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Abstract— In this paper, we develop a novel adaptive motion
imitation algorithm (AMI) for robotic systems. Although AMI
can be used in a variety of human-robot interaction scenarios,
we are particularly interested in robotic rehabilitation where the
robot plays the role of demonstrating and practicing challenging
motion physiotherapy. During therapy, the robot first
demonstrates a reference trajectory to the patient that needs to
be repeated during practice and then adapts its motion to a cyclic
speed and amplitude based on the patient’s abilities. Using this
algorithm, the robotic system learns an upper-body meotion of
the human user and performs a unique, similar, and easier
motion based on the learned trajectory from the user.
Adaptation in the AMI is based on deep reinforcement learning
with deep deterministic policy gradient implemented in the
Robot Operating System (ROS) environment. Experimental
data collected from 11 users during upper body human-robot
imitation sessions with social robot Zeno was used to show that
the algorithm can learn reference elbow joint trajectories of the
user in an off-line manner after just a few cycles. Finally, we also
implemented the algorithm online using the Baxter robot to
demonstrate its learning and playback performance.

[. INTRODUCTION

Learning by imitation is one of the physiotherapy practices
to strengthen injured muscles or learn new motion skills.
Imitation is also a common practice for children suffering
from autism spectrum disorders (ASD). In these individuals,
it is believed that the dysfunction in the brain’s mirror neuron
system causes impairment in motion imitation [1] which is
addressed by therapists during regular exercises. Since human
therapists often get tired during imitation therapy sessions, it
is considered a great idea to continue practice sessions using
rehabilitation robots [2]. Past studies have shown that many
patients, and especially children, elicit a positive response to
these robots [3]. For example, humanoid robots have been
used to learn body motions demonstrated by their human
teachers [4, 5], and then perform the same motion to other
impaired patients to request imitation responses. Fitter and
colleagues [6] used the Nao to encourage infants with motor
delay to imitate a motion of the robot such as kicking a ball,
while Wijayasinghe and colleagues [7] encouraged and
assessed upper body motion imitation performance of
children with ASD using social robot Zeno. Zheng and co-
workers [8] designed a Robot-mediated Imitation Skill
Training Architecture (RISTA) for Nao to train and motivate
children with ASD to learn motion skills by imitation. The
robot could act as a physician, continuously demonstrate a
target gesture, and sense the child imitated gesture. The robot
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then provided rewards or aids to the child based on their
performance. In all these examples, although the robots could
assess the child’s performance, they only performed pre-
recorded gestures and did not adapt therapy. However,
numerous other algorithms have been proposed in the past to
program robots to learn from demonstration from the user
including the work of Tong and coworkers [9] who developed
an imitation learning method based on the optimization of the
dynamic movement primitives (DMPs), or studies by
Martinez and Tavakoli [10] who combined learning from
demonstration and robotic rehabilitation using stable
estimators of dynamical systems.

One of the challenges for using a robot as a therapist to
practice a physiotherapy motion, or for teaching a motion skill
by imitation, is that the robot needs to adapt itself to the
patient and their level of performance. Each human is unique
and will exhibit different behaviors and performances during
interactions with the robot. Furthermore, some subjects may
be impaired physically, while others may have sensory or
decision-making disabilities affecting imitation performance.

Model-free algorithms based on Reinforcement Learning
(RL) can help many collaborative robotic systems learn from
the user, adapt, and perform shared tasks. Many researchers
have employed RL in adaptive medical and assistive devices
like prostheses and exoskeletons [11]. For example, Xu and
coworkers [12] developed an assistive wearable device for
lower extremity rehabilitation. It consisted of a master-slave
robotic system for human-robot interaction control and
straightening of the injured muscles of patients during mirror
therapy. RL was applied to this system to increase
rehabilitation efficacy and safety. Xu and colleagues [13]
proposed a shared controller based on RL to enhance the
comfort level and safe operation of a walking-aid robot for
elderly or disabled people. Their robot adapted to the
operational control abilities of different users.

While it is a powerful technique, RL is sensitive to the so-
called curse of dimensionality [14], and recently, Deep
Reinforcement Learning (DRL) has been proposed to
overcome this limitation. DRL can learn to map high
dimensional states to values and provide continuous actions
by using deep neural networks to represent policy and value
functions. Rose and colleagues [15] investigated a model-free
learning algorithm based on DRL to generate a user
personalized desired gait pattern for a wearable exoskeleton
and physiotherapy applications. The advantage of DRL in
their approach was that the system could learn continuous
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actions including torque values of hip, knee, and ankle
actuators of the exoskeleton.

To assist patients in their physiotherapy practices with
assistive devices or imitation robotic systems, two patient’s
challenges should be considered. Loss of appropriate motion
speed is one of those main challenges in the elderly and
people with mental or physical disabilities. DRL was found
as a useful tool to learn a suitable speed for a specific motion
of the patient and assist them to reach that speed either for
motion corrections or physiotherapy purposes. For example,
Sacchi and colleagues [16] proposed a DRL-based velocity
control method to achieve gait symmetry in patients suffering
from trans-femoral amputations. Their algorithm learned the
movement from the non-amputated leg of the patient during
the last gait and generated the most similar movement for an
active lower limb prosthesis worn by the amputated leg to
make the gait cyclic and symmetric.

Another challenge for disabled patients is to perform a
motion with proper quality [17]. Usually, impaired patients
are unable to fully extend their body joints during the
recovery. Di Febbo [18] and coworkers used DRL for the
application of functional electrical stimulation (FES) to the
patient’s arm muscles using a wearable elbow exoskeleton.
FES is the application of the electrical charge to the injured
and impaired muscles for stimulation of these muscles [19].
Their algorithm learned an optimal controller and enabled
FES to assist the user to extend their elbow to reach specified
elbow joint angles.

The contribution of this paper is to develop an adaptive
motion imitation algorithm (AMI) based on DRL and in
particular the Deep Deterministic Policy Gradient (DDPG)
[20]. AMI was implemented on a robotic system to assist
patients to practice target physiotherapy motions and learn
from demonstration. During the interaction, the robotic
system adapts the speed and shape of its robotic arm motion
based on the tracked and captured sequences from the
subject’s arm joints angles. For physiotherapy purposes, the
robot first demonstrates a default motion to the patient. Once
the patient starts imitation, the system records the user hand
motion and recognizes the patient’s challenges regarding both
speed and quality of motion. The system then adapts itself to
the patient and generates an easier motion for the patient to
practice. After the patient learns the easier motion, the
algorithm can generate a more difficult and similar motion to
the default one. As a result, this method helps the patient to
practice and improve its motion’s speed and quality gradually
over time. A novelty of our method is that, unlike DMP,
motions are parameterized for cyclic, repetitive trajectories
using Fourier series coefficients. Target coefficients are then
learned to best match the quality and speed of the subject
using DRL after just a few demonstrated cycles. Quality of
motion is then assessed using Dynamic Time Warping
(DTW), which we have recently proposed as a metric to
assess Human-Robot Interaction (HRI) motion quality for
children with ASD [21].

For implementation and testing our algorithm, we used two
robots shown in Fig.1. The first robot is Zeno, designed for
children with ASD, and programmable using a laptop and a
MyRIO controller running LabVIEW®. The upper arm of
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Zeno has only 4 degrees of freedom (DOF) and was used to
demonstrate specific upper arm motions to several subjects to
initiate imitation. Data collected was then used off-line to
fine-tune the AMI algorithm implemented in ROS. Finally, to
maintain ROS compatibility, and to utilize the full 7-DOF
kinematic similarity with a human arm, we then played back
upper arm imitation motions on the Baxter.

We calculated the DTW similarity cost between the user-
executed motion sequences and the ones generated by the
AMI algorithm. When compared to the original robot motion,
results show an increase in similarity by 44%-92% for all
users as a result of adaptation from our algorithm.

Zen-t’_i

Figure 1. Zeno humanoid and Baxter robots in Louisville Automation &
Robotics Research Institutes social robotics lab.

The paper is organized as follows: in section II we present
the AMI algorithm; in section III we use data collected from
human subjects to validate the algorithm offline; in section IV
we implement the algorithm online on the Baxter robotic
system and discuss our results. Finally, section V presents our
conclusions and discusses future work.

IT. FORMULATION OF ADAPTIVE MOTION IMITATION (AMI)
ALGORITHM

The AMI HRI protocol starts with a default target motion,
which in this paper is an upper-body motion performed by a
healthy subject and recorded using a motion tracking system
from which the upper arm joint angles are extracted. The
default joints angles sequences of the arm are saved by the
robotic system as a sample of a specific motion. When a new
user interacts with the robot, they perform a similar motion
but not necessarily with the same speed and shape or range of
motion. The robotic system records the motion of the new
user, calculates the Z-normalization of joint data, and learns
to adapt itself to the user motion performance. In a steady
state, the robot’s arm with N degrees of freedom executes a
periodic motion both in joint and Cartesian space imitating
the movement of the human as depicted in Fig. 2.

Human

Figure 2. Depiction of motion transfer by demonstration to a robotic system.
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Because demonstrated motions are periodic, each robot
default joints angles sequences represented as functions of
sequence indices can be approximated by a Fourier series
written as:

Fi(i) = agj + a4 cos(wfji) + by sin(wfji) +

azj cos(waji) + by sin(waji) + - (1)

where i is the sequence index of the joint angle time series, j
is the robot joint number, j=1..N, wy; is the frequency of the
default motion, F; is the joint angle in radians, and ay;, a4,
byj, ..., are Fourier series constants.

To generate a similar motion with different shape and
speed, we can modify the default Fourier series in equation
(1) by embedding two factors for capturing differences as
follows:

Fm](l) = aoj + al-j [alj COS(Wiji) + b]_] Sln(WUl) +

az; cos(ZWL-ji) + b, sin(ZWL-ji) +-], 2)

where a;; is a shape factor that captures the changes in the
range of the motion, w;; is the frequency of motion also called
the speed factor in our model, and F,,; is the new user joint
angle sequence. For system motion adaption, the robotic
system will record the motion performance of the new user
and learn to select the proper shape and speed factors to
generate the most similar motion sequence to the user.

In the case the robot and human upper arm kinematics are
not the same, as is the case of both the Baxter and Zeno robots,
we use the motion capture data, in particular, shoulder, elbow,
and wrist 3D information in Cartesian space, and transform it
into joint coordinates for both human and robot corresponding
to robot’s inverse kinematic model scaled to the size of the
human arm. The kinematics of both Baxter and Zeno are well
understood and can be used to compute joint angles using
closed form kinematics as described in references [22] and
[23]. Therefore, the joint angles extracted using motion
capture according to a particular robot inverse kinematics will
be played back on the same robot.

Next, we use the Deep Deterministic Policy Gradient
(DDPGQG) algorithm to train the robotic system to imitate the
target motion trajectory in joint space. We define action
values as shape and speed factors in a continuous action space
and Fy,,; is the system state. DDPG is an actor-critic algorithm
that stores data in a buffer and during the training episodes, it
randomly selects mini-batch data samples from that buffer.
Deep neural networks are then used to represent the policy
and action-value functions, while two other target neural
networks are used to update the strategy corresponding to
actors and approximate the state action-value function
corresponding to the critic.

Each episode of the DDPG algorithm consists of several
time steps. In our method, the number of time steps is equal
to the length of the user sequence recordings from motion
capture, which is usually a data set from two to three cycles
of user motion. At each time-step, the algorithm selects and
executes a set of action values, observes the new state, and
calculates the reward. Then it stores actions, states, and
rewards in the buffer. We define a reward function based on
the similarity of system generated and measured subject

motion sequences. The reward at each time step for each robot
joint, R;}, is calculated using the Euclidean distance as:

Rij = —|(9; (D) — Fpj (DI, (3)
where @; is the measured sequence for joint j from the
subject. The DDPG algorithm learns the new motion by
maximizing the episodic rewards which are the summation of
the rewards during all time-steps, I, of each episode:

Ry =% 0Ry @)

The resulting AMI algorithm is summarized in Table 1,
while the DDPG learning algorithm is shown in Table 2.

Table 1. Adaptive motion imitation algorithm (AMI)

1. Create DDPG actor, A(slGA), and critic, Q (s, a|8%), neural
networks. s is the state, a is action, and 64 and 62 are
weights.

2. Create DDPG target networks A*and Q*

3. Initialize reply buffer, B.

4. for episode 1, M do

5. Create random noise M.

6. Setinitial state s,—; ; = @;(i = 1), where ¢; is the

measured sequence from the subject for the robot joint

number, j.
7. fort=1,Tdo
8. Select action a;; = {a,-j, W,-j}, add noise, My, to

action, execute action and observe new state,
St+1,j = Fm](t + 1)
9. Observe reward Ry; = —|(@j(t + 1) — Fpj(t + 1)]
10. Store transition in DDPG buffer, B.
11. Update critic, A, actor, Q, and target networks, A%, 0"
based on the DDPG algorithm (Table 2).
12. end for
13. end for

Table 2. DDPG algorithm for updating actor and critic [20]

1. Sample a random minibatch of » transitions
(s;,ai, R, Si41) from B.
2.Sety; = Ry + ¥ Q*(Sis1, A" (5411677 169"), where y is
discount factor and R is the reward.
3. Update critic by minimizing the loss function L:
L= () L~ Q (sa, | 69)2
4. Update the actor policy using the sampled policy gradient:
V0% = () TiVaQ (5109 |y, ooy u i s 1ot
5. Update the target networks:
09 <102 + (1-1)6¢
0r 102 + (1- 1) 6%
where 7 is the interpolation factor, 62" and 69 are target
actor and critic weights respectively.

III. OFFLINE VALIDATION OF AMI WITH MOTION CAPTURE
FROM HUMAN SUBJECTS DURING ROBOT IMITATION

In this section, we discuss the validation of our algorithm
in designing an adaptive robot to practice upper body physical
therapy exercises with the patients. In this study, the robot
performs an arm hammering motion with a default speed and
a range of motion for the elbow joint, as described in [21].
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Our subjects were healthy adults over the age of 18 who
voluntarily accepted to participate in IRB study #18.0726.

We implemented two modes of instruction for our robotic
system: the adaptive and instructor modes. When the robot is
in its adaptive mode, it adapts its speed and motion to the
healthy user with the ability to perform a specific motion with
high quality and constant shape and speed. In instructor mode,
on the other hand, the robot simply demonstrates pre-selected
motions to the subject, assesses their ability to follow, and
gradually increases motion difficulty.

To test the adaptive mode of our system, we asked our
healthy participants to mimic the motion of our robot, Zeno,
and intentionally perform the hammering with constant faster
or slower speeds during our experiments. To test the instructor
mode of our system, we asked participants to mimic the
hammering motion of the Zeno robot with the same range of
motion and speed as they see from the robot. Our subjects
carried a 15-pound weight during this part of the experiment
to model a physical disability. We recorded the participant’s
hand motion using Kinect® and extracted the subject’s arm
joint angles as data sequences using Zeno’s inverse
kinematics. These data were sent as inputs to the AMI
algorithm, tuned with a discount factor, y = 0.99, and an
interpolation factor, T = 0.005 in the DDPG portion.

A. Adaptive Mode of the Robotic System

For this part of the study, six subjects performed the
hammering motion with approximately constant shape and
constant faster speed than the default motion. We recorded the
subject’s motion until the Zeno robot completed three cycles
of default motion, and, due to the range of motion, we selected
the elbow joint data (j = 3) as input in the AMI algorithm.
Eleven subjects completed the same experiment with a slower
than default speed. Fig. 3 (a). shows the episodic rewards
during 3000-episode training of the system for one of our
subjects, subject S1, with the faster speed. The rewards have
been maximized after approximately 500 episodes of training
and converged to a maximum reward value for this subject.

Three cycles of default motion consisted of /; (= 171) data
point which is equal to the number of time-steps for training.
At each time step, the algorithm selects one set of actions,
a;; = {a;j, w;;}, executes them, and observes the new state
and reward. In another word, the system selects /; set of actions
during each episode. Fig. 3 (b) and (c) show that the average
of I, shape factors, a,,., and speed factors, w,,,, for each
episode have converged to approximately fixed numbers equal
to 1.1 and 0.31, respectively after 500 episodes when the
system is trained to learn the motion of the subject S1. When
the subject performs a motion with the constant shape and
speed, the system finally learns to select approximately the
same action values for all /; numbers of time steps.

Fig. 4 shows the measured sequence joint angles in red
from the subject S1. The default motion has been plotted in
blue. After the system learns the subject’s motion and
calculates average shape and speed factors, it can generate a
new sequence by substituting a,,,, and w,,,, into equation (2).
If the new sequence is applied to the robotic system, the robot
changes its motion speed and shape to the subject. The learned
elbow joint sequence has been plotted in yellow in Fig. 4.
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Figure 5. Generated sequence after training for the subject performing the
motion with a slow speed, w = 0.06.

The subject’s joint angles sequence, default motion, and
the generated sequence after training for the subject S2, who
has performed hammering slower than the default speed is
shown in Fig. 5. As shown in Figs. 4 and 5, the final generated
sequence matches the subject’s sequence which shows that the
algorithm has generated adaptive sequences. Also, the
generated sequence is feasible for a robot to perform given its
hardware joint limitations since the sequence is very similar to
the default motion which was already executed by the robot.
In our case, the sequence data should be sent to the robot joint
at the rate of 22 ms to match the speed of the human subject.

After training the robotic system for eleven subjects who
performed hammering with a slower speed, we calculated
Dynamic Time Warping (DTW) cost between the subject and
system-generated sequences with the same length of one cycle
of default motion. We compared these values with the DTW
cost calculated between the subject and default motion
sequences for one cycle. Results shown in Table 3 reveal that
the DTW cost between subject and learned sequences is
significantly smaller with the average percentage decrease of
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78% for 11 subjects. The smaller values of DTW cost indicate
higher similarity between the subject and AMI generated
sequences. Furthermore, we carried out the sequence
similarity calculations for our six subject sequences who
completed the experiment with a faster speed, as shown in
Table 4. The average percentage decrease of DTW costs, in
this case, is still significant and averages to 68% for the 6
subjects.

Table 3. DTW cost decrease percentage for subjects
performing motion with slow speeds
Subject No. 1 2 3 4 5 6
% Decrease | 92.4 | 82.6 | 51.5 | 65.2 | 74.4 | 66.3
Subject No. 7 8 9 10 11
% Decrease | 57.9 | 89.8 | 52.7 | 904 | 86

Table 4. DTW cost decrease percentage for subjects
performing motion with fast speeds
Subject No. 1 2 3 4 5 6
% Decrease | 72.1 | 61.9 | 74.5 | 44.1 | 69.7 | 85.1

B. Instructor Mode of the Robotic System

The instructor mode of the algorithm is more useful for
patients who want to repeatedly practice a physiotherapy
exercise motion with a robot. When the patient improves their
motion performance, as indicated by a low DTW cost
between human and robot motion, the system generates a
more difficult sequence for the patient. This method helps the
patient to gradually improve their physical abilities.

To test the instructor mode of the system, we asked our
participants to carry a 15-pound weight when mimicking the
hammering motion of the robot with default speed. Fig. 6
shows the results of 3000-episode training for the subject S3
who carried a 15-pound weight during his motion
performance. Like the adaptive mode of the system, the
rewards are maximized after several episodes and average
shape and speed factors converge to approximately fixed
numbers although the subject was unable to control the
constant speed and shape of his motion.
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Figure 6. training results for instructor mode of the robotic system (a)
episodic rewards, (b) average episodic shape factor, (c) average episodic
speed factor.

We have plotted the measured sequence from the subject
S3 and system states, Fy(i), generated by the system after
training in Fig. 7. As shown, the system learns the subject’s
motion and the agent’s states during one episode tracks the
subject’s motion sequence. The subject’s motion shape and
speed are not constant, which means the learned a;; and w;;

in equation (2) are different for each index of the motion, but
the system finds the average shape and speed of the subject’s
motion by calculating average shape and speed factors.
Therefore, when the system generates a new sequence using
the calculated average shape and speed factors, it creates a
motion sequence that is easier for the patient to practice since
it is based on averaging the speed and shape of the subject’s
motion, and it considers unique abilities of the patient. The
generated sequence has been shown in Fig. 7 for subject S3.
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Figure 7. System generated states and final sequence for a subject carried 15-
pound weight.

Seven subjects completed the hammering motion
performance while they carried 15-pound weight to model
physical disability. The shape and speed factors for the default
motion were 1 and 0.11, respectively. We have trained our
system for all the subjects and calculated average shape and
speed factors. We compared these values with the default
motion shape and speed factors and plotted them in Fig. §,
while default factors are plotted in red. Results demonstrate
that the system selects motions with lower speed and range
for most of the subjects, which are easier for them to practice.

The offline training process of AMI was done on a Lenevo,
Legion laptop with an Intel Core i7 and CPU speed of 2.60
GHz with 16 GB of RAM. With these subjects, training took
2 to 5 minutes until we obtained large rewards below -10.

Ve

o
{ 0.1
s}
S 008
&£
= 0.06
L5
L o004
w 1 2 3 4 5 6 7
Subject Number
(a)
@
-
&
= A
S
g
T 08
@
o
2 os
w 1 2 3 4 5 6 7

Subject Number
(b)
Figure 8. Average shape and speed factors for subjects carrying 15-pound
weight (a) average shape factor, (b) average speed factor.

IV. ONLINE IMPLEMENTATION AND PLAYBACK OF LEARNED
AMI MOTIONS

Once the AMI algorithm was validated using off-line
captured data during imitation interaction with the Zeno robot,
we implemented a similar experiment using the Baxter robot.
Our aim was to train a motion, in this case, hand waving, to
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the robot and defined a reward threshold number, R, at which
the robot learns and starts the motion performance. For hand
motion, the focus was on the elbow joint angle, which
contributes the most range of motion to the human subject’s
upper arm. In this scenario, the AMI algorithm was
implemented in Python 3 running in a virtual environment and
Ubuntu 14.04. The communication with Baxter’s joint motors
was accomplished through a socket written in Python 2 to
receive data from the AMI algorithm and communicate with
the robot operating system (ROS). Specifically, we sent joint
commands to the robot in its position control mode and read
the joints angles from the relevant ROS topic.

We first recorded two subjects’ hand waving motions, one
as a default motion and the other one as a motion that must be
learned by the robot. We recorded these motions using a
Kinect sensor and save them as text files for the robotic system
to use.

For the safety of our robot hardware, we bounded the
frequency and motion ranges so if the algorithm selects actions
that are out of the robot hardware range, the system will not be
damaged. When the system starts training, the robot arm is in
the pose ready for the hand waving. The algorithm calculates
the episodic rewards and sends joint commands to the robot
when the episodic reward is more than a defined reward
number, R,. We select R, experimentally to assure that the
robot starts the motion when it properly learns the trajectory.
During our experiments, the machine learning system selects
actions and calculates episodic rewards. Once the system
generates an episodic reward higher than R,, the joint
command is calculated based on average shape and speed
factors and sent to the relevant robotic joint. R,, then is updated
to be the current calculated episodic reward. The robot changes
the motion only when the algorithm finds a larger reward than
the updated R,,. For rehabilitation applications of AMI, it is
important that we define a proper initial R,,, so the robot starts
the motion when it has learned the trajectory, and small
changes in motion are tailored to each patient during
physiotherapy practice. Also, R, should not be a very large
number because motion training will take a very long time and
make HRI impractical.

To find R,, experimentally, we first selected a small R, = -
100 for our first trial and recorded input commands to the
robotic arm as well as the system output. We stopped the
system when we got episodic rewards around -33. Fig. 9.
shows the changes of produced sequences as inputs and system
outputs over time. As shown, first the algorithm explores
different actions and generates inaccurate sequences.
However, for episodic rewards higher than -40, the changes
intend to be minor. While Baxter performed the motion, we
confirmed that for the rewards in the range of -40 to -35,
human eyes cannot notice the changes in motions when the
robot switched to the new motion with better rewards.

For our second trial, we selected defined a reward
threshold R, = -35. The robot performed the motion until we
obtained episodic rewards around -15. Again, we confirmed
that the human eye could not notice changes when the system
switched the motions. Fig. 10. shows the system inputs and
outputs for our second trial as well as final motion generation
from the system at the reward around -15.
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V.CONCLUSIONS AND FUTURE WORK

In this paper, we proposed the AMI, a new adaptive motion
imitation algorithm, to design an adaptive robotic therapist for
upper arm imitation. The system uses the measured joint
angle sequences of the patient’s upper-body motions and
adjusts the shape and speed of the robot’s cyclic trajectories
to practice an easier motion with the patient considering their
unique abilities. We validated our algorithm with off-line data
collected from adult human subjects and showed how the
algorithm can be also implemented online for the elbow joint.

In the future, we plan to implement the algorithm on Zeno
and Milo humanoid robots in conjunction with a higher-
performance controller and computing hardware to decrease
the training time and fidelity of motion control. We will then
test the AMI algorithm with more challenging target motions,
involving shoulder, elbow, and wrist joints, in support of
upper arm physical rehabilitation, or for robotic interventions
for children with ASD. We will address learning scalability
challenges to robot arms with higher numbers of degrees of
freedom (DOF) and compare the performance of AMI with
other supervised learning methods.
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