slow processing speed. For instance,
an STM32F04 has 192 kB of RAM, has a 168 MHz processor, and draws ~0.4W of power. For the
sake of comparison, state-of-the-art CPUs such as AMD Ryzen 9 features 12 cores (cache memory
of 64 MB) with a base clock frequency as high as 3.7 GHz, drawing 105W of power. We have
shown multiple examples though, in which insect-inspired Al has enabled small robots with
microcontrollers to perform complex tasks [31], [101], [174]. The key here was making different
choices at Marr and Poggio’s first and second abstraction levels. For example, in [31]
implementation of swarm exploration on a microcontroller was made possible by accepting that, in
terms of navigation, the robots will only be able to come back to the base station (first level) and
that behaviors are represented using a finite state machine (second level). We think that insect-
inspired Al can extend the autonomy of robots equipped with microcontrollers far beyond what is
generally thought possible. The limits of microcontrollers lie largely in the processing of high-
dimensional sensor data such as visual data. In principle, insect vision is characterized by low-
resolution visual sensors. For instance, fruit flies have ~800 ommatidia with 8 photoreceptors per
ommatidium [49], [175]. Processing in the order of thousands or a few tens of thousands of pixels
at the frame rate of a normal CMOS camera is possible, cf. [174], as well as with insect-inspired
artificial retinas as demonstrated with the CurvACE (Curved Artificial Compound Eye) visual
sensor [54]. However, for faster sensors like event-based cameras, or more elaborate processing
such as deep convolutional neural networks, the limited von Neumann processor on a
microcontroller may become a bottleneck. A similar line of reasoning goes for more powerful
CPUs, although the limits are less severe.

This is where parallel processing — a fundamental feature of processing in the brain — comes into
the picture. Graphical processing units (GPUs) are an alternative computing architecture that is
explicitly designed to perform parallel computations using many parallel processors. Notably, they
can readily implement traditional (i.e., non-neuromorphic) artificial neural network inference. This
speeds up the execution of deep neural networks, making it possible to operate in real time even on
onboard embedded devices such as the NVidia TX 2. For instance, in [84] a TX 2 was used to
determine dense optic flow, enabling a drone to detect and fly through gaps. However, existing
embedded GPUs are still relatively heavy and consume a substantial amount of energy. The NVidia
TX 2 weighs 85 g and consumes 7.5W of power, which is unacceptable for many of the small robots
discussed in this article. The size and energy consumption of GPUs has been improving at a faster
rate than CPUs in recent years_(see [72] for a thorough investigation of various embedded
processors for running deep neural networks), but both are restricted by the physical limits that limit
indefinite extension of Moore’s Law. Exploiting potential sparsity in neural networks can make
their implementation on GPUs more energy efficient, e.g., [176], but other processor architectures
in which low power and high throughput have been at the core of the design from the start promise
even greater gains.
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An alternative for parallel processing with very high throughput is to use a Field Programmable
Gate Array (FPGA). In addition to their widespread availability on the market, FPGAs offer noise
robustness, and, most importantly, high implementation flexibility [177]. This flexibility allows for
example for the implementation of spiking neural networks (SNNs) [178] on FPGAs to obtain low
latency and energy efficiency [177], [179]-[181] or computing dense optic flow [182], [183]. A
disadvantage of FPGAs with respect to CPUs or GPUs is that programming them is more
burdensome. Traditionally, floating-point math operations were inefficient on FPGAs, but new
designs now incorporate built-in floating-point units. We believe the extra effort required for
FPGAs is justified if one needs to specialize beyond the traditional deep neural networks. A similar
line of reasoning can be followed for Application Specific Integrated Circuits (ASICs), for which
the engineering effort and especially the costs of production are orders of magnitude higher.

Neuromorphic processors represent an important alternative with significant promise. These
processors are aimed specifically at implementing the parallel, sparse and asynchronous processing
of SNNs [178] and/or exploiting other desirable characteristics of transistors. The latter includes
operating in their efficient subthreshold regime [184] or using floating-gate arrays to compute the
harmonic mean for low-power localization [185]. SNNs have temporal dynamics that more closely
model natural neurons. For instance, in the so-called leaky-integrate-and-fire (LIF) model, the
neurons integrate incoming weighted input currents in the membrane voltage, which decays over
time and produces a spike when it exceeds a threshold [186]. In real brains, spikes have likely
evolved to transmit information over longer distances [22]. Each spike consumes considerable
energy, so the spike rate is minimized, which leads to sparse, energy efficient processing. Examples
of neuromorphic processors include Intel’s Loihi [187], IBM’s TrueNorth [188], HICANN [189],
NeuroGrid [190], and SpiNNaker [191]. There is an increasing number of examples that show the
potential of these processors both in terms of energy expenditure and in execution speed. For
instance, in [172] an SNN composed of only 35 spiking neurons controlled a flying robot for
performing optic flow landings, with the controller running onboard the Loihi neuromorphic
processor at 265 kHz. In [173], an on-chip SNN model of a PID controller was used to control a 1-
DOF quadrotor arm at 1 kHz, with an average 0.0126 mW power consumption per timestamp for a
total of 40 thousand neurons. However, there remain obstacles that must be overcome to realize
neuromorphic processing’s full potential, both in terms of software (how to have SNNs learn
robustly, preferably online in the neuromorphic hardware) and in terms of hardware (how to
interface neuromorphic processors with a robot’s sensors and actuators so that the energy efficiency
and execution speed is not lost).

Finally. also for the choice of a processor, the scale of envisaged robots is essential. For tiny insects
the neural elements start to hit biophysical limits related to channel noise, leading to different neural
solutions [17], [22]. For example, the tiny wasp Megaphragma caribea (average body length of
170 um) has many neurons without a nucleus [192]. If we intend to design robots at such tiny scales,
they may require custom processors that deal with similar physical phenomena, and that are
currently beyond the horizon.

Conclusion

In this article, we have argued that drawing inspiration from insect intelligence will enable reaching
higher autonomy levels, even with modest processing capabilities available on small robots and
devices. In order to achieve this, we argue that the right approach is not to implement existing
autonomy algorithms in novel processors. Instead, the robot engineer will have to strive for the
same kind of parsimony that is found in insect intelligence. This will be vital for small robots with
limited resources, like tiny, insect-like flying drones [28], [193], but it will also be important for
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larger robots when they will have to execute many complex tasks, when their bodies are covered
with tiny sensors, and when energy efficiency is an overriding concern. Indeed, in nature,
parsimony is not reserved for insects alone, it is a governing principle for all animals.

References and Notes

[1]
[2]

[3]
[4]
[5]

[6]
[7]

[8]
[9]

[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
21]

[22]
[23]

G. Z. Yang et al., “The grand challenges of science robotics,” Sci. Robot., vol. 3, no. 14, p.
eaar7650, 2018.

B. Bodin et al., “SLAMBench2: Multi-objective head-to-head benchmarking for visual
SLAM,” in 2018 IEEE International Conference on Robotics and Automation (ICRA),
2018, pp. 1-8.

M. Lundstrom, “Moore’s law forever?,” Science (80-. )., vol. 299, no. 5604, pp. 210-211,
2003.

T. N. Theis and H.-S. P. Wong, “The end of moore’s law: A new beginning for information
technology,” Comput. Sci. \& Eng., vol. 19, no. 2, pp. 41-50, 2017.

L. Steels, “The artificial life roots of artificial intelligence,” Artif. Life, vol. 1, no. 1\ 2, pp.
75-110, 1993.

R. A. Brooks, “Achieving Artificial Intelligence through Building Robots.,” 1986.

D. Grimaldi, M. S. Engel, M. S. Engel, and M. S. Engel, Evolution of the Insects.
Cambridge University Press, 2005.

N. E. Stork, “How many species of insects and other terrestrial arthropods are there on
Earth?,” Annu. Rev. Entomol., vol. 63, pp. 31-45, 2018.

N. J. Strausfeld, “The organization of the insect visual system (Light microscopy),”
Zeitschrift fiir Zellforsch. und mikroskopische Anat., vol. 121, no. 3, pp. 377441, 1971.
M. F. Land, “Visual acuity in insects,” Annu. Rev. Entomol., vol. 42, no. 1, pp. 147-177,
1997.

R. Wehner, “Desert ant navigation: how miniature brains solve complex tasks,” J. Comp.
Physiol. A, vol. 189, no. 8, pp. 579-588, 2003.

R. Menzel and M. Giurfa, “Cognitive architecture of a mini-brain: the honeybee,” Trends
Cogn. Sci., vol. 5, no. 2, pp. 62-71, 2001.

J. D. Seelig and V. Jayaraman, “Neural dynamics for landmark orientation and angular
path integration,” Nature, vol. 521, no. 7551, pp. 186—191, 2015.

M. H. Dickinson, “Death Valley, Drosophila, and the Devonian toolkit.,” Annu. Rev.
Entomol., vol. 59, no. October, pp. 51-72, 2014.

J. H. Fewell, “Social insect networks,” Science (80-. )., vol. 301, no. 5641, pp. 18671870,
2003.

S. Garnier, J. Gautrais, and G. Theraulaz, “The biological principles of swarm
intelligence,” Swarm Intell., vol. 1, no. 1, pp. 3-31, 2007.

A. A. Polilov, “Small is beautiful: features of the smallest insects and limits to
miniaturization,” Annu. Rev. Entomol., vol. 60, pp. 103—-121, 2015.

P. S. Katz and R. M. Harris-Warrick, “The evolution of neuronal circuits underlying
species-specific behavior,” Curr. Opin. Neurobiol., vol. 9, no. 5, pp. 628—633, 1999.

B. Webb, “Robots with insect brains,” Science (80-. )., vol. 368, no. 6488, pp. 244-245,
2020.

D. Floreano and C. Mattiussi, Bio-inspired artificial intelligence: theories, methods, and
technologies. MIT press, 2008.

R. Menzel, “A short history of studies on intelligence and brain in honeybees,” Apidologie,
vol. 52, no. 1, pp. 23-34, 2021.

P. Sterling and S. Laughlin, Principles of neural design. MIT Press, 2015.

M. L. Anderson, “Embodied cognition: A field guide,” Artif. Intell., vol. 149, no. 1, pp. 91—

Science Robotics Manuscript Template Page 15 of 24



[24]
[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]
[36]
[37]

[38]

[39]

[40]
[41]

[42]

[43]

130, 2003.

R. Pfeifer and C. Scheier, Understanding intelligence. MIT press, 2001.

A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The KITTI dataset,”
Int. J. Rob. Res., vol. 32, no. 11, pp. 1231-1237, 2013.

J. Dupeyroux, J. R. Serres, and S. Viollet, “AntBot: A six-legged walking robot able to
home like desert ants in outdoor environments,” Sci. Robot., vol. 4, no. 27, pp. 1-13, 2019.
M. J. Anderson, J. G. Sullivan, T. K. Horiuchi, S. B. Fuller, and T. L. Daniel, “A bio-
hybrid odor-guided autonomous palm-sized air vehicle,” Bioinspiration \& Biomimetics,
vol. 16, no. 2, p. 26002, 2020.

K. Y. Ma, P. Chirarattananon, S. B. Fuller, and R. J. Wood, “Controlled Flight of a
Biologically Inspired, Insect-Scale Robot,” Science (80-. )., vol. 340, pp. 603—-607, 2013.
G. de Croon, C. De Wagter, and T. Seidl, “Enhancing optical-flow-based control by
learning visual appearance cues for flying robots,” Nat. Mach. Intell., vol. 3, no. 1, pp. 33—
41,2021.

F. Expert and F. Ruffier, “Flying over uneven moving terrain based on optic-flow cues
without any need for reference frames or accelerometers,” Bioinspiration \& biomimetics,
vol. 10, no. 2, p. 26003, 2015.

K. N. McGuire, C. De Wagter, K. Tuyls, H. J. Kappen, and G. de Croon, “Minimal
navigation solution for a swarm of tiny flying robots to explore an unknown environment,”
Sci. Robot., vol. 4, no. 35, p. eaaw9710, 2019.

M. Rubenstein, C. Ahler, and R. Nagpal, “Kilobot: A low cost scalable robot system for
collective behaviors,” in 2012 IEEE international conference on robotics and automation,
2012, pp. 3293-3298.

A. F. Llenas, M. S. Talamali, X. Xu, J. A. R. Marshall, and A. Reina, “Quality-sensitive
foraging by a robot swarm through virtual pheromone trails,” in International conference
on swarm intelligence, 2018, pp. 135-149.

G. Vasarhelyi, C. Viragh, G. Somorjai, T. Nepusz, A. E. Eiben, and T. Vicsek, “Optimized
flocking of autonomous drones in confined environments,” Sci. Robot., vol. 3, no. 20, p.
eaat3536, 2018.

S. Collins, A. Ruina, R. Tedrake, and M. Wisse, “Efficient bipedal robots based on
passive-dynamic walkers,” Science (80-. )., vol. 307, no. 5712, pp. 1082—-1085, 2005.

C. P. Ellington, C. Van Den Berg, A. P. Willmott, and A. L. R. Thomas, “Leading-edge
vortices in insect flight,” Nature, vol. 384, no. 6610, pp. 626—630, 1996.

R. J. Wood, “The First Takeoff of a Biologically Inspired At-Scale Robotic Insect,” IEEE
Trans. Robot., vol. 24, no. 2, pp. 341-347, 2008.

M. Karasek, F. T. Muijres, C. De Wagter, B. D. W. Remes, and G. C. H. E. de Croon, “A
tailless aerial robotic flapper reveals that flies use torque coupling in rapid banked turns,”
Science (80-. )., vol. 361, no. 6407, pp. 1089—-1094, 2018.

B. H. Dickerson, Z. N. Aldworth, and T. L. Daniel, “Control of moth flight posture is
mediated by wing mechanosensory feedback,” J. Exp. Biol., vol. 217, no. 13, pp. 2301—
2308, 2014.

S. P. Sane, “The aerodynamics of insect flight,” J. Exp. Biol., vol. 206, no. 23, pp. 4191—
4208, 2003.

M. H. Dickinson and K. G. Gotz, “Unsteady aerodynamic performance of model wings at
low Reynolds numbers,” J. Exp. Biol., vol. 174, no. 1, pp. 45-64, 1993.

P. J. DeVries, C. M. Penz, and R. 1. Hill, “Vertical distribution, flight behaviour and
evolution of wing morphology in Morpho butterflies,” J. Anim. Ecol., vol. 79, no. 5, pp.
1077-1085, 2010.

J. Gerdes et al., “Robo Raven: a flapping-wing air vehicle with highly compliant and
independently controlled wings,” Soft Robot., vol. 1, no. 4, pp. 275-288, 2014.

Science Robotics Manuscript Template Page 16 of 24



[44]

[45]

[46]
[47]
[48]
[49]
[50]
[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

P. Ramdya et al., “Climbing favours the tripod gait over alternative faster insect gaits,”
Nat. Commun., vol. 8, no. 1, pp. 1-11, 2017.

K. Shackleton, N. J. Balfour, H. A. Toufailia, D. A. Alves, J. M. Bento, and F. L. W.
Ratnieks, “Unique nest entrance structure of Partamona helleri stingless bees leads to
remarkable ‘crash-landing’behaviour,” Insectes Soc., vol. 66, no. 3, pp. 471-477, 2019.

A. Briod, P. Kornatowski, J.-C. Zufferey, and D. Floreano, “A collision-resilient flying
robot,” J. F. Robot., vol. 31, no. 4, pp. 496509, 2014.

S. Mintchev, J. Shintake, and D. Floreano, “Bioinspired dual-stiffness origami,” Sci.
Robot., vol. 3, no. 20, 2018.

H. V. Phan and H. C. Park, “Mechanisms of collision recovery in flying beetles and
flapping-wing robots,” Science (80-. )., vol. 370, no. 6521, pp. 1214-1219, 2020.

M. F. Land and D.-E. Nilsson, Animal eyes. Oxford University Press, 2012.

H. Autrum and M. Stocker, “Uber optische Verschmelzungsfrequenzen und
stroboskopisches Sehen bei Insekte,” Biol Zentralbl, vol. 71, pp. 129-152, 1952.

T. J. Wardill, S. T. Fabian, A. C. Pettigrew, D. G. Stavenga, K. Nordstréom, and P. T.
Gonzalez-Bellido, “A novel interception strategy in a miniature robber fly with extreme
visual acuity,” Curr. Biol., vol. 27, no. 6, pp. 854-859, 2017.

F. T. Muijres, M. J. Elzinga, J. M. Melis, and M. H. Dickinson, “Flies Evade Looming
Targets by Executing Rapid Visually Directed Banked Turns,” Science (80-. )., vol. 344,
no. 6180, pp. 172—-177, Apr. 2014.

K.-H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,”
Science (80-. )., vol. 312, no. 5773, pp. 557-561, 2006.

D. Floreano et al., “Miniature curved artificial compound eyes.,” in Proceedings of the
National Academy of Sciences of the United States of America, 2013, vol. 110, pp. 9267—
72.

S. Viollet et al., “Hardware architecture and cutting-edge assembly process of a tiny curved
compound eye,” Sensors, vol. 14, no. 11, pp. 21702-21721, 2014.

J. Keshavan, G. Gremillion, H. Alvarez-Escobar, and J. S. Humbert, “Autonomous vision-
based navigation of a quadrotor in corridor-like environments,” Int. J. Micro Air Veh., vol.
7,no. 2, pp. 111-123, 2015.

A.J. Cope, A. Ahmed, F. Isa, and J. A. R. Marshall, “MiniBee: a minature MAV for the
biomimetic embodiment of insect brain models,” in Conference on Biomimetic and
Biohybrid Systems, 2019, pp. 76—87.

G. Gallego et al., “Event-based vision: A survey,” IEEE PAMI, 2020.

G. K. Taylor and H. G. Krapp, “Sensory systems and flight stability: what do insects
measure and why?,” Adv. In Insect Phys., vol. 34, pp. 231-316, 2007.

S. B. Fuller, A. D. Straw, M. Y. Peek, R. M. Murray, and M. H. Dickinson, “Flying
Drosophila stabilize their vision-based velocity controller by sensing wind with their
antennae.,” Proc. Natl. Acad. Sci. U. S. A., vol. 111, pp. E1182-91, 2014.

M. J. Rauscher and J. L. Fox, “Haltere and visual inputs sum linearly to predict wing (but
not gaze) motor output in tethered flying Drosophila,” Proc. R. Soc. B, vol. 288, no. 1943,
p. 20202374, 2021.

Y. Kuwana, S. Nagasawa, [. Shimoyama, and R. Kanzaki, “Synthesis of the pheromone-
oriented behaviour of silkworm moths by a mobile robot with moth antennae as pheromone
sensors,” Biosens. Bioelectron., vol. 14, no. 2, pp. 195-202, 1999.

D. Burkhardt and M. Gewecke, “Mechanoreception in Arthropoda: the chain from stimulus
to behavioral pattern,” in Cold Spring Harbor symposia on quantitative biology, 1965, vol.
30, pp. 601-614.

N. Chen, C. Tucker, J. M. Engel, Y. Yang, S. Pandya, and C. Liu, “Design and
characterization of artificial haircell sensor for flow sensing with ultrahigh velocity and

Science Robotics Manuscript Template Page 17 of 24



[65]

[66]

[67]

[68]
[69]

[70]

[71]

[72]

[73]
[74]

[75]
[76]

[77]

[78]

[79]

[80]

[81]
[82]
[83]

[84]

angular sensitivity,” J. microelectromechanical Syst., vol. 16, no. 5, pp. 999-1014, 2007.
A. M. Pankonien, K. S. T. Magar, R. V Beblo, and G. W. Reich, “Gust prediction via
artificial hair sensor array and neural network,” in 4 Tribute Conference Honoring Daniel
Inman, 2017, vol. 10172, p. 101720F.

S. B. Fuller, A. Sands, A. Haggerty, M. Karpelson, and R. J. Wood, “Estimating attitude
and wind velocity using biomimetic sensors on a microrobotic bee,” in 2013 IEEE
International Conference on Robotics and Automation, 2013, pp. 1374—1380.

F. van Breugel and M. H. Dickinson, “Plume-tracking behavior of flying Drosophila
emerges from a set of distinct sensory-motor reflexes,” Curr. Biol., vol. 24, no. 3, pp. 274—
286, 2014.

S. A. Budick and M. H. Dickinson, “Free-flight responses of Drosophila melanogaster to
attractive odors,” J. Exp. Biol., vol. 209, no. 15, pp. 3001-3017, 2006.

R. T. Cardé¢ and M. A. Willis, “Navigational strategies used by insects to find distant,
wind-borne sources of odor,” J. Chem. Ecol., vol. 34, no. 7, pp. 854-866, 2008.

N. Cheney, J. Bongard, V. SunSpiral, and H. Lipson, “Scalable co-optimization of
morphology and control in embodied machines,” J. R. Soc. Interface, vol. 15, no. 143, p.
20170937, 2018.

K. Miras, E. Haasdijk, K. Glette, and A. E. Eiben, “Effects of selection preferences on
evolved robot morphologies and behaviors,” in ALIFE 2018: The 2018 Conference on
Artificial Life, 2018, pp. 224-231.

N. J. Sanket, C. D. Singh, C. Fermiiller, and Y. Aloimonos, “PRGFlow: Unified SWAP-
aware deep global optical flow for aerial robot navigation,” Electron. Lett., vol. 57, no. 16,
pp. 614617, 2021.

J. Aloimonos, I. Weiss, and A. Bandyopadhyay, “Active vision,” Int. J. Comput. Vis., vol.
1, no. 4, pp. 333-356, 1988.

R. Bajcsy, Y. Aloimonos, and J. K. Tsotsos, “Revisiting active perception,” Auton. Robots,
vol. 42, no. 2, pp. 177-196, Feb. 2018.

Y. Aloimonos and C. Fermiiller, “A bug’s-eye view,” Sci. Robot., vol. 5, no. 44, 2020.

H. C. Longuet-Higgins and K. Prazdny, “The interpretation of a moving retinal image.,”
Proc. R. Soc. London, B Biol. Sci., vol. 208, no. 1173, pp. 385-397, 1980.

S. Mange, E. F. Helbling, N. Gravish, and R. J. Wood, “An actuated gaze stabilization
platform for a flapping-wing microrobot,” in 2017 IEEE International Conference on
Robotics and Automation (ICRA), 2017, pp. 5409-5414.

J.-L. Stevens and R. Mahony, “Vision based forward sensitive reactive control for a
quadrotor VTOL,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2018, pp. 5232-5238.

V. Iyer, A. Najafi, J. James, S. Fuller, and S. Gollakota, “Wireless steerable vision for live
insects and insect-scale robots,” Sci. Robot., vol. 5, no. 44, 2020.

N. Franceschini, R. Chagneux, and K. Kirschfeld, “Gaze control in flies by co-ordinated
action of eye muscles,” Gottingen Neurobiol. Report. Stuttgart Georg Thieme Verlag, p.
401, 1995.

M. Juusola et al., “Microsaccadic sampling of moving image information provides
Drosophila hyperacute vision,” Elife, vol. 6, p. €26117, 2017.

L. Kerhuel, S. Viollet, and N. Franceschini, “The vodka sensor: A bio-inspired hyperacute
optical position sensing device,” IEEE Sens. J., vol. 12, no. 2, pp. 315-324, 2011.

S. Viollet, “Vibrating makes for better seeing: from the fly’s micro-eye movements to
hyperacute visual sensors,” Front. Bioeng. Biotechnol., vol. 2, p. 9, 2014.

N. J. Sanket, C. D. Singh, K. Ganguly, C. Fermiiller, and Y. Aloimonos, “Gapflyt: Active
vision based minimalist structure-less gap detection for quadrotor flight,” /EEE Robot.
Autom. Lett., vol. 3, no. 4, pp. 2799-2806, 2018.

Science Robotics Manuscript Template Page 18 of 24



[85] J. Brebner and L. Chittka, “Animal Cognition: The Self-Image of a Bumblebee,” Curr.
Biol., vol. 31, no. 4, pp. R207--R209, 2021.

[86] G. C. H. E. De Croon, “Monocular distance estimation with optical flow maneuvers and
efference copies: a stability-based strategy,” Bioinspir. Biomim., vol. 11, no. 1, pp. 1-18,
2016.

[87] B. Baddeley, P. Graham, P. Husbands, and A. Philippides, “A model of ant route
navigation driven by scene familiarity,” PLoS Comput. Biol., vol. 8, no. 1, 2012.

[88] A. Wystrach, “Movements, embodiment and the emergence of decisions. Insights from
insect navigation,” Biochem. Biophys. Res. Commun., vol. 564, no. 30 July, pp. 70-77,
2021.

[89] F.Le Moel and A. Wystrach, “Opponent processes in visual memories: A model of
attraction and repulsion in navigating insects’ mushroom bodies,” PLoS Comput. Biol., vol.
16, no. 2, p. e1007631, 2020.

[90] A. Kodzhabashev and M. Mangan, “Route following without scanning,” in Conference on
Biomimetic and Biohybrid Systems, 2015, pp. 199-210.

[91] A. Philippides, N. H. de Ibarra, O. Riabinina, and T. S. Collett, “Bumblebee calligraphy:
the design and control of flight motifs in the learning and return flights of Bombus
terrestris,” J. Exp. Biol., vol. 216, no. 6, pp. 1093—-1104, 2013.

[92] W. Stiirzl, J. Zeil, N. Boeddeker, and J. M. Hemmi, “How wasps acquire and use views for
homing,” Curr. Biol., vol. 26, no. 4, pp. 470-482, 2016.

[93] A. Ben-Nun, M. Guershon, and A. Ayali, “Self body-size perception in an insect,”
Naturwissenschaften, vol. 100, no. 5, pp. 479-484, 2013.

[94] C. Solvi, S. G. Al-Khudhairy, and L. Chittka, “Bumble bees display cross-modal object
recognition between visual and tactile senses,” Science (80-. )., vol. 367, no. 6480, pp.
910-912, 2020.

[95] N. Sanket, “Active Vision Based Embodied-Al Design for Nano-UAV Autonomy,”
ProQuest Dissertations Publishing, 2021.

[96] E. Bonabeau, D. de R. D. F. Marco, M. Dorigo, G. Théraulaz, G. Theraulaz, and others,
Swarm intelligence: from natural to artificial systems, no. 1. Oxford university press, 1999.

[97] M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo, “Swarm robotics: a review from
the swarm engineering perspective,” Swarm Intell., vol. 7, no. 1, pp. 1-41, 2013.

[98] E. Tuci, R. GroB3, V. Trianni, F. Mondada, M. Bonani, and M. Dorigo, “Cooperation
through self-assembly in multi-robot systems,” ACM Trans. Auton. Adapt. Syst., vol. 1, no.
2, pp- 115-150, 2006.

[99] A.Reina, T. Bose, V. Trianni, and J. A. R. Marshall, “Effects of spatiality on value-
sensitive decisions made by robot swarms,” in Distributed autonomous robotic systems,
Springer, 2018, pp. 461-473.

[100] M. Duarte ef al., “Evolution of collective behaviors for a real swarm of aquatic surface
robots,” PLoS One, vol. 11, no. 3, p. 0151834, 2016.

[101] B. P. Duisterhof, S. Li, J. Burgués, V. J. Reddi, and G. C. H. E. de Croon, “Sniffy Bug: A
Fully Autonomous Swarm of Gas-Seeking Nano Quadcopters in Cluttered Environments,”
in IROS 2021, 2021.

[102] R. Wehner and S. Wehner, “Insect navigation: use of maps or Ariadne’s thread?,” Ethol.
Ecol. Evol., vol. 2, no. 1, pp. 27-48, 1990.

[103] B. Webb, “The internal maps of insects,” J. Exp. Biol., vol. 222, no. Suppl 1, p. jeb188094,
2019.

[104] M. Wittlinger, R. Wehner, and H. Wolf, “The ant odometer: stepping on stilts and stumps,”
Science (80-. )., vol. 312, no. 5782, pp. 1965-1967, 2006.

[105] R. Wehner, B. Michel, and P. Antonsen, “Visual navigation in insects: coupling of
egocentric and geocentric information,” J. Exp. Biol., vol. 199, no. 1, pp. 129-140, Jan.

Science Robotics Manuscript Template Page 19 of 24



1996.

[106] D. Lambrinos, R. Mdéller, T. Labhart, R. Pfeifer, and R. Wehner, “A mobile robot
employing insect strategies for navigation,” Rob. Auton. Syst., vol. 30, no. 1-2, pp. 39-64,
2000.

[107] T. Labhart, “Polarization-opponent interneurons in the insect visual system,” Nature, vol.
331, no. 6155, pp. 435437, 1988.

[108] R. WEHNER and S. STRASSER, “The POL area of the honey bee’s eye: behavioural
evidence,” Physiol. Entomol., vol. 10, no. 3, pp. 337-349, 1985.

[109] B. A. Cartwright and T. S. Collett, “How honey bees use landmarks to guide their return to
a food source,” Nature, vol. 295, no. 5850, pp. 560-564, 1982.

[110] V.V Hafner and R. Méller, “Learning of visual navigation strategies,” in Proceedings of
the European Workshop on Learning Robots, 2001, vol. 1, pp. 47-56.

[111] D.N.D. A.D. G.P.N. T. P. A. Knight JC Sakhapov D, “Insect-inspired visual navigation
on-board an autonomous robot: Real-world routes encoded in a single layer network.,” in
ALIFE: The 2019 Conference on Artificial Life, 2019, pp. 60—67.

[112] A. Stelzer, M. Vayugundla, E. Mair, M. Suppa, and W. Burgard, “Towards efficient and
scalable visual homing,” Int. J. Rob. Res., vol. 37, no. 2-3, pp. 225-248, 2018.

[113] W.E. Green and P. Y. Oh, “Optic-Flow-Based Collision Avoidance,” Robot. {&amp;,
Autom. Mag. IEEE, vol. 15, no. 1, pp. 96-103, Mar. 2008.

[114] A.J. Cope, C. Sabo, K. Gurney, E. Vasilaki, and J. A. R. Marshall, “A model for an
angular velocity-tuned motion detector accounting for deviations in the corridor-centering
response of the bee,” PLoS Comput. Biol., vol. 12, no. 5, p. e1004887, 2016.

[115] N.J. Sanket ef al., “Evdodgenet: Deep dynamic obstacle dodging with event cameras,” in
2020 IEEE International Conference on Robotics and Automation (ICRA), 2020, pp.
10651-10657.

[116] F. Colonnier, S. Ramirez-Martinez, S. Viollet, and F. Ruffier, “A bio-inspired sighted robot
chases like a hoverfly,” Bioinspiration \& biomimetics, vol. 14, no. 3, p. 36002, 2019.

[117] F. Ruffier and N. Franceschini, “Visually guided micro-aerial vehicle: automatic take off,
terrain following, landing and wind reaction,” in /EEE International Conference on
Robotics and Automation, 2004. Proceedings. ICRA’04. 2004, 2004, vol. 3, pp. 2339—
2346.

[118] C. Planta, J. Conradt, A. Jencik, and P. Verschure, “A neural model of the fly visual system
applied to navigational tasks,” in International Conference on Artificial Neural Networks,
2002, pp. 1268-1274.

[119] B. Herissé, T. Hamel, R. Mahony, and F.-X. Russotto, “Landing a VTOL unmanned aerial
vehicle on a moving platform using optical flow,” IEEE Trans. Robot., vol. 28, no. 1, pp.
77-89, 2011.

[120] M. V Srinivasan, S. Zhang, and J. S. Chahl, “Landing strategies in honeybees, and possible
applications to autonomous airborne vehicles,” Biol. Bull., vol. 200, no. 2, pp. 216221,
2001.

[121] E. Baird, N. Boeddeker, M. R. Ibbotson, and M. V Srinivasan, “A universal strategy for
visually guided landing,” Proc. Natl. Acad. Sci. U. S. A., vol. 110, no. 46, pp. 18686—
18691, 2013.

[122] F. C. Rind and P. J. Simmons, “Orthopteran DCMD neuron: a reevaluation of responses to
moving objects. I. Selective responses to approaching objects,” J. Neurophysiol., vol. 68,
no. 5, pp. 1654-1666, 1992.

[123] P.J. Simmons and F. C. Rind, “Orthopteran DCMD neuron: a reevaluation of responses to
moving objects. II. Critical cues for detecting approaching objects,” J. Neurophysiol., vol.
68, no. 5, pp. 1667-1682, 1992.

[124] S. Judge and F. Rind, “The locust DCMD, a movement-detecting neurone tightly tuned to

Science Robotics Manuscript Template Page 20 of 24



collision trajectories,” J. Exp. Biol., vol. 200, no. 16, pp. 2209-2216, 1997.

[125] F. C. Rind et al., “Two identified looming detectors in the locust: ubiquitous lateral
connections among their inputs contribute to selective responses to looming objects,” Sci.
Rep., vol. 6, p. 35525, 2016.

[126] F. C. Rind and D. I. Bramwell, “Neural network based on the input organization of an
identified neuron signaling impending collision,” J. Neurophysiol., vol. 75, no. 3, pp. 967—
985, 1996.

[127] S. Yue and F. C. Rind, “A collision detection system for a mobile robot inspired by the
locust visual system,” in Proceedings of the 2005 IEEE International Conference on
Robotics and Automation, 2005, pp. 3832-3837.

[128] S. Yue and F. C. Rind, “Collision detection in complex dynamic scenes using an LGMD-
based visual neural network with feature enhancement,” IEEE Trans. neural networks, vol.
17, no. 3, pp. 705-716, 2006.

[129] Q. Fu, C. Hu, T. Liu, and S. Yue, “Collision selective LGMDs neuron models research
benefits from a vision-based autonomous micro robot,” in 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2017, pp. 3996—-4002.

[130] L. Salt, D. Howard, G. Indiveri, and Y. Sandamirskaya, “Parameter optimization and
learning in a spiking neural network for UAV obstacle avoidance targeting neuromorphic
processors,” IEEE Trans. neural networks Learn. Syst., vol. 31, no. 9, pp. 3305-3318,
2019.

[131] X. Sun, S. Yue, and M. Mangan, “A decentralised neural model explaining optimal
integration of navigational strategies in insects,” Elife, vol. 9, p. €54026, 2020.

[132] D. Falanga, K. Kleber, and D. Scaramuzza, “Dynamic obstacle avoidance for quadrotors
with event cameras,” Sci. Robot., vol. 5, no. 40, 2020.

[133] N.J. Sanket, C. D. Singh, C. M. Parameshwara, C. Fermiiller, G. C. H. E. de Croon, and Y.
Aloimonos, “EVPropNet: Detecting Drones By Finding Propellers For Mid-Air Landing
And Following,” in RSS, 2021.

[134] S. Dasgupta, C. F. Stevens, and S. Navlakha, “A neural algorithm for a fundamental
computing problem,” Science (80-. )., vol. 358, no. 6364, pp. 793-796, 2017.

[135] R. Huerta, T. Nowotny, M. Garcia-Sanchez, H. D. 1. Abarbanel, and M. 1. Rabinovich,
“Learning classification in the olfactory system of insects,” Neural Comput., vol. 16, no. 8,
pp. 1601-1640, 2004.

[136] A. G. Dyer, C. Neumeyer, and L. Chittka, “Honeybee (Apis mellifera) vision can
discriminate between and recognise images of human faces,” J. Exp. Biol., vol. 208, no. 24,
pp- 4709-4714, 2005.

[137] M. Heisenberg, “Mushroom body memoir: from maps to models,” Nat. Rev. Neurosci., vol.
4, no. 4, pp. 266275, 2003.

[138] D. Smith, J. Wessnitzer, and B. Webb, “A model of associative learning in the mushroom
body,” Biol. Cybern., vol. 99, no. 2, pp. 89—-103, 2008.

[139] M. N. Modji, Y. Shuai, and G. C. Turner, “The Drosophila mushroom body: from
architecture to algorithm in a learning circuit,” Annu. Rev. Neurosci., vol. 43, pp. 465-484,
2020.

[140] J. E. M. Bennett, A. Philippides, and T. Nowotny, “Learning with reinforcement prediction
errors in a model of the Drosophila mushroom body,” Nat. Commun., vol. 12, no. 1, pp. 1—
14, 2021.

[141] C. Pehlevan, A. Genkin, and D. B. Chklovskii, “A clustering neural network model of
insect olfaction,” in 2017 51st Asilomar Conference on Signals, Systems, and Computers,
2017, pp. 593-600.

[142] B. Arcanjo, B. Ferrarini, M. Milford, K. D. McDonald-Maier, and S. Ehsan, “An Efficient
and Scalable Collection of Fly-inspired Voting Units for Visual Place Recognition in

Science Robotics Manuscript Template Page 21 of 24



Changing Environments,” arXiv Prepr. arXiv2109.10986, 2021.

[143] R. A. Brooks, “Elephants don’t play chess,” Rob. Auton. Syst., vol. 6, no. 1-2, pp. 3—15,
1990.

[144] N. Franceschini, J.-M. Pichon, and C. Blanes, “From insect vision to robot vision,” Philos.
Trans. R. Soc. London. Ser. B Biol. Sci., vol. 337, no. 1281, pp. 283-294, 1992.

[145] V. Trianni, S. Nolfi, and M. Dorigo, “Evolution, self-organization and swarm robotics,” in
Swarm Intelligence, Springer, 2008, pp. 163—191.

[146] A.J. Cope, C. Sabo, E. Vasilaki, A. B. Barron, and J. A. R. Marshall, “A computational
model of the integration of landmarks and motion in the insect central complex,” PLoS
One, vol. 12, no. 2, p. €0172325, 2017.

[147] M. Srinivasan, S. Zhang, M. Lehrer, and T. Collett, “Honeybee navigation en route to the
goal: visual flight control and odometry,” J. Exp. Biol., vol. 199, pp. 23744, 1996.

[148] J. R. Stowers et al., “Virtual reality for freely moving animals,” Nat. Methods, vol. 14, no.
10, pp. 995-1002, 2017.

[149] L. K. Scheffer et al., “A connectome and analysis of the adult Drosophila central brain,”
Elife, vol. 9, p. €57443, 2020.

[150] T. Riemensperger, R. J. Kittel, and A. Fiala, “Optogenetics in Drosophila neuroscience,” in
Optogenetics, Springer, 2016, pp. 167-175.

[151] S.S. Kim, H. Rouault, S. Druckmann, and V. Jayaraman, “Ring attractor dynamics in the
Drosophila central brain,” Science (80-. )., vol. 356, no. 6340, pp. 849—853, 2017.

[152] S. Nolfi, J. Bongard, P. Husbands, and D. Floreano, “Evolutionary robotics,” in Springer
handbook of robotics, Springer, 2016, pp. 2035-2068.

[153] S. Doncieux, N. Bredeche, J.-B. Mouret, and A. E. G. Eiben, “Evolutionary robotics: what,
why, and where to,” Front. Robot. AI, vol. 2, p. 4, 2015.

[154] R.S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. The MIT Press:
webdocs.cs.ualberta.ca, 2018.

[155] D. Floreano and C. Mattiussi, “Evolution of spiking neural controllers for autonomous
vision-based robots,” in International Symposium on Evolutionary Robotics, 2001, pp. 38—
61.

[156] L. Lichtensteiger and R. Salomon, “The evolution of an artificial compound eye by using
adaptive hardware,” in Proceedings of the 2000 Congress on Evolutionary Computation.
CECO00 (Cat. No. 00TH8512), 2000, vol. 2, pp. 1144-1151.

[157] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through augmenting
topologies,” Evol. Comput., vol. 10, no. 2, pp. 99-127, 2002.

[158] J. C. Bongard, “Morphological and environmental scaffolding synergize when evolving
robot controllers: artificial life/robotics/evolvable hardware,” in Proceedings of the 13th
annual conference on Genetic and evolutionary computation, 2011, pp. 179-186.

[159] J. Lehman, K. O. Stanley, and others, “Exploiting open-endedness to solve problems
through the search for novelty.,” in ALIFE, 2008, pp. 329-336.

[160] N. Jakobi, P. Husbands, and I. Harvey, “Noise and the reality gap: The use of simulation in
evolutionary robotics,” in Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 1995, vol. 929, pp.
704-720.

[161] J. Kodjabachian and J.-A. Meyer, “Evolution and development of neural controllers for
locomotion, gradient-following, and obstacle-avoidance in artificial insects,” IEEE Trans.
neural networks, vol. 9, no. 5, pp. 796-812, 1998.

[162] K. Y. W. Scheper and G. C. H. E. de Croon, Abstraction as a mechanism to cross the
reality gap in evolutionary robotics, vol. 9825 LNCS. 2016.

[163] G. Francesca, M. Brambilla, A. Brutschy, V. Trianni, and M. Birattari, “AutoMoDe: A
novel approach to the automatic design of control software for robot swarms,” Swarm

Science Robotics Manuscript Template Page 22 of 24



Intell., vol. 8, no. 2, pp. 89-112, 2014.

[164] A. Gidon et al., “Dendritic action potentials and computation in human layer 2/3 cortical
neurons,” Science (80-. )., vol. 367, no. 6473, pp. 83—87, 2020.

[165] J. Fuentes-Pacheco, J. Ruiz-Ascencio, and J. M. Rendén-Mancha, “Visual simultaneous
localization and mapping: a survey,” Artif. Intell. Rev., vol. 43, no. 1, pp. 55-81, 2015.

[166] R. Brooks, “A robust layered control system for a mobile robot,” IEEE J. Robot. Autom.,
vol. 2, no. 1, pp. 14-23, 1986.

[167] S. Wu et al., “Artificial compound eye: a survey of the state-of-the-art,” Artif. Intell. Rev.,
vol. 48, no. 4, pp. 573-603, 2017.

[168] X. Chen, A. Milioto, E. Palazzolo, P. Giguere, J. Behley, and C. Stachniss, “Suma+-+:
Efficient lidar-based semantic {SLAM},” in 2019 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2019, pp. 4530-4537.

[169] Z. Wang, Q. Zhang, J. Li, S. Zhang, and J. Liu, “A computationally efficient semantic
{SLAM} solution for dynamic scenes,” Remote Sens., vol. 11, no. 11, p. 1363, 2019.

[170] J. L. Jones, “Robots at the tipping point: the road to iRobot Roomba,” IEEE Robot. \&
Autom. Mag., vol. 13, no. 1, pp. 7678, 2006.

[171] D. Marr, Vision: A Computational Approach. San Francisco, Freeman & Co., 1982.

[172] J. Dupeyroux, J. Hagenaars, F. Paredes-Vallés, and G. de Croon, “Neuromorphic control
for optic-flow-based landings of MAVs using the Loihi processor,” in 2021 IEEE
International Conference on Robotics and Automation (ICRA), 2021.

[173] R. K. Stagsted, A. Vitale, A. Renner, L. B. Larsen, A. L. Christensen, and Y.
Sandamirskaya, “Event-based PID controller fully realized in neuromorphic hardware: A
one DoF study,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2020, pp. 10939-10944.

[174] C. De Wagter, S. Tijmons, B. D. W. Remes, and G. C. H. E. De Croon, “Autonomous
flight of a 20-gram Flapping Wing MAV with a 4-gram onboard stereo vision system,”
Proc. - IEEE Int. Conf. Robot. Autom., pp. 4982-4987, 2014.

[175] N. Franceschini and K. Kirschfeld, “Les phénoménes de pseudopupille dans 1’oeil composé
de Drosophila,” Kybernetik, vol. 9, no. 5, pp. 159-182, 1971.

[176] J. Lee, J. Lee, D. Han, J. Lee, G. Park, and H.-J. Yoo, “An energy-efficient sparse deep-
neural-network learning accelerator with fine-grained mixed precision of FP8--FP16,”
IEEFE Solid-State Circuits Lett., vol. 2, no. 11, pp. 232-235, 2019.

[177] L.P. Maguire, T. M. McGinnity, B. Glackin, A. Ghani, A. Belatreche, and J. Harkin,
“Challenges for large-scale implementations of spiking neural networks on FPGAs,”
Neurocomputing, vol. 71, no. 1-3, pp. 13-29, 2007.

[178] W. Maass, “Networks of spiking neurons: The third generation of neural network models,”
Neural Networks, vol. 10, no. 9, pp. 1659-1671, 1997.

[179] Q. Wang, Y. Li, B. Shao, S. Dey, and P. Li, “Energy efficient parallel neuromorphic
architectures with approximate arithmetic on FPGA,” Neurocomputing, vol. 221, pp. 146—
158,2017.

[180] H. Fang, Z. Mei, A. Shrestha, Z. Zhao, Y. Li, and Q. Qiu, “Encoding, model, and
architecture: Systematic optimization for spiking neural network in FPGAs,” in 2020
IEEE/ACM International Conference On Computer Aided Design (ICCAD), 2020, pp. 1-9.

[181] V. Sakellariou and V. Paliouras, “An FPGA Accelerator for Spiking Neural Network
Simulation and Training,” in 2021 IEEE International Symposium on Circuits and Systems
(ISCAS), 2021, pp. 1-5.

[182] F. Aubépart and N. Franceschini, “Bio-inspired optic flow sensors based on FPGA:
Application to Micro-Air-Vehicles,” Microprocess. Microsyst., vol. 31, no. 6, pp. 408—419,
2007.

[183] Opteran, “Opteran Development Kit 2. .

Science Robotics Manuscript Template Page 23 of 24



[184] G. Indiveri et al., “Neuromorphic silicon neuron circuits,” Front. Neurosci., vol. 5, p. 73,
2011.

[185] P. Shukla, A. Muralidhar, N. Iliev, T. Tulabandhula, S. B. Fuller, and A. R. Trivedi,
“Probabilistic Localization of Insect-Scale Drones on Floating-Gate Inverter Arrays,” IEEE
Trans. Very Large Scale Integr.

[186] R. B. Stein, “A theoretical analysis of neuronal variability,” Biophys. J., vol. 5, no. 2, pp.
173—-194, 1965.

[187] M. Davies et al., “Loihi: A neuromorphic manycore processor with on-chip learning,”
IEEE Micro, vol. 38, no. 1, pp. 82-99, 2018.

[188] P. A. Merolla et al., “A million spiking-neuron integrated circuit with a scalable
communication network and interface,” Science (80-. )., vol. 345, no. 6197, pp. 668—673,
2014.

[189] J. Schemmel, D. Briiderle, A. Griibl, M. Hock, K. Meier, and S. Millner, “A wafer-scale
neuromorphic hardware system for large-scale neural modeling,” in 2010 I[EEE
International Symposium on Circuits and Systems (ISCAS), 2010, pp. 1947-1950.

[190] B. V. Benjamin et al., “Neurogrid: A mixed-analog-digital multichip system for large-scale
neural simulations,” Proc. IEEE, vol. 102, no. 5, pp. 699716, 2014.

[191] S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana, “The spinnaker project,” Proc.
IEEE, vol. 102, no. 5, pp. 652-665, 2014.

[192] A. A. Polilov, “The smallest insects evolve anucleate neurons,” Arthropod Struct. \& Dev.,
vol. 41, no. 1, pp. 29-34, 2012.

[193] Y. M. Chukewad, J. James, A. Singh, and S. Fuller, “RoboFly: An insect-sized robot with
simplified fabrication that is capable of flight, ground, and water surface locomotion,”
IEEE Trans. Robot., 2021.

Acknowledgments
We thank Mike Mangan for the interesting discussions related to this article. Also, we are
grateful to Myrtille La [lumia (myrtille.lalumia@gmail.com) for drawing the insects in
Figures 1 and 2.

Funding: -

Author contributions: All authors, G.C., J.D., S.F., and J.M. contributed to the conception
of the viewpoint article and its central arguments. Based on this, G.C. has written the initial
draft of the article. Subsequently, all authors actively revised and edited the manuscript.
G.C. and J.D. have conceived the figures, with J.D. creating them in part based on drawings
by Myrtille Lalumia (see acknowledgements).

Competing interests: J.M. is the Chief Scientific Officer and co-founder of Opteran, a
company providing general purpose autonomy solutions based on insect intelligence.

Science Robotics Manuscript Template Page 24 of 24


mailto:myrtille.lalumia@gmail.com

