
A PARALLEL ALGORITHM FOR LOCAL POINT DENSITY INDEX COMPUTATION
OF LARGE POINT CLOUDS

Anh Vu Voa,∗, Chamin Nalinda Lokugam Hewagea , Nhien An Le Khaca, Michela Bertolottoa, Debra Laeferb,c

aSchool of Computer Science, University College Dublin, Ireland - anhvu.vo@ucd.ie,
chamin.lokugamhewage@ucdconnect.ie, (an.lekhac, michela.bertolotto)@ucd.ie

bCenter for Urban Science and Progress, New York University, USA - debra.laefer@nyu.edu
cDepartment of Civil and Urban Engineering, New York University, USA

KEY WORDS: Point cloud, LiDAR, Parallel, Distributed, Density, Local Point Density Index, Apache Spark.

ABSTRACT:

Point density is an important property that dictates the usability of a point cloud data set. This paper introduces an efficient,
scalable, parallel algorithm for computing the local point density index, a sophisticated point cloud density metric. Computing the
local point density index is non-trivial, because this computation involves a neighbour search that is required for each, individual
point in the potentially large, input point cloud. Most existing algorithms and software are incapable of computing point density at
scale. Therefore, the algorithm introduced in this paper aims to address both the needed computational efficiency and scalability for
considering this factor in large, modern point clouds such as those collected in national or regional scans. The proposed algorithm
is composed of two stages. In stage 1, a point-level, parallel processing step is performed to partition an unstructured input point
cloud into partially overlapping, buffered tiles. A buffer is provided around each tile so that the data partitioning does not introduce
spatial discontinuity into the final results. In stage 2, the buffered tiles are distributed to different processors for computing the local
point density index in parallel. That tile-level parallel processing step is performed using a conventional algorithm with an R-tree
data structure. While straight-forward, the proposed algorithm is efficient and particularly suitable for processing large point clouds.
Experiments conducted using a 1.4 billion point data set acquired over part of Dublin, Ireland demonstrated an efficiency factor of
up to 14.8/16. More specifically, the computational time was reduced by 14.8 times when the number of processes (i.e. executors)
increased by 16 times. Computing the local point density index for the 1.4 billion point data set took just over 5 minutes with 16
executors and 8 cores per executor. The reduction in computational time was nearly 70 times compared to the 6 hours required
without parallelism.

1. INTRODUCTION

The term point cloud is often used to indicate a set of dis-
crete, three-dimensional (3D) sampling points that represent
some spatial entities (e.g., urban infrastructure, building ob-
jects, terrain surfaces). Point clouds are usually acquired by
Light Detection And Ranging (LiDAR) or photogrammetric tech-
niquess. Point clouds are recognised as an increasingly prom-
inent part of the spatial data infrastructure and a distinguishable
kind of spatial data apart from raster and vector data (van Oos-
terom et al., 2015; Julin et al., 2018). An important property
of a point cloud data set is its point density, which measures
the number of sampling points per unit area. However, a sum-
mation of points on an apparently flat surface and the division
of that number over the horizontal projection of the local sur-
face provides an uninformative measure of density due to the
high degree of heterogeneity in urban aerial point clouds and in
many ways is only an indicator of the upper bound of horizontal
coverage (Stanley and Laefer, 2021). Arguably, the division of
the all points in the point cloud by the entire horizontal spatial
extent is even less informative. Understanding a more local-
ized nature of the density of a point cloud is important, as it
has direct implications on its usability in downstream applica-
tions (Renslow, 2012). Specifically, insufficient densities can
preclude tasks such as detection of objects and features smaller
than a certain size. Thus, point density is a primary criterion in
point cloud data acquisition and analysis (Heidemann, 2018).
While there are various ways to compute the density of a point
∗ Corresponding author

cloud, such as (Lari and Habib, 2012; Bethel, 2019), comput-
ing the exact density at each location across a large point cloud
data set is a computationally demanding problem, because of
the need to consider the local neighbourhood of each point.
Knowing the point density as a function of position with a data
set can help inform the likely success of segmentation or object
detection algorithms.

To address the issue, this paper introduces an efficient parallel
algorithm for computing the Local Point Density index (LPD),
a relatively sophisticated density metric. Compared to conven-
tional density computation approaches such as two-dimensional
(2D) gridding (Bethel, 2019), LPD is capable of capturing the
density on horizontal, as well as non-horizontal, surfaces at
the point level. The computation of LPD of a point cloud re-
lies on analysing the local neighbourhood of each individual
point in the point cloud. The parallel algorithm proposed in
this paper aims to compute the LPD index of large point clouds
in a timely manner. Firstly, this is done by enabling out-of-
core computation, thereby circumventing the need to load the
entirety of the point cloud into the main memory, which re-
moves memory capacity as the limiting factor with respect to
data volume. Secondly, the algorithm is parallel, thereby allow-
ing multiple processors to share the computing workload – lead-
ing to a significant reduction in computation time. The capabil-
ity of the algorithm to compute LPD for large point clouds rap-
idly is particularly important to cope with the massive volumes
of point cloud data being collected, which can be billions of
points per square kilometer (e.g. AHN, 2014; Laefer et al.,
2017; Vo et al., 2016).

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume VIII-4/W2-2021 
16th 3D GeoInfo Conference 2021, 11–14 October 2021, New York City, USA

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-VIII-4-W2-2021-75-2021 | © Author(s) 2021. CC BY 4.0 License.

 
75



One of the main challenges in developing the parallel algorithm
is partitioning the data without interrupting the spatial continu-
ity inherent to the data. The algorithm proposed in this paper is
inspired by the tile-based parallelisation with the use of spatial
buffers introduced by Li et al. (2017). Rather than replicating
or simply adopting (Li et al., 2017), this research extends those
concepts by introducing a parallel pre-processing step to struc-
ture the input point cloud into buffered tiles. In addition, the
research provides an extended formalisation and in-depth ana-
lysis of the computational efficiency of the algorithm and rigor-
ously evaluates the actual computational performance through
large-scale experiments. In particular, the research makes the
following contributions:

• novel, point-level parallelisation approach to organise points
into buffered tiles

• extension of the tile-level parallelisation approach by Li et
al. (2017) for computing the LPD index

• analysis of the computational efficiency of the complete
parallel algorithm for LPD computation

• demonstration of the ability of the algorithm to compute
the LPD index for a large point cloud rapidly by distribut-
ing the computation across a distributed memory system.

2. RELATED WORK

This section reviews research related to point density compu-
tation and parallel point cloud processing. This starts with the
most simplistic such as that recommended by the US Geolo-
gical Survey’s LiDAR Base Specification (Heidemann, 2018),
which involves computing the average density for a represent-
ative polygonal area larger than 1 km2. As noted by Bethel
(2019), the simplistic representative area approach is insuffi-
cient to comprehensively represent the actual density of the en-
tire point cloud, as the mechanism cannot capture local differ-
ences. More rigorous alternatives include the Voronoi/Thiessen
polygon approach and the gridding approach (Naus, 2010; Bethel,
2019). Those approaches are better at capturing the local point
density distribution compared to a representative area approach.
However, all of the aforementioned approaches project the 3D
data onto a 2D, horizontal plane, thereby obfuscating the actual
point distribution, which is inherently 3D. That limitation par-
ticularly affects non-horizontal surfaces, which are rarely seen
in topographic mapping, but commonly captured in terrestrial
and mobile LiDAR,as well as low-altitude airborne LiDAR (Lae-
fer et al., 2017, 2014).

Aiming to address the limitation of the 2D approaches, Lari
and Habib (2012) introduced three alternatives for computing
the LPD in 3D. The first, referred to as the approximate ap-
proach, assumes that the local spherical neighbourhood around
the point in question contains adjacent points that approximate
a planar surface. The LPD index of a point is, thus, calculated
as LPD = (n+1)/(πr2), where r is the radius of the spherical
neighbourhood of the point in question, and n is the number of
points in that neighbourhood. The approximate LPD index is
available in notable point cloud software such as CloudCom-
pare and is widely used in other research (e.g. Vo et al., 2015;
Xu et al., 2018; Saglam et al., 2020; Ye et al., 2020). The other
two approaches introduced by Lari and Habib (2012) aimed to
verify the planarity assumption and exclude non-planar points
in the spherical neighbourhood prior to the LPD computation.

Compared to the approximate approach, the accuracy of the lat-
ter approach is improved at the cost of a higher computational
cost.

As LiDAR and photogrammetry technologies advance rapidly,
the size and density of point clouds are rapidly increasing in
both volume and density. A common approach to accelerate
data analyses and accommodate large data volumes is paral-
lel computing. Developing parallel point cloud data analysis
algorithms is an active research topic. There is a large body
of research work (e.g. Wu et al., 2011; Che and Olsen, 2018;
Zhang et al., 2011; Bodenstein et al., 2015; Brédif et al., 2015;
Vo and Laefer, 2019) that has investigated both the main types
of parallel systems (shared-memory and distributed-memory)
for point cloud data analysis. In a shared memory system, all
processors share access to the computer’s memory. A parallel
program that can exploit that type of system is called a multi-
threading program. In a distributed-memory system, each pro-
cessor (called a node) has its private memory and functions sim-
ilar to an autonomous computer. Individual computing nodes
in a distributed-memory system exchange data through explicit
communication over a network (e.g. message passing). Com-
pared to shared-memory systems, distributed-memory systems
are more difficult to program and are typically not as fast at
computing due to significantly higher communication overheads.
However, distributed-memory systems can be scaled much more
easily and far less expensively (Kleppmann, 2017). Examples
of research on multi-threading point cloud analysis algorithms
include the parallel Delaunay triangulation algorithm by Wu et
al. (2011), the point cloud registration algorithm by Martinez et
al. (2013), and the spatial segmentation algorithm by Che and
Olsen (2018). The efficiency of multi-threading parallelism was
demonstrated in all of those.

The use of distributed memory systems for point cloud data
analysis has spawned significant quantities of research. For ex-
ample, Zhang et al. (2011) and Bodenstein et al. (2015) inde-
pendently introduced different spatial clustering algorithms that
can exploit the high scalability of distributed memory systems.
Both research groups followed the explicit parallel program-
ming approach and used the Message Passing Interface (MPI)
framework. With MPI, programmers must explicitly instruct
how specific processors perform their tasks and coordinate with
other processors. Major complexity such as avoiding race and
deadlock must be handled by the programmer. Consequently,
explicit parallel programming, such as MPI, is powerful method
but complex. A simpler way to program distributed-memory
systems is to employ frameworks such as MapReduce (Dean
and Ghemawat, 2008). That framework abstracts away the ac-
tual complexity of parallel programming and provides a simple
interface that programmers use to formulate their computational
problems. Such an approach is simple and more accessible but
usually less computationally efficient when compared to the ex-
plicit approach. There are two common implementations of
MapReduce: Hadoop MapReduce (https://hadoop.apache.org/)
and Spark (https://spark.apache.org/). Examples of Hadoop Map
Reduce for point cloud data analysis can be seen in (Aljumaily
et al., 2016) and (Krishnan et al., 2010). Its successor, Spark, is
typically 10-100s times faster than Hadoop MapReduce due to
its more efficient memory usage (Zecevic and Bonaci, 2017). In
addition, Spark provides a richer interface so that applications
need not follow the rigid structure of one map and one reduce
function, as per the original MapReduce framework. The use
of Spark for LiDAR point cloud analysis is seen in various re-
search for a diverse range of purposes including orthographic

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume VIII-4/W2-2021 
16th 3D GeoInfo Conference 2021, 11–14 October 2021, New York City, USA

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-VIII-4-W2-2021-75-2021 | © Author(s) 2021. CC BY 4.0 License.

 
76



image rendering (Brédif et al., 2015) and change detection (Liu
et al., 2016) and solar radiation simulation with point clouds (Vo
et al., 2019).

Tiling, rasterisation, and voxelisation are commonly seen in
MapReduce and Spark applications for point cloud data ana-
lysis (e.g. Krishnan et al., 2010; Rizki et al., 2017; Liu et al.,
2016; Li et al., 2017). These techniques group points into spa-
tially coherent groups either in 2D (i.e. tiling, rasterisation) or
in 3D (voxelisation). The groups of points (i.e. tiles, cells, or
voxels) are then distributed to different processors for parallel
processing. The key in applying such a strategy is in decoupling
the overall computation into separate cell- or voxel-based com-
putations without introducing spatial discontinuities or other ar-
tifacts in the ultimate results. Li et al. (2017) recommended a
spatial buffer around each data partition to avoid the spatial dis-
continuity. The approach was demonstrated as general-purpose,
as it could parallelise a class of point cloud processing tasks in-
volving neighbouring information. Notably, the parallelisation
introduced by Li et al. (2017) was at the tile level. The par-
allel processing was conducted on the basis of a cluster of tiles
(called a subdomain), and the spatial buffer was set as the whole
tile size; the input point clouds were assumed to be already
structured in tiles prior to entering the parallel processing work-
flow. Decomposing an unorganised point cloud into tiles was
not part of the algorithm. While techniques such as rasterisation
and voxelisation, in addition to the use of spatial buffers, have
successfully facilitated the parallelisation of several point cloud
processing problems, there is not a known approach to parallel-
ising and scaling out the point density computation to multiple
nodes of a distributed-memory system. That is the topic of this
paper.

3. METHODOLOGY

This research introduces a more effective algorithm to comput-
ing the local point density index based on data parallelism and
is implemented in Apache Spark. The key operation in com-
puting the local point density index for a point data set P is the
3D range search for each individual point in P . The search re-
trieves for each point pi ∈ P all neighbouring points pnj ∈ P
that have d(pi, pnj) < r; where r is a user-defined radius and
d(pi, pnj) is the 3D Euclidean distance between pi and pnj .
Let n be the number of neighbours of pi, and r be the max-
imum distance between pi and all pnj . The LPD index of point
pi is computed as LPD = (n + 1)/(πr2). As P often con-
sists of a large number of points (e.g. billions to hundreds of
billions), the 3D range search is computationally expensive and
dictates the overall computational cost of the point density de-
termination. A conventional approach to the range search is to
use a spatial data structure such as an R-tree (Guttman, 1984)
or an octree (Samet, 2006). By using such a data structure,
the time required to perform a range search is tsearch, which is
proportional to the logarithm of N (i.e. the number of points
in P ). Performing a range search for all points in P takes
N · tsearch(logN), referred to as Tsearch in Equation 1. In
addition to the 3D range search, as shown in Equation 1, the
total cost of the conventional, serial approach (Tserial) consists
of the costs for constructing the tree, Ttree = N · ttree(logN)
and computing the LPD, TLPD = N · tLPD . In Equation 1,
ttree proportional to logN is the time required to insert one
point into the R-tree, and tLPD , which is independent of the
data size, is the time to compute the LPD index for one query
point.

Tserial = Ttree + Tsearch + TLPD

= N · ttree(logN) +N · tsearch(logN) +N · tLPD

(1)

The algorithm is composed of two stages. During the first stage,
the input point cloud, P , is partitioned into 2D buffered tiles
that partially overlap each other (Figure 1). Each tile, τ , con-
tains a rectangular core region, τ core , which does not overlap
the core region of any other tile. Around the core region of each
tile, a buffer, τ buffer , of size r is created to ensure that the data
partitioning does not introduce any spatial discontinuity in the
ultimate results (Figure 1a). In the second stage, as the point
cloud has been partitioned into buffered tiles, the LPD index
can be computed for each tile separately.

τbuffer

τcore

r

(a) Buffered tile

N NE

E

Tile τj

(b) Point mapped to tiles

pi

o

Figure 1. Spatial decomposition into buffered tiles

Algorithm 1: Map point to buffered tiles
Input: pi(x, y, z) . input point
Output: T = Setj([τj , pi]) . buffered tiles

1 Function MapPointToTiles(pi):
2 T ← ∅
3 X◦j ← round((pi.x− x◦)/∆x)
4 Y ◦j ← round((pi.y − y◦)/∆y)
5 τ◦j ← [X◦j , Y

◦
j ]

6 T
add←− [τ◦j , pi]

7 Tneighbours ← Neighbours(τ◦j )
8 foreach τj ∈ Tneighbours do
9 if d(τj , pi) < r then

10 T
add←− [τj , pi]

11 end
12 end
13 return T
14 End Function

Both stages of the proposed algorithm are performed in parallel
using multiple processors. In the first stage, each processor is
given several groups of points (i.e. data partitions). The pro-
cessor works on one partition at a time so that it does not have
to load all partitions into the main memory. Such a solution
is known as an out-of-core solution, which is suitable for large
data sets that do not fit in a processor’s memory. The processor
maps each point pi in a partition to all buffered tiles that contain
pi. That operation is performed using the MapPointToTiles

function in Algorithm 1. As the tile cores are disjoint, there is
only one tile, τ◦j , that contains pi in its core. The index of τ◦j ,
which is a 2-tuple index [X◦j , Y

◦
j ], is computed using the two

simple rounding functions on lines 3 and 4 of Algorithm 1. In
the functions, (x◦, y◦) is an arbitrary point defining the origin
of the tiling grid and ∆x and ∆y are the dimensions of each
tile. In addition to τ◦j , pi can belong to several neighbours of

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume VIII-4/W2-2021 
16th 3D GeoInfo Conference 2021, 11–14 October 2021, New York City, USA

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-VIII-4-W2-2021-75-2021 | © Author(s) 2021. CC BY 4.0 License.

 
77



τ◦j , if the distance from the neighbours to pi is shorter than the
radius r. Lines 8-12 of the algorithm check the neighbours of
τ◦j for those containing pi. Given that r is smaller than the
tile size, a maximum of eight direct neighbours of τ◦j have to be
checked (Zlatanova et al., 2016). The number of tiles can be fur-
ther reduced by considering position of pi relative to the centre
of τ◦j . For example, in Figure 1b, pi is to the North-East of the
centre of τ◦j . Thus only three neighbours (i.e. North, East, and
North-East) of τ◦j have to be checked using the tile to point dis-
tance condition. Nevertheless, the search for neighbouring tiles
is always O(1), because the neighbouring tiles can be located
using their 2D grid indices. For example, the 2D index of the
North-East neighbour of tile τ◦j ([X◦j , Y

◦
j ]) is [X◦j + 1, Y ◦j + 1].

Consequently, mapping one point to all of its tiles also takes
O(1).

Apart from the point coordinates, all other inputs of the MapPoi-
ntToTiles function are constant. Thus, as seen in the data lin-
eage in Figure 2, multiple partitions of points can be processed
completely and in parallel by different processors, which do not
need to synchronise data with other processors. The parallelism
in this stage is referred to as the point-level parallelism, as op-
posed to the tile-level parallelism in stage 2. Using k processors
to map all N points in P to their tiles takes N

k
· ttiling , where

ttiling is the time required to map one point to its tile and is in-
dependent of the total data size. The cost for tiling data makes
up the first term (i.e. Ttiling ) in the total cost of the parallel al-
gorithm (Equation 2). Communication across processors hap-
pens at the subsequent step where the points are aggregated by
the tiles to which they belong. In other words, the [τj , pi] pairs
resulting from the previous map function are aggregated by the
tile index τj(Xj , Yj). That aggregation is implemented using
the built-in aggregateByKey function in Spark. While the ag-
gregation is known to be highly optimised and is performed in
parallel (Zecevic and Bonaci, 2017), the actual implementation
is part of Apache Spark and is not managed by the authors. In
this paper, the computational cost of that aggregation is treated
as an unknown (Taggr in Equation 2).

pi [τj,pi]

flatMapToPair aggregateByKey flatMapToPair

partition

LEGEND

transformation

[τj, Seti(pi)]

(MapPointToTiles) (ComputeLPD)

Stage 1 Stage 2

[pi, lpdi]

Figure 2. Data lineage

During stage 2 of the algorithm, the LPD index computation is
performed for each separate buffered tile, τj using the Compute-
LPD function in Algorithm 2. In the first step (lines 2-5 of Al-
gorithm 2), a local R-tree is created for all points in τj to aid
the 3D range search. Considering m as the number of tiles, the
average time for k processors to construct all local R-trees for
the point data set P is N′

k
· ttree(log N′

m
), where N ′ > N is

the number of points including the duplication due to buffer-
ing. At the subsequent step (lines 7-11 of Algorithm 2), the
range search is performed for every point in the core of τj us-
ing the corresponding local R-tree. The total time of the search
is N

k
· tsearch(log N′

m
). The final step, LPD computation, takes

N
k
·tLPD . As shown in Algorithm 2 and the data lineage in Fig-

ure 2, all operations in stage 2 are contained within each sep-
arate tile. A processor manipulating a tile only needs the point
data within that tile, thereby circumventing the need to syn-
chronise or exchange data with other processors. Notably, the
computation in stage 2 is also out-of-core, since the processors
only need to load the subset of tiles relevant to the current com-
putation in the main memory.

Algorithm 2: Compute LPD per tile

Input: τj = τ core
j ∪ τ buffer

j . tile data
Output: D = Seti([pi, lpd i]) . local point density index

1 Function ComputeLPD(τj):
2 Rtree ← ∅
3 foreach pi ∈ τj do
4 Rtree

insert←− pi
5 end
6 D ← ∅
7 foreach pi ∈ τ core

j do
8 η ← RangeSearch(pi,RTree)
9 lpd i ← LPD(pi, η)

10 D
add←− [pi, lpd i]

11 end
12 return D
13 End Function

The total computational time of the parallel algorithm is shown
in Equation 2. All of the terms composing Tparallel are inversely
proportional to k, except for the unknown Taggr . While the ag-
gregation is not directly controlled, the efficiency of the oper-
ation, which relies on the aggregateByKey function in Spark,
is observable from the relationship between reduction of the
total cost when increasing k. If the aggregateByKey function
is highly parallel or Taggr is insignificant compared to the total
cost, Tparallel should be inversely proportional to the number of
processors, k.

Tparallel = Ttiling + Taggr + Ttree + Tsearch + TLPD

=
N

k
· ttiling + Taggr +

N ′

k
· ttree(log

N ′

m
)

+
N

k
· tsearch(log

N ′

m
) +

N

k
· tLPD

(2)

Assuming that the differences between N and N ′, as well as
log (N) and log (N

m
) are negligible, the last three terms of Tparallel

approximate Tserial/k. The first two terms are the overhead re-
quired to parallelise the computation. Tparallel can be rewritten
as in Equation 3. The speedup factor, Tserial

Tparallel
(Pacheco, 2011),

is always smaller than k because Toverhead is always larger than
zero. The efficiency of the algorithm is measured by how close
its speedup factor is with respect to to k.

Tparallel ≈ Toverhead +
Tserial

k
,

where Toverhead = Ttiling + Taggr

(3)

4. RESULTS

The algorithm introduced in Section 3 was used to compute the
3D local point density index of a 1.4 billion point data set ac-
quired over a part of the city centre of Dublin, Ireland in 2015

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume VIII-4/W2-2021 
16th 3D GeoInfo Conference 2021, 11–14 October 2021, New York City, USA

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-VIII-4-W2-2021-75-2021 | © Author(s) 2021. CC BY 4.0 License.

 
78



by Laefer et al. (2017). The LPD index results of the entire
data set are shown in Figure 3a. The red polygon indicates the
Defined Project Area (DPA), in which the minimum point dens-
ity was established as part of the project specifications. The en-
tire coverage, including the partially covered area, is called the
Buffered Project Area (BPA). The DPA and BPA are established
concepts defined in the US Geological Survey’s LiDAR Base
Specification (Heidemann, 2018). Figure 3b presents a close-
up, 3D view of a small region around Dublin Castle. As expec-
ted, the 3D LPD index computation automatically adapts to the
3D surface orientations and captures the point density on vari-
ous surfaces such as the ground, building roofs, and facades.
Points reflected from trees and transient objects such as mov-
ing people appear as low density points in dark blue colours.
This is an inherent feature of the 3D LPD approach, which is
unavailable in 2D approaches.

2
3
3
0
0
0

2
3
3
5
0
0

2
3
4
0
0
0

2
3
4
5
0
0

2
3
5
0
0
0

2
3
5
5
0
0

315000 315500 316000 316500 317000 317500

(a) Top view of the entire 2015 Dublin point cloud

(b) Close-up view of Dublin Castle area

TM75 / IRISH GRID
EPSG:29903

Colour scale

0 300 points/m2

Defined Project Area

Figure 3. Local point density index result; the areas in yellow
exceed 300 points/m2; the dark blue on the building facade is

typically 30 points/m2

The blue and dotted, orange histograms in Figure 4 represents
the point density distributions in the BPA and the DPA, respect-
ively. The proportion of lower density points in the BPA is
higher than that in the DPA because the BPA includes partially
covered areas. Each histogram has two peaks. The higher peak
(around 280 points/m2) represents the typical point density on
horizontal surfaces such as the ground and building rooftops.
Notably, the density value resulted from the 3D LPD approach

Figure 4. Histogram of local point density index

is always lower than those computed by conventional 2D ap-
proaches because the area of a 3D inclined surface is always
larger than the corresponding 2D projection of the area on the
ground. The majority of points contributing to the second peak
(around 30 points/m2) are those captured on building facades
and other vertical surfaces. The density histogram is an ef-
fective means to provide insight into the detailed point dens-
ity distribution. For example, the River Liffey is clearly visible
in Figure 3a as points captured on water surfaces are sparse due
to specular reflection and refraction. Several flat grassy areas
also clearly stand out in yellow due to their high point density.
In Figure 3b, the vast density difference between the roof and
facade surfaces of Dublin Castle is obvious. The accuracy of
the LPD computation can be straightforwardly evaluated using
sampled hand calculations or reference solutions from software
such as CloudCompare (Girardeau-Montaut et al., 2005). The
remainder of this section focuses on evaluating the computa-
tional efficiency of the proposed parallel algorithm.

To evaluate the performance of the proposed algorithm, the
runtime of the LPD index computation was measured with vari-
ous numbers of processors. Notably, the concept of processors
in Section 3 corresponds to two different concepts, executors
and cores, in the implementation of Apache Spark. An executor
is a software process residing on a physical node of the cluster
and does not share the memory with other executors. An ex-
ecutor can execute multiple tasks using multi-threading. The
maximum number of parallel tasks per executor is referred to
as the number of cores. Importantly, the concept of core in
Spark that is used in this paper does not refer to the physical
CPU cores. The experiments were conducted using two differ-
ent computing clusters. The specifications of the clusters are
shown in Table 1. The first cluster from New York University
(NYU) was an 18-node, high-end cluster with a high CPU core
count (2×24 cores) and a large memory (384 GB). The second
cluster from University of Genoa (UniGe) was a cluster of 8
commodity (consumer-grade) nodes, each had 1×6 CPU cores
and 16 GB of memory. The purpose of experimenting with the
two types of clusters is to understand any limitation of com-
modity clusters. As the proposed algorithms rely on the spatial
structure of the data (i.e. tiles, buffers), the initial arrangement
of the input data affects the computational performance. In all
experiments reported in this paper, the input point clouds were
structured as 500 × 500 tiles, and the points within each tile

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume VIII-4/W2-2021 
16th 3D GeoInfo Conference 2021, 11–14 October 2021, New York City, USA

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-VIII-4-W2-2021-75-2021 | © Author(s) 2021. CC BY 4.0 License.

 
79



were ordered by their timestamps as they were delivered from
the flight vendor (Laefer et al., 2017). No restructuring was
performed prior to the density computation.

NYU Cluster UniGe Cluster
Type High-end Commodity
Nodes 18 8
CPU 2×24 cores 1×6 cores

Intel Xeon @2.90 GHz Intel Core i5 @3 GHz
RAM 384 GB 16 GB

Table 1. Cluster specifications

All experiments were performed with r = 0.5m and δx = δy =
5m. The selection of the radius parameter, r, is dependent on
the data characteristics and target applications. The tile size
parameters, δx and δy , do not affect the density results and de-
pend on the amount of memory allocated to the cores. A large
tile size would overload the core memory, while a small tile
size would increase the data redundancy due to buffering, in-
crease communication costs, and, thus, increase the computing
time. The experiments’ runtimes were measured, as reported
in Table 2 and Figure 5. The reported runtimes include the costs
for data input and output from the Hadoop Distributed File Sys-
tem, in which the data resided. The runtimes were inversely
proportional to the number of executors in all experiments. The
only exception was the cessation of runtime reduction when in-
creasing the number of executors from 8 to 16 in the UniGe
cluster. As the UniGe cluster had 8 compute nodes, requesting
more than 8 executors did not yield a further speedup. An-
other aspect related to the capacity of the UniGe cluster is that
the cluster was configured to allow a maximum of 4 cores per
executor, while up to 8 cores per executor could be requested
from the NYU cluster. Nevertheless, when the clusters were not
pushed beyond their capacity, Tparallel reduced as k increased.
The observed relationship between Tparallel and k demonstrated
that the unknown cost of data aggregation (Taggr in Equation 2)
did not impede the efficiency of the proposed algorithm. With
respect to the relative performance of the two clusters, the smal-
ler, commodity UniGe cluster was surprisingly faster than the
NYU cluster consistently in all of the tests, except for those
beyond the cluster’s capacity. This is probably attributable to
the fact that during the time of the testing, the NYU cluster
conducted over 75 other concurrent jobs. In contrast, the only
job running in the UniGe cluster was the point density compu-
tation. Thus, resource sharing (e.g. disks, network bandwidth)
is a likely factor contributing to the lower computational speed
of the NYU cluster.

Cores Cluster Number of executors
1 2 4 8 16

1 NYU 21317 11227 5738 2882 1445
UniGe 15326 7584 3935 2079 2090

2 NYU 12001 6024 2812 1474 775
UniGe 7766 4361 2190 1171 1170

4 NYU 5836 2979 1498 831 462
UniGe 5481 2555 1408 743 758

8 NYU 3125 1584 929 562 308
UniGe

Table 2. Runtime (in seconds)

The efficiency of the proposed algorithm was further analysed
by computing the speedup factors, S = Tserial/Tparallel . The
factor represents how much faster the parallel computation is
with respect to the serial computation. In this research, an ac-
tual serial algorithm as described at the beginning of Section 3
was not implemented. Instead, a pseudo value of Tserial was

NYU Cluster UniGe Cluster

Figure 5. Runtime

used by running the parallel computation with 1 executor ×
1 core. The speedup factors with various numbers of execut-
ors and cores are reported in Table 3 and Figure 6. Given 1
core per executor (i.e. the solid lines in Figure 6), the speedup
was nearly linear. Namely, from the NYU cluster experiments,
the speedup factor was 14.8 when the number of executors in-
creased by 16 times. The efficiency factor, in this case, was
E = S/k = 14.8/16 = 0.93. As E = 0.93 ≈ 1 indicates
that the speedup of the parallel algorithm was nearly ideal at
16 executors × 1 core/executor. If the efficiency factor equals
one, the computation is said to have a linear speedup. A linear
speedup is usually very difficult to achieve in practice (Pacheco,
2011). As the number of cores per executor (hence, the total
number of cores) increased, the efficiency reduced. The re-
duction in efficiency is seen in Figure 6a as the dotted and the
dashed lines, which correspond to the experiments with 8 and 4
cores/executor. With 16 executors × 8 cores/executor, the effi-
ciency was E = 69.2/(16× 8) = 0.54. While the reduction in
computational time by almost 70 times was great, the speedup
was less significant, compared to the increase in the computing
capacity of 16 × 8 = 128 times. The reduction in efficiency in
relation to the increase in the number of processors (or cores) is
well known and appears in almost every parallel program. The
reason is that the presence of more processors translates to addi-
tional data transmission across the network. In addition, having
more processors usually incurs a higher overhead for coordin-
ating and synchronising the processors.

Cores Cluster Number of executors
1 2 4 8 16

1 NYU 1.0 1.9 3.7 7.4 14.8
UniGe 1.0 2.0 3.9 7.4 7.3

2 NYU 1.8 3.5 7.6 14.5 27.5
UniGe 2.0 3.4 7.0 13.1 13.0

4 NYU 3.7 7.2 14.2 25.7 46.1
UniGe 2.8 6.0 10.9 20.6 20.2

8 NYU 6.8 13.5 22.9 37.9 69.2
UniGe

Table 3. Speedup

With respect to the experiments conducted using the UniGe
cluster, the speedup was almost linear in all cases when the
cluster capacity was not exceeded. In the experiments that al-
located 1 or 2 cores per executor, the speedup factors obtained
from the UniGe cluster were similar to those from the NYU
cluster. When the maximum of 4 cores were allocated per ex-
ecutor, the UniGe cluster’s speedup was lower compared to
that of the NYU cluster. For example, given 8 executors × 4
cores, the speedup factor in the NYU cluster was 25.7, while
the UniGe cluster’s factor was 20.6.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume VIII-4/W2-2021 
16th 3D GeoInfo Conference 2021, 11–14 October 2021, New York City, USA

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-VIII-4-W2-2021-75-2021 | © Author(s) 2021. CC BY 4.0 License.

 
80



NYU Cluster UniGe Cluster

Figure 6. Speedup

5. CONCLUSIONS

This paper presents an algorithm for computing the 3D local
point density index for point clouds. The algorithm consists of
two stages. In the first stage, points are aggregated into buffered
tiles, and the computation is parallel at the point level. In the
second stage, the tiles resulting from stage 1, are received and
the LPD index is computed in parallel at the tile level. The al-
gorithm is particularly suitable for processing large point clouds
as it supports out-of-core computation and provides a high level
of parallelism. An implementation of the algorithm was intro-
duced using Apache Spark, a general-purpose distributed com-
puting platform. The implementation can employ multiple nodes
and cores of a distributed memory computing cluster to per-
form the LPD computation rapidly. Computing the LPD index
for a data set of 1.4 billion points required just over 5 minutes
with 128 cores (16 executors × 8 cores/executor). The effi-
ciency of the algorithm was rigorously evaluated through two
sets of experiments conducted using both a high-end cluster
and a commodity cluster. While the larger, high-end cluster
had a greater capacity, it was consistently, slightly slower than
the smaller, commodity cluster, because the resources of the
high-end cluster were shared with many other concurrent com-
putations. In contrast, the commodity cluster was not shared
during the experiments.

The efficiency of the parallel algorithm was successfully demon-
strated in both sets of experiments. An efficiency factor of
14.8/16 was achieved when 16 executors × 1 core/executor
were used. The efficiency reduced to 69.2/128 with 16 execut-
ors× 8 cores. The 3D LPD index computed by the algorithm is
an effective means to evaluate and subsequently visualise the
3D distribution of points in a point cloud. The LPD index
allows discerning the point density on surfaces that have dif-
ferent orientations such as building facades, roofs, and ground
surfaces. While the algorithm was demonstrated using an aer-
ial laser scanning point cloud, the algorithm is applicable to
any kind of point cloud, including aerial, terrestrial, and mobile
laser scanning data, as well as point clouds derived from pho-
togrammetry data. In addition, the proposed algorithm could
be straightforwardly extended to compute other local geometric
features of a point cloud such as normal vector, surface rough-
ness, and curvature. Future research should investigate those
possibilities.

ACKNOWLEDGEMENTS

This publication has emanated from research supported in part
by a grant from Science Foundation Ireland under Grant num-
ber SFI - 17US3450. For the purpose of Open Access, the au-

thor has applied a CC BY public copyright licence to any Au-
thor Accepted Manuscript version arising from this submission.
Further funding for this project was provided by the National
Science Foundation as part of the project “UrbanARK: Assess-
ment, Risk Management, & Knowledge for Coastal Flood Risk
Management in Urban Areas” NSF Award 1826134, jointly fun-
ded with Science Foundation Ireland and Northern Ireland Trust
(Grant USI 137). The clusters used for the testing were provided
by NYU High Performance Computing Center and University
of Genoa. The authors thanks the NYU HPC staff and Mr Fe-
derico Dassereto for the excellent technical support. The aerial
LiDAR data of Dublin were acquired with funding from the
European Research Council [ERC-2012-StG-307836] and ad-
ditional funding from Science Foundation Ireland [12/ERC/I2534].

References

AHN, 2014. Actueel Hoogtebestand Nederland - Actualisatie
Van Het 2. https://www.ahn.nl/ (Last accessed 30 July 2021).

Aljumaily, H., Laefer, D., Cuadra, D., 2016. Big-data approach
for three-dimensional building extraction from aerial laser
scanning. Journal of Computing in Civil Engineering, 30(3),
04015049.

Bethel, M., 2019. Airborne LiDAR point density, more to the
point. https://www.slideshare.net/MattBethel/airborne-lidar-
point-density.

Bodenstein, C., Gotz, M., Riedel, M., 2015. Analysis of 3D
point clouds using a parallel DBSCAN clustering algorithm.
Innovatives Supercomputing in Deutschland, 3, 33–35.

Brédif, M., Vallet, B., Ferrand, B., 2015. Distributed
dimensionality-based rendering of LiDAR point clouds. In-
ternational Archives of the Photogrammetry, Remote Sensing
& Spatial Information Sciences, XL-3/W3, 559–564.

Che, E., Olsen, M. J., 2018. Multi-scan segmentation of ter-
restrial laser scanning data based on normal variation ana-
lysis. ISPRS Journal of Photogrammetry and Remote Sens-
ing, 143, 233–248.

Dean, J., Ghemawat, S., 2008. MapReduce: simplified data
processing on large clusters. Communications of the ACM,
51(1), 107-113.

Girardeau-Montaut, D., Roux, M., Marc, R., Thibault, G.,
2005. Change detection on points cloud data acquired with a
ground laser scanner. International Archives of Photogram-
metry, Remote Sensing and Spatial Information Sciences,
36(3), W19.

Guttman, A., 1984. R-trees: a dynamic index structure for spa-
tial searching. ACM SIGMOD, Association for Computing
Machinery, Boston, 47–57.

Heidemann, 2018. Lidar base specification (ver. 1.3). U.S.
Geological Survey standards - Collection and delin-
eation of spatial data, U.S. Geological Survey. ht-
tps://pubs.er.usgs.gov/publication/tm11B4 (Last accessed by
7 April 2020).

Julin, A., Jaalama, K., Virtanen, J.-P., Pouke, M., Ylipulli, J.,
Vaaja, M., Hyyppä, J., Hyyppä, H., 2018. Characterizing 3D
city modeling projects: Towards a harmonized interoperable
system. ISPRS International Journal of Geo-Information,
7(2), 55.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume VIII-4/W2-2021 
16th 3D GeoInfo Conference 2021, 11–14 October 2021, New York City, USA

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-VIII-4-W2-2021-75-2021 | © Author(s) 2021. CC BY 4.0 License.

 
81



Kleppmann, M., 2017. Reliable, scalable, and maintainable ap-
plications. Designing data-intensive applications - The big
ideas behind reliable, scalable, and maintainable systems,
O’Reilly Media, 3–22.

Krishnan, S., Baru, C., Crosby, C., 2010. Evaluation of MapRe-
duce for gridding LiDAR data. 2010 IEEE Second Interna-
tional Conference on Cloud Computing Technology and Sci-
ence, IEEE, 33–40.

Laefer, D., Abuwarda, S., Vo, A., Truong-Hong, L.,
Gharibi, H., 2017. 2015 Aerial Laser and Photogram-
metry Survey of Dublin City Collection Record. ht-
tps://doi.org/10.17609/N8MQ0N/ (Last accessed 30 July
2021).

Laefer, D., O’Sullivan, C., Carr, H., Truong-Hong, L., 2014.
Aerial laser scanning (ALS) data collected over an area of
around 1 square km in Dublin city in 2007.

Lari, Z., Habib, A., 2012. Alternative methodologies for the
estimation of local point density index: Moving towards ad-
aptive LiDAR data processing. International Archives of the
Photogrammetry, Remote Sensing and Spatial Information
Sciences, 39, B3.

Li, Z., Hodgson, M., Li, W., 2017. A general-purpose frame-
work for parallel processing of large-scale LiDAR data. In-
ternational Journal of Digital Earth, 11(1), 26–47.

Liu, K., Boehm, J., Alis, C., 2016. Change detection of mobile
lidar data using cloud computing. International Archives of
the Photogrammetry, Remote Sensing and Spatial Informa-
tion Sciences-ISPRS Archives, 41, International Society of
Photogrammetry and Remote Sensing (ISPRS), 309–313.

Martinez, J. L., Reina, A. J., Morales, J., Mandow, A., Garcı́a-
Cerezo, A. J., 2013. Using multicore processors to parallel-
ize 3d point cloud registration with the coarse binary cubes
method. 2013 IEEE International Conference on Mechatron-
ics (ICM), IEEE, 335–340.

Naus, T., 2010. LiDAR density and spacing
specification v1.0. https://www.asprs.org/wp-
content/uploads/2010/12/Naus.pdf.

Pacheco, P., 2011. Parallel hardware and parallel software. An
introduction to parallel programming, Morgan Kaufmann,
chapter P2, 15–77.

Renslow, M., 2012. Manual of airborne topographic lidar.
American Society for Photogrammetry and Remote Sensing.

Rizki, P., Eum, J., Lee, H., Oh, S., 2017. Spark-based in-
memory DEM creation from 3D LiDAR point clouds. Re-
mote Sensing Letters, 8(4), 360–369.

Saglam, A., Makineci, H. B., Baykan, N. A., Baykan, Ö. K.,
2020. Boundary constrained voxel segmentation for 3D point
clouds using local geometric differences. Expert Systems
with Applications, 157, 113439.

Samet, H., 2006. Foundations of multidimensional and metric
data structures. 1st edn, Morgan Kaufmann, San Francisco,
CA, USA.

Stanley, M. H., Laefer, D. F., 2021. Metrics for aerial, urban
lidar point clouds. ISPRS Journal of Photogrammetry and
Remote Sensing, 175, 268–281.

van Oosterom, P., Martinez-Rubi, O., Ivanova, M., Horham-
mer, M., Geringer, D., Ravada, S., Tijssen, T., Kodde, M.,
Gonçalves, R., 2015. Massive point cloud data manage-
ment: Design, implementation and execution of a point cloud
benchmark. Computers & Graphics, 49, 92–125.

Vo, A., Laefer, D., 2019. A Big Data approach for comprehens-
ive urban shadow analysis from airborne laser scanning point
clouds. ISPRS Annals of the Photogrammetry, Remote Sens-
ing and Spatial Information Sciences, IV-4/W8, 111–116.

Vo, A., Laefer, D., Bertolotto, M., 2016. Airborne laser scan-
ning data storage and indexing: State of the art review. Inter-
national Journal of Remote Sensing, 37(24), 6187–6204.

Vo, A., Laefer, D., Smolic, A., Zolanvari, S., 2019. Per-point
processing for detailed urban solar estimation with aerial
laser scanning and distributed computing. ISPRS Journal of
Photogrammetry and Remote Sensing, 155(June), 119–135.

Vo, A., Truong-Hong, L., Laefer, D., Bertolotto, M., 2015.
Octree-based region growing for point cloud segmentation.
ISPRS Journal of Photogrammetry and Remote Sensing, 104,
88–100.

Wu, H., Guan, X., Gong, J., 2011. ParaStream: A paral-
lel streaming Delaunay triangulation algorithm for LiDAR
points on multicore architectures. Computers & Geosciences,
37(9), 1355–1363.

Xu, Y., Yao, W., Tuttas, S., Hoegner, L., Stilla, U., 2018. Un-
supervised segmentation of point clouds from buildings us-
ing hierarchical clustering based on gestalt principles. IEEE
Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, 11(11), 4270–4286.

Ye, Z., Xu, Y., Huang, R., Tong, X., Li, X., Liu, X., Luan, K.,
Hoegner, L., Stilla, U., 2020. LASDU: A Large-Scale Aer-
ial LiDAR Dataset for Semantic Labeling in Dense Urban
Areas. ISPRS International Journal of Geo-Information,
9(7), 450.

Zecevic, P., Bonaci, M., 2017. Spark in action. Manning.

Zhang, J., Wu, G., Hu, X., Li, S., Hao, S., 2011. A parallel k-
means clustering algorithm with mpi. 2011 Fourth Interna-
tional Symposium on Parallel Architectures, Algorithms and
Programming, IEEE, 60–64.

Zlatanova, S., Nourian, P., Gonçalves, R., Vo, A., 2016. To-
wards 3D raster GIS: On developing a raster engine for spa-
tial DBMS. ISPRS WG IV/2 Workshop Global Geospatial In-
formation and High Resolution Global Land Cover/Land Use
Mapping, 45–60.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume VIII-4/W2-2021 
16th 3D GeoInfo Conference 2021, 11–14 October 2021, New York City, USA

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-VIII-4-W2-2021-75-2021 | © Author(s) 2021. CC BY 4.0 License.

 
82




