
  

 

Abstract— In this paper, we develop a novel adaptive motion 

imitation algorithm (AMI) for robotic systems. Although AMI 

can be used in a variety of human-robot interaction scenarios, 

we are particularly interested in robotic rehabilitation where the 

robot plays the role of demonstrating and practicing challenging 

motion physiotherapy. During therapy, the robot first 

demonstrates a reference trajectory to the patient that needs to 

be repeated during practice and then adapts its motion to a cyclic 

speed and amplitude based on the patient’s abilities. Using this 

algorithm, the robotic system learns an upper-body motion of 

the human user and performs a unique, similar, and easier 

motion based on the learned trajectory from the user. 

Adaptation in the AMI is based on deep reinforcement learning 

with deep deterministic policy gradient implemented in the 

Robot Operating System (ROS) environment. Experimental 

data collected from 11 users during upper body human-robot 

imitation sessions with social robot Zeno was used to show that 

the algorithm can learn reference elbow joint trajectories of the 

user in an off-line manner after just a few cycles.  Finally, we also 

implemented the algorithm online using the Baxter robot to 

demonstrate its learning and playback performance.  

I. INTRODUCTION 

Learning by imitation is one of the physiotherapy practices 

to strengthen injured muscles or learn new motion skills. 

Imitation is also a common practice for children suffering 

from autism spectrum disorders (ASD). In these individuals, 

it is believed that the dysfunction in the brain’s mirror neuron 

system causes impairment in motion imitation [1] which is 

addressed by therapists during regular exercises. Since human 

therapists often get tired during imitation therapy sessions, it 

is considered a great idea to continue practice sessions using 

rehabilitation robots [2]. Past studies have shown that many 

patients, and especially children, elicit a positive response to 

these robots [3]. For example, humanoid robots have been 

used to learn body motions demonstrated by their human 

teachers [4, 5], and then perform the same motion to other 

impaired patients to request imitation responses. Fitter and 

colleagues [6] used the Nao to encourage infants with motor 

delay to imitate a motion of the robot such as kicking a ball, 

while Wijayasinghe and colleagues [7] encouraged and 

assessed upper body motion imitation performance of 

children with ASD using social robot Zeno. Zheng and co-

workers [8] designed a Robot-mediated Imitation Skill 

Training Architecture (RISTA) for Nao to train and motivate 

children with ASD to learn motion skills by imitation. The 

robot could act as a physician, continuously demonstrate a 

target gesture, and sense the child imitated gesture. The robot 
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then provided rewards or aids to the child based on their 

performance. In all these examples, although the robots could 

assess the child’s performance, they only performed pre-

recorded gestures and did not adapt therapy. However, 

numerous other algorithms have been proposed in the past to 

program robots to learn from demonstration from the user 

including the work of Tong and coworkers [9] who developed 

an imitation learning method based on the optimization of the 

dynamic movement primitives (DMPs), or studies by 

Martinez and Tavakoli [10] who combined learning from 

demonstration and robotic rehabilitation using stable 

estimators of dynamical systems.  

One of the challenges for using a robot as a therapist to 

practice a physiotherapy motion, or for teaching a motion skill 

by imitation, is that the robot needs to adapt itself to the 

patient and their level of performance. Each human is unique 

and will exhibit different behaviors and performances during 

interactions with the robot. Furthermore, some subjects may 

be impaired physically, while others may have sensory or 

decision-making disabilities affecting imitation performance. 

Model-free algorithms based on Reinforcement Learning 

(RL) can help many collaborative robotic systems learn from 

the user, adapt, and perform shared tasks. Many researchers 

have employed RL in adaptive medical and assistive devices 

like prostheses and exoskeletons [11]. For example, Xu and 

coworkers [12] developed an assistive wearable device for 

lower extremity rehabilitation. It consisted of a master-slave 

robotic system for human-robot interaction control and 

straightening of the injured muscles of patients during mirror 

therapy. RL was applied to this system to increase 

rehabilitation efficacy and safety. Xu and colleagues [13] 

proposed a shared controller based on RL to enhance the 

comfort level and safe operation of a walking-aid robot for 

elderly or disabled people. Their robot adapted to the 

operational control abilities of different users. 

While it is a powerful technique, RL is sensitive to the so-

called curse of dimensionality [14], and recently, Deep 

Reinforcement Learning (DRL) has been proposed to 

overcome this limitation. DRL can learn to map high 

dimensional states to values and provide continuous actions 

by using deep neural networks to represent policy and value 

functions.  Rose and colleagues [15] investigated a model-free 

learning algorithm based on DRL to generate a user 

personalized desired gait pattern for a wearable exoskeleton 

and physiotherapy applications. The advantage of DRL in 

their approach was that the system could learn continuous 
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actions including torque values of hip, knee, and ankle 

actuators of the exoskeleton. 

To assist patients in their physiotherapy practices with 

assistive devices or imitation robotic systems, two patient’s 

challenges should be considered. Loss of appropriate motion 

speed is one of those main challenges in the elderly and 

people with mental or physical disabilities. DRL was found 

as a useful tool to learn a suitable speed for a specific motion 

of the patient and assist them to reach that speed either for 

motion corrections or physiotherapy purposes. For example, 

Sacchi and colleagues [16] proposed a DRL-based velocity 

control method to achieve gait symmetry in patients suffering 

from trans-femoral amputations. Their algorithm learned the 

movement from the non-amputated leg of the patient during 

the last gait and generated the most similar movement for an 

active lower limb prosthesis worn by the amputated leg to 

make the gait cyclic and symmetric.  

Another challenge for disabled patients is to perform a 

motion with proper quality [17]. Usually, impaired patients 

are unable to fully extend their body joints during the 

recovery. Di Febbo [18] and coworkers used DRL for the 

application of functional electrical stimulation (FES) to the 

patient’s arm muscles using a wearable elbow exoskeleton. 

FES is the application of the electrical charge to the injured 

and impaired muscles for stimulation of these muscles [19]. 

Their algorithm learned an optimal controller and enabled 

FES to assist the user to extend their elbow to reach specified 

elbow joint angles. 

The contribution of this paper is to develop an adaptive 

motion imitation algorithm (AMI) based on DRL and in 

particular the Deep Deterministic Policy Gradient (DDPG) 

[20]. AMI was implemented on a robotic system to assist 

patients to practice target physiotherapy motions and learn 

from demonstration. During the interaction, the robotic 

system adapts the speed and shape of its robotic arm motion 

based on the tracked and captured sequences from the 

subject’s arm joints angles. For physiotherapy purposes, the 

robot first demonstrates a default motion to the patient. Once 

the patient starts imitation, the system records the user hand 

motion and recognizes the patient’s challenges regarding both 

speed and quality of motion. The system then adapts itself to 

the patient and generates an easier motion for the patient to 

practice. After the patient learns the easier motion, the 

algorithm can generate a more difficult and similar motion to 

the default one. As a result, this method helps the patient to 

practice and improve its motion’s speed and quality gradually 

over time. A novelty of our method is that, unlike DMP, 

motions are parameterized for cyclic, repetitive trajectories 

using Fourier series coefficients. Target coefficients are then 

learned to best match the quality and speed of the subject 

using DRL after just a few demonstrated cycles. Quality of 

motion is then assessed using Dynamic Time Warping 

(DTW), which we have recently proposed as a metric to 

assess Human-Robot Interaction (HRI) motion quality for 

children with ASD [21]. 

For implementation and testing our algorithm, we used two 

robots shown in Fig.1. The first robot is Zeno, designed for 

children with ASD, and programmable using a laptop and a 

MyRIO controller running LabVIEW®. The upper arm of 

Zeno has only 4 degrees of freedom (DOF) and was used to 

demonstrate specific upper arm motions to several subjects to 

initiate imitation. Data collected was then used off-line to 

fine-tune the AMI algorithm implemented in ROS. Finally, to 

maintain ROS compatibility, and to utilize the full 7-DOF 

kinematic similarity with a human arm, we then played back 

upper arm imitation motions on the Baxter. 

We calculated the DTW similarity cost between the user-

executed motion sequences and the ones generated by the 

AMI algorithm. When compared to the original robot motion, 

results show an increase in similarity by 44%-92% for all 

users as a result of adaptation from our algorithm.  

 
Figure 1. Zeno humanoid and Baxter robots in Louisville Automation & 

Robotics Research Institutes social robotics lab. 

The paper is organized as follows: in section II we present 

the AMI algorithm; in section III we use data collected from 

human subjects to validate the algorithm offline; in section IV 

we implement the algorithm online on the Baxter robotic 

system and discuss our results. Finally, section V presents our 

conclusions and discusses future work.  

II. FORMULATION OF ADAPTIVE MOTION IMITATION (AMI) 

ALGORITHM 

The AMI HRI protocol starts with a default target motion, 

which in this paper is an upper-body motion performed by a 

healthy subject and recorded using a motion tracking system 

from which the upper arm joint angles are extracted. The 

default joints angles sequences of the arm are saved by the 

robotic system as a sample of a specific motion. When a new 

user interacts with the robot, they perform a similar motion 

but not necessarily with the same speed and shape or range of 

motion. The robotic system records the motion of the new 

user, calculates the Z-normalization of joint data, and learns 

to adapt itself to the user motion performance. In a steady 

state, the robot’s arm with N degrees of freedom executes a 

periodic motion both in joint and Cartesian space imitating 

the movement of the human as depicted in Fig. 2. 

 

 
Figure 2. Depiction of motion transfer by demonstration to a robotic system. 
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Because demonstrated motions are periodic, each robot 

default joints angles sequences represented as functions of 

sequence indices can be approximated by a Fourier series 

written as: 

 𝐹𝑗(𝑖) = 𝑎0𝑗 + 𝑎1𝑗 cos(𝑤𝑓𝑗𝑖) + 𝑏1𝑗 sin(𝑤𝑓𝑗𝑖) + 

 𝑎2𝑗 cos(2𝑤𝑓𝑗𝑖) + 𝑏2𝑗 sin(2𝑤𝑓𝑗𝑖) + ⋯,                           (1) 

where 𝑖 is the sequence index of the joint angle time series, 𝑗 

is the robot joint number, j=1..N, 𝑤𝑓𝑗  is the frequency of the 

default motion, 𝐹𝑗 is the joint angle in radians, and 𝑎0𝑗, 𝑎1𝑗, 

𝑏1𝑗, …, are Fourier series constants. 

To generate a similar motion with different shape and 

speed, we can modify the default Fourier series in equation 

(1) by embedding two factors for capturing differences as 

follows: 

 𝐹𝑚𝑗(𝑖) = 𝑎0𝑗 + 𝛼𝑖𝑗[𝑎1𝑗 cos(𝑤𝑖𝑗𝑖) + 𝑏1𝑗 sin(𝑤𝑖𝑗𝑖) + 

 𝑎2𝑗 cos(2𝑤𝑖𝑗𝑖) + 𝑏2 sin(2𝑤𝑖𝑗𝑖) + ⋯ ],                                 (2) 

where 𝛼𝑖𝑗 is a shape factor that captures the changes in the 

range of the motion,  𝑤𝑖𝑗  is the frequency of motion also called 

the speed factor in our model, and 𝐹𝑚𝑗 is the new user joint 

angle sequence. For system motion adaption, the robotic 

system will record the motion performance of the new user 

and learn to select the proper shape and speed factors to 

generate the most similar motion sequence to the user. 

 In the case the robot and human upper arm kinematics are 

not the same, as is the case of both the Baxter and Zeno robots, 

we use the motion capture data, in particular, shoulder, elbow, 

and wrist 3D information in Cartesian space, and transform it 

into joint coordinates for both human and robot corresponding 

to robot’s inverse kinematic model scaled to the size of the 

human arm. The kinematics of both Baxter and Zeno are well 

understood and can be used to compute joint angles using 

closed form kinematics as described in references [22] and 

[23]. Therefore, the joint angles extracted using motion 

capture according to a particular robot inverse kinematics will 

be played back on the same robot.  

Next, we use the Deep Deterministic Policy Gradient 

(DDPG) algorithm to train the robotic system to imitate the 

target motion trajectory in joint space. We define action 

values as shape and speed factors in a continuous action space 

and 𝐹𝑚𝑗  is the system state. DDPG is an actor-critic algorithm 

that stores data in a buffer and during the training episodes, it 

randomly selects mini-batch data samples from that buffer. 

Deep neural networks are then used to represent the policy 

and action-value functions, while two other target neural 

networks are used to update the strategy corresponding to 

actors and approximate the state action-value function 

corresponding to the critic.     

Each episode of the DDPG algorithm consists of several 

time steps. In our method, the number of time steps is equal 

to the length of the user sequence recordings from motion 

capture, which is usually a data set from two to three cycles 

of user motion. At each time-step, the algorithm selects and 

executes a set of action values, observes the new state, and 

calculates the reward. Then it stores actions, states, and 

rewards in the buffer. We define a reward function based on 

the similarity of system generated and measured subject 

motion sequences. The reward at each time step for each robot 

joint, 𝑅𝑖𝑗, is calculated using the Euclidean distance as: 

𝑅𝑖𝑗 = −|(𝜑𝑗(𝑖) − 𝐹𝑚𝑗(𝑖)|,                                                 (3)  

where 𝜑𝑗 is the measured sequence for joint 𝑗 from the 

subject. The DDPG algorithm learns the new motion by 

maximizing the episodic rewards which are the summation of 

the rewards during all time-steps, 𝐼𝑡, of each episode: 

𝑅𝑗 = ∑ 𝑅𝑖𝑗
𝐼𝑡
𝑖=0                                                                               (4) 

The resulting AMI algorithm is summarized in Table 1, 

while the DDPG learning algorithm is shown in Table 2. 

Table 1. Adaptive motion imitation algorithm (AMI)  

1. Create DDPG actor, 𝐴̂(𝑠|𝜃𝐴), and critic, 𝑄(𝑠, 𝑎|𝜃𝑄), neural 

    networks. 𝑠 is the state, 𝑎 is action, and 𝜃𝐴 and 𝜃𝑄 are  

    weights. 

2. Create DDPG target networks 𝐴̂∗and 𝑄∗ 

3. Initialize reply buffer, 𝐵. 

4. for episode 1, M do 

5.   Create random noise ℳ. 

6.   Set initial state 𝑠𝑡=1,𝑗 = 𝜑𝑗(𝑖 = 1), where 𝜑𝑗 is the  

        measured sequence from the subject for the robot joint  

        number, 𝑗. 

7.   for 𝑡 = 1, T do 

8.    Select action 𝑎𝑡𝑗 = {𝛼𝑖𝑗 , 𝑤𝑖𝑗}, add noise, ℳ𝑡, to  

            action, execute action and observe new state, 

            𝑠𝑡+1,𝑗 = 𝐹𝑚𝑗(𝑡 + 1). 

9.      Observe reward 𝑅𝑡𝑗  =  −|(𝜑𝑗(𝑡 + 1) − 𝐹𝑚𝑗(𝑡 + 1)| 

10.   Store transition in DDPG buffer, 𝐵. 

11.     Update critic, 𝐴̂, actor, 𝑄, and target networks, 𝐴̂∗, 𝑄∗  

            based on the DDPG algorithm (Table 2). 

12.  end for 

13. end for 
 

Table 2. DDPG algorithm for updating actor and critic [20] 

1. Sample a random minibatch of n transitions          

    (𝑠𝑖 , 𝑎𝑖 , 𝑅𝑖, 𝑠𝑖+1) from 𝐵. 

2. Set 𝑦𝑖  =  𝑅𝑖  +  𝛾 𝑄∗(𝑠𝑖+1, Ȃ∗(𝑠𝑖+1|𝜃Ȃ∗
) |𝜃𝑄∗

), where 𝛾 is 

    discount factor and 𝑅 is the reward. 

3. Update critic by minimizing the loss function 𝐿: 

 𝐿 =  (
1

𝑛
) ∑ (𝑦𝑖–  𝑄 (𝑠𝑖 , 𝑎𝑖 , | 𝜃𝑄))2

𝑖 . 

4.  Update the actor policy using the sampled policy gradient: 

     𝛻𝜃Ȃ𝐽 ≈ (
1

𝑛
) ∑ ∇𝑎𝑖 𝑄 (𝑠, 𝑎 |𝜃𝑄) |

𝑠=𝑠𝑖,   𝑎=Ȃ(𝑠𝑖) ∇
𝜃ȂȂ (𝑠 |𝜃Ȃ) |𝑠𝑖

 

5. Update the target networks: 

  𝜃𝑄∗
← 𝜏 𝜃𝑄  +  (1 –  𝜏) 𝜃𝑄∗

 

     𝜃Ȃ∗
← 𝜏 𝜃Ȃ  +  (1 –  𝜏) 𝜃Ȃ∗

 

     where 𝜏 is the interpolation factor, 𝜃Ȃ∗
 and 𝜃𝑄∗

are target 

     actor and critic weights respectively.  

III. OFFLINE VALIDATION OF AMI WITH MOTION CAPTURE 

FROM HUMAN SUBJECTS DURING ROBOT IMITATION 

In this section, we discuss the validation of our algorithm 

in designing an adaptive robot to practice upper body physical 

therapy exercises with the patients. In this study, the robot 

performs an arm hammering motion with a default speed and 

a range of motion for the elbow joint, as described in [21]. 
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Our subjects were healthy adults over the age of 18 who 

voluntarily accepted to participate in IRB study #18.0726. 

We implemented two modes of instruction for our robotic 

system: the adaptive and instructor modes. When the robot is 

in its adaptive mode, it adapts its speed and motion to the 

healthy user with the ability to perform a specific motion with 

high quality and constant shape and speed. In instructor mode, 

on the other hand, the robot simply demonstrates pre-selected 

motions to the subject, assesses their ability to follow, and 

gradually increases motion difficulty.  

To test the adaptive mode of our system, we asked our 

healthy participants to mimic the motion of our robot, Zeno, 

and intentionally perform the hammering with constant faster 

or slower speeds during our experiments. To test the instructor 

mode of our system, we asked participants to mimic the 

hammering motion of the Zeno robot with the same range of 

motion and speed as they see from the robot. Our subjects 

carried a 15-pound weight during this part of the experiment 

to model a physical disability. We recorded the participant’s 

hand motion using Kinect® and extracted the subject’s arm 

joint angles as data sequences using Zeno’s inverse 

kinematics. These data were sent as inputs to the AMI 

algorithm, tuned with a discount factor, 𝛾 = 0.99, and an 

interpolation factor, 𝜏 = 0.005 in the DDPG portion.   

A. Adaptive Mode of the Robotic System 

For this part of the study, six subjects performed the 

hammering motion with approximately constant shape and 

constant faster speed than the default motion. We recorded the 

subject’s motion until the Zeno robot completed three cycles 

of default motion, and, due to the range of motion, we selected 

the elbow joint data (𝑗 = 3) as input in the AMI algorithm. 

Eleven subjects completed the same experiment with a slower 

than default speed. Fig. 3 (a). shows the episodic rewards 

during 3000-episode training of the system for one of our 

subjects, subject S1, with the faster speed. The rewards have 

been maximized after approximately 500 episodes of training 

and converged to a maximum reward value for this subject. 

Three cycles of default motion consisted of It (= 171) data 

point which is equal to the number of time-steps for training. 

At each time step, the algorithm selects one set of actions, 

𝑎𝑡𝑗  =  {𝛼𝑖𝑗 ,  𝑤𝑖𝑗}, executes them, and observes the new state 

and reward. In another word, the system selects It set of actions 

during each episode. Fig. 3 (b) and (c) show that the average 

of It shape factors, 𝛼𝑎𝑣𝑒, and speed factors, 𝑤𝑎𝑣𝑒 , for each 

episode have converged to approximately fixed numbers equal 

to 1.1 and 0.31, respectively after 500 episodes when the 

system is trained to learn the motion of the subject S1. When 

the subject performs a motion with the constant shape and 

speed, the system finally learns to select approximately the 

same action values for all It numbers of time steps. 

Fig. 4 shows the measured sequence joint angles in red 

from the subject S1. The default motion has been plotted in 

blue. After the system learns the subject’s motion and 

calculates average shape and speed factors, it can generate a 

new sequence by substituting 𝛼𝑎𝑣𝑒 and 𝑤𝑎𝑣𝑒  into equation (2). 

If the new sequence is applied to the robotic system, the robot 

changes its motion speed and shape to the subject. The learned 

elbow joint sequence has been plotted in yellow in Fig. 4.  

 
Figure 3. Training process, (a) Episodic reward, (b) Average shape factors, 

(c) Average speed factors. 

 
Figure 4. Generated sequence after training for the subject performing the 

motion with a fast speed, 𝑤 = 0.3. 

 
Figure 5. Generated sequence after training for the subject performing the 

motion with a slow speed, 𝑤 = 0.06. 

The subject’s joint angles sequence, default motion, and 

the generated sequence after training for the subject S2, who 

has performed hammering slower than the default speed is 

shown in Fig. 5. As shown in Figs. 4 and 5, the final generated 

sequence matches the subject’s sequence which shows that the 

algorithm has generated adaptive sequences. Also, the 

generated sequence is feasible for a robot to perform given its 

hardware joint limitations since the sequence is very similar to 

the default motion which was already executed by the robot. 

In our case, the sequence data should be sent to the robot joint 

at the rate of 22 ms to match the speed of the human subject.  

After training the robotic system for eleven subjects who 

performed hammering with a slower speed, we calculated 

Dynamic Time Warping (DTW) cost between the subject and 

system-generated sequences with the same length of one cycle 

of default motion. We compared these values with the DTW 

cost calculated between the subject and default motion 

sequences for one cycle. Results shown in Table 3 reveal that 

the DTW cost between subject and learned sequences is 

significantly smaller with the average percentage decrease of 
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78% for 11 subjects. The smaller values of DTW cost indicate 

higher similarity between the subject and AMI generated 

sequences. Furthermore, we carried out the sequence 

similarity calculations for our six subject sequences who 

completed the experiment with a faster speed, as shown in 

Table 4. The average percentage decrease of DTW costs, in 

this case, is still significant and averages to 68% for the 6 

subjects. 

Table 3. DTW cost decrease percentage for subjects 

performing motion with slow speeds 

Subject No. 1 2 3 4 5 6 

% Decrease  92.4 82.6 51.5 65.2 74.4 66.3 

Subject No. 7 8 9 10 11  

% Decrease 57.9 89.8 52.7 90.4 86  

 

Table 4. DTW cost decrease percentage for subjects 

performing motion with fast speeds 

Subject No. 1 2 3 4 5 6 

% Decrease  72.1 61.9 74.5 44.1 69.7 85.1 

B. Instructor Mode of the Robotic System  

The instructor mode of the algorithm is more useful for 

patients who want to repeatedly practice a physiotherapy 

exercise motion with a robot. When the patient improves their 

motion performance, as indicated by a low DTW cost 

between human and robot motion, the system generates a 

more difficult sequence for the patient. This method helps the 

patient to gradually improve their physical abilities. 

To test the instructor mode of the system, we asked our 

participants to carry a 15-pound weight when mimicking the 

hammering motion of the robot with default speed. Fig. 6 

shows the results of 3000-episode training for the subject S3 

who carried a 15-pound weight during his motion 

performance. Like the adaptive mode of the system, the 

rewards are maximized after several episodes and average 

shape and speed factors converge to approximately fixed 

numbers although the subject was unable to control the 

constant speed and shape of his motion.     

 
Figure 6. training results for instructor mode of the robotic system (a) 

episodic rewards, (b) average episodic shape factor, (c) average episodic 

speed factor. 

 

We have plotted the measured sequence from the subject 

S3 and system states, Fm(i), generated by the system after 

training in Fig. 7. As shown, the system learns the subject’s 

motion and the agent’s states during one episode tracks the 

subject’s motion sequence. The subject’s motion shape and 

speed are not constant, which means the learned 𝛼𝑖𝑗 and 𝑤𝑖𝑗  

in equation (2) are different for each index of the motion, but 

the system finds the average shape and speed of the subject’s 

motion by calculating average shape and speed factors. 

Therefore, when the system generates a new sequence using 

the calculated average shape and speed factors, it creates a 

motion sequence that is easier for the patient to practice since 

it is based on averaging the speed and shape of the subject’s 

motion, and it considers unique abilities of the patient. The 

generated sequence has been shown in Fig. 7 for subject S3. 

 
Figure 7. System generated states and final sequence for a subject carried 15-

pound weight. 
 

Seven subjects completed the hammering motion 

performance while they carried 15-pound weight to model 

physical disability. The shape and speed factors for the default 

motion were 1 and 0.11, respectively. We have trained our 

system for all the subjects and calculated average shape and 

speed factors. We compared these values with the default 

motion shape and speed factors and plotted them in Fig. 8, 

while default factors are plotted in red. Results demonstrate 

that the system selects motions with lower speed and range 

for most of the subjects, which are easier for them to practice.  

The offline training process of AMI was done on a Lenevo, 

Legion laptop with an Intel Core i7 and CPU speed of 2.60 

GHz with 16 GB of RAM. With these subjects, training took 

2 to 5 minutes until we obtained large rewards below -10.  

 
Figure 8. Average shape and speed factors for subjects carrying 15-pound 

weight (a) average shape factor, (b) average speed factor. 

IV. ONLINE IMPLEMENTATION AND PLAYBACK OF LEARNED 

AMI MOTIONS  

Once the AMI algorithm was validated using off-line 

captured data during imitation interaction with the Zeno robot, 

we implemented a similar experiment using the Baxter robot. 

Our aim was to train a motion, in this case, hand waving, to 
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the robot and defined a reward threshold number, Rm, at which 

the robot learns and starts the motion performance. For hand 

motion, the focus was on the elbow joint angle, which 

contributes the most range of motion to the human subject’s 

upper arm. In this scenario, the AMI algorithm was 

implemented in Python 3 running in a virtual environment and 

Ubuntu 14.04. The communication with Baxter’s joint motors 

was accomplished through a socket written in Python 2 to 

receive data from the AMI algorithm and communicate with 

the robot operating system (ROS). Specifically, we sent joint 

commands to the robot in its position control mode and read 

the joints angles from the relevant ROS topic.  

We first recorded two subjects’ hand waving motions, one 

as a default motion and the other one as a motion that must be 

learned by the robot. We recorded these motions using a 

Kinect sensor and save them as text files for the robotic system 

to use. 

For the safety of our robot hardware, we bounded the 

frequency and motion ranges so if the algorithm selects actions 

that are out of the robot hardware range, the system will not be 

damaged. When the system starts training, the robot arm is in 

the pose ready for the hand waving. The algorithm calculates 

the episodic rewards and sends joint commands to the robot 

when the episodic reward is more than a defined reward 

number, Rm. We select Rm experimentally to assure that the 

robot starts the motion when it properly learns the trajectory. 

During our experiments, the machine learning system selects 

actions and calculates episodic rewards. Once the system 

generates an episodic reward higher than Rm, the joint 

command is calculated based on average shape and speed 

factors and sent to the relevant robotic joint. Rm then is updated 

to be the current calculated episodic reward. The robot changes 

the motion only when the algorithm finds a larger reward than 

the updated Rm. For   rehabilitation applications of AMI, it is 

important that we define a proper initial Rm, so the robot starts 

the motion when it has learned the trajectory, and small 

changes in motion are tailored to each patient during 

physiotherapy practice. Also, Rm, should not be a very large 

number because motion training will take a very long time and 

make HRI impractical.  

To find Rm experimentally, we first selected a small Rm  = -

100 for our first trial and recorded input commands to the 

robotic arm as well as the system output. We stopped the 

system when we got episodic rewards around -33. Fig. 9. 

shows the changes of produced sequences as inputs and system 

outputs over time. As shown, first the algorithm explores 

different actions and generates inaccurate sequences. 

However, for episodic rewards higher than -40, the changes 

intend to be minor. While Baxter performed the motion, we 

confirmed that for the rewards in the range of -40 to -35, 

human eyes cannot notice the changes in motions when the 

robot switched to the new motion with better rewards. 

For our second trial, we selected defined a reward 

threshold  Rm = -35. The robot performed the motion until we 

obtained episodic rewards around -15. Again, we confirmed 

that the human eye could not notice changes when the system 

switched the motions. Fig. 10. shows the system inputs and 

outputs for our second trial as well as final motion generation 

from the system at the reward around -15.        

 
Figure 9. Imitation algorithm input to the Baxter system and output from the 

system during motion training for the first trial. 

 
Figure 10. Imitation algorithm input to the Baxter system and output from the 

system during motion training for the second trial. 

V. CONCLUSIONS AND FUTURE WORK 

     In this paper, we proposed the AMI, a new adaptive motion 

imitation algorithm, to design an adaptive robotic therapist for 

upper arm imitation. The system uses the measured joint 

angle sequences of the patient’s upper-body motions and 

adjusts the shape and speed of the robot’s cyclic trajectories 

to practice an easier motion with the patient considering their 

unique abilities. We validated our algorithm with off-line data 

collected from adult human subjects and showed how the 

algorithm can be also implemented online for the elbow joint.  

     In the future, we plan to implement the algorithm on Zeno 

and Milo humanoid robots in conjunction with a higher-

performance controller and computing hardware to decrease 

the training time and fidelity of motion control.   We will then 

test the AMI algorithm with more challenging target motions, 

involving shoulder, elbow, and wrist joints, in support of 

upper arm physical rehabilitation, or for robotic interventions 

for children with ASD. We will address learning scalability 

challenges to robot arms with higher numbers of degrees of 

freedom (DOF) and compare the performance of AMI with 

other supervised learning methods.  

ACKNOWLEDGMENT 

     This work was supported by the US National Science 

Foundation through grants SCH IIS#1838808 and EPSCoR 

OIA#1849213. We wish to thank Dr. Sumit K. Das for his 

help with the experimental results presented in this paper. 

803

Authorized licensed use limited to: University of Louisville. Downloaded on September 13,2022 at 12:51:43 UTC from IEEE Xplore.  Restrictions apply. 



  

REFERENCES 

[1] M. M. Y. Chan, Y.M.Y. Han, “Differential mirror neuron system 

(MNS) activation during action observation with and without social-

emotional components in autism: a meta-analysis of neuroimaging 

studies.” Molecular Autism., vol. 11, no. 72, 2020. 

[2] N. A. Malik, H. Yussof, F.A. Hanapiah, “Development of imitation 

learning through physical therapy using a humanoid robot” Procedia 
Comput. Sci., vol. 42, pp. 191-197, 2014. 

[3] T. Belpaeme, P. E. Baxter, R. Read, R. Wood, H. Cuayahuitl, B. 

Kiefer, S. Racioppa, I. Kruijff-Korbayova, G. Athanasopoulos, V. 

Enescu, “Multimodal child-robot interaction: Building social bonds,” 

J. hum. robot interact., vol. 1, no. 2, pp. 33–53, 2012 

[4] M. Riley, A. Ude, K. Wade, and C. G. Atkeson, “Enabling Real-Time 

Full-Body Imitation: A Natural Way of Transferring Human 

Movement to Humanoids.” presented at the 2003 IEEE Int Conf 
Robot Autom (ICRA), pp. 2368–2374. Taipei, Taiwan. 

[5] J. Koenemann, F. Burget, and M. Bennewitz, “Real-Time Imitation of 

Human Whole-Body Motions by Humanoids.” presented at the 2014 

IEEE Int Conf Robot Autom (ICRA), pp. 2806–2812. Hong Kong, 

China. 

[6] N. T. Fitter, R. Funke, J. C. Pulido, L. E. Eisenman, W. Deng, M. R. 

Rosales, N. S. Bradley, B. Sargent, B. A. Smith, and M. J. Mataric, 
“Socially Assistive Infant-Robot Interaction: Using Robots to 

Encourage Infant Leg-Motion Training.” IEEE Robot. Autom. Mag., 

vol. 26, no. 2, pp. 12–23, June 2019.  

[7] I. B. Wijayasinghe, I. Ranatunga, N. Balakrishnan, N. Bugnariu, and 

D. O., Popa, “Human–Robot Gesture Analysis for Objective 
Assessment of Autism Spectrum Disorder.” Int. J. Soc. Robot., vol. 8, 

no. 5, pp. 695–707, November 2016. 

[8] Z. Zheng, E. M. Young, A. R. Swanson, A. S. Weitlauf, Z. E. Warren, 

N. Sarkar, “Robot-Mediated Imitation Skill Training for Children with 

Autism,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 24, no. 6, pp. 

682-691, June 2016. 

[9] X. Tong, R. Li, L. Ge, L. Zhao, K. Wang, “Imitation Learning of 

Human Operation Based on Visual Demonstration,” presented at the 
3rd International Conference on Control and Computer Vision 

(ICCCV), pp. 71-76, Macau, China, 2020. 

[10] C. Martínez, M. Tavakoli, “Learning and robotic imitation of 

therapist's motion and force for post-disability rehabilitation,” 

presented at the IEEE International Conference on Systems, Man, and 
Cybernetics (SMC), pp. 2225-2230, Banff, Canada, 2017. 

[11] A. Mohebbi, “Human-Robot Interaction in Rehabilitation and 

Assistance: a Review,” Curr. Robot. Rep., vol. 1, pp. 131–144, 2020. 

[12] J. Xu, L. Xu, Y. Li, G. Cheng, J. Shi, J. Liu, S. Chen, “A Multi-

Channel Reinforcement Learning Framework for Robotic Mirror 
Therapy,” IEEE Robot. Autom. Lett., vol. 5, no. 1, pp. 5385-5392, Oct. 

2020. 

[13] W. Xu, J. Huang, Y. Wang, C. Tao, and L. Cheng, “Reinforcement 

learning-based shared control for walking-aid robot and its 

experimental verification,” Adv. Robot., vol. 29, no. 22, pp. 1463–
1481, 2015. 

[14] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. 

Silver, and D. Wierstra, “Continuous control with deep reinforcement 

learning,” ICLR, 2016. 

[15] L. Rose, M. C. F. Bazzocchi and G. Nejat, “End-to-End Deep 

Reinforcement Learning for Exoskeleton Control,” 2020 IEEE 

International Conference on Systems, Man, and Cybernetics (SMC), 
pp. 4294-4301, 2020. 

[16] N. Sacchi, G. P. Incremona, A. Ferrara, “Deep Reinforcement 

Learning of Robotic Prosthesis for Gait Symmetry in Trans-Femoral 
Amputated Patients,” 29th Mediterranean Conference on Control and 

Automation (MED), pp. 723-728, 2021. 

[17] S. Sadegh Pour Aji Bishe, T. Nguyen, Y. Fang and Z. F. Lerner, 

“Adaptive Ankle Exoskeleton Control: Validation Across Diverse 

Walking Conditions,” IEEE Trans. Med. Robot. Bionics, vol. 3, no. 3, 
pp. 801-812, 2021. 

[18] D. Di Febbo, E. Ambrosini, M. Pirotta, E. Rojas, M. Restelli, A. 

Pedrocchi, S. Ferrante, “Reinforcement Learning Control of 

Functional Electrical Stimulation of the upper limb: a feasibility 

study,” in Annual Conference of the International Functional 
Electrical Stimulation Society (IFESS), pp. 111–114, 2018. 

[19] N. Taghavi, G. R. Luecke, N. D. Jeffery, “A neuro-prosthetic device 

for substituting sensory functions during stance phase of the 

gait,” Appl. Sci., vol. 9, no. 23, pp. 5144, Nov. 2019. 

[20] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. 

Silver, D. Wierstra, “Continuous control with deep reinforcement 

learning,” arXiv preprint arXiv:1509.02971, 2015. 

[21] N. Taghavi, J. M., Berdichevsky, N., Balakrishnan, K. C., Welch, D. 

O., Popa, “Online Dynamic Time Warping Algorithm for Human-
Robot Imitation” presented at the 2021 IEEE Int Conf Robot Autom 

(ICRA), pp. 3843-3849. Xi’an, China. 

[22] N. Torres, N. Clark, I. Ranatunga, and D. Popa, “Implementation of 

interactive arm playback behaviors of social robot Zeno for autism 

spectrum disorder therapy,” in PETRA2012: The 5th International 
Conference on PErvasive Technologies Related to Assistive 

Environments, pp. 21, Heraklion Crete, Greece June 6 – 8, 2012. 

[23] S. Cremer, L. Mastromoro, D. O. Popa, “On the performance of the 

Baxter research robot,” 2016 IEEE International Symposium on 

Assembly and Manufacturing (ISAM), pp. 106-111, Fort Worth, 
USA, 2016. 

 

 

 
 

 

 
 

804

Authorized licensed use limited to: University of Louisville. Downloaded on September 13,2022 at 12:51:43 UTC from IEEE Xplore.  Restrictions apply. 


