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Abstract—This paper considers a single-source single-
destination half-duplex n-relay network with arbitrary topology,
where the source communicates with the destination through a
direct link and with the help of n half-duplex relays. The focus is
on the linear deterministic approximation of the Gaussian noise
network model. First, sufficient conditions under which operating
the network in the n + 1 energy-efficient states (out of the 2n

possible states) is sufficient to achieve the approximate capacity
(that is, an additive gap approximation of the Shannon capacity)
are characterized. Specifically, these n+1 energy-efficient states
are those in which at most one relay is in transmit mode while
the rest of the relays are in receive mode. Under such sufficient
network conditions, closed-form expressions for the scheduling
and the approximate capacity are provided. Then, a time-block
relaying scheme, where at each point in time at most one relay is
in transmit mode, is designed. In particular, the designed relaying
scheme leverages information flow preservation at each relay to
explicitly provide the information that each relay is exclusively
responsible to store and forward to the destination. Furthermore,
the destination can decode the information bits sent by the
source in block B by the end of block B + 1, and the proposed
scheme is shown to achieve the approximate capacity whenever
the sufficient conditions are satisfied. Such features make the
designed scheme relevant for practical use.

I. INTRODUCTION

Today, a massive number of critical services, such as health-
care and education, heavily relies on the use of the wireless
medium. Such services, together with the staggering amount
of data traffic generated every day, are currently fueling a
transformative wireless revolution. Relaying is foreseen to
be integrated in several technology components of the next
generation IoT networks and evolving 5G architecture, hence
playing a vital role in this wireless revolution. For instance,
relaying promises performance enhancement of device-to-
device communication [3], [4], millimeter wave communica-
tion [5], [6], vehicular communication [7], [8], and unmanned
aerial vehicles communication [9], [10], which are all key
components of the 5G architecture.

Depending on their mode of operation, relays can be
classified into two main categories: (1) full-duplex when a
relay can transmit and receive over the same time/frequency
bands; and (2) half-duplex when a relay must use different
times/bands for transmitting and receiving. Despite the better
performance (e.g., throughput) promised by full-duplex com-
pared to half-duplex, several practical restrictions arise when
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a node operates in full-duplex, among all how to properly
cancel the self-interference. Although in the past few years
several Self-Interference Cancellation (SIC) techniques have
been developed (e.g., antenna separation, analog cancellation
and digital cancellation) [11]–[13], their physical layer robust-
ness is yet to be demonstrated in many operating scenarios.
Examples of other practical restrictions of the full-duplex
technology are given by currently available prototypes, which
are large and complicated [14], [15], and by the severe energy
consumption required by SIC techniques, which represents an
implementation burden, especially in scenarios where low-
cost communication modules are needed and nodes have
limited power supply. Given such considerations, half-duplex
is expected to continue to play a fundamental role in next
generation wireless networks [16].

In this work, we investigate the optimality of an energy-
efficient schedule (which, as described later in details, at each
point on time schedules at most one relay for transmission)
for half-duplex relay networks with arbitrary topology, that
is, all the network nodes may be connected between one
another. In particular, we derive sufficient conditions under
which such energy-efficient scheduling suffices to operate the
network close to its Shannon capacity (i.e., the supremum rate
at which information can be transmitted), and we design a
provable optimal time-block relaying scheme when such an
energy-efficient schedule is used.

A. Related Work

Characterizing the Shannon capacity of wireless relay net-
works is a long-standing open problem, even for networks with
a single relay. The cut-set bound has been shown to offer a
constant (i.e., which only depends on the number of relays
n) additive gap approximation of the Shannon capacity for
Gaussian relay networks [17]–[21].

In half-duplex, such an approximation (referred to as ap-
proximate capacity throughout the paper) can be computed by
solving a linear program that involves 2n cut constraints and
2n state variables corresponding to the receive/transmit config-
urations of the n half-duplex relays1. It has been surprisingly
shown that it suffices to operate the network in only n + 1
states out of the 2n possible ones to achieve the approximate

1It has been shown that randomly switching between the 2n states can
offer an increase in the information rate that can be transmitted over the
network [22]–[24]. However, with n half-duplex relays, such as an increase
is at most equal to n and hence, it only contributes to the additive gap.
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capacity [25]. This result is promising as it implies that rates
close to the Shannon capacity can be achieved with a linear
(instead of exponential) number of states. However, can a
set of (at most) n + 1 states sufficient to characterize the
approximate capacity be found in polynomial time in n? To
the best of our knowledge, this question is open for half-
duplex relay networks with arbitrary topology. In particular,
such a set of critical states and the approximate capacity can be
computed in polynomial time only for networks with a special
topology, such as line networks [26], a special class of layered
networks [27], and diamond networks (where information is
hopped though one layer of n non-communicating relays)
either with n = 2 relays [28] or with an arbitrary n under
certain network conditions expressed in form of matrix deter-
minants [29]. In this work, we consider unicast (i.e., single-
source, single-destination) half-duplex relay networks with an
arbitrary topology, and we derive network conditions under
which it suffices to operate the network in the n+ 1 states in
which at most one relay transmits (and all the remaining n−1
relays receive) to achieve the network approximate capacity.
To the best of our knowledge, this is the first work that pro-
vides network conditions under which a specific set of at most
n+ 1 states suffices to characterize the approximate capacity
for half-duplex relay networks with arbitrary topology.

B. Contributions

In this work, we consider unicast half-duplex relay networks
with arbitrary topology, where a source communicates with
a destination with the help of n relays that operate in half-
duplex. In particular, we analyze the linear deterministic
approximation of the Gaussian noise channel, a.k.a. ADT
model [17], which captures - in a simple deterministic way
- the interaction between interfering signals and neglects the
noise. The significance of this model stems mainly from the
facts that: (1) its approximate capacity offers a constant gap
approximation for the capacity of the original noisy Gaussian
network for several relevant topologies, such as line and
diamond networks; and (2) its study has been shown to
offer suitable guidelines on how to operate the original noisy
Gaussian network so as to achieve rates close to the Shannon
capacity. The main contribution of our work is two-fold:
• We characterize sufficient network conditions under which
at most one relay is required to transmit at any given time to
achieve the approximate capacity. Under such conditions, we
provide closed-form expressions for the approximate capacity
and for the network schedule, that is the fraction of time each
relay should transmit. Such a schedule leads to a significant
reduction in the average power consumption at the relays, com-
pared to a random network with identical n (where potentially
at each point in time more than one relay is transmitting) and
hence, the proposed scheduling is energy-efficient. Another ad-
vantage of a schedule with at most one relay in transmit mode
at each point in time is that it simplifies the synchronization
problem at the destination. Moreover, the scheduling and the
approximate capacity under these conditions can be computed
by solving a system of O(n) equations in O(n) variables,
rather than solving a linear program with O(2n) variables and

constraints. This can be advantageous even in scenarios with
a relatively small number of relays n, e.g., in the case of fast
fading channels, where the scheduling and the approximate
capacity have to be updated in short intervals of time as
the channel gains vary rapidly. However, such a complexity
reduction becomes particularly appealing when n is relatively
large. This is expected to be the case in a number of next
generation networks that rely on using high-frequency bands.
In such networks, in fact, multi-hop relaying stands as a viable
solution to counter the hostile propagation quality of the high-
frequency spectrum, such as high path loss, atmospheric and
rain absorption, and low penetration through objects. Examples
of such networks include satellite communication and mega-
constellations [30] [31], and device-to-device millimeter wave
infrastructure networks, such as Terragraph [32]. It is worth
noting that our result can also be readily translated to obtain
sufficient conditions under which operating the network only
in states with at most one relay in receive mode is sufficient
to achieve the approximate capacity.
• We design a time-block relaying scheme, where in each
block the n+ 1 energy-efficient states are operated in a fixed
order. Our designed scheme has the following appealing fea-
tures: (i) each relay simply stores and forwards some selected
information bits that it receives, without any further processing
or coding; (ii) it leverages information flow preservation at the
relays to explicitly provide the information that each relay is
exclusively responsible to store and forward to the destination;
(iii) it guarantees that the destination is capable of successfully
decoding all the information bits sent by the source in block
B by the end of block B+1; and (iv) it achieves a rate that is
equal to the approximate capacity when the derived sufficient
network conditions are satisfied.

Finally, we highlight that, although the derived results are
for the linear deterministic approximation of the Gaussian
noise channel, they represent a first fundamental step towards
identifying a set of provable optimal set of n + 1 states and
corresponding relaying scheme for half-duplex relay networks
with arbitrary topology. In particular, the derived sufficient
conditions for the optimality of an energy-efficient scheduling
and the designed relaying scheme can be readily translated to
obtain similar results for the original noisy Gaussian network
for relevant topologies, such as line and diamond networks,
and in general they can be leveraged as guidelines when the
Gaussian network has an arbitrary topology.

C. Paper Organization

Section II introduces the notation, it describes the Gaussian
and the linear deterministic half-duplex networks with n relays
and summarizes known capacity results. Section III presents
the first main result of the paper, the proof of which is in
Section IV. Specifically, Section III characterizes sufficient
conditions under which the set of (at most) n+1 network states
in which at most one relay is transmitting (and the set with at
most n+1 states with at most one relay receiving) suffices to
characterize the approximate capacity of the binary-valued lin-
ear deterministic approximation of the Gaussian noise channel.
Section V presents the second main result of the paper, namely



3

Fig. 1: n=3 relay network with Ω={3} and S={2, 3}.

a time-block relaying scheme which achieves a rate equal
to the network approximate capacity whenever the derived
sufficient conditions are satisfied. Section VI concludes the
paper. Some proofs can be found in the appendix.

II. NOTATION AND SYSTEM MODEL

Notation: We denote the set of integers {i, . . . ,m} by [i : m],
and {1, . . . ,m} by [m]; note that [i : m] = ∅ if i > m.
For a variable θ and a set X , θX = {θx : x ∈ X}. We use
boldface letters to refer to matrices. For a matrix M, det (M)
is the determinant of M, MT is the matrix transpose of M
and M[A,B] is the submatrix of M obtained by retaining all
the rows indexed by the set A and all the columns indexed
by the set B. ⌊·⌋ and ⌈·⌉ are the floor and ceiling operations,
respectively, and [a]

+
= max{a, 0}. 0p×q is the zero matrix

of dimension p× q; Ip is the p× p identity matrix.
The Gaussian half-duplex network with n relays consists of

a source (node s) that communicates with a destination (node
d) through a direct link (from s to d) and through an arbitrary
network of n relays that operate in half-duplex. At each time
t, the input/output relationship of this network is described as

Y t
d =

n∑
i=1

St
ihdiX

t
i + hdsX

t
s + Zt

d,

Y t
i =

(
1− St

i

)hisX
t
s +

∑
j∈[n]

St
jhijX

t
j + Zt

i

 ,

(1)

for i ∈ [n]. Note that, at each time instant t: (i) St
i is a

binary random variable that indicates the state of relay i ∈ [n],
with St

i = 0 (respectively, St
i = 1) indicating that relay i is

receiving (respectively, transmitting); (ii) the source and the
destination are always transmitting and receiving, respectively;
(iii) Xt

i is the channel input at node i that satisfies the unit
average power constraint E[|Xt

i |2] ≤ 1 for i ∈ {s} ∪ [n]; (iv)
hij with i ∈ [n] ∪ {d} and j ∈ {s} ∪ [n] is the time-invariant
complex channel gain from node j to node i; note that, without
loss of generality, we let hii = 0; (v) Zt

i ∼ CN (0, 1) is the
complex additive white Gaussian noise at node i ∈ {d} ∪ [n];
and finally, (vi) Y t

i is the received signal at node i ∈ {d}∪ [n].
The Shannon capacity CG of the network in (1) is not

known in general. However, CG can be approximated within
an additive gap by using the cut-set upper bound together with
relaying schemes such as quantize-map-and-forward [17] and
noisy network coding [19]. Here the gap only depends on the

number of nodes in the network, but it is independent from
the channel gains and operating SNR. In particular, for some
relevant topologies, such as line and diamond networks, we
can focus on the binary linear deterministic approximation
of the Gaussian noise network model [17], for which the
approximate capacity is known and provides an approximation
for CG. The linear deterministic model (a.k.a. ADT model [17]
based on the first letter of the names of the authors Avestimehr,
Diggavi and Tse) corresponding to the Gaussian noise network
in (1) has an input-output relationship given by

Y t
d =

n∑
i=1

St
iD

η−ηd,iXt
i +Dη−ηd,sXt

s,

Y t
i =

(
1− St

i

)Dη−ηi,sXt
s +

∑
j∈[n]

St
jD

η−ηi,jXt
j

 ,

(2)

for i ∈ [n], where

Dη−m =

[
0(η−m)×m 0(η−m)×(η−m)

Im 0m×(η−m)

]
,

and ηi,j =
⌈
log |hij |2

⌉+
, i ∈ [n] ∪ {d}, j ∈ {s} ∪ [n], i ̸= j.

Here, the vectors Xt
s, Xt

i , Y t
d , and Y t

i with i ∈ [n] are binary
of length η = max ηi,j , where the maximization is taken over
all channels ηi,j’s in the network; D is the so-called η × η
shift matrix, and St

i , i ∈ [n] is the ith relay binary-valued
state random variable.
Example 1. Consider the n = 3 relay half-duplex network in
Fig. 1. For the cut Ω = {3} and state S = {2, 3}, we have
{s} ∪ (Ω ∩ S) = {s, 3} and {d} ∪ (Ωc ∩ Sc) = {d, 1}. The
input-output relationship for this cut and state is given by[

Yd

Y1

]
=

[
Dη−ηd,s Dη−ηd,3

Dη−η1,s Dη−η1,3

] [
Xs

X3

]
.

The approximate capacity of the linear deterministic model
in (2) is given by the solution of [17]

CLD = max
λ

t

s.t. t ≤ gΩ ≜
∑
S⊆[n]

λSf
Ω
S , ∀Ω ⊆ [n],

gp ≜
∑
S⊆[n]

λS ≤ 1, λS ≥ 0, ∀S ⊆ [n],

(3)

where: (i) S = {i ∈ [n] : Si = 1} is the set of relay nodes
in transmit mode; (ii) λS ≥ 0 is the fraction of time that the
network operates in state S and hence,

∑
S⊆[n] λS≤1; (iii) λ

is referred to as a network schedule and is a vector obtained
by stacking together λS for all S ⊆ [n]; (iv) Ω ⊆ [n] denotes
a partition of the relays in the ‘side of s’, i.e., {s} ∪ Ω is a
network cut; similarly, Ωc = [n]\Ω is a partition of the relays
in the ‘side of d’. Moreover, we define

fΩ
S ≜I (Xs, XΩ∩S ;Yd, YΩc∩Sc |XΩc∩S ,S)= rank

(
FΩ

S
)
, (4)

where FΩ
S is the transfer matrix from X{s}∪(Ω∩S) to

Y{d}∪(Ωc∩Sc), corresponding to the ADT model [17].
Therefore, we have

f
{3}
{2,3} = rank

(
F

{3}
{2,3}

)
= rank

[
Dη−ηd,s Dη−ηd,3

Dη−η1,s Dη−η1,3

]
.⋄
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max
λ

t

For Ω = ∅ : t ≤
∑
S⊆[2]

f∅
S λS = max {η1,s, η2,s, ηd,s}λ∅ +max{η2,s, ηd,s}λ{1} +max{η1,s, ηd,s}λ{2} + ηd,sλ{1,2},

For Ω = {1} : t ≤
∑
S⊆[2]

f
{1}
S λS = max{η2,s, ηd,s}λ∅ + f

{1}
{1}λ{1} + ηd,sλ{2} +max{ηd,1, ηd,s}λ{1,2},

For Ω = {2} : t ≤
∑
S⊆[2]

f
{2}
S λS = max{η1,s, ηd,s}λ∅ + ηd,sλ{1} + f

{2}
{2}λ{2} +max{ηd,2, ηd,s}λ{1,2},

For Ω = {1, 2} : t ≤
∑
S⊆[2]

f
{1,2}
S λS = ηd,sλ∅ +max{ηd,1, ηd,s}λ{1} +max{ηd,2, ηd,s}λ{2} +max{ηd,1, ηd,2, ηd,s}λ{1,2},

Sum of λ : 1 = λ∅ + λ{1} + λ{2} + λ{1,2},

Feasibility : λ ≥ 0,

where λ = {λS : S ⊆ [2]}, and f
{1}
{1} = rank

[
Dη−ηd,s Dη−ηd,1

Dη−η2,s Dη−η2,1

]
, f

{2}
{2} = rank

[
Dη−ηd,s Dη−ηd,2

Dη−η1,s Dη−η1,2

]
. ⋄

Fig. 2: The 2n cuts of an n = 2 relay network.

Example 2. We use the optimization problem in (3) to
illustrate how to compute the approximate capacity of an
n = 2 relay half-duplex network. For the n = 2 relay network,
we have a cut constraint corresponding to each of the 22 = 4
possible cuts shown in Fig. 2. The information flow through
each cut is the sum of information flows through that cut in all
the 22 states. Thus, for this 2−relay network, the optimization
problem at the top of this page gives the approximate capacity.

In this work, we seek to identify sufficient network condi-
tions which allow to determine a set of n + 1 states (out of
the 2n possible ones) that suffice to achieve the approximate
capacity in (3) and can be readily translated into a similar
result for the original noisy Gaussian channel model in (1).

III. CONDITIONS FOR OPTIMALITY OF STATES WITH AT
MOST ONE RELAY TRANSMITTING

Without loss of generality, we assume that the relay nodes
are arranged in increasing order of their left link capacities,
that is, η1,s ≤ η2,s ≤ · · · ≤ ηn,s. We define P to be an
(n+2)× (n+2) matrix, the rows and columns of which are
indexed by [0 : n+ 1], and

Pi,j =


−f

[i:n]
{j} , (i, j) ∈ [n+ 1]2,

0, (i, j) = (0, 0),

1, otherwise,

(5)

where we define fΩ
{n+1} = fΩ

∅ , for consistency. Moreover, for
i ∈ [0 : n+1] we use P(i) to denote the minor of P associated
with the row 0 and column i of the matrix P, that is

P(i) ≜ det (P[[n+ 1], [0 : n+ 1] \ {i}]) .

Finally, we define S ≜ {{1}, {2}, . . . , {n},∅} to be the set
of the n+1 states, where at most one relay is transmitting in
each state.

The main result of this paper is presented in Theorem 1,
which characterizes sufficient network conditions for the op-
timality of operating the network only in states S ∈ S.

Theorem 1. Consider a half-duplex relay network with
η1,s ≤ η2,s ≤ · · · ≤ ηn,s. Whenever det (P) ̸= 0 and
(−1)n+1P(n+1)

det(P) ≥ 0, then it is optimal to operate the network
in states in S to achieve CLD in (3).

Example 3. Consider the relay network in Fig. 1 with link
capacities given by ηd,s = 1, η1,s = 2, η2,s = 3, η3,s = 5,
ηd,1 = 6, ηd,2 = 5, ηd,3 = 3, η1,2 = 3, η2,1 = 4, η3,2 = 5,
η2,3 = 3, η3,1 = 2 and η1,3 = 4. For this network, the matrix
P is given by

P =


0 1 1 1 1
1 −6 −5 −3 −1
1 −1 −7 −4 −2
1 −3 −2 −7 −3
1 −5 −5 −3 −5

 . (6)

For matrix P, det (P) = 198 ̸= 0 and (−1)4P(4)

det(P) = 11
198 ≥ 0,

i.e., the conditions in Theorem 1 are satisfied for this n =
3 relay network. Thus, operating this network in states S =
{{1}, {2}, {3},∅} achieves CLD in (3). ⋄

Remark 1. Note that S consists of all the states where at
most one relay transmits, while the rest of the relays receive.
A similar condition can be obtained for the optimality of the
states

S′ = {[n], [n] \ {1}, [n] \ {2}, . . . , [n] \ {n}},

where at most one relay is in receive mode.
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Fig. 3: Empirical cdf of F = RS/CLD for n = [3 : 7] relay networks.

Remark 2. The conditions in Theorem 1 are a consequence
of the relaying scheme proposed in Section V used to operate
the network in states S. This scheme is based on information
flow preservation at each relay, i.e., the amount of unique
linearly independent bits of information that each relay is
responsible to receive is equal to the amount of unique linearly
independent bits of information that the relay transmits. The
conditions in Theorem 1 ensure the feasibility and optimality
of this scheme as we show in Section V.

Remark 3. An important motivation behind the study of the
energy-efficient states S is that even when the conditions in
Theorem 1 are not satisfied, the network can still achieve a
significant fraction of the approximate capacity by operating
in only these n + 1 states. This is illustrated via numerical
simulations in Fig. 3. For these simulations, we generated
random n = [3 : 7] relay fully-connected networks, where
the capacity ηi,j for i ∈ [1 : n] ∪ {d}, j ∈ [1 : n] ∪ {s}, i ̸= j
of each network link is a random integer in [1 : 10]. For
each randomly generated network, we computed F = RS/CLD,
where RS is the rate achieved by operating the network in the
energy-efficient states S, and CLD is the approximate capacity
computed by solving the linear program in (3). For each of the
five values of n, we generated 104 random networks. In Fig. 3,
we plot the empirical cumulative distribution function (cdf) of
F for n = [3 : 7]. These numerical results show that, even
when it is not optimal to operate the network in the energy-
efficient states, we can still achieve a significant fraction (e.g.,
80%, 85%, 90% and 95% achieved by 98%, 94%, 87%, 72%
of the generated networks, respectively) of the approximate
capacity by restricting the network to operate in these states.
This makes the study of these energy-efficient states important.

In the remainder of this section, we analyze the variables fΩ
S

and present some of their properties, which play an important
role in the proof of Theorem 1, presented in Section IV.

A. Properties of fΩ
S

We present two properties of fΩ
S = rank(FΩ

S ) that we will
use in the proof of Theorem 1.

Lemma 1. For all Ω ⊆ [n] and S ⊆ [n], we have that

fΩ
S ≥ max

{
max

i∈Ωc∩Sc
ηi,s, max

j∈Ω∩S
ηd,j , ηd,s

}
, (7)

with equality if Ωc ∩ Sc = ∅ or Ω ∩ S = ∅.

Proof. Let

i⋆ = arg max
i∈Ωc∩Sc

ηi,s, and j⋆ = arg max
j∈Ω∩S

ηd,j .

Then, the submatrix of FΩ
S induced by row blocks {d, i⋆} and

column blocks {s, j⋆} is[
Dη−ηd,s Dη−ηd,j⋆

Dη−ηi⋆,s Dη−ηi⋆,j⋆

]
,

the rank of which is at least
max{max{ηi⋆,s, ηd,s},max{ηd,j⋆ , ηd,s}} (from the first
column and first row of the above matrix). This provides a
lower bound on the rank of FΩ

S . Moreover, if Ωc ∩ Sc = ∅,
then FΩ

S only consists of one row induced by {d} and
columns induced by {ηd,j : j ∈ (Ω ∩ S) ∪ {s}} and
hence, rank(FΩ

S ) = max{ηd,s,maxj∈Ω∩S ηd,j}. Similarly,
if Ω ∩ S = ∅, then FΩ

S has only one column and hence,
rank(FΩ

S ) = max{ηd,s,maxi∈Ωc∩Sc ηi,s}. If both Ω ∩ S = ∅
and Ωc ∩ Sc = ∅, then FΩ

S = Dη−ηd,s , the rank of which is
ηd,s. This concludes the proof of Lemma 1.

Lemma 2. For a given state S ⊆ [n], fΩ
S is submodular in

Ω, that is,

fΩ1

S + fΩ2

S ≥ fΩ1∩Ω2

S + fΩ1∪Ω2

S ,

for any subsets Ω1,Ω2 ⊆ [n]. Similarly, for a given cut Ω ⊆
[n], fΩ

S is submodular in S, that is,

fΩ
S1

+ fΩ
S2

≥ fΩ
S1∪S2

+ fΩ
S1∩S2

,

for any subsets S1,S2 ⊆ [n].

Proof. The proof is given in [25, Appendix A].
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IV. PROOF OF THEOREM 1

In this section, we present the proof of Theorem 1, which
consists of three main steps. We first introduce an auxiliary
optimization problem in (8) in Section IV-A, which is a
relaxed version of the problem in (3) and hence, its solution
CU provides an upper bound on the optimum value of (3),
i.e., CU ≥ CLD. In Section IV-B, we propose a solution
(λ⋆, t⋆) for the (relaxed) optimization problem in (8), where
λ⋆
S = 0 for all S /∈ S. We show that, under the conditions of

Theorem 1, (λ⋆, t⋆) is feasible and optimal, which leads to
CU = t⋆. Finally, in Section IV-C we show that the proposed
solution is feasible for the original problem in (3), implying
that CLD ≥ t⋆. Therefore, putting the three results together,
we get t⋆ = CU ≥ CLD ≥ t⋆. This shows that CLD = t⋆ can
be attained by λ⋆ that satisfies the claim of Theorem 1. This
concludes the proof of the theorem.

A. An Upper Bound for the Approximate Capacity

The optimization problem in (3) consists of 2n cut con-
straints. We can relax these constraints except for n + 1 of
them. More formally, we define

CU = max
λ

t

s.t. t ≤ g[i:n] =
∑
S⊆[n]

λSf
[i:n]
S , i ∈ [n+ 1],

gp ≜
∑
S⊆[n]

λS ≤ 1, λS ≥ 0, S ⊆ [n],

(8)

where [n+ 1 : n] = ∅. Note that the optimization problem
in (8) is less constrained compared to (3). Hence, the problem
in (8) has a wider feasible set than (3), and its maximum
objective function cannot be smaller than that of the problem
in (3), i.e., CU ≥ CLD.

B. An Optimal Solution for the Relaxed Optimization Problem

We show that under the conditions of Theorem 1, the states
in S are sufficient to achieve CU in (8), that is, there exists an
optimal solution with (t⋆, λ⋆

S) ≥ 0 and λ⋆
S = 0, for all S /∈ S.

In particular, we start by the following proposition, which is
proved in Appendix A.

Proposition 1. Assume det (P) ̸= 0 and (−1)n+1P(n+1)

det(P) ≥ 0.
Then, the variables

λ⋆
∅ = λ⋆

{n+1} := (−1)n+1 P(n+1)

det (P)
,

λ⋆
{i} := (−1)i

P(i)

det (P)
, i ∈ [n],

λ⋆
S := 0, S /∈ S,

(9)

are non-negative.

We now leverage the Karush–Kuhn–Tucker (KKT) condi-
tions to prove the proposition below.

Proposition 2. Assume det (P) ̸= 0 and (−1)n+1P(n+1)

det(P) ≥ 0.
Then, λ⋆ = {λS : S ⊆ [n]} defined in (9) is an optimal
solution for the problem in (8). Consequently, we have

CU = t⋆ = g⋆[i:n] =
∑
S∈S

λ⋆
Sf

[i:n]
S =

P(0)

det (P)
, (10)

for every i ∈ [n+ 1].

Proof of Proposition 2. The proof leverages the KKT condi-
tions for the optimality of the proposed solution. For the KKT
multipliers µ = (µp, µ1, . . . , µn+1) and σ = (σS : S ⊆ [n]),
the Lagrangian L(µ,σ,λ, t) for the optimization problem
in (8) is given by

−t+
∑

i∈[n+1]

µi(t− g[i:n]) + µp(gp − 1)−
∑
S⊆[n]

σSλS . (11)

In the following, we proceed with a choice of (µ,σ) where
µ is the solution of[

µp µ1 . . . µn µn+1

]
P=

[
1 0 . . . 0 0

]
, (12)

and

σS = µp −
n+1∑
i=1

µif
[i:n]
S , (13)

for every S ⊆ [n]. We next prove the optimality of (λ⋆, t⋆) by
showing that the set of KKT multipliers (µ,σ) defined in (12)
and (13) together with (λ⋆, t⋆) defined in (9) and (10) satisfy
the following four groups of conditions.
• Primal Feasibility. First, note that Proposition 1 guarantees
that the constraint λ⋆

S ≥ 0 is satisfied for every S ⊆ [n]. In
order to show the feasibility of the solution, it remains to
show that t⋆ ≤ g[i:n] for every i ∈ [n+1] and

∑
S⊆[n] λ

⋆
S ≤ 1.

Note that by forcing these inequalities to hold with equality,
and setting λS = 0, for all S ⊆ [n] with S /∈ S in (8), we
obtain a system of (n+2) linear equations in (n+2) variables
(namely t and λS for S ∈ S), given by

P
[
t λ{1} . . . λ{n} λ∅

]T
=
[
1 0 . . . 0 0

]T
, (14)

where P is the matrix defined in (5) – see also Appendix A.
The solution of (14) is indeed given in (9) and (10). Therefore,
the solution (λ⋆, t⋆) is feasible for the optimization problem
in (8). In particular, it is worth noting that t⋆ =

∑
S∈S λ

⋆
Sf

[i:n]
S

is guaranteed by the ith row of the matrix identity above, and
hence (10) holds for all values of i ∈ [n + 1]. Furthermore,
we can further simplify

∑
S∈S λ

⋆
Sf

[i:n]
S as follows

∑
S∈S

λ⋆
Sf

[i:n]
S

(a)
=

n+1∑
j=1

(−1)j
P(j)

det (P)
f
[i:n]
{j}

=
1

det (P)

n+1∑
j=1

(−1)jP(j)f
[i:n]
{j}

(b)
=

1

det (P)

(
P(0) − det (Pi→0)

) (c)
=

P(0)

det (P)
,

where we used the values of λ⋆s given in (9)
in (a), step (b) follows from the Laplace expansion
det (Pi→0) = P(0) +

∑n+1
j=1 (−1)jP(j)

(
−f

[i:n]
{j}

)
with Pi→0
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being the matrix P with its row 0 replaced by row i, and (c)
follows from det (Pi→0) = 0 since it has identical rows.
• Complementary Slackness. We need to show that (µ,σ)
and the solution (λ⋆, t⋆) given in (9) and (10) satisfy
(i) µi

(
t⋆ − g⋆[i:n]

)
= 0 for all i ∈ [n+1], (ii) µp(g

⋆
p−1) = 0,

and (iii) σSλ
⋆
S = 0 for every S ⊆ [n]. Conditions (i) and (ii)

are readily implied by (10) and (9), respectively, for any choice
of µ. Moreover, (9) guarantees the third condition for S /∈ S,
with λ⋆

S = 0 whenever S /∈ S. Finally, consider some S ∈ S,
say S = {j} where j ∈ [n + 1] (and j = n + 1 if S = ∅).
Then, the definition of σ{j} in (13) and the jth column of the
matrix identity in (12) imply that

σ{j} = µp −
n+1∑
i=1

µif
[i:n]
{j} = µ ·P[[0 : n+ 1], j] = 0.

This ensures that σSλ
⋆
S = 0, for all S ∈ S.

• Stationarity. We aim to prove that, when evaluated in µ
as in (12) and σS in (13), the derivatives of the Lagrangian
in (11) with respect to t and λS ,S ⊆ [n], are zero. By taking
the derivative of L(µ,σ,λ⋆, t⋆) with respect to t we get

∂

∂t
L(µ,σ,λ⋆, t⋆) = −1 +

n+1∑
i=1

µi

= −1 + µ ·P[[0 : n+ 1], 0]=−1 + 1=0.

Similarly, by taking the derivative with respect to λS we get

∂

∂λS
L(µ,σ,λ⋆, t⋆)=µp −

n+1∑
i=1

µif
[i:n]
S − σS=σS−σS=0,

in which we used the definition of σS in (13).
• Dual Feasibility. Lastly, we need to prove that the KKT mul-
tipliers in (12), (13) are non-negative. To this end, we present
the following proposition, which is proved in Appendix B.

Proposition 3. All the entries of the vector µ obtained
from (12) are non-negative.

Next, we focus on the KKT multipliers σS ,S ⊆ [n] in (13).
For any state S = {a1, a2, . . . , ak}, we can write
n+1∑
i=1

µif
[i:n]
S =

n+1∑
i=1

µif
[i:n]
{a1,...,ak}

=

n+1∑
i=1

µi

k−1∑
j=1

(
f
[i:n]
{a1,...,aj+1}−f

[i:n]
{a1,...,aj}

)
+f

[i:n]
{a1}


≤

n+1∑
i=1

µi

k−1∑
j=1

(
f
[i:n]
{aj+1} − f

[i:n]
∅

)
+ f

[i:n]
{a1}


=

n+1∑
i=1

µi

 k∑
j=1

f
[i:n]
{aj}

− (k − 1)f
[i:n]
∅


=

k∑
j=1

n+1∑
i=1

µif
[i:n]
{aj} − (k − 1)

n+1∑
i=1

µif
[i:n]
∅

=

k∑
j=1

µp − (k − 1)µp = µp,

where the inequality follows from Lemma 2,
i.e., fΩ

S is submodular in S. Therefore, we get
σS = µp −

∑n+1
i=1 µif

[i:n]
S ≥ 0. This concludes the proof

of Proposition 2.

C. Feasibility of (λ⋆, t⋆) for CLD

In Section IV-B, we have shown that the solution (λ⋆, t⋆)
given in (9) and (10) is optimal for the optimization problem
in (8). This implies that t⋆ = CU ≥ CLD where CLD is the
approximate capacity of the network, obtained by solving the
problem in (3). In the following, we aim to prove that (λ⋆, t⋆)
in (9) and (10) is a feasible solution for the optimization
problem in (3), which in turn implies CLD ≥ t⋆, and concludes
the proof of Theorem 1. Towards this end, it suffices to show
the feasibility of such a solution for (3), as stated in the
following proposition.

Proposition 4. The solution (λ⋆, t⋆) given in (9) is feasible
for (3) and thus, CLD ≥ t⋆.

Proof. Note that the two optimization problems in (3) and (8)
have identical objectives and similar constraints. More pre-
cisely, the constraints in (8) are a subset of those in (3) and
hence, they are clearly satisfied for (3) also because (λ⋆, t⋆) is
an optimum solution for (8). Thus, we only need to focus on
the constraints of the form t⋆ ≤ g⋆Ω =

∑
S⊆[n] λ

⋆
Sf

Ω
S , which

exclusively appear in (3).
In order to prove Proposition 4, let us consider an arbitrary

cut Ω = [a1 : b1] ∪ [a2 : b2] ∪ . . . ∪ [ak : bk] ⊆ [n], where
a1 ≤ b1 ≤ a2 ≤ b2 ≤ . . . ≤ ak ≤ bk. We also define ak+1 =
n + 1. Recall from Lemma 2 that, for a given state S, the
function fΩ

S is submodular in Ω. Then, for Ω1 = Ω∪[ai+1 : n]
and Ω2 = [bi+1 : n] with i ∈ [k], we have Ω1∪Ω2 = Ω∪[ai :
n] and Ω1 ∩ Ω2 = [ai+1 : n]. Thus,

f
Ω∪[ai+1:n]
S + f

[bi+1:n]
S ≥ f

Ω∪[ai:n]
S + f

[ai+1:n]
S , (15)

for all i ∈ [k]. Moreover, since ak+1 = n + 1, we have
[ak+1 : n] = ∅, and Ω ⊆ [a1 : n]. Thus∑

S⊆[n]

λ⋆
Sf

Ω
S

=
∑
S⊆[n]

λ⋆
S

[
k∑

i=1

(
f
Ω∪[ai+1:n]
S − f

Ω∪[ai:n]
S

)
+ f

Ω∪[a1:n]
S

]

≥
∑
S⊆[n]

λ⋆
S

[
k∑

i=1

(
f
[ai+1:n]
S − f

[bi+1:n]
S

)
+ f

[a1:n]
S

]

=

k+1∑
i=1

∑
S⊆[n]

λ⋆
Sf

[ai:n]
S −

k∑
i=1

∑
S⊆[n]

λ⋆
Sf

[bi+1:n]
S

=

k+1∑
i=1

g⋆[ai:n]
−

k∑
i=1

g⋆[bi+1:n] = (k + 1)t⋆ − kt⋆ = t⋆,

where the inequality follows from (15). This implies that
t⋆ ≤

∑
S⊆[n] λ

⋆
Sf

Ω
S for any Ω ⊆ [n]. This concludes the claim

of Proposition 4 and completes the proof of Theorem 1.
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Fig. 4: The order of states in each block, and the transmit and reception windows.

V. OPTIMAL RELAYING SCHEME WITH AT MOST ONE
RELAY TRANSMITTING

In this section, we present a relaying scheme that only
utilizes the states in S. Before describing the scheme, we
present some notation and preliminary facts in Section V-A
and Section V-B, respectively. Next, we present the proposed
relaying scheme in Section V-C, and show how the decoding
is performed at the destination in Section V-D. Finally, in
Section V-E we show that the proposed relaying scheme is
optimal, i.e., it achieves the approximate capacity in (10).

A. Notation and Definitions

Without loss of generality, we may assume that {λS :
S ∈ S} given by Proposition 1 are all rational numbers,
otherwise we can approximate them with rational numbers
with an arbitrarily small approximation error. With slight abuse
of the notation, we may use state i to simply refer to state {i}.
We also use n+ 1 to refer to state ∅. Let T be a sufficiently
large integer such that Ti := Tλi is an integer for every
i ∈ [n + 1]. We consider blocks of communication of length
T =

∑
i∈[n+1] Ti, which are divided into n + 1 sub-blocks,

each corresponding to one state in S. The states in each block
are operated in the following specific order (see also Fig. 4):

(∅, {n}, {n− 1}, . . . , {1}) = (n+ 1, n, . . . , 1) .

Thus, in block B relay i only transmits in time slot t,
belonging to its transmit window TW(i, B), that is given by[

(B − 1)T +

n+1∑
S=i+1

TS + 1 : (B − 1)T +

n+1∑
S=i

TS

]
. (16)

Similarly, we define TW(n + 1, B) = [(B − 1)T + 1 : (B −
1)T + Tn+1] to be the set of time slots in which the network
operates in state ∅, i.e., only the source transmits.

For each relay i ∈ [n], we also consider a reception window
of length T − Ti, which includes the time slots between the
end of the transmit window of relay i in block B− 1 and the
beginning of the transmit window of relay i in block B. More
precisely, the reception window RW(i, B) of relay i ∈ [n] in
block B is defined as[

(B − 2)T +

n+1∑
S=i

TS + 1 : (B − 1)T +

n+1∑
S=i+1

TS

]
. (17)

Fig. 4 shows TW(i, B) and RW(i, B) for relay i. Note that the
reception window RW(i, B) of relay i in block B spans over
blocks B and B−1. Moreover, RW(i, B) is further divided as

RW(i, B) =
⋃

j∈[n+1]\{i}

RW(i, B, j),

where RW(i, B, j) is the set of time slots in the reception
window RW(i, B) when the network operates in state j ∈
[n+ 1] \ {i}. It is easy to verify that (see Fig. 4)

RW(i, B, j) =

{
TW(j, B − 1) if j < i,
TW(j, B) if j > i.

(18)

B. Some Preliminary Results
The following proposition and its corollary play a central

role in the proof of the feasibility of the proposed relaying
scheme, and decodability of the information bits at the desti-
nation. We present the proofs of the proposition and corollary
in Appendix C and Appendix D, respectively.

Proposition 5. Consider the transfer matrix F
[i:n]
{i} , and let cj

and rj denote its jth column and jth row, respectively. Then,
we have the following two properties:
(i) If for some j = kη+p (with some k ∈ {0, 1} and 0 < p <
η), column cj is a linear combination of the columns in {cℓ :
ℓ ∈ [j − 1]}, then column cj+1 is also a linear combination
of the columns in {cℓ : ℓ ∈ [j − 1]};
(ii) Similarly, if for some j = kη+ p (for some k ∈ [0 : i− 1]
and 1 < p ≤ η), row rj is a linear combination of the rows in
{rℓ : ℓ ∈ [j − 1]}, then row rj−1 is also a linear combination
of the rows in {rℓ : ℓ ∈ [j − 2]}.

Corollary 1. For the transfer matrix F
[i:n]
{i} , consider the

collection of columns

Ci :=
[
f
[i+1:n]
{i}

]
∪
[
η + 1 : η + f

[i:n]
{i} − f

[i+1:n]
{i}

]
, (19)

and the collection of rows

Ri :=

i⋃
k=1

[
kη −

(
f
[k:n]
{i} − f

[k−1:n]
{i}

)
+ 1 : kη

]
, (20)

where f
[0:n]
{i} = 0. Then, the matrix F

[i:n]
{i} [Ri,Ci] is full-rank.

C. Relaying Scheme
The source has a set of independent information bits that

it wishes to transmit to the destination. We denote the set
of information bits to be sent in block B by A(B) :=⋃

i∈[n+1] A(i, B), where

A(i, B) :=
{
ait,B(ℓ) : t ∈ TW(i, B), ℓ ∈

[
f∅
{i}

]}
, (22)

and we define fΩ
{n+1} = fΩ

∅ , for consistency. In state ∅, when
all the relays are in receive mode, the source sends all the bits
in A(n+ 1, B) uncoded, i.e., for t ∈ TW(n+ 1, B) we have

Xt
s(ℓ) =

 an+1
t,B (ℓ) if ℓ ∈

[
f∅
{n+1}

]
,

0 ℓ ∈
[
f∅
{n+1} + 1 : η

]
.
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Xt
s(ℓ) =


ait,B(ℓ) if ℓ ∈

[
f
[i+1:n]
{i}

]
,

ait,B(ℓ)−Xt
i (ℓ+ηj,i−ηj,s) if ℓ ∈

[
f
[j:n]
{i} +1:f

[j+1:n]
{i}

]
and j ∈ [i+1:n],

0 if ℓ ∈
[
f
[n+1:n]
{i} + 1 : η

]
,

(21)

The transmission during the other states is more sophisticated,
and it is described next. In state S = {i}, i.e., during the
transmit window TW(i, B) both the source and relay i are
transmitting. The source aims at sending the information bits
in A(i, B). Towards this end, the source adopts two different
coding schemes for its transmission. In particular, we further
split this set into A(i, B) = A(i, B) ∪ A(i, B), where

A(i, B) :=
{
ait,B(ℓ) ∈ A(i, B) : 1 ≤ ℓ ≤ f

[i+1:n]
{i}

}
,

A(i, B) :=
{
ait,B(ℓ) ∈ A(i, B) : f

[i+1:n]
{i} < ℓ ≤ f∅

{i}

}
,

denote the set of information bits to be sent on the top f
[i+1:n]
{i}

levels and those to be sent on the next f [∅]
{i} − f

[i+1:n]
{i} levels,

respectively.
Let Xt

i (ℓ) denote the bit sent by relay i on its level ℓ at
some t ∈ TW(i, B) (which will be determined later). It is
important to note that the source is aware of each information
bit sent by the relays. In particular, the source transmits Xt

s(ℓ)
for ℓ ∈ [η], given in (21) at the top of this page, in a time slot
t ∈ TW(i, B). Note that (21) implies that the source sends its
information bits uncoded over its top

[
f
[i+1:n]
{i}

]
levels, but

it applies a (dirty paper) pre-coding on its remaining bits,
which are sent over levels

[
f
[i+1:n]
{i} + 1 : f∅

{i}

]
. We will justify

this pre-coding when we show decodability of the pre-coded
information bits in Lemma 8.

Next, we identify the set of bits sent by relay i during state
{i}, which is a subset of the bits that it has received during its
reception window RW(i, B). This selection is determined by

B(i, B) =
⋃

j∈[n+1]\{i}

B(i, B, j), (23)

where2

B(i, B, j) :=
{
Y t
i (η − k) : t ∈ RW(i, B, j),

k ∈
[
0 :

(
f
[i+1:n]
{j} − f

[i:n]
{j}

)
− 1

]}
. (24)

In other words, during each reception window RW(i, B, j),
among all the bits received, relay i only selects a subset
B(i, B, j) of them, to forward during its transmit window
TW(i, B), and it discards all the other received bits. It is
worth emphasizing that in the proposed scheme, each relay i
only forwards the selected bits in B(i, B), without any further
processing or coding.

During its transmit window in block B, i.e., TW(i, B),
relay i only transmits over its top f

[i:n]
{i} − f

[i+1:n]
{i} levels. The

proposed relaying scheme relies on having each relay i ∈ [n]
forward all the selected bits B(i, B). More precisely, we have{

Xt
i (ℓ) : t∈TW(i, B), ℓ∈

[
f
[i:n]
{i} −f

[i+1:n]
{i}

]}
=B(i, B). (25)

2Note that Lemma 1 and Lemma 3 imply that f
[i+1:n]
{j} ≥ f

[i:n]
{j} , for

every j ̸= i.

Note that relay i sends zero on its remaining levels, i.e.,
Xt

i (ℓ) = 0 for all ℓ > f
[i:n]
{i} − f

[i+1:n]
{i} .

The following proposition shows that the assignment in (25)
is feasible, i.e., the number of bits that relay i can forward
during its transmit window over its top f

[i:n]
{i} − f

[i+1:n]
{i} levels

matches with the number of bits in B(i, B) that it has selected
during its reception window. We present the proof of the
proposition in Appendix E.

Proposition 6 (Information Flow Preservation). For each relay
i and each block B, the number of selected bits in RW(i, B)
equals the number of transmitted bits by relay i during block
B, i.e., |B(i, B)| = |TW(i, B)| ·

(
f
[i:n]
{i} − f

[i+1:n]
{i}

)
.

D. Decoding the Information Bits at the Destination
We here show that all the information bits A(B) sent by

the source during block B can be decoded at the destination
by the end of block B + 1. More precisely, we show that the
information bits in A(B) :=

⋃
i∈[n+1] A(i, B) are decoded by

the end of block B, but we have to wait until the end of block
B + 1 to decode those in A(B) :=

⋃
i∈[n+1] A(i, B).

The following proposition guarantees that all the bits sent
by relay i as well as the uncoded information bits sent by the
source during TW(i, B) can be decoded by the destination at
the end of the block B. We refer to Appendix F for the proof
of the proposition.

Proposition 7. For every block B and every relay i, all the
bits sent by relay i during block B and all the bits sent by the
source on its top f

[i+1:n]
{i} levels are decoded by the destination

by the end of block B, that is,

H

(
A(i, B),B(i, B)

∣∣∣∣{Y t
d (ℓ) :

t ∈ [(B − 1)T + 1 : BT ], ℓ ∈ [η]
})

= 0.

The next proposition shows that the remaining information
bits sent by the source in block B, i.e., A(B) will be
uncodedly forwarded by the relays during block B + 1. The
proof of this proposition is presented in Appendix G.

Proposition 8. All the information bits in A(B) will be re-
transmitted by one of the relays in block B +1, i.e., A(B) ⊆⋃

j∈[n] B(j, B + 1).

Now, we are ready to prove that all the
information bits sent by s in block B can be
decoded at d by the end of block B + 1, i.e.,
H (A(B)|{Y t

d (ℓ) : t ∈ [(B − 1)T + 1 : (B + 1)T ], ℓ ∈ [η]}) =
0. Indeed, this is an immediate consequence of Proposition 7
and Proposition 8, and is shown by the chain of inequalities
in (26), at the top of the next page. This proves that, given the
received bits by the destination in blocks B and B+1, all the
information bits in A(B) can be decoded at the destination.
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H
(
A(B)

∣∣{Y t
d (ℓ) : t ∈ [(B − 1)T + 1 : (B + 1)T ], ℓ ∈ [η]

})
= H

(
A(B),A(B)

∣∣{Y t
d (ℓ) : t ∈ [(B − 1)T + 1 : (B + 1)T ], ℓ ∈ [η]

})
= H

A(B),
⋃

j∈[n+1]

A(j, B)

∣∣∣∣∣∣{Y t
d (ℓ) : t ∈ [(B − 1)T + 1 : (B + 1)T ], ℓ ∈ [η]

}
≤ H

A(B),
⋃

j∈[n+1]

A(j, B),
⋃

j∈[n+1]

B(j, B + 1)

∣∣∣∣∣∣{Y t
d (ℓ) : t ∈ [(B − 1)T + 1 : (B + 1)T ], ℓ ∈ [η]

}
≤

∑
j∈[n+1]

H

 ⋃
j∈[n+1]

A(j, B)

∣∣∣∣∣∣{Y t
d (ℓ) : t ∈ [(B − 1)T + 1 : BT ], ℓ ∈ [η]

}
+

∑
j∈[n+1]

H

 ⋃
j∈[n+1]

B(j, B + 1)

∣∣∣∣∣∣{Y t
d (ℓ) : t ∈ [BT + 1 : (B + 1)T ], ℓ ∈ [η]

}+H

A(B)

∣∣∣∣∣∣
⋃

j∈[n+1]

B(j, B + 1)

 = 0. (26)

E. Evaluation of the Achievable Rate
The analysis in Section V-D shows that all the information

bits in (22) sent by the source during block B can be decoded
by the destination by the end of block B + 1. Therefore, the
proposed scheme can achieve a stationary rate of |A(B)| per
block. From (22) we have

1

T
|A(B)| = 1

T

n+1∑
j=1

|TW(j, B)|f∅
{j} =

1

T

n+1∑
j=1

Tλ{j}f
∅
{j}

=

n+1∑
j=1

(−1)j
P(j)

det (P)
f∅
{j} =

1

det (P)

n+1∑
j=1

(−1)jP(j)f
[n+1:n]
{j}

(a)
=

1

det (P)

[
P(0)−det (Pn+1→0)

]
=

P(0)

det (P)
, (27)

where (a) follows from the Laplace expansion with respect
to the top row of matrix Pn+1→0, given by det (Pn+1→0) =

P(0)+
∑n+1

j=1 (−1)j
(
−f

[n+1:n]
{j}

)
P(j) = 0. It is worth recalling

that Pn+1→0 is identical to P, except its top row which is
replaced by row n+1 of P. Note that (27) proves an achievable
rate which is equal to CU in (10), as shown in Proposition 2.

VI. CONCLUSION

In this work, we have analyzed the linear deterministic
approximation of the Gaussian noise model of a half-duplex
relay network with arbitrary topology. Our main contribution
is two-fold.

First, we have presented sufficient conditions to achieve the
approximate capacity by operating the network with an energy-
efficient schedule. Under such sufficient conditions, we have
also provided closed form expressions for the optimal schedule
and the approximate capacity.

Second, we have designed a time-block relaying scheme that
operates in the energy-efficient states. The proposed scheme
has several appealing practical features, such as: it ensures
that the destination decodes all the information bits sent by
the source in block B by the end of block B+1, it explicitly
provides the information bits that each relay is exclusively
responsible to store and forward to the destination, and it
achieves a rate that is equal to the approximate capacity
whenever the derived sufficient conditions are satisfied.

APPENDIX A
PROOF OF PROPOSITION 1

Note that the conditions of Theorem 1 immediately implies
that λ⋆

∅ = λ⋆
{n+1} ≥ 0. Next, we prove that λ⋆

{i} ≥ 0 for
all i ∈ [n]. Towards this end, let (λ⋆, t⋆) be the solution of a
system of linear equations constructed as follows: (i) setting
λS = 0, for all S ⊆ [n] with S /∈ S in (8); and (ii) forcing
constraints t ≤ g[i:n] for i ∈ [n + 1] and gp ≤ 1 in (8) to
hold with equality. This system of (n+2) linear equations in
(n+ 2) variables, is given by

P
[
t λ{1} · · · λ{n} λ∅

]T
=
[
1 0 · · · 0 0

]T
, (28)

and hence, λ⋆ in Proposition 1 is indeed the solution of the
above system of linear equations. The equation corresponding
to the row i+ 1 for i ∈ [0 : n] of (28) is given by (30) at the
top of the next page, where we define η−1,s = η0,s = 0 and
λ⋆
{0} = 0. In (a), we used Lemma 1 to evaluate f

[i+1:n]
{j} as

well as the fact that η1,s ≤ η2,s ≤ · · · ≤ ηn,s, and (b) follows
from the identity λ⋆

∅+
∑n

j=1 λ
⋆
{j} =1.

Using the above equation, we can recursively express λ⋆
{i}

in terms of {λ⋆
{j} : j > i} for i ∈ [0 : n], which is given by

λ⋆
{i}

(
max{ηi,s, ηd,s} −max{η(i−1),s, ηd,s}

)
= (max{ηi,s, ηd,s} − t⋆)+

n∑
j=i+1

λ⋆
{j}

(
f
[i+1:n]
{j} −max{ηi,s, ηd,s}

)
.

(29)

Before we prove the claim, we present the following lemmas
which will be used in the proof.

Lemma 3. If η1,s ≤ η2,s ≤ · · · ≤ ηn,s, then

f
[a:n]
{j} −max{ηa−1,s, ηd,s} ≥ f

[b:n]
{j} −max{ηb−1,s, ηd,s},

for all 1 ≤ b < a ≤ j ≤ n.

Lemma 4. If η1,s ≤ η2,s ≤ · · · ≤ ηn,s and there exists j ∈ [n]
such that

max{ηj,s, ηd,s} = max{ηj−1,s, ηd,s} = f
[j:n]
{j} ,

then det (P) = 0.
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t⋆ =

n+1∑
j=1

λ⋆
{j}f

[i+1:n]
{j}

(a)
= λ⋆

∅ max{ηi,s, ηd,s}+
i−1∑
j=1

λ⋆
{j} max{ηi,s, ηd,s}+ λ⋆

{i} max{η(i−1),s, ηd,s}+
n∑

j=i+1

λ⋆
{j}f

[i+1:n]
{j}

(b)
=

1−
n∑

j=i

λ⋆
{j}

max{ηi,s, ηd,s}+ λ⋆
{i} max{ηi−1,s, ηd,s}+

n∑
j=i+1

λ⋆
{j}f

[i+1:n]
{j}

=max{ηi,s, ηd,s}+λ⋆
{i}(max{ηi−1,s, ηd,s}−max{ηi,s, ηd,s})+

n∑
j=i+1

λ⋆
{j}

(
f
[i+1:n]
{j} −max{ηi,s, ηd,s}

)
, (30)

The proofs of Lemma 3 and Lemma 4 are in Appendix H and
in Appendix I, respectively.

We now proceed to show that the λ⋆
{i}’s obtained from (29)

(and hence, the λ⋆
{i}’s in Proposition 1) are non-negative for

all i ∈ [n]. The proof is based on contradiction.
We start by assuming that the claim is wrong.

Let K =
{
i : λ⋆

{i} < 0, i ∈ [n]
}

, and k be
the maximum element of K. We also define
L =

{
j ∈ [k − 1] :max{ηj,s, ηd,s} = max{η(j−1),s, ηd,s}

}
,

and ℓ = maxL ∪ {0}, where η0,s = 0. Our goal is to
show that K is an empty set and hence, λ⋆

{i} ≥ 0 for all
i ∈ [n]. We first use a backward induction to prove that for
every i ∈ [ℓ + 1 : k] we have λ⋆

{i} ≤ 0. Note that for the
base case of i = k, the assumption of k ∈ K implies that
λ⋆
{k} < 0. Now, consider some i ∈ [ℓ+1 : k− 1] and assume

λ⋆
{i+1}, . . . , λ

⋆
{k} ≤ 0. Our goal is to show that λ⋆

{i} ≤ 0.
Note that for S = {j} and Ω = [i+1 : n] with j ∈ [i+ 1 : n]
we have Sc ∩ Ωc = [i] and hence, Lemma 1 implies
that f

[i+1:n]
{j} ≥ maxx∈[i] max{ηx,s, ηd,s} = max{ηi,s, ηd,s},

where the last equality follows since η1,s ≤ η2,s ≤
· · · ≤ ηn,s. Therefore, the coefficients of the form(
f
[i+1:n]
{j} −max{ηi,s, ηd,s}

)
in (29) are non-negative.

Then, starting from (29), we can write the chain of
inequalities in (31) at the top of the next page, where (a)

holds by the induction assumption that
{
λ⋆
{i+1}, . . . , λ

⋆
{k}

}
are all non-positive, (b) is due to the fact that ηi,s ≤ ηk,s
for i ≤ k, (c) follows from Lemma 3 for i < k < j, and (d)
follows from (29) with i = k. Finally, since i > ℓ we have
max{ηi,s, ηd,s} −max{η(i−1),s, ηd,s} > 0, which together
with (31) implies λ⋆

{i} ≤ 0.
Now, consider (31) for i = ℓ = maxL ∪ {0}. Recall

that if ℓ = 0 we have λ⋆
{ℓ} = 0, an if ℓ ∈ L we have

max{ηℓ,s, ηd,s} −max{ηℓ−1,s, ηd,s} = 0. Thus, the left-hand-
side of (31) equals zero for i. Then, the chain of inequalities
in (31) is feasible if and only if the four inequalities labeled
by (a), (b), (c) and (e) hold with equality. From (b) we can
conclude that max{ηℓ,s, ηd,s} = max{ηk,s, ηd,s}, and since
η·,s’s are sorted in an increasing order, we have

max{ηℓ,s, ηd,s} = max{η(ℓ+1),s, ηd,s} = · · ·
= max{η(k−1),s, ηd,s} = max{ηk,s, ηd,s}. (32)

Thus, since max{ηℓ,s, ηd,s} = max{η(ℓ+1),s, ηd,s} and ℓ =
maxL∪{0}, we can conclude that ℓ = k−1 (otherwise ℓ+1

also belongs to L and hence, ℓ is not the maximum entry of
L ∪ {0}).

Now, for (a) to hold with equality, we can conclude that
the first summation is zero. However, since λ⋆

{i} ≤ 0 for i ∈
[ℓ + 1 : k] and f

[i+1:n]
{j} − max{ηi,s, ηd,s} ≥ 0, each term

in the summation should be zero. In particular, for the term
corresponding to j = k, since λ⋆

{k} < 0, we get

max{ηℓ,s, ηd,s} = f
[ℓ+1:n]
{k} = f

[ℓ+1:n]
{ℓ+1} , (33)

where the second equality holds since, as we have shown
above, ℓ + 1 = k. Therefore, from (32) and (33) we can
conclude that the conditions of Lemma 4 are satisfied for
j = ℓ + 1, and thus, Lemma 4 implies that det(P) = 0.
This last conclusion is in contradiction with the assumption
of Proposition 1. In other words, in order to have det(P) ̸= 0
we need K to be an empty set and hence, λ⋆

{i} ≥ 0 for all
i ∈ [n]. This completes the proof of Proposition 1. □

APPENDIX B
PROOF OF PROPOSITION 3

We let L =
{
i ∈ [n] : max{ηi,s, ηd,s} = max{η(i−1),s, ηd,s}

}
and ℓ = maxL∪{0}. The proof consists of three parts. First,
we show that µj = 0 for all j ∈ [ℓ]. Then, we prove that all
non-zero µi’s have the same sign for i ∈ [ℓ+ 1 : n+ 1]. This
together with the fact that

∑n+1
i=1 µi = 1 guarantees µi ≥ 0

for all i ∈ [n + 1]. Finally, µp ≥ 0 is implied from µp =∑n+1
j=1 f

[j:n]
{i} µj .

Recall from (12) that µi’s for i ∈ [n+ 1] ∪ {p} can be
obtained by solving the equation

µP=
[
1 0 . . . 0 0

]
. (34)

Note that for any k ∈ [n], the kth column of the identity
in (34), is given by

µP[[0 : n+ 1], k] = µp −
n+1∑
j=1

f
[j:n]
{k} µj = 0. (35)

Similarly, rewriting the equation for column n+ 1, we get

µP[[0 : n+ 1], n+ 1] = µp −
n+1∑
j=1

f
[j:n]
∅ µj = 0. (36)
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λ⋆
{i}

(
max{ηi,s, ηd,s} −max{η(i−1),s, ηd,s}

)
= (max{ηi,s, ηd,s} − t⋆) +

n∑
j=i+1

λ⋆
{j}

(
f
[i+1:n]
{j} −max{ηi,s, ηd,s}

)
= (max{ηi,s, ηd,s}−t⋆)+

k∑
j=i+1

λ⋆
{j}

(
f
[i+1:n]
{j} −max{ηi,s, ηd,s}

)
+

n∑
j=k+1

λ⋆
{j}

(
f
[i+1:n]
{j} −max{ηi,s, ηd,s}

)
(a)

≤ (max{ηi,s, ηd,s} − t⋆) +

n∑
j=k+1

λ⋆
{j}

(
f
[i+1:n]
{j} −max{ηi,s, ηd,s}

)
(b)

≤ (max{ηk,s, ηd,s} − t⋆) +

n∑
j=k+1

λ⋆
{j}

(
f
[i+1:n]
{j} −max{ηi,s, ηd,s}

)
(c)

≤ (max{ηk,s, ηd,s} − t⋆) +

n∑
j=k+1

λ⋆
{j}

(
f
[k+1:n]
{j} −max{ηk,s, ηd,s}

)
(d)
= λ⋆

{k}
(
max{ηk,s, ηd,s}−max{η(k−1),s, ηd,s}

) (e)

≤ 0, (31)

Subtracting (35) from (36), we get

0 = µ (P[[0 : n+ 1], n+ 1]−P[[0 : n+ 1], k])

=

n+1∑
j=1

(
f
[j:n]
{k} − f

[j:n]
∅

)
µj

=

k∑
j=1

(
f
[j:n]
{k} − f

[j:n]
∅

)
µj +

(
f
[k+1:n]
{k} − f

[k+1:n]
∅

)
µk+1

+

n+1∑
j=k+2

(
f
[j:n]
{k} − f

[j:n]
∅

)
µj

(a)
=

k∑
j=1

(
f
[j:n]
{k} −max{η(j−1),s, ηd,s}

)
µj

− (max{ηk,s, ηd,s}−max{ηk−1,s, ηd,s})µk+1, (37)

where in (a) we used Lemma 1 to get
f
[j:n]
∅ = max{ηj−1,s, ηd,s}, f

[k+1:n]
{k} = max{ηk−1,s, ηd,s},

and f
[j:n]
{k} = max{η(j−1),s, ηd,s} for j ≥ k + 2. Recall that

η0,s = 0.
Note that the equation in (37) holds for every k ∈ [n].

Moreover, if k < ℓ, such an equation only involves variables
{µ1, . . . , µℓ}. Lastly, for k = ℓ, we have max{ηℓ,s, ηd,s} =
max{η(ℓ−1),s, ηd,s} and hence, the coefficient of µℓ+1 will be
zero. Thus, equation (37) for k = ℓ reduces to

ℓ∑
j=1

(
f
[j:n]
{ℓ} −max{η(j−1),s, ηd,s}

)
µj = 0. (38)

Hence, (37) for k ∈ [ℓ − 1] and (38) provide a total of ℓ
equations in ℓ variables {µ1, . . . , µℓ}.

Let Q be an (n + 2) × ℓ matrix where its kth column3

is P[[0 : n + 1], n + 1] − P[[0 : n + 1], k + 1]. Note
that Q is obtained by elementary column operations on P,
and since P is full-rank, so is Q, i.e., rank (Q) = ℓ.
Moreover, (37) and (38) imply that the jth row of Q is zero,
for j ∈ {0, ℓ + 1, ℓ + 2, . . . , n + 1}. Hence, the remaining
ℓ rows should be linearly independent, which implies that
Q[[ℓ], [0 : ℓ − 1]] is full rank. Therefore, the unique solution
for the system of equations obtained from (37) and (38), i.e.,

3Recall that columns and rows of matrix P are indexed by numbers in
[0 : n+ 1].

[µ1, · · · , µℓ]Q[[ℓ], [0 : ℓ− 1]] = 01×ℓ, is an all-zero vector,
i.e., [µ1, · · · , µℓ] = 01×ℓ. Next, we use induction to show that
all non-zero µi’s have the same sign, for all i ∈ [ℓ+1 : n+1].
First note that (37) for k = ℓ + 1 together with the fact that
µi = 0 for i ∈ [ℓ] implies that

0 =

ℓ+1∑
j=1

(
f
[j:n]
{ℓ+1} −max{η(j−1),s, ηd,s}

)
µj

−
(
max{η(ℓ+1),s, ηd,s}−max{ηℓ,s, ηd,s}

)
µℓ+2

=
(
f
[ℓ+1:n]
{ℓ+1} −max{ηℓ,s, ηd,s}

)
µℓ+1

−
(
max{η(ℓ+1),s, ηd,s}−max{ηℓ,s, ηd,s}

)
µℓ+2.

Note that max{η(ℓ+1),s, ηd,s}−max{ηℓ,s, ηd,s} > 0 since ℓ is
the maximum element of L ∪ {0} and the left side link ca-
pacities are arranged in increasing order. Moreover, Lemma 1
implies that

(
f
[ℓ+1:n]
{ℓ+1} −max{ηℓ,s, ηd,s}

)
≥ 0. Therefore, we

either have µℓ+2 = 0, or sign(µℓ+2) = sign(µℓ+1). This
establishes the base case of the induction. Now, assume that
our claim holds for every j ≤ k > ℓ, i.e., all non-zero µj’s
have the same sign for j ≤ k. Then, from (37) we have(

max{ηk,s, ηd,s} −max{η(k−1),s, ηd,s}
)
µk+1

=

k∑
j=1

(
f
[j:n]
{k} −max{η(j−1),s, ηd,s}

)
µj .

Similar to the base case, we also note that
max{ηk,s, ηd,s} −max{η(k−1),s, ηd,s} > 0, and that
f
[j:n]
{k} −max{η(j−1),s, ηd,s} ≥ 0. Therefore, µk+1 is either

zero or its sign is identical to the one of the non-zero µj’s
with j ∈ [ℓ+1 : k]. This completes the induction, from which
we can conclude that all non-zero µi’s have the same sign for
i ∈ [ℓ+ 1 : n+ 1]. Finally, since

∑n+1
k=1 µk = 1, this common

sign has to be positive. Lastly, from µp =
∑n+1

j=1 f
[j:n]
{i} µj for

all i ∈ [n+1], it directly follows that µp ≥ 0. This concludes
the proof of Proposition 3. □

APPENDIX C
PROOF OF PROPOSITION 5

Note that each block of the transfer matrix F
[i:n]
{i} is an η × η

matrix of the form Dη−x, for some x ∈ [0 : η], i.e., each
column in a block of F[i:n]

{i} is an all-zero vector with possibly
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a single 1, where by construction the position of the 1 shifts
one unit to the bottom from column j to column j +1. Since
the same argument holds for all the blocks, it is not difficult
to verify that for any ℓ = uη + v (for some u ∈ {0, 1} and
v ∈ [η]) we have

D⊗icℓ =

{
cℓ+1 if v < η,
0iη×1 if v = η,

(39)

where D⊗i := Ii⊗D, with ⊗ denoting the Kronecker product.
Now, if cj is a linear combination of the columns in {cℓ : ℓ ∈
[j − 1]}, we have cj =

∑j−1
ℓ=1 αℓcℓ. Then, for j = kη+p with

p ∈ [η − 1], by leveraging (39), we obtain

cj+1 = D⊗icj = D⊗i
∑

ℓ∈[j−1]

αℓcℓ =
∑

ℓ∈[j−1]

αℓD
⊗icℓ

=
∑

ℓ∈[j−1]\{η}

αℓcℓ+1 =
∑

ℓ∈[2:j]\{η+1}

αℓ−1cℓ

=
∑

ℓ∈[2:j−1]\{η+1}

αℓ−1cℓ + αj−1cj

=
∑

ℓ∈[2:j−1]\{η+1}

αℓ−1cℓ +
∑

ℓ∈[j−1]

αj−1αℓcℓ,

which shows that cj+1 is a linear combination of the columns
{cℓ : ℓ ∈ [j − 1]}.

The proof of the second claim of Proposition 5 is similar
to that of the first one. Here, row j of each block is an all-
zero vector of length η, with possibly a single 1, the position
of which shifts to the right, from one row to the next row.
Applying this argument to the rows in one row-block, we can
verify that for ℓ = uη + v (with some u ∈ [0 : i − 1] and
v ∈ [η]) we have

rℓD
⊗2 =

{
rℓ−1 if v > 1,
01×2η if v = 1.

Now, if rj is a linear combination of {rℓ : ℓ ∈ [j − 1]},
we have rj =

∑
ℓ∈[j−1] αℓrℓ. Therefore, for j = kη + p with

p ∈ [2 : η] we can write

rj−1 = rjD
⊗2 =

∑
ℓ∈[j−1]

αℓrℓD
⊗2

=
∑

ℓ∈[1:j−1]\{1,η+1,...,(i−1)η+1}

αℓrℓ−1 =
∑

ℓ∈[j−2]\{η,...,(i−1)η}

αℓ+1rℓ,

which expresses rj−1 as a linear combination of {rℓ : ℓ ∈
[j−2]}. This concludes the proof. □

APPENDIX D
PROOF OF COROLLARY 1

We know that rank
(
F

[i:n]
{i}

)
= f

[i:n]
{i} and hence, there

should be f
[i:n]
{i} linearly independent columns in F

[i:n]
{i} . More-

over, the first column-block of F
[i:n]
{i} is F

[i+1:n]
{i} , which has

f
[i+1:n]
{i} linearly independent columns. Therefore, there should

exist a collection of f
[i:n]
{i} − f

[i+1:n]
{i} columns in the second

block-column of F
[i:n]
{i} that, together with the f

[i+1:n]
{i} in the

first block-column, form a set of f
[i:n]
{i} linearly independent

vectors. We start selecting the columns in the first block from

left-to-right. It follows from Proposition 5-(i) that, once we
reach a column cj that is a linear combination of the previously
selected columns {cℓ : ℓ ∈ [j − 1]}, then the remaining
columns in the same block are also linear combinations of
{cℓ : ℓ ∈ [j − 1]}. Thus, we end up selecting the first
(from the left) f

[i+1:n]
{i} columns from the first column-block

of F[i:n]
{i} . We continue by examining columns from the second

column-block of F
[i:n]
{i} . Again, Proposition 5-(i) implies that

once we reach a column cj in the second column-block that
cannot be selected (because it is a linear combination of
previously selected columns), all the columns ck with k > j
are also linear combinations of the previously selected columns
and hence, they cannot be selected. Hence, the collection of
f
[i:n]
{i} − f

[i+1:n]
{i} columns should be chosen from the most left

columns of the second column-block of F
[i:n]
{i} . This implies

that the columns in Ci are linearly independent.
Similarly, there exists a set of f

[i:n]
{i} linearly independent

rows in F
[i:n]
{i} . We start scanning the rows from the top

to the bottom, and add a row to the collection if it is
linearly independent from the set of already selected rows.
Note that Proposition 5-(ii) implies that, in any row-block
k ∈ [i], once we observe a row rj that can be added to
the collection, then all the remaining rows in the same row-
block and below rj can also be added to the collection. Hence,
the set of selected rows in each row-block should be located
at the bottom of the block. Now, recall that the first row-
block is F

[1:n]
{i} which has f

[1:n]
{i} = rank

(
F

[1:n]
{i}

)
linearly

independent rows which are located in its lowest part, i.e.,
rows

[
η − f

[1:n]
{i} + 1 : η

]
. The concatenation of the first and

second row-blocks forms the transfer matrix F
[2:n]
{i} with a

total of f [2:n]
{i} = rank

(
F

[2:n]
{i}

)
linearly independent rows, out

of which f
[1:n]
{i} were already selected. Hence, the remaining

f
[2:n]
{i} − f

[1:n]
{i} rows are located at the bottom of the second

row-block, i.e.,
[
2η −

(
f
[2:n]
{i} − f

[1:n]
{i}

)
+ 1 : 2η

]
. Repeating

the same argument for row-block k ∈ [i], we observe that the
rows in

[
kη −

(
f
[k:n]
{i} − f

[k−1:n]
{i}

)
+ 1 : kη

]
will be added to

the collection, until the set of linearly independent rows in Ri

is formed. This concludes the proof of Corollary 1. □

APPENDIX E
PROOF OF PROPOSITION 6

Let Pi→j be a copy of the matrix P defined in (5), except
that its row j is replaced by the row i of P (recall that for
the matrix P, we index rows and columns starting from 0).
Since Pi→j has two identical rows, it is rank-deficient and
hence, its determinant is zero. Now, using the definition of
B(i, B) in (23), we have the set of equalities in (40) at the
top of the next page, where (a) follows from the definition of
RW(i, B, j), in the two equalities labeled as (b) we replaced
the values of λ{i}’s from Proposition 1, in (c) we used the
Laplace expansion of the determinant with respect to the first
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|B(i, B)| =
∑

j∈[n+1]\{i}

|RW(i, B, j)| ·
(
f
[i+1:n]
{j} − f

[i:n]
{j}

)
(a)
=

∑
j∈[n+1]\{i}

Tλ{j}

(
f
[i+1:n]
{j} − f

[i:n]
{j}

)
(b)
=

T

det (P)

[ ∑
j∈[n+1]\{i}

(−1)jP(j)f
[i+1:n]
{j} −

∑
j∈[n+1]\{i}

(−1)jP(j)f
[i:n]
{j}

]
(c)
=

T

det (P)

[(
−det (Pi+1→0)−(−1)iP(i)f

[i+1:n]
{i} +P(0)

)
−
(
−det (Pi→0)−(−1)iP(i)f

[i:n]
{i} +P(0)

)]
(d)
=

T

det (P)

[
(−1)iP(i)f

[i:n]
{i} − (−1)iP(i)f

[i+1:n]
{i}

]
= T · (−1)i

P(i)

det (P)

(
f
[i:n]
{i} − f

[i+1:n]
{i}

)
(b)
= Tλ{i}

(
f
[i:n]
{i} −f

[i+1:n]
{i}

)
(e)
= |TW(i, B)|

(
f
[i:n]
{i} −f

[i+1:n]
{i}

)
, (40)

row for Pi+1→0 and Pi→0, that leads to

det (Pi→0) = P(0) +
∑

j∈[n+1]

(−1)j
(
−f

[i:n]
{j}

)
P(j),

and a similar expression for det (Pi+1→0), (d) holds
since for matrices with identical rows we have
det (Pi+1→0) = det (Pi→0) = 0, and finally in (e) we
used the definition of TW(i, B) in (16). This completes the
proof of Proposition 6. □

APPENDIX F
PROOF OF PROPOSITION 7

We prove the proposition by induction over i ∈ [n].
For i = 1, recall from (25) that relay 1 transmits a bit
on its level ℓ only if it satisfies ℓ ∈

[
f
[1:n]
{1} − f

[2:n]
{1}

]
.

On the one hand, if ηd,s ≥ ηd,1, then from Lemma 1
f
[1:n]
{1} − f

[2:n]
{1} = max{ηd,1, ηd,s} − ηd,s = 0 and hence, re-

lay 1 remains silent. In this case, the destination receives
all the information bits sent by the source from its top
f
[2:n]
{1} = ηd,s levels, without any interference. On the other

hand, if ηd,s < ηd,1, then relay 1 transmits on its top ηd,1−ηd,s
levels, while the bits in A(i, B) are sent on the top ηd,s levels
of the source. Then, the received bit at level η − k of the
destination is given by

Y t
d (η − k) = Xt

s(ηd,s − k) +Xt
1(ηd,1 − k)

=

{
Xt

s(ηd,s − k) if k ∈ [0 : ηd,s − 1],
Xt

1(ηd,1 − k) if k ∈ [ηd,s : ηd,1 − 1],

=

{
a1t,B(ηd,s − k) if k ∈ [0 : ηd,s − 1],

b1t,B(ηd,1 − k) if k ∈ [ηd,s : ηd,1 − 1],

where we let bit,B(ℓ) be the (selected) bit sent by relay i
on its level ℓ at a time instance t ∈ TW(i, B). This shows
that the bits sent from the source and relay 1 are never
combined and thus, the destination can decode all the bits in
B(1, B) = {b1t,B(ℓ):t∈TW(1, B), ℓ∈ [ηd,1−ηd,s]} and those
in A(1, B). This establishes the basis of the induction.

Now, let’s assume that the claim holds for every relay j<i,
i.e., the destination can decode A(j, B)∪B(j, B) for every
j <i. We will show that for relay i the claim also holds. Let
t ∈ TW(i, B) be a time slot at which relay i transmits, and
consider the channel model from {s, i} to {d, 1, 2, . . . , i− 1}
at time t, where

[
Y t
d Y t

1 . . . Y t
i−1

]T
is equal to

F
[i:n]
{i}

[
Xt

s

Xt
i

]
=


Dη−ηd,s Dη−ηd,i

Dη−η1,s Dη−η1,i

...
...

Dη−η(i−1),s Dη−η(i−1),i


[
Xt

s

Xt
i

]
. (41)

Note that column j of F[i:n]
{i} is zero for j ∈

[
f
[i+1:n]
{i} + 1 : η

]
.

Moreover, from (25) we have Xt
i (ℓ)=0 for ℓ>f

[i:n]
{i} −f [i+1:n]

{i} .

Therefore, from (41),
[
Y t
d Y t

1 . . . Y t
i−1

]T
reduces to

F
[i:n]
{i} [[1 : iη],Ci] ·

 Xt
s

([
1 : f

[i+1:n]
{i}

])
Xt

i

([
1 : f

[i:n]
{i} − f

[i+1:n]
{i}

])  ,

where Ci is defined in (19). Then, focusing only on the rows
in Ri defined in (20), we get

Y t
d

([
η − (f

[1:n]
{i} − f

[0:n]
{i} ) + 1 : η

])
Y t
1

([
η − (f

[2:n]
{i} − f

[1:n]
{i} ) + 1 : η

])
...

Y t
i−1

([
η − (f

[i:n]
{i} − f

[i−1:n]
{i} ) + 1 : η

])


= F

[i:n]
{i} [Ri,Ci] ·

 Xt
s

([
1 : f

[i+1:n]
{i}

])
Xt

i

([
1 : f

[i:n]
{i} − f

[i+1:n]
{i}

])  . (42)

Recall from (21) that Xt
s(ℓ) = ait,B(ℓ) for ℓ ∈

[
f
[i+1:n]
{i}

]
. Sim-

ilarly, (25) implies Xt
i (ℓ) = bit,B(ℓ) for ℓ ∈

[
f
[i:n]
{i} − f

[i+1:n]
{i}

]
.

Proposition 5 guarantees that F[i:n]
{i} [Ri,Ci] in (42) is full-rank.

Therefore, we can recover the X matrix on the right-hand side
of (42) from the Y matrix in the left-hand side of (42). Thus,
we arrive at

H

({
ait,B(ℓ) :ℓ ∈

[
f
[i+1:n]
{i}

]}
,
{
bit,B(ℓ) :ℓ∈

[
f
[i:n]
{i} −f

[i+1:n]
{i}

]}
∣∣∣∣ i−1⋃
j=1

{
Y t
j (ℓ) : ℓ∈

[
η−

(
f
[j+1:n]
{i} −f

[j:n]
{i}

)
+1:η

]}
,

{
Y t
d (ℓ) : ℓ∈

[
η−

(
f
[1:n]
{i} −f

[0:n]
{i}

)
+1:η

]})
= 0, (43)

for every t ∈ TW(i, B). Summing up (43) for all t ∈
TW(i, B), and using H(V1, V2|U1, U2) ≤ H(V1|U1) +
H(V2|U2), we arrive at (44) at the top of the next page.



15

H

(
A(i, B),B(i, B)

∣∣∣∣ i−1⋃
j=1

{
Y t
j (ℓ) : t ∈ TW(i, B), ℓ ∈

[
η−

(
f
[j+1:n]
{i} −f

[j:n]
{i}

)
+1:η

]}
,

{
Y t
d (ℓ) : t ∈ TW(i, B), ℓ ∈

[
η−

(
f
[1:n]
{i} −f

[0:n]
{i}

)
+1:η

]})
= 0, (44)

Moreover, the induction assumption for j < i implies that

H

({
Y t
j (ℓ) : t∈TW(i, B), ℓ∈ [η−(f

[j+1:n]
{i} −f

[j:n]
{i} )+1:η]

}∣∣∣∣
Y t
d (ℓ) : t∈ [(B−1)T+1:BT ], ℓ∈ [η]

)
(a)
=H

({
Y t
j (η−ℓ) : t∈RW(j, B, i), ℓ∈[0:f [j+1:n]

{i} −f
[j:n]
{i} −1]

}∣∣∣∣
Y t
d (ℓ) : t∈ [(B−1)T+1:BT ], ℓ ∈ [η]

)
(b)
= H

(
B(j, B, i)

∣∣∣∣Y t
d (ℓ) : t ∈ [(B−1)T+1:BT ], ℓ ∈ [η]

)
(c)

≤H

(
B(j, B)

∣∣∣∣Y t
d (ℓ) : t∈ [(B−1)T+1:BT ], ℓ∈ [η]

)
(d)
=0, (45)

where (a) follows from (18) for j < i, (b) and (c) follow
from (24) and (23), respectively, and (d) is guaranteed by the
induction assumption for j < i.

Next, combining (44) and (45) we arrive at (46) at the top
of the next page, which shows the claim of the induction for
i. This completes the proof of Proposition 7. □

APPENDIX G
PROOF OF PROPOSITION 8

Consider an information bit in A(B), which is of the form
ait,B(ℓ) for some i ∈ [n+ 1] and ℓ ∈

[
f
[i+1:n]
{i} + 1 : f∅

{i}

]
and it is sent at time instance t ∈ TW(i, B). Conse-
quently, we have ait,B(ℓ) ∈ A(i, B) ⊆ A(B). Since
f
[i+1:n]
{i} ≤ f

[i+2:n]
{i} ≤ · · · ≤ f

[n:n]
{i} ≤ f

[n+1:n]
{i} = f∅

{i}, for ev-

ery ℓ ∈
[
f
[i+1:n]
{i} + 1 : f∅

{i}

]
, there exists some j ∈ [i+ 1 : n]

such that ℓ ∈
[
f
[j:n]
{i} + 1 : f

[j+1:n]
{i}

]
. In the following, we will

show that ait,B(ℓ) will be received by relay j and stored in its

B(j, B +1). Note that the set
[
f
[j:n]
{i} + 1 : f

[j+1:n]
{i}

]
is empty

if ηd,s > ηj,s. Hence, in the rest of the proof, we may assume
ηd,s ≤ ηj,s, which implies f

[j+1:n]
{i} = max{ηj,s, ηd,s} = ηj,s.

Recall from (21) that this information bit will be precoded
as ait,B(ℓ) −Xt

i (ℓ+ηj,i − ηj,s), where Xt
i (k) is the bit sent

by relay i at its level k. Then, the received bit at relay j on
level η − k for k ∈

[
0 : f

[j+1:n]
{i} − f

[j:n]
{i} − 1

]
is given by

Y t
j (η − k) = Xt

s(ηj,s − k) +Xt
i (ηj,i − k)

=
(
ait,B(ηj,s − k)−Xt

i (ηj,s − k + ηj,i − ηj,s)
)

+Xt
i (ηj,i − k) = ait,B(ηj,s − k),

which is an interference-free information bit. To show that
ait,B(ℓ) ∈ B(j, B + 1), we need to show that t ∈ RW(j, B +

1, i) and ℓ = ηj,s − k for some k ∈
[
0:f

[j+1:n]
{i} − f

[j:n]
{i} − 1

]
.

The first claim is an immediate consequence of (18) and the

fact that j ∈ [i + 1 : n]. To show the second claim, we note
that since ℓ∈

[
f
[j:n]
{i} + 1 : f

[j+1:n]
{i}

]
we have

k = ηj,s − ℓ ≥ ηj,s − f
[j+1:n]
{i} = 0,

k = ηj,s − ℓ ≤ ηj,s − f
[j:n]
{i} − 1 = f

[j+1:n]
{i} − f

[j:n]
{i} − 1,

where we have used Lemma 1. The above inequalities im-
ply that k = ηj,s − ℓ ∈

[
0 : f

[j+1:n]
{i} −f

[j:n]
{i} −1

]
. This

together with the fact that t∈RW(j, B+1, i) leads to
ait,B(ℓ)∈B(j,B+1, i)⊆B(j, B+1). This completes the proof
of Proposition 8. □

APPENDIX H
PROOF OF LEMMA 3

Recall that F[a:n]
{j} for j ∈ [a : n] is the transfer matrix from

X{s,j} to Y{d,1,...,a−1}, given by

F
[a:n]
{j} =


Dη−ηd,s Dη−ηd,j

Dη−η1,s Dη−η1,j

...
...

Dη−ηa−1,s Dη−ηa−1,j

 .

Similarly, for b < a, matrix F
[b:n]
{j} is given by the

top b block rows of F
[a:n]
{j} . Since η1,s ≤ · · · ≤ ηn,s,

from the definition of Dη−m in (2), it follows that
columns [max{η(b−1),s, ηd,s}+ 1 : η] in F

[b:n]
{j} are zero,

where η0,s = 0. Now, consider the lowest left block
of F

[a:n]
{j} , namely Dη−η(a−1),s . From (2), for every

ℓ ∈ [max{η(b−1),s, ηd,s}+ 1 : max{η(a−1),s, ηd,s}], the row
η − η(a−1),s + ℓ of the matrix Dη−η(a−1),s has a one in
column ℓ and zero elsewhere. Since F

[b:n]
{j} is fully zero in

these columns, the row η − η(a−1),s + ℓ of the matrix F
[a:n]
{j} is

linearly independent from all rows in F
[b:n]
{j} . Thus, F[a:n]

{j} has
at least max{η(a−1),s, ηd,s} − max{η(b−1),s, ηd,s} additional
linearly independent rows compared to F

[b:n]
{j} . Thus, we get

f
[a:n]
{j} ≥ f

[b:n]
{j} + (max{ηa−1,s, ηd,s} −max{ηb−1,s, ηd,s}).

This concludes the proof of Lemma 3. □

APPENDIX I
PROOF OF LEMMA 4

We show that, under the assumption of
η1,s ≤ η2,s ≤ · · · ≤ ηn,s, if there exists some j ∈ [n]

such that max{ηj,s, ηd,s} = max{η(j−1),s, ηd,s} = f
[j:n]
{j} ,

then columns j and n+ 1 of the matrix P are identical, i.e.,
P is singular and hence, det (P) = 0. Towards this end recall
that from (5), Pi,j = −f

[i:n]
{j} for (i, j) ∈ [n+1]× [n] and the

column j of the matrix P is given by[
1 −f

[1:n]
{j} −f

[2:n]
{j} · · · −f

[n:n]
{j} −f

[n+1:n]
{j}

]T
.
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H

(
A(i, B),B(i, B)

∣∣∣∣ {Y t
d (ℓ) : t ∈ [(B−1)T+1 : BT ], ℓ ∈ [η]

})
≤H

(
A(i, B),B(i, B),

i−1⋃
j=1

{
Y t
j (ℓ) : t∈TW(i, B), ℓ∈

[
η−

(
f
[j+1:n]
{i} −f

[j:n]
{i}

)
+1:η

]}∣∣∣∣{Y t
d (ℓ) : t∈ [(B−1)T+1:BT ], ℓ∈ [η]

})

≤H

(
A(i, B),B(i, B)

∣∣∣∣ i−1⋃
j=1

{
Y t
j (ℓ) : t ∈ TW(i, B), ℓ ∈

[
η−

(
f
[j+1:n]
{i} −f

[j:n]
{i}

)
+1:η

]}
,

{
Y t
d (ℓ) : t ∈ TW(i, B), ℓ ∈

[
η−

(
f
[1:n]
{i} −f

[0:n]
{i}

)
+1:η

]})
+H

( i−1⋃
j=1

{
Y t
j (ℓ) : t∈TW(i, B), ℓ∈

[
η−

(
f
[j+1:n]
{i} −f

[j:n]
{i}

)
+1:η

]} ∣∣∣∣ {Y t
d (ℓ) : t∈ [(B−1)T+1 : BT ], ℓ ∈ [η]

})
= 0, (46)

Now, we evaluate each entry of the vector P[[0 : n+1], j], for
j ∈ [n]. Consider some i ∈ [j + 2 : n+ 1]. Using Lemma 1
for S = {j} and Ω = [i : n] with Ω ∩ S = ∅ we have

f
[i:n]
{j} = max

t∈[i−1]\{j}
max{ηt,s, ηd,s}=max{ηi−1,s, ηd,s}. (47)

Similarly, for i = j + 1 using Lemma 1 we get

f
[i:n]
{j} = max

t∈[i−1]\{j}
max{ηt,s, ηd,s}=max{ηj−1,s, ηd,s}

(a)
=max{ηj,s, ηd,s}=max{ηi−1,s, ηd,s}, (48)

where the equality in (a) follows from the assumption of the
lemma. It remains to evaluate f

[i:n]
{j} for i ∈ [j]. Towards this

end, consider F[j:n]
{j} which is defined as

F
[j:n]
{j} =


Dη−ηd,s Dη−ηd,j

Dη−η1,s Dη−η1,j

...
...

Dη−ηj−1,s Dη−ηj−1,j

 ,

where Dη−m is given in (2). Focusing on the first column-
block of F[j:n]

{j} we observe that each row in this η× jη matrix
is either zero or if not zero and appearing in a row-block
t ∈ [j− 2], it also appears in its lowest block, Dη−ηj−1,s ; this
follows since η1,s ≤ η2,s ≤ · · · ≤ ηn,s. Hence, we have

rank
([

Dη−ηd,s Dη−η1,s . . . Dη−η(j−1),s
]T)

= rank
([

Dη−ηd,s Dη−η(j−1),s
]T)

= max{η(j−1),s, ηd,s}
(a)
= f

[j:n]
{j}

(b)
= rank

(
F

[j:n]
{j}

)
,

where in (a) we used the assumption of the lemma, and (b)

follows from (4). In other words, the (column)-rank of F[j:n]
{j}

equals the (column)-rank of its first block column, or, every
column in the second column block of F[j:n]

{j} can be written as
a linear combination of the columns in the first column block
of F[j:n]

{j} . Next, note that for every i ∈ [j] the matrix

F
[i:n]
{j} =


Dη−ηd,s Dη−ηd,j

Dη−η1,s Dη−η1,j

...
...

Dη−ηi−1,s Dη−ηi−1,j



is a submatrix of F[j:n]
{j} and hence, the same conclusion holds

for F
[i:n]
{j} , i.e., each column in the second column-block of

F
[i:n]
{j} is also a linear combination of the columns in the first

column block of F
[i:n]
{j} . Thus, the rank of F

[i:n]
{j} equals the

rank of its first column block, which leads to

f
[i:n]
{j} = rank

(
F

[i:n]
{j}

)
= rank

([
Dη−ηd,s Dη−η1,s . . . Dη−ηi−1,s

]T)
= max

y∈[i−1]∪{d}
rank

(
Dη−ηy,s

)
(a)
= max

y∈[i−1]
max{ηy,s, ηd,s}

(b)
= max{ηi−1,s, ηd,s}, (49)

where (a) is due to the fact that the rank of Dη−m equals m,
and (b) follows from the fact that η1,s ≤ η2,s ≤ · · · ≤ ηn,s.
Hence, using (47)–(49), the entries of P[[0 : n + 1], j] for
j ∈ [n] can be evaluated, and are given by[

1 −max{η0,s, ηd,s} · · · −max{ηn,s, ηd,s}
]T
,

where η0,s=0. Using (5) for j=n+1 and Lemma 1 for S =
[n+1:n]=∅ and Ω=[i : n] with Ω ∩ S=∅, Pi,n+1 equals

−f
[i:n]
{n+1}=− max

t∈[i−1]
max{ηt,s, ηd,s}=−max{η(i−1),s, ηd,s},

which shows columns j and (n+1) of matrix P, are identical.
This concludes the proof. □
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(with work done at Eurecom in Sophia Antipolis,
France). From November 2017 to January 2018, she
was a postdoctoral associate in the Electrical and
Computer Engineering department at UMN. From
July 2015 to August 2017, she was a postdoctoral
research fellow in the Electrical and Computer En-

gineering Department at UCLA Henry Samueli School. She is the recipient
of the 2022 McKnight Land-Grant Professorship, the NSF CAREER award
in 2021, the NSF CRII award in 2019, the second prize in the Outstanding
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