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Abstract

Understanding global patterns of genetic diversity (GD) is essential to describe, monitor, and
preserve the processes giving rise to life on Earth. To date, efforts to map macrogenetic
patterns have been restricted to vertebrate groups that comprise a small fraction of Earth’s
biodiversity. Here, we construct the first global map of predicted insect genetic diversity. We
calculate the global distribution of GD mean (GDM) and evenness (GDE) of insect

assemblages, identify the global environmental correlates of insect GD, and make predictions
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for undersampled regions. Based on the largest and most species-rich single-locus genetic
dataset assembled to date, we find that both GD metrics follow a bimodal latitudinal gradient,
where GDM and GDE correlate with contemporary climate variation. Our models explain 1/4
and 1/3 of the observed variation in GDM and GDE in insects, respectively, making an important

step towards describing global biodiversity patterns in the most diverse animal taxon.

Introduction

Describing global patterns of biodiversity is essential for understanding and protecting
processes governing the distribution of life across the world. To date, such global-scale
assessments have largely focused on species richness ', phylogenetic diversity 2, species
abundances *°, and functional trait diversity ®’. These macroecological metrics have long been
used to inform conservation and gain insights into mechanisms underlying eco-evolutionary
patterns. Only recently, however, have the advances in high-throughput DNA metabarcoding
been utilized for global studies of biodiversity ®'".

Large-scale georeferenced DNA barcode surveys ®'? have great potential beyond their
original use as a tool for identifying and delimiting species. They aid in identifying adaptive
potential and ecosystem resilience to disturbance '*, and more generally, help to understand
how intraspecific variation can help support critical ecological functions '*. Along with being an
important new component of the macroecological toolbox for conservation action '>'¢, the
promise of these eco-evolutionary insights is fueling the rise of the emerging field of
“macrogenetics” '"'®. Macrogenetic studies summarize the geographic distribution of average
intraspecific genetic variation across species assemblages to find previously unknown patterns
and processes underlying the generation and maintenance of biodiversity '°.

To date, global-scale macrogenetic studies have focused solely on vertebrate groups,

uncovering links between aggregated genetic diversity, species richness, and phylogenetic
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20,21 22-24

diversity , while documenting latitudinal gradients in aggregated genetic diversity

Macrogenetic studies have also provided mixed support for the general influence of human

20,22,25,26 20,26

disturbance on genetic diversity , while climate stability and species’ range sizes %’
have been shown to influence intraspecific genetic diversity on a global scale.

The existing bias toward vertebrate macrogenetics leaves undocumented the bulk of the
planet's animal biodiversity: insects. Insects are vital for maintaining critical ecosystem services

and functions 22%°

, yet to date insect macrogenetic studies have been restricted to the regional
scale due to the immense effort required to collect, identify, and sequence such a speciose
taxon *°7*. There also is little agreement as to what extent insect communities are resilient to

3435 including biological invasions ***"  habitat conversion %, and climate change

global change
% Here, we present the first global macrogenetic analysis of this large group, which is
especially important given increasing evidence that many insect taxa may be in global decline
with respect to occurrence, local richness, abundance and biomass 4%,

Unlike for most terrestrial vertebrates, comprehensive knowledge of species diversity,
distributions, and population dynamics are poorly known for most large insect groups *2.
These constraints on understanding broad-scale insect biodiversity patterns point to a need for
a systematic global data synthesis *°. One basic challenge for insects is the species
identification bottleneck underpinning large-scale biodiversity surveys that use conventional
morphological methods ***'. DNA barcoding and environmental DNA metabarcoding represent
viable approaches for expedited, large-scale, global quantification of insect species diversity *,
despite some known limitations >***.

Most macrogenetic studies of animal taxa are based on mitochondrial DNA (mtDNA)
sequence data, which represent the majority of available sequences '". Despite the limitations of
using a single-locus marker >, the pragmatic advantages of the ability to sample the genetic

diversity of hundreds or thousands of taxa per locale potentially outweigh these considerations

%980 The Barcode of Life Consortium database (BOLD) is a rich source of single-locus mtDNA
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84 that links quality-controlled genetic data with georeferenced metadata 8. Leveraging this
85 resource, we compiled the largest macrogenetic dataset ever assembled: over 2.3 million
86  globally distributed and georeferenced mtDNA sequences (cytochrome ¢ oxidase 1 - COI) for
87  over 95,000 operational taxonomic units (OTUs). We use these data to generate the first global
88  map of insect genetic variation using both the commonly used genetic diversity mean (GDM)
89 and a new measure we introduce: genetic diversity evenness (GDE). While GDM describes the
90 magnitude of average genetic diversity among species, GDE represents the shape of the
91  distribution of individual GD measures for all focal taxa that co-occur in a given area.
92  Considering both these values gives us the ability to discriminate between important processes
93  underlying community assembly and structure ®'. As macrogenetic studies to date only describe
94  average intraspecific genetic diversity (GDM), they are unable to determine whether high
95  metrics of genetic diversity are due to high diversity within most community members or to the
96 effects of a few taxa with extremely high diversity (Fig. 1; see Methods).
97 We focus our analyses on several questions about the macrogenetics of insects. First,
98  we evaluate whether the magnitude and variability of GD generally follows latitudinal trends of
99 increasing insect species richness in the tropics®*®. Explanations for this general latitudinal
100 gradient are often explained in terms of the wet tropics being either “museums” or conversely
101  “cradles”, with opposite predictions with regards to range sizes . If geographic range size
102  tends to correlate with GD ®, we might expect this gradient given the “museum” hypothesis that
103  predicts that taxa in the tropics will be older, and have larger geographic range sizes %%’ In
104  contrast, species richness and GD may be decoupled due to the “cradle” hypothesis that
105  predicts higher speciation rates, more population structure, and smaller range sizes leading to
106  Rapoport’s Rule %, the tendency for species’ range sizes to increase with increasing latitude
107 %7 Second, we might predict that the influence of Late Quaternary climate fluctuations to have
108 animpact on GD through population demographic processes influenced by cyclical variation in

71,72

109  precipitation, temperature, and glaciation patterns , where areas with more stable climatic
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110  histories are predicted to have increased GD 2. Finally, we consider the influence of human
111 disturbance on patterns of assemblage-wide GD, which we expect to decrease in magnitude in
112  areas of high human influence “2.

113 To answer these questions, we explore how well insect GDM and GDE are predicted by
114  current and historical climate, habitat, and human disturbance. We first find environmental

115  correlates of intraspecific insect genetic diversity globally using Bayesian generalized linear
116  mixed models (GLMM), and then use these to predict patterns of insect GDM and GDE in

117  undersampled regions, which includes most of the planet. In contrast to most global vertebrate
118  biodiversity patterns documented to date, we find that insect GDM and GDE have bimodal

119 latitudinal gradients that peak in mid-latitude regions and that both metrics are positively

120  correlated with high temperature extremes.

121 Results

122  GDM and GDE were calculated from native-range insects sampled within raster grid cells at a
123 193 km x 193 km equal-area resolution. These cells were heterogeneously distributed across
124  the globe on every continent except Antarctica (N = 187, Fig. 2). Regions with both high GDM
125  and high GDE (above the 90th percentile) were found in eastern North America as well as in the
126  North American desert southwest, in eastern Africa, and in southern China (Supplementary Fig.
127  1b). Areas with the lowest values of observed GDM and GDE were mostly distributed in

128  northern North America and Europe (Supplementary Fig. 1d).

129 Insect genetic diversity correlates with latitude

130 While latitude did not significantly explain GDM or GDE across the entire planet (Table

131 1), it was correlated with GDE after removing cells above 60° latitude, which includes areas
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132 covered by glaciers and tundra during the last glacial maximum (LGM; median slopequadratic =
133 0.002 [95% highest density interval (HDI): 0.001, 0.003], median R? = 0.103 [95% HDI: 0.022,
134  0.221]). In contrast to latitudinal diversity gradients for species richness in most taxa, insect
135 GDE increased towards the poles (up to 60° latitude) and decreased towards the equator (Fig.
136  3). The same pattern is seen in GDM, although the pattern does not exhibit a strong statistical
137  trend, where the 95% HDI of the predictor overlapped zero (slopequadratic = 2€-4 [-5e-5, 4e-4],

138 Fig. 3).

139 Relationships between insect genetic diversity and the

140 environment

141 Higher GDE values were mainly found in areas that rarely freeze. We divided the globe
142  into areas above or below the global freeze-line (long-term minimum temperature of the coldest
143  month (MTCM) above versus below 0° C) and found that GDE is significantly higher above this
144  line than below it (Welch’s unequal variance t-test; mean GDEapove - mean GDEpgow = 0.042; t =
145  -5.804, df = 184.690, P < 0.001), while GDM showed no significant correlative trend against this
146  binary metric (P = 0.525).

147 We explored relationships among GDM, GDE, and environmental predictors within each
148  cell using Bayesian generalized linear mixed models (GLMMs). Predictors included bioclimatic
149  variables describing current climate, variables summarizing climate variation since the LGM
150  (“historical climate”), a spatial habitat variation metric, a human habitat modification metric, and
151  topographic variables. We found that GDM and GDE covary significantly with current climate
152  and that both reach high values in the hottest regions of the planet. Notably, predictors

153  describing human habitat modification, spatial habitat variation, and topography did not

154  significantly predict either GD metric. After reducing the set of potential predictors to three

155  current and historical climate variables for GDM (Supplementary Table 1) and six current and
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156 historical climate variables for GDE (Supplementary Table 2), we were able to compare three
157  hypotheses: H1) current climate; H2) historical climate; and H3) current + historical climate best
158  explain the two GD metrics. We constructed models for these hypotheses using a Bayesian
159  GLMM approach that accounts for spatial autocorrelation (SAC; see Methods) °. The most

160  parsimonious models were selected based on an approximate leave-one-out cross-validation
161  procedure (LOO; see Methods) that uses the expected log predictive density (ELPD; analogous
162  to information criteria, i.e., Akaike’s Information Criterion) as the utility function. Using this

163  criterion, the best model for both GDM and GDE gave support to H1: current climate. The H1
164  models for GDM and GDE included the maximum temperature of the warmest month variable
165 (MTWM). The best fit model (H1) for GDM additionally included precipitation seasonality, while
166  the best fit model (H1) for GDE additionally included temperature seasonality and precipitation
167  of the wettest month (PWM) (Fig. 4, Table 2).

168 For GDM, H1 (Table 2; Supplementary Fig. 2; R? = 0.234 [95% HDI: 0.088, 0.385]) had
169  the most support, but was not statistically different from H3. We selected the simpler model (H1)
170  forinterpretation and prediction. Between the two current climate predictors, MTWM trends

171  positively with GDM (slope = 0.002 [0.001, 0.003]; Fig. 4), and precipitation seasonality trends
172  negatively (slope = -0.001 [-0.002, -1e-4]; Fig. 4).

173 For GDE, H1 had the most support (Table 2; Supplementary Fig. 2; R? = 0.327 [95%
174  HDI: 0.152, 0.483]). MTWM was the only variable with a significant trend (Fig. 4). MTWM (slope
175 =0.014 [0.004, 0.025]) and temperature seasonality (slope = 0.008 [-0.004, 0.020]) both trend
176  positively with GDE, whereas PWM trends negatively with GDE (-0.004 [-0.016, 0.008]).

177 Over 23% and 32% of the global observed variation in GDM and GDE, respectively, can
178  be explained by current climate (H1). There was no residual spatial autocorrelation in the final
179  models (Table 2). In addition, all parameter posterior distributions had less than 12% overlap

180  with their prior distributions, indicating high identifiability (Supplementary Fig. 3).
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181 Global predictions of insect genetic diversity

182 We then used the best-fit model (H1) to predict and map the global distribution of GDM
183 and GDE individually and jointly at the original spatial scale used for modeling (193 km x 193
184  km resolution) across the globe, including unsampled areas (Fig. 2, Supplementary Fig. 4). We
185  omitted predictions in all areas exposed to environmental conditions that fell outside the model
186 training range, including Antarctica, a large portion of northern Africa, the Arabian Peninsula,
187  parts of central Asia, and interior Greenland (Fig. 2; shown in gray; Supplementary Fig. 5).

188 Areas predicted to have high levels of both average genetic diversity and evenness
189 (GDM and GDE; above the 90th percentile) include southeastern North America and southern
190 India, while the regions with the very highest predicted values include southern and

191  southwestern Australia, parts of the desert southwest of North America, and southern India
192  (Supplementary Fig. 1a; Fig. 2). Areas predicted to have the lowest GDM and GDE values

193  (below the 10th percentile for both) were found in Patagonia and the northern Nearctic and
194  Palearctic (Supplementary Fig. 1c). When considered independently, GDM is predicted to be
195  highest (above the 90th percentile) in the temperate forest regions of eastern North America
196  (Supplementary Fig. 1e; Fig. 2), yet is predicted to be generally low for much of the Neotropics
197  (Fig. 2). The very lowest GDM areas (below the 10th percentile) are distributed across the

198 nearctic and palearctic tundra, the entire Andes mountains chain, and areas in the Himalayan
199  mountains (Supplementary Fig. 1g). When GDE is considered independently, it is predicted to
200 Dbe the highest (above the 90th percentile) throughout Australia, the southeast and desert

201 southwest of North America, as well as much of the Indian subcontinent and the outer fringes of
202  Saharan Africa (Supplementary Fig. 1i). On the other hand, GDE is predicted to be lowest

203  (below the 10th percentile) in northern Europe and parts of the nearctic and palearctic tundra as

204  well as southern Patagonia in South America (Supplementary Fig. 1k; Fig. 2).
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205 Taxon-specific patterns of GD

206 Six insect orders contain 97.2% of all OTUs in this study (Supplementary Fig. 6;

207  Supplementary Table 3). In order of prevalence, they include Diptera, Lepidoptera,

208 Hymenoptera, Coleoptera (the four mega-diverse orders that include ca. 80% of known insect
209  species), Hemiptera, and Trichoptera. The remaining 2.8% of OTUs belong to 20 additional
210  insect orders.

211 To investigate the influence of the three most prevalent orders (Diptera, Lepidoptera,
212  and Hymenoptera, 84.4% of total) we removed these orders from the full dataset and

213  reanalyzed patterns of GDE and GDM. Using Welch’s unequal variance t-tests, we found no
214  difference in GDE estimates between the full and reduced datasets (Supplementary Fig. 7; P =
215  0.335). However, GDM was slightly but significantly lower in the full dataset (meangi = -0.003,
216  df=91.195, P =0.002).

217 OTU sampling across the most abundant three orders varied geographically

218  (Supplementary Fig. 8). We calculated OTU sampling as the number of OTUs per order within
219  each cell. Diptera dominated OTU sampling towards the poles, while Lepidoptera dominated
220 sampling towards the tropics and in some temperate locations, and Hymenoptera typically

221 accounted for fewer than 50% of OTUs sampled, with overrepresented sampling in Madagascar
222  (Supplementary Fig. 8).

223

224 Discussion

225 We found clear, and in some cases surprising, global biogeographic patterns of insect
226  genetic diversity (Fig. 2; Supplementary Fig. 1). There is a reversed latitudinal gradient for GDM

227  and GDE, with both significantly lower in the tropics than in temperate and subtropical regions
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228  on either side of the equator. GDM and GDE have bimodal distributions which peak in areas
229 that were unglaciated during the last glacial maximum (LGM, < 60° latitude, 18-21,000 years
230 ago, " and are generally lower in the wet tropics and in temperate areas that were glaciated or
231  tundra-like during the LGM (> 60° latitude). This suggests that the forces underlying intraspecific
232  genetic diversity are inherently different from those driving the classical negative latitudinal

233 gradients in species richness and phylogenetic diversity found in major arthropod groups such

577 as well as plants "8, which are expected to be strongly linked to insect

234  as ants and spiders
235  biogeographic patterns. Bees (order Hymenoptera) are one notable exception, showing a

236  bimodal latitudinal gradient similar to what we find, with highest richness at mid-latitudes .

237  While neutral theories of biodiversity predict positive species genetic diversity correlations

238  (SGDC) *'8%8" there are also conditions for which one would expect weak or even negative
239  correlations, e.g. neutral conditions paired with high mutation rates % or greater niche breadths
240  result in higher genetic diversity, but fewer species in a community . However, many

241 confounding factors will affect how species diversity metrics relate to GDM and GDE, and these
242  factors may have both positive and negative effects, leading to large variation in the sign and
243  intensity of SGDCs ®, especially at a global scale in such a broad taxonomic group such as
244  insects.

245 The bimodal latitudinal gradient we find also contrasts with recent macrogenetic studies
246  of vertebrates, all of which find a negative latitudinal gradient of genetic diversity with average
247  values peaking in the tropics and declining poleward, including mammals %, amphibians %, and
248 fishes 2'. Our finding of lower genetic diversity in areas that were glaciated or tundra during the
249 LGM is consistent with a gradient of lower haplotype richness in recently unglaciated areas

250  found in European butterflies *° based on the same COI data from BOLD used here. Similarly,
251 aquatic insect species have lower intraspecific genetic diversities in recently unglaciated areas

252  of Europe compared to Neotropical areas 2.

10
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253 Why would GDM and GDE be lower in areas like the wet tropics when the species
254  diversities of most insect groups reach their peaks in these habitats %82 Rapoport's Rule, the

69,70

255  tendency for species’ range sizes to increase with increasing latitude , might explain this

256  result because species with larger ranges tend to harbor greater genetic diversity °>°.

257  Macrogenetic studies tend to calculate intraspecific genetic diversity at the grid-cell level, and
258  extratropical cells are likely dominated by species with large ranges, while tropical cells are

259 likely dominated by species with smaller ranges. Thus, coalescent times among sampled alleles
260  within each species in each extratropical cell will tend to be older, yielding larger average

261  pairwise distances, the metric we use for GD %.

262 A few additional mechanisms may play a role in explaining higher insect extratropical
263  GDM. Wide-ranging extratropical species can usually tolerate a broader range of climatic

264  variation, whereas limited-range tropical species tend to have a narrow climatic niche, stronger
265  habitat specializations, and narrower physiological tolerances (°'). While peaks of GDM and
266  GDE may be driven by larger range sizes and greater physiological tolerances of species in hot,
267  seasonal areas, other studies have found that larger range sizes in temperate species can lead
268  to greater population genetic structure ?’. This could in turn lead to lower levels of local GDM if
269 the spatial resolution of sampling, i.e., grid size, is smaller than the population range sizes of
270  locally occurring species %. However, the coarse resolution of the cells we use (37,249 km?)
271  likely avoids this issue.

272 It is also possible that insect GDM and GDE patterns reflect their unique life history traits
273  and responses to short-term environmental shifts. For instance, observed and predicted

274  patterns of GDM and GDE (Fig. 2) are higher in areas where insect diapause, the temporary
275  suspension of development during the life cycle, is more prevalent (*'). Insect diapause is

276  thought to provide adaptive tolerance to wider abiotic conditions and may result in larger and
277  more uniform ranges °"%*. Given the positive relationship between range size and GD ®>®, this

278  provides a possible mechanistic relationship that connects Rapoport’s Rule and the higher and

11
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279  more uniform genetic diversities found in higher latitude regions with pronounced seasonality.
280  Another important feature of GDE is that it is lower in areas that experience frequent freezing,
281 i.e., below the freeze-line, which may be related to the range of temperatures encountered by a
282  species. Although this might seem counterintuitive, insect species that enter diapause in

283 habitats that seasonally accumulate substantial snow are likely to encounter less extreme

284  temperatures than those in more exposed habitats of temperate deserts, where large

285 temperature oscillations are common %. In this light, we might predict more uniform and higher
286 levels of GD in Australia, which both is above the freeze-line and has high temperature

287  seasonality with little snow accumulation.

288 Since species diversity patterns of specialist insect herbivores correlate with their host
289  plants’ %, some of the environmental correlates associated with high GDM and GDE in insects
290 may be more directly tied to the climatic determinants underlying global plant diversity patterns
291 %9 Nearly half of all insect species are herbivorous, yet this varies across orders ranging from
292  ~99% of Lepidoptera, 30-35% of Diptera and Coleoptera, yet only 10-15% of Hymenoptera %.
293 Insects and angiosperms have species richness patterns with similar poleward gradients "®*°
294  and likely evolved in the tropics with subsequent adaptations for wider environmental tolerances
295  associated with temperate radiations '®. Although the diversities of insects and plants are tightly
296 correlated ', we found no significant correlations between habitat heterogeneity, a derived

297  measure of variability in remotely sensed metrics of vegetation diversity, and GDM or GDE,

298  suggesting that specific aspects of plant community composition, rather than just plant species
299 richness, affects insect genetic diversity. Further, host plant intraspecific genetic diversity

300 demonstrably influences herbivorous insect community assembly '>'%_ A potentially fruitful

301  area of future investigation would be to search for links between the genetic diversity of local
302 insect and plant assemblages.

303 While Rapoport’s Rule may explain increasing extratropical genetic diversity, the

304 observed bimodal latitudinal gradient emerges as genetic diversity begins to decline poleward in

12
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305 the temperate regions. We hypothesize that the poleward spatial range expansions after the
306 LGM resulted in founder effects that led to the low levels of genetic diversity we detect in these
307 regions. This is consistent with many studies showing lower intraspecific genetic diversity in
308 organisms inhabiting regions that were previously tundra, cold steppes, or glaciated "%,

309 presumably due to post-glacial expansions .

310 The regions predicted to have high GDE and GDM correspond with known hotspots of
311  insect biodiversity. For instance, North American southwestern deserts have the highest

312  butterfly phylogenetic endemism in North America "*'%. Southwestern Australian deserts also
313  have exceptionally high arthropod endemism '°®, and are among the original biodiversity

314  hotspots identified by '. The high GDM observed in eastern North America also corresponds
315  with high Odonata species diversity '°¢.

316 The bimodal latitudinal gradient in GDE is likely influenced by mechanisms at least
317  partially independent of those that generate the same gradient in GDM. Higher levels of GDE,
318 reflecting lower variability among genetic diversities, could partially result from histories of
319  neutral community assembly processes °'. Overcast et al. (2020) found in both simulated

320 communities and empirical arthropod, annelid, and tree datasets that ecologically neutral

321 communities tend to have higher GDE than non-neutral, i.e., niche-structured communities.
322  Here, the lower GDE in communities assembled via environmental filtering is likely caused by
323 increased genetic diversity in species with stronger local ecological adaptation. While this

324  suggests that equatorial insect communities may have stronger local niche-structured

325 mechanisms than temperate insect communities, consistent with the idea of stronger niche
326  conservatism in the tropics ', this is one of many hypotheses emerging from our study.

327 While GDM and GDE can be informative about processes underlying biodiversity

328  patterns, interpretation of GDM and GDE in isolation (or even together) without additional

329 information about the study system can lead to erroneous conclusions. For example, if the rare

330 and the least genetically diverse species go locally extinct, this could raise GDM for the
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331  remaining species. Similarly, a disturbed community with high GDE may be composed of

332  populations with low but similar genetic diversity, such that without also measuring GDM, the
333 low genetic diversity of the community may go unnoticed. Conversely, relatively high GDM in a
334  community may be driven by a few hyper-dominant taxa with high GD while a remaining

335  maijority of low GD taxa. Alternatively, this same scenario of high GDM and low GDE could be
336 found in areas that have a mix of wide-ranging endemic taxa and several invasive species with
337  low genetic diversity """, Low GDE may highlight this driver when considered in context with a
338  priori hypotheses derived from other evidence. We recommend future macrogenetic studies at
339 regional scales to include metrics of the average and shape of GD distributions in addition to
340 ancillary information to effectively summarize and interpret the genetic diversity of assemblages.
341 Genetic diversity is critical to the survival of both the insects themselves, and the

342  complex networks of interactions to which many insects belong. High genetic diversity may

343 facilitate adaptation to changing climates and emerging diseases, two (of many) potential

344  drivers of the “insect apocalypse” **. In addition, genetic diversity contributes to the diversity and
345  stability of species interaction networks by affecting niche space and competition ', community
346  structure '"®, and network complexity . At larger ecological scales, insect genetic diversity may
347  reflect ecosystem function and structure as reliably as other traditional macroecological metrics

348  such as species richness '*°

. It can augment the resilience of ecosystems that provide

349  continuing services for humankind ', such as disease management, curbing the spread of
350 invasive plants, aiding sustainable agriculture, pollinating food crops, and controlling pests ™.
351  While the metric of global human modification we considered did not significantly correlate with
352 GDM or GDE, there are many facets of anthropogenic disturbance acting at different spatial
353 scales that are difficult to summarize in a single metric '°. The spatiotemporal resolution of
354  genetic sampling currently available does not permit rigorous assessment of how humanity

355  affects insect GD at a global scale, but a concerted increase in sampling effort, especially in the

356  data-poor regions we identify, will likely make this feasible in the not-to-distant future.
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357 By modeling relationships between environmental data and our two complementary

358 measures of intraspecific genetic diversity, GDE and GDM, we also make predictions about
359 assemblage-level genetic diversity in data-poor regions of the planet. This has the potential to
360 fill a knowledge gap that far exceeds the undersampling and taxonomic uncertainties underlying
361 vertebrate and plant macroecological studies '""''®. We provide targets for future efforts that will
362  fulfill global commitments to monitor and conserve genetic diversity, a biodiversity component
363 that has rarely been assessed or used to guide conservation decisions '°, while focusing

364  attention on a data deficient group with evidence of global population declines ''°. While there
365 have been recent arguments that the value of putatively neutral intraspecific genetic diversity is
366 overstated in the context of conservation '%°, a large body of literature indicates otherwise '*",
367 especially if neutral genetic diversity correlates with adaptive potential ''?®. Taken together,
368 GDM and GDE are fundamental biodiversity metrics for documenting and understanding how
369  “the little things that run the world” can change, persist, and potentially adapt in the face of

370  global change '*.

371

372

373

374

w5 Methods

376 Aligning and filtering sequence data

377 We downloaded cyfochrome c¢ oxidase 1 (COIl) mitochondrial sequence data for insects
378 directly from the BOLD webpage using the application programming interface (API)

379  (http://www.boldsystems.org/index.php/resources/api; downloaded 19 Nov 2019). Our initial
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380 database comprised 3,301,025 complete insect records before applying a series of quality
381 filters. We used the BOLD database’s OTU assignments (termed barcode identification

382  numbers; BINs), which cluster similar sequences algorithmically and map them against the
383 BOLD database . After trimming end gaps from sequences, we removed exceptionally long
384  sequences (>800 base pairs, bp) which contained a large proportion of gaps that negatively
385  impacted alignments and the calculation of summary statistics. In addition, we removed shorter
386  sequences (<400 bp) that the BOLD database uses for BIN identification, but which may

387  downwardly bias GD estimates. We also only used COI sequences when georeferenced

388 metadata with geographic coordinates were available. Sequence alignments were

389 independently performed for each OTU within single sampled geographic raster cells, i.e., grid
390 cells. We used default settings in Clustal Omega (v1.2.3) to align the sequences and visually
391 assessed a subset of alignments to check for alignment errors '%°.

392 To reduce the potential impact of invasive species on our analyses, we removed trans-
393 continental invasive species from the dataset using a list of invasive insect species compiled
394  from seven resources: Global Insect Species Database, [http://www.issg.org/database;

395 accessed 23 May, 2020]; Invasive Species Compendium [https://www.cabi.org/isc/; accessed
396 24 May, 2020]; Center for Invasive Species and Ecosystem Health [https://www.invasive.org/;
397  accessed 24 May, 2020]; Invasive Alien species in South-Southeast Asia '?"; Japan Ministry of
398 the Environment [https://www.env.go.jp/en/nature/as.html; accessed 24 May, 2020]; European
399 Alien Species Information Network [https://easin.jrc.ec.europa.eu/easin/Home; accessed 24
400 May, 2020]. We identified all species and OTUs present on multiple continents and removed
401 those on the invasive species list from our dataset. While some invasive species may be

402 restricted to single continents, removal of such taxa was not possible given the lack of

403 information on changes in insect range boundaries and species assignments.
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404 Calculating the evenness and mean of genetic diversity (GDE and

405  GDM)

406 Global macrogenetic studies have so far focused on spatially defined metrics that
407 summarize the genetic diversities calculated across all species sampled from an area of

408  arbitrary spatial resolution '*'?®. This is most commonly the average genetic diversity or,

409 alternatively, a measure of the allelic richness derived from the total number of unique and/or

129 We used two distinct

410 common alleles of a genetic locus across all taxa within an area
411 summaries of genetic diversity - the mean genetic diversity (GDM) and the evenness of this GD
412  per unit of area (GDE). To obtain the GD for each OTU per grid cell, we calculated nucleotide
413  diversity as the average number of nucleotide differences across all pairwise sequence

414  comparisons per OTU per base pair *'*. Aggregated across OTUs within each grid cell, GDM
415 s then defined as the average GD among OTUs in each grid cell, following %°. Because the
416  distribution of GDM at the grid cell scale was highly skewed towards zero, we performed a

417  square-root transformation to achieve a more normal distribution. All subsequent statistical

418 analyses of GDM at the grid cell scale were based on the transformed GDM.

419 While GDM is a standard metric in the macrogenetic toolbox, GDE is derived from a set
420  of metrics known as Hill numbers that permit direct comparisons of diversity across scales and

421  data types "*'""'** GDE is then defined as the first-order Hill number of GD across OTUs per grid

422  cell, corrected by sampled OTU richness °':

exp( Z}iﬂ — m;In(7)
423 N

424  Where N is the number of OTUs in the assemblage and [J; is the GD for a single OTU.

425  Correcting for sampled OTU richness allows for comparison across assemblages of different

426  numbers of OTUs. The numerator of this metric is the exponential of Shannon’s diversity index,
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427  which is also referred to as Shannon's information measure or Shannon’s entropy in the

428 literature ™**. It is commonly used to describe evenness and variability of species abundances
429 3% and here we adapt it to do the same for genetic diversities calculated from all species
430 sampled from a particular area.

431 A higher GDE indicates where most OTUs have a similar GD (Fig. 1), whereas a lower
432  GDE arises when GD values across the community diverge considerably '*°. Low GDE can take
433  a variety of shapes, but the most common shape for low GDE cells in our observed data is

434  markedly L-shaped (Fig. 1).

435 Spatial resolution and sampling decisions

436 To assess how the spatial scale and density of OTU sampling impacted our results and
437  to establish a sampling strategy that maximizes the amount of information, we calculated both
438 metrics at 1) three different spatial resolutions, and 2) three thresholds of minimum OTU sample
439  sizes per grid cell. The spatial resolutions include 96.5 km x 96.5 km, 193 km x 193 km, and
440  385.9 km x 385.9 km equal-area grid cells using a Behrmann cylindrical equal-area projection,
441 which are 1°, 2°, and 4° longitude at 30°N. At each of three spatial resolutions, we considered a
442  minimum of 100, 150, or 200 unique OTUs per grid cell, as these approach the lower bounds of
443  the sample size needed to effectively estimate the diversity of a community using Hill numbers
444 " We then selected the spatial resolution and minimum number of OTUs per grid cell that
445 maximized the average number of OTUs per grid cell, the number of grid cells, and the average
446  number of taxonomic orders per grid cell, while minimizing variation in the number of OTUs

447  across grid cells. With respect to numbers of sampled allele copies per OTU, we used a

448  minimum of three individuals per OTU per grid cell. This is a conservative approach to estimate
449  GD while still maximizing data use given that many BOLD data submissions omit duplicate

450 alleles and that coalescent theory suggests that using average pairwise distance from 5-10
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451 samples per OTU provides estimates of genetic diversity that are as reliable as those obtained
452  from hundreds of samples *.

453 We found that a grid cell resolution of 193 km x 193 km with a minimum of 150 OTUs
454  per grid cell minimized variation in the number of OTUs across grid cells, while maximizing the
455  number of grid cells, the average number of OTUs per grid cell, and the average number of

456  taxonomic orders per grid cell (Supplementary Fig. 9). This filtering criteria led to a final dataset
457  thatincluded 2,362,636 COIl sequences from 95,540 OTUs sampled across 187 globally

458 distributed grid cells. On average, each cell contained ten insect orders, 460 OTUs, and 4,013
459  individuals. We calculated variation in the number of OTUs per cell as the difference between
460 the upper and lower 90% highest density interval (HDI) of OTUs across cells yielding a

461  difference of 1779 OTUs.

462 Because 97.2% of OTUs are represented by six taxonomic orders (Supplementary Fig.
463  6; Supplementary Table 3), with ~85% represented by three (Diptera, Lepidoptera, and

464  Hymenoptera), we investigated whether and to what degree over-represented orders might be
465  driving the signal of GDE and GDM. To examine whether any of these three most dominant

466  orders deviate from global patterns of genetic diversity, we compared the global frequency

467  distributions of per-cell GDM and GDE from these three orders combined with the distribution of
468 these summary statistics for the entire data set. The distributions of per-cell GDE and GDM

469  between these filtered data sets and the original data set were compared using Welch’s unequal
470  variance t-tests ',

471 Although coalescent theory predicts that the number of allele copies per OTU per grid
472  cell will have a limited impact on the per OTU genetic diversity °, we examined whether this
473  assumption was met in the data by testing for Pearson’s correlations between the per OTU GD
474  and number of individuals per OTU (r = 0.030, P < 0.001). Similarly, to investigate whether per
475  grid cell sampling, i.e., total number of individuals, number of individuals per OTU, and number

476  of OTUs per cell, had an effect on GDE or GDM, we tested for Pearson’s correlations between
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477  these quantities (all P > 0.40, Supplementary Table 4). In addition, we assessed sampling

478  variation by taking the ten most sampled grid cells (2,748 to 13,300 OTUs per grid cell) and
479  obtaining sampling distributions of GDM and GDE for each by resampling with replacement 150
480 OTUs per sample (N = 1000 resamples) and calculating the summary statistics for each

481  resample (Supplementary Fig. 10).

482 Environmental variable selection

483 We aggregated a total of 47 abiotic, biotic, and anthropogenic variables that potentially influence
484  intraspecific genetic diversity in insect communities (Supplementary Table 5). We removed

485  highly correlated variables (r > 0.75), prioritizing variables that represent climate extremes,

486 climate variability, habitat variability, last glacial maximum (LGM) climate stability, and human
487  influence on the environment.

488 We retained a final data set of 11 ecologically relevant variables: five bioclimatic

489 variables, habitat heterogeneity, global human modification, and four metrics of climate stability
490 (temperature and precipitation) since the LGM (Supplementary Table 5). The five bioclimatic
491 variables describe climate extremes and variability, and were obtained from the CHELSA

492  database . They include maximum temperature of the warmest month (MTWM), minimum
493  temperature of the coldest month (MTCM), precipitation of the wettest month (PWM),

494  precipitation of the driest month (PDM), temperature seasonality, and precipitation seasonality
495 390 The habitat heterogeneity metric was calculated as the standard deviation of the

496 Enhanced Vegetation Index, which was derived from the Moderate Resolution Imaging

497  Spectroradiometer (MODIS) (2.5 arc-min; "*'). The human modification variable is a cumulative
498  measure of human modification to terrestrial areas '**. Measures of both the historical trend and
499  variability of temperature and precipitation over the last 21,000 years were obtained from %. The

500 specific definitions of these derived metrics include “deep-time climate trend”, the change in
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501 climate within each century, averaged across centuries, and “deep-time climate variability”,

502 meaning the standard deviation around the change in climate, averaged across centuries. Low
503 deep time trend values indicate regions with long-term climate stability, while low variability

504  values indicate regions with short-term climate stability. Each variable was aggregated from its
505  original resolution (see Supplementary Table 5) to 193 km by 193 km resolution bilinear

506 interpolation.

507 In addition, we explored the relationship between GDE and GDM and a binary variable
508 delineating the globe along the freeze-line. Here, areas with a MTCM above 0°C are considered
509 above the global freeze-line, while areas with a MTCM below 0°C are considered below this
510 line. These regions have been found to correspond with sharp community turnover in birds "3

511 and could correlate with critical life processes for insects.

512  Modeling approach

513 To identify the models that best explain the global distribution of GDM and GDE in

514 insects, we applied multimodel inference using Bayesian approaches. We modeled a set of
515  variables underlying environment, latitude, and the global freeze-line on the GDM and GDE of
516 insect assemblages independently. The necessary complexity of the modeling procedure

517  outlined below precluded the construction of a model including the combined effects of all

518  variables.

519 We prioritized constructing a simple, interpretable linear model that predicts GDM and
520 GDE robustly across the globe by conducting model selection in two steps. First, we reduced
521  the number of potential predictor combinations from the set of 11 variables with low collinearity
522  using Bayesian regression coupled with projective prediction feature selection. This approach
523  minimizes the number of predictor variables in a simple model while retaining comparable

524  predictive power to a model that includes the full suite of predictors '**; "°. For each model we
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525  used weakly informative priors on all slope parameters (N(0, 0.1)) and the error term (N(O, 1)).
526  We centered and scaled all predictors to standard deviation of 1 and mean of 0 prior to

527  modeling. We aimed to retain single candidate models of GDM and GDE.

528 If residual spatial autocorrelation (SAC) is present, the assumption of independent and
529 identically distributed residuals would be violated, resulting in potentially biased overprecision of

530 parameter estimates '

. We tested for SAC in the residuals of the resulting simplified models
531  using Moran’s / and 10,000 simulations implemented in the R package spdep v1.1-2 "'. We
532  detected significant levels of SAC in the residuals of our GDE model (Moran’s [ = 0.149, P =
533  0.008) and our GDM model (Moran’s I = 0.306, P < 0.001).

534 Given this presence of SAC, we used a Bayesian generalized linear mixed-effects model
535 (GLMM) implemented in the R package gimmfields v 0.1.4 to robustly model GDE and GDM
536  while accounting for SAC ™. SAC is modeled as a random effect with a multivariate t-distribution
537  determining the shape of the covariance matrix. Model parameters were estimated from the

538  posterior distribution using a No U-Turn Sampler '*®'*°. We again tested for SAC in the

539 residuals of these models using the same approach as above.

540 Since the covariance structure among predictors is modified by the spatial random

541  effects, we performed additional model selection with the simplified candidate models. The

542  simplified models allowed for the formulation of specific hypotheses on the relationship between
543  GD and the environment. We compared three hypotheses (see Results) using the approximate
544  LOO cross-validation procedure outlined above. After selecting a model, we used the

545  percentage of prior-posterior overlap to assess the identifiability of parameter estimates relative
546  to the information provided by their prior distributions '*°. Low overlap between the prior and
547  posterior distribution of a parameter indicates that there is sufficient information in the data to
548 overcome the influence of the prior.

549 We used a similar approach as above to test the effect of latitude on GDM and GDE. We

550 constructed Bayesian GLMMs with latitude as a linear predictor and a quadratic term for GDM
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551 and GDE. All priors were the same as those in the climate modeling procedure. We compared
552  the fit of the linear model, quadratic model, and an intercept model using approximate LOO
553  cross-validation. We used prior-posterior overlap to assess parameter identifiability.

554 We also independently tested the effect of the global freeze-line on GD using Welch’s

555 unequal variance t-tests.

556 Global genetic diversity map generation

557 Using the final models of GDM and GDE, we created maps of the global distribution of
558 insect GD. We used 1000 draws from the posterior distribution to predict terrestrial

559  environments across the globe. We included all continents except Antarctica, which had no
560 observed data and included environments far more extreme than the observed data. We

561 created maps of the median predicted GDM, upper, lower, and range of the 95% HDI, as well as
562 for GDE. In addition, we created bivariate color maps of these prediction intervals for combined
563 GDM/GDE to highlight areas where GDM and GDE vary in similar and different directions.

564 Multivariate environmental similarity surface (MESS) maps were created to visualize
565 how environmentally similar or different areas across the globe are compared to the model

566 training data '®'. These maps aid in identifying areas of high extrapolation and thus where

567 uncertainty for predictions is also high. Decreasing negative MESS values represent

568 increasingly non-analogous environments, and increasing positive values indicate increasing
569 similarity. We used the MESS results to mask areas with non-analogous environmental space
570  (values less than 0) on our global prediction maps, indicating areas with high prediction

571 uncertainty.
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s72  Data availability

573  All geographic, environmental, and genetic data are available at dryad_link (will make

574  available upon acceptance).

575 Computer code

576  All code used for data processing and analysis is available at https://github.com/connor-

577  french/global-insect-macrogenetics.

24


https://doi.org/10.1101/2022.02.09.479762
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.09.479762; this version posted February 10, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

578 Figure captions

579  Fig. 1

580 Diagram illustrating genetic diversity mean (GDM) and genetic diversity evenness (GDE). A

581 local assemblage (c) is a set of operational taxonomic units (OTUs, analogous to species)

582 sampled from a single grid cell that are a subset of a wider regional pool, whose evolutionary
583 relationships are shown in (a). OTUs have varying amounts of genetic diversity (GD),

584  represented by green circles with sizes corresponding to magnitude of GD. Longer branches
585  among individuals within an OTU indicate a longer time to coalescence and therefore higher GD
586  (b). Panel (c) illustrates four local assemblages sampled from four different grid cells from the
587  same regional pool. The first local assemblage in (c) has high GDM and high GDE, represented
588 by OTUs with high and similar GD and a corresponding relatively flat curve on the rank plot in
589 (d). The second local assemblage in (c) has the same high GDM as the first assemblage in (c),
590  but has lower GDE, indicated by dissimilar circle sizes and a steeper curve in the corresponding
591  rank plotin (d). The third and fourth local assemblages in (c) have the same GDE as the first
592  and second assemblages respectively, but have lower GDM, indicated by the smaller circle

593 sizes and lower height curves on the rank plots in (d). This illustrates the complementary nature
594  of the two metrics, where GDM describes the average magnitude of GD in a local assemblage,

595  while GDE describes the distribution of GD in that same local assemblage.
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598  Fig. 2

599 The observed (a, c, e) and projected (b, d, e) distributions of GDM (a, b), GDE (c, d), and their
600 composite (E, F) across the globe. Values for the projected maps were derived from a Bayesian
601  GLMM model with environmental predictors. For GDM (b), the best fit model included MTWM
602 and precipitation seasonality, while for GDE (d), the best fit model included MTWM, temperature
603  seasonality, and PWM. The yellow lines drawn across the maps of GDE (c, d) indicate the

604 global freeze-line, where areas north of the line and inside the polygon in South America have
605 minimum temperatures that dip below 0°C (below the global freeze-line), and areas south of the
606 line and outside the polygon have minimum temperatures that remain above 0° C year-around
607 (above the global freeze-line). Areas above the freeze-line on average have higher GDE than
608 those below the global freeze-line. We masked in gray areas with environments non-analogous
609 to the environments used for modeling. MTWM = maximum temperature of the warmest month;

610 PWM = precipitation of the wettest month.
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622  Fig. 4

623  Distributions of observed and predicted GDE and GDM. The gray lines in (a) and (c) are 1000
624  random samples from the posterior distribution of the GDM and GDE models. The green lines
625 are the observed distributions of GDM and GDE. The boxplot overlaid on (c) illustrates the

626  higher observed GDE above the global freeze-line (minimum temperature > 0° C) versus GDE
627  below the global freeze-line (minimum temperature <= 0°). The observed differences in GDE
628 above and below the global freeze-line are reflected in the posterior draws, which we highlight
629  with two gray, dashed lines drawn through the medians of the observed data. The posterior
630 distributions of the slopes for each predictor are shown in (b) and (d). The thin bars under each
631 density plot indicate the 95% HDI and the thick bars indicate the 70% HDI. MTWM = maximum

632 temperature of the warmest month; PWM = precipitation of the wettest month
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Tables

Table 1
Results for models of GDM, GDE, and latitude, either across the entire data set or only including
areas that were not glaciated or tundra during the LGM (indicated by model names with a
subscript 60).

Median Lower 95% Upper Median Lower Upper
Model Term slope HDI 95% HDI R? 95% HDI 95% HDI
GDM ~ latitude +
latitude® linear -0.001 -0.002  0.0001 0.186 0.063 0.327
GDM ~ latitude +
latitude® quadratic -0.0001 -0.0002 0.0001 0.186 0.063 0.327
GDE ~ latitude +
latitude® linear -0.006 -0.013 0.001 0.261 0.102 0.417
GDE ~ latitude +
latitude? quadratic -0.001 -0.002 0.001 0.261 0.102 0.417
GDMGO ~ latitude +
latitude® linear -0.0001 -0.001 0.0007 0.231 0.083 0.382
GDMg ~ latitude +
latitude® quadratic 0.0002 -0.0001  -0.0004 0.231 0.083 0.382
GDEg ~ latitude +
latitude® linear 0.0004 -0.0024 0.0031 0.103 0.022 0.221
GDEq ~ latitude +
latitude? quadratic 0.002 0.001 0.003 0.103 0.022 0.221

The bolded model has at least one predictor with a 95% highest density interval (HDI) that does

not overlap with zero, indicating a significant statistical association.
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642 Table 2

643  Results of the spatial linear modeling of environmental correlates for GDM and GDE.

Diff. in SE in SE Median Lower Upper P-value

Model Predictors ELPD diff. ELPD ELPD R? 95% HDI 95% HDI Moran's /| (Moran’s
MTWM, precip.

GDM ~ Current climate seasonality 0 0 746.215 16.704 0.234 0.088 0.385 0.040 0.2
MTWM, precip.

GDM ~ Current climate seasonality, precip.

+ historical climate trend -0.711 1.056 745.505 16.683 0.250 0.100 0.398 0.047 0.

GDM ~ Historical

climate Precip. trend -7.149 5.368 739.066 16.646  0.202 0.072 0.342 0.045 0.
MTWM, PWM,

GDE ~ Current climate temp. seasonality 0 0 346.465 11935 0.327 0.152 0.483 -0.018 0.t
MTWM, PWM,

temp. seasonality,
temp. trend, temp.
GDE ~ Current climate variability, precip.
+ historical climate trend -3.753 1.805 342.713 12.227 0.387 0.195 0.535 0.002 0.4

Temp. trend, temp.
variability, precip.
Historical climate trend -5.099 4.359 341.366 12.076  0.291 0.119 0.454 0.018 0.

644
645 Each hypothesis we tested (current climate, historical climate, and current climate + historical

646 climate) had a unique set of predictors for GDM and GDE. Columns 3-6 contain summary

647  statistics (expected log predictive density, ELPD) from approximate leave-one-out cross-

648 validation model selection for spatial Bayesian GLMMs. The “diff. in ELPD” column indicates
649  differences in ELPD from the best fit model. In addition, columns 7-9 contain a summary of the
650 Bayesian R? model fit statistic. Residual spatial autocorrelation for each model was calculated
651  using Moran’s / and 10,000 simulations were used to calculate a P-value. HDI = highest density
652 interval; MTWM = maximum temperature of the warmest month; PWM = precipitation of the

653 wettest month.

654
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