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Abstract—This paper considers the Gaussian half-duplex dia-
mond n-relay network, which consists of a broadcast hop between
the source and n relays, and of a multiple access hop between the
relays and the destination. The n relays do not communicate with
each other and operate in half-duplex mode. The main focus of
the paper is on answering the following question: What fraction
of the approximate capacity of the entire network can be retained
by only operating the highest-performing single relay? It is shown
that a fraction f = 1/(2+2 cos( 2π

n+2
)) of the approximate capacity

of the entire network can always be guaranteed. This fraction is
also shown to be tight, that is, there exist Gaussian half-duplex
diamond n-relay networks for which exactly an f fraction of the
approximate capacity of the entire network can be achieved by
using only the highest-performing relay.

I. INTRODUCTION

Several practical challenges arise in wireless networks with
relays. Relays must synchronize for reception and transmission,
which might result in a highly-complex process when low-cost
communication modules are needed. Operating all the relays
might also bring to a severe power consumption, which cannot
be sustained. With the goal of offering a suitable solution for
these considerations, the authors of [1] introduced the network
simplification problem, which seeks to provide fundamental
guarantees on the fraction of the entire network capacity that
can be retained when only a subset of the relays is operated.

In this paper, we investigate the network simplification
problem in Gaussian half-duplex diamond n-relay networks,
which consist of a broadcast hop between the source and the
n relays, and of a multiple access hop between the n relays
and the destination. There is no communication among the n
relays. Moreover, the relays operate in half-duplex mode, i.e.,
at any point of time each relay can either receive or transmit,
but not both simultaneously. We ask the following question:
What fraction of the entire network approximate capacity can
be retained by only operating the highest-performing relay?
In particular, approximate capacity refers to a quantity that
approximates the Shannon capacity within an additive gap
which may depend on n, but not on the channel gains [2]–[6].

We show that, in any Gaussian half-duplex diamond n-
relay network, there is always a single relay using which we
can achieve at least f = 1/(2 + 2 cos( 2π

n+2 )) of the entire
network approximate capacity. This fraction is independent
of the values of the channel coefficients, and decreases as n
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increases. We also present networks for which this bound is
tight, i.e., networks for which the approximate capacity of the
highest-performing relay is exactly equal to an f fraction of
the approximate capacity of the entire network.
Related Work. The network simplification problem was
pioneered in [1] in the context of Gaussian full-duplex diamond
n-relay networks. The authors showed that there always exists
a sub-network of k relays which has an approximate capacity
of at least k/(k + 1) fraction of the approximate capacity of
the entire network. Recently, in [7] the authors analyzed the
guarantee of selecting the highest-performing path in Gaussian
full-duplex n-relay networks with arbitrary layered topology.

Very few results exist on the network simplification problem
in half-duplex networks. In [8], the authors showed that any
Gaussian half-duplex diamond n-relay network has a 2-relay
sub-network that can achieve at least 1/2 of the entire network
approximate capacity. In [9], it was shown that operating n− 1
relays always guarantees that an (n−1)/n fraction of the entire
network approximate capacity can be retained in any Gaussian
half-duplex diamond n-relay network. For large networks (i.e.,
n � 1), the authors in [9] also showed that sub-networks
with k = 1 and k = 2 relays can achieve 1/4 and 1/2 of the
approximate capacity of the entire network, respectively. These
guarantees are tight, and point out to a fundamental difference
between half-duplex and full-duplex [1]: in the former case
the fraction guarantee decreases as n increases, whereas in the
latter case the fraction guarantee is independent of n.

In this work, we provide a complete answer to a question
that was left open in [9]: What is the fundamental performance
guarantee (in terms of ratio) when only the highest-performing
k = 1 relay sub-network is operated, as a function of n?
Paper Organization. Section II describes the Gaussian half-
duplex diamond n-relay network, and defines its approximate
capacity. Section III formulates the problem and presents the
main result of the paper. Section IV provides an overview of
the proof of the main result.

II. NETWORK MODEL

Notation. For integers n1, n2 ∈ Z with n2 ≥ n1, we have
[n1 : n2] = {x | x ∈ Z and n1 ≤ x ≤ n2}. For a complex
number a ∈ C, |a| denotes the magnitude of a. E[·] denotes
the expected value. Finally, bxc is the floor of x.

The Gaussian half-duplex diamond n-relay network N
consists of two hops, as shown in Fig. 1: the broadcast
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Fig. 1: Gaussian half-duplex diamond network with n relays.

hop between the source (node 0) and the set of n relays;
and the multiple access hop between the n relays and the
destination (node n+ 1). The n relays are non-interfering, and
the source can communicate to the destination only by hopping
information through them. Relays operate in half-duplex, and
hence can either receive or transmit at any given time. The
input/output relationship for N at time instance t is defined as

Yi,t = (1− Si,t)(hsiX0,t + Zi,t), ∀i ∈ [1 : n], (1a)

Yn+1,t =

n∑
i=1

Si,thidXi,t + Zn+1,t, (1b)

where: (i) Si,t is a binary variable indicating the state of relay
Ri at time t; specifically, Si,t = 0 and Si,t = 1 mean that, at
time t, Ri is in receive mode and transmit mode, respectively;
(ii) Xi,t, ∀i ∈ [0 : n] is the channel input of node i at time
t that satisfies E[|Xi,t|2] ≤ 1; (iii) hsi and hid are the time-
invariant complex channel gains from the source to Ri and
from Ri to the destination, respectively; (iv) Zi,t , i ∈ [1 : n+1]
is the complex additive white Gaussian noise at node i at time
t; noises are i.i.d. as CN (0, 1); and (v) Yi,t, ∀i ∈ [1 : n+ 1]
is the received signal by node i at time t.

The Shannon capacity CGn (N ) for the network N in (1) is
unknown in general. However, as shown in [3], [4], [6], it can
be approximated to within a constant additive gap as∣∣CGn (N )− Cn(N )

∣∣ ≤ κn,
where κn = O(n) only depends on n and is independent of
the channel coefficients and where Cn(N ) is referred to as
approximate capacity and is formally defined in Definition 1.

Definition 1. The approximate capacity of the Gaussian half-
duplex diamond n-relay network in (1) is defined as

Cn(N ) = max
λ

t

s.t. t ≤
∑
S⊆[1:n]

λS

(
max

i∈Sc∩Ωc
`i + max

i∈S∩Ω
ri

)
, ∀Ω ⊆ [1 : n],

∑
S⊆[1:n]

λS = 1, λS ≥ 0, ∀S ⊆ [1 : n],

(2)

where, ∀i ∈ [1 : n],

`i = log(1 + |hsi|2), ri = log(1 + |hid|2).

In (2), we have that: (i) S ⊆ [1 : n] is the network state in
which relays Ri, i ∈ S, are in transmitting mode, while the
other relays are in receiving mode; (ii) λS is the time fraction
that the network operates in state S; (iii) λ is the vector
obtained by stacking together λS ,∀S ⊆ [1 : n], and is referred
to as a network schedule; (iv) Ω ⊆ [1 : n] denotes a partition of
the relays in the ‘side of the source’; similarly, Ωc = [1 : n]\Ω
is a partition of the relays in the ‘side of the destination’; for a
relay Ri, i ∈ Ω, to contribute to the information flow we need
i ∈ S; similarly, for a relay Ri, i ∈ Ωc, to contribute to the
information flow we need i ∈ Sc.

III. PROBLEM STATEMENT AND MAIN RESULT

In this section, we characterize fundamental guarantees on
the approximate capacity of the best single relay sub-network,
as a fraction of the approximate capacity of the entire network.

Note that Cn(N ) in (2) is a function of the network N
only through the link capacities (`i, ri), i ∈ [1 : n]. Thus, with
a slight notation abuse, we let N = {(`i, ri), i ∈ [1 : n]}.
We also use Ni = {(`i, ri)} to denote a network with the
source, relay Ri and destination. By solving (2) for the single
Ri, i∈ [1 : n], we obtain that the approximate capacity of Ni is

C1(Ni) =
`iri
`i + ri

.

We also define the best single relay approximate capacity of
the network as the maximum approximate capacity among the
single relay sub-networks, that is,

C1(N ) = max
i∈[1:n]

C1(Ni).

Our goal is to find universal bounds on C1(N )/Cn(N ). In
particular, our main result is provided in the next theorem,
whose sketch of the proof is provided in Section IV.

Theorem 1. For any Gaussian half-duplex diamond n-relay
network N with approximate capacity Cn(N ), the best relay
has an approximate capacity C1(N ) such that

C1(N )

Cn(N )
≥ 1

2 + 2 cos
(

2π
n+2

) . (3)

Moreover, the bound in (3) is tight, i.e., for any positive integer
n, there exist Gaussian half-duplex diamond n-relay networks
N for which C1(N ) satisfies the bound in (3) with equality.

Remark 1. The bound in (3) for n = 2 and n→∞ reduces to
C1(N )

Cn(N )
≥
{

1/2 n = 2,
1/4 n→∞,

which subsumes the result of [9]. However, the bound in (3)
provides a tight and non-asymptotic guarantee for all values
of n, which was left as an open problem in [9].

Remark 2. The bound in (3) has a pretty surprising behavior,
which depends on the cosine of a function of the number
of relays n, as also graphically shown in Fig. 2. This is
fundamentally different from full-duplex [1], where the best
relay has always a capacity that is at least 1/2 of the entire
network approximate capacity, independent of n.
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Fig. 2: Ratio C1(N )/Cn(N ) in (3) as a function of n.

IV. SKETCH OF THE PROOF

In Section IV-A, we describe a few properties of the
approximate capacity, which we then use in Section IV-B
to present the main steps of the proof of (3). Finally, in
Section IV-C we prove the tightness of (3), by providing some
network realizations that satisfy the bound in (3) with equality.

A. Properties of the Approximate Capacity
The approximate capacity satisfies the following properties:

(P1) Cn(N ) is a non-decreasing function of each point-to-point
link capacity;

(P2) C1(N )/Cn(N ) is invariant to scaling all the point-to-point
link capacities by a constant factor;

(P3) C1(N )/Cn(N ) is invariant to a relabelling of the relays.
Consider a network with the minimum C1(N )/Cn(N ). For

the relays with approximate capacity less than C1(N ), we
can increase their channel coefficients until their approximate
capacity reaches C1(N ). Then (P1) guarantees that Cn(N )
does not decrease, and the ratio cannot increase. Then, we
can normalize the channel gains so that all relays have unitary
approximate capacity (by (P2)) and sort the relays w.r.t. their
left-side links (by (P3)). This leads to the following lemma,
which is formally proved in [10].

Lemma 1. Let N ? be the collection of half-duplex diamond
n-relay networks with minimum C1(·)/Cn(·). Then, there exists
a network N ∈ N ? that satisfies

1 ≤ `1 ≤ `2 ≤ . . . ≤ `n−1 ≤ `n ≤ ∞, (4a)
∞ ≤ rn ≤ rn−1 ≤ . . . ≤ r2 ≤ r1 ≤ 1, (4b)
C1(Ni) = `iri/(`i + ri) = 1, ∀i ∈ [1 : n]. (4c)

We also need the following lemma, that is proved in [10].

Lemma 2. Let A be any set, and {fi(·), i ∈ [1 : t]} be any
set of functions. Then, the two optimization problems given by

max
x∈A

y

s.t. y ≤ fi(x), i ∈ [1 : t],
(5)

and

min
µ

max
x∈A

∑t

i=1
µifi(x)

s.t. µi ≥ 0, i ∈ [1 : t],
∑t

i=1
µi = 1,

(6)

have identical solutions.

B. Overview of the Proof for the Fraction Guarantee in (3)
The result in Lemma 1 implies that, for any positive integer

n, there always exists a networkN for which C1(N )/Cn(N ) is
minimum and C1(Ni) = 1,∀i ∈ [1 : n]; hence, also C1(N ) =
1. Thus, proving (3) reduces to proving that, for any Gaussian
half-duplex diamond n-relay network N with unitary single
relay approximate capacities, we always have Cn(N ) ≤ σn+2,
where σn = 2 cos( 2π

n+2 ), or equivalently,

max
N :C1(Ni)=1,∀i∈[1:n]

Cn(N ) ≤ σn + 2. (7)

Step 1: Equivalent formulation of (7). We define zi ,
`i − 1, i ∈ [1 : n], which together with C1(Ni) = 1 implies
ri = 1

zi
+ 1. Thus, the class of networks of interest can be

parameterized by z = [z1, z2, . . . , zn], where 0 ≤ z1 ≤ z2 ≤
... ≤ zn ≤ ∞ because of the condition in (4a). By using the
definition in (2), our optimization problem in (7) can be written
as

OPT0 = max
z

max
λ

Γ

s.t. Γ ≤
∑
S⊆[1:n]

λS

(
max

i∈Sc∩Ωc
`i + max

i∈S∩Ω
ri

)
, ∀Ω ⊆ [1 : n],

∑
S⊆[1:n]

λS = 1, λS ≥ 0, ∀S ⊆ [1 : n], (8)

`i = 1 + zi, ri = 1 +
1

zi
, i ∈ [1 : n],

0 ≤ z1 ≤ z2 ≤ · · · ≤ zn ≤ ∞.
Step 2: Reducing the number of constraints. The optimiza-
tion problem in (8) has one constraint for each possible partition
of the relays Ω ⊆ [1 : n]. We now focus on a small class of
such partitions parameterized as Ωt,∀t ∈ [0 : n], where

Ωt = [t+ 1 : n], and Ωct = [1 : t]. (9)

With this, the right-hand-side of the cut constraint correspond-
ing to Ωt in (8) can be simplified as∑
S⊆[1:n]

λS

(
max

i∈Sc∩Ωc
t

`i + max
i∈S∩Ωt

ri

)
(a)

≤ (1− αt)`t−1 + αt`t + (1− αt+1)rt+1 + αt+1rt+2

(b)
= ᾱtzt−1 + αtzt + ᾱt+1

1

zt+1
+ αt+1

1

zt+2
+ 2

, gt(z,α), (10)

where αt=
∑
S:t/∈S λS=1−ᾱt; (a) follows from (4a) and (4b),

and in (b) we substituted `t = 1 + zt and rt = 1 + 1/zt for
t ∈ [1 : n]. We define zi = −1 for i /∈ [1 : n].

By ignoring all the cut constraints except those in {Ωt : t ∈
[0 : n]}, we obtain

OPT1 = max
z,α

Γ

s.t. Γ ≤ gt(z,α), ∀t ∈ [0 : n],

αi ∈ [0, 1], ∀i ∈ [0 : n+ 1],

0 ≤ z1 ≤ z2 ≤ . . . ≤ zn,
z−1 = z0 = zn+1 = zn+2 = −1.

(11)



It is clear that OPT0 ≤ OPT1 and by means of Lemma 2,
we have that OPT1 = OPT2, where

OPT2 = min
µ

max
z,α

h(µ, z,α)

s.t. µt ≥ 0, ∀t ∈ [0 : n],∑n

t=0
µt = 1,

αi ∈ [0, 1], ∀i ∈ [0 : n+ 1],

0 ≤ z1 ≤ z2 ≤ . . . ≤ zn,
z−1 = z0 = zn+1 = zn+2 = −1,

(12a)

with

h(µ, z,α) =
∑n

t=0
µtgt(z,α). (12b)

Step 3: Grouping optimum z?t ’s. By taking the derivative
of h(µ, z,α) in (12b) with respect to each variable zt, it is
easy to see that h(µ, z,α) is a convex function in zt for any
fixed coefficient vectors µ and α. Hence, at the optimum
point (µ?, z?,α?) for (12), each zt should take one of its
extreme values. Since zt−1 ≤ zt ≤ zt+1, this implies that
for the optimum vector z? = [z?1 , z

?
2 , · · · , z?n] we have z?t ∈

{z?t−1, z
?
t+1} for t ∈ [2 : n − 1], z?1 ∈ {0, z?2}, and z?n ∈

{z?n−1,∞}. Therefore, (z?1 , z
?
2 , · · · , z?n) can be grouped into:

z?1 = · · · = z?t1 = β1, z?t1+1 = · · · = z?t2 = β2,

. . . z?tm−1+1 = · · · = z?tm = βm, (13)

where 0 ≤ β1 < β2 < · · · < βm−1 < βm ≤ ∞. Note
that tj − tj−1 (with t0 = 0) is the number of zi’s whose
optimum value equals βj . It is not difficult to see that [10]:
(i) t1 ≥ 1 if β1 = 0, (ii) t1 ≥ 2 if β1 > 0, (iii) ti − ti−1 ≥
2 for i ∈ [2 : m − 1] that implies 1 ≤ m ≤ bn+2

2 c, (iv)
tm−tm−1 ≥ 1 if βm =∞ and (v) tm−tm−1 ≥ 2 if βm <∞.

Next, we use (13) and the above relations to upper bound
gt(z

?,α) in (10) for all t ∈ {t1, t2, . . . , tm−1}. We have

gti(z
?,α)

= ᾱtiz
?
ti−1 + αtiz

?
ti + ᾱti+1

1

z?ti+1

+ αti+1
1

z?ti+2

+ 2

≤ 2 + βi +
1

βi+1
, Gi(β). (14)

Similarly, for t ∈ {0, n}, we obtain

g0(z?,α) ≤ 1 +
1

β1
, G0(β), (15)

and gn(z?,α) ≤ 1 + βm , Gm(β). (16)

Next, we use (14)-(16) to further upper bound the objective
function h(µ, z,α) of OPT2 – defined in (12b) – as follows:

h(µ, z,α) =

n∑
i=0

µigi(z
?,α)

≤
m∑
i=0

µtiGi(β) +
∑

i/∈{t0,...,tm}

µigi(z
?,α). (17)

Step 4: Further reducing the number of constraints. The
optimization problem in (12) involves a minimization over

µ. Thus, setting more restrictions on the variable µ can only
increase the optimum cost. We set µt = 0 for t /∈ {t0 =
0, t1, t2, . . . , tm = n}, and µti = µ̃i for i = {0, 1, . . . ,m}.
Here µ̃i’s are arbitrary non-negative variables that sum up to
1. Incorporating this and the bound in (17) into (12) gives us:

OPT3 = min
µ̃

max
m∈[1:bn+2

2 c]
max
β

m∑
t=0

µ̃tGt(β)

s.t. µ̃t ≥ 0, ∀t ∈ [0 : m],
m∑
t=0

µ̃t = 1,

0 ≤ β1 < β2 < · · · < βm ≤ ∞.

(18)

Note that OPT2 ≤ OPT3 since: (i) the objective function
in (18) is an upper bound for that of (12), and (ii) the feasible
set for µ in (12) is a super set of that of µ̃ in (18). Applying
Lemma 2 on the optimization problem in (18), we get:

OPT4 = max
m∈[1:bn+2

2 c]
max
β

Φ

s.t. Φ ≤ Gi(β), ∀i ∈ [0 : m],

0 ≤ β1 < β2 < · · · < βm ≤ ∞,

(19)

where Gi(β)’s are defined in (14)-(16). Note that Lemma 2
implies that OPT3 = OPT4.
Step 5: Solving the inner optimization problem in (19). We
fix m in the optimization problem in (19) and further analyze
the inner optimization problem. This yields

OPT5(m) = max
β

Φ

s.t. Φ ≤ Gi(β), ∀i ∈ [0 : m],

0 ≤ β1 < β2 < · · · < βm ≤ ∞,
(20)

for every fixed m ∈
[
1 : bn+2

2 c
]
. The following lemma, whose

proof can be found in [10], highlights some important properties
of the optimum solution of the optimization problem in (20).

Lemma 3. For every integer m, there exists some solution
(β?,Φ?) for the optimization problem in (20) that satisfies

Gi(β
?) = Φ?, ∀i ∈ [1 : m− 1].

Moreover, if β?1 > 0, we have G0(β?) = Φ?, and similarly, if
β?m <∞, then Gm(β?) = Φ?.

We now analyze the structure of OPT5(m): for a given m,
we find the optimal β? that satisfies Lemma 3. In particular,
we should consider four different cases, depending on whether
β?1 = 0 or β?1 > 0 and β?m =∞ or β?m <∞. For illustration,
we here focus on the case β?1 > 0 and β?m <∞; the detailed
analysis of the other three cases can be found in [10]. For the
case β?1 > 0 and β?m <∞, we define

b0 = 1, bi =
1∏i

k=1 β
?
k

, ∀i ∈ [1 : m], (21)

=⇒ β?i =
bi−1

bi
, ∀i ∈ [1 : m]. (22)



Using this change of variables and the fact that Gi(β?) =
OPT5(m), i ∈ [1 : m− 1] (see Lemma 3), we get that

Gi(β
?) = 2 + β?i +

1

β?i+1

= 2 +
bi−1

bi
+
bi+1

bi
,

for every i in [1 : m− 1]. Then, for given n and m, we define:

σn,m , OPT5(m)−2 =
bi−1

bi
+
bi+1

bi
, ∀i ∈ [1 : m−1], (23)

which implies

bi+1 − σn,mbi + bi−1 = 0, ∀i ∈ [1 : m− 1]. (24)

The above expression is an order 2 linear homogeneous
recurrence equation, whose solution is given by [11]:

bi = uU i + vV i, i ∈ [0 : m], (25)

where U and V are the roots of the characteristic equation
of (24), that is, X2−σn,mX+1 = 0, and u and v are constants,
that can be found from the initial conditions.

Since we assume β?1 > 0 and β?m <∞, from Lemma 3 we
have

1

β?1
= β?m = 1 + σn,m,

where β?m = bm−1/bm from (22). From (21) we also have that
b0 = 1 and b1 = 1/β?1 from which we can find the values of u
and v in (25). Using all these results, we can find the optimum
value of σn,m in (23), as stated in the following proposition,
whose complete proof is provided in [10, Appendix A].

Proposition 1. The optimal value σn,m in (23) is given by

σn,m = 2 cos

(
2π

2m+ 2

)
. (26)

Step 6: Optimizing σn,m in (26) over m. From (19), we have

OPT4 = max
m∈[1:bn+2

2 c]
OPT5(m) = 2 + max

m∈[1:bn+2
2 c]

σn,m, (27)

where the second equality follows from (23) where σn,m is
given in (26). The next proposition provides the optimum m,
and hence the optimum solution for the problem in (27).

Proposition 2. The optimal solution for the optimization
problem in (27) is given by

OPT4 = 2 + 2 cos

(
2π

n+ 2

)
.

Proof. We focus on the case β?1 > 0 and β?m <∞, and relegate
the other three cases to [10]. For this case, we have t1 ≥ 2
and ti − ti−1 ≥ 2 for i ∈ [2 : m]. Thus, since tm = n, we get

n = tm =

m∑
i=2

(ti − ti−1) + t1 ≥ 2(m− 1) + 2 = 2m,

which implies m ≤ n
2 , and hence

OPT4 = 2 + max
m≤n

2

2 cos

(
2π

2m+ 2

)
= 2 + 2 cos

(
2π

n+ 2

)
.
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Fig. 3: Gaussian half-duplex diamond networks for which the bound
in (3) is tight. The table in (b) shows the link capacities for the
network defined in (28) with n = 6, and the table in (c) indicates the
link capacities of the network given in (29) with n = 5.

Step 7: Collecting all the results together. We have proved
that for any Gaussian half-duplex diamond n-relay network N
with unitary single relay approximate capacities we always have

Cn(N ) = OPT0 ≤ OPT1 = OPT2 ≤ OPT3

= OPT4 = 2 + 2 cos

(
2π

n+ 2

)
,

which concludes the proof of the ratio guarantee in Theorem 1.

C. Tightness of the Bound in (3)

To conclude the proof of Theorem 1, we need to show that
the bound in (3) is tight. Towards this end, we next present
two network realizations for which the ratio in (3) is indeed
satisfied with equality. The detailed analysis of these networks
can be found in [10]. In what follows we define θ = 2π

n+2 .
Case 1: Let n = 2k be an even integer. A Gaussian half-duplex
diamond n-relay network N for which the ratio in (3) is tight
is given by (see Fig. 3(b) for n = 6)

`2i = `2i−1 =
2 sin(θ) sin (iθ)

cos (iθ)− cos ((i+ 1)θ)
, i ∈ [1 : k],

r2i = r2i−1 =
2 sin(θ) sin (iθ)

cos ((i− 1)θ)− cos (iθ)
, i ∈ [1 : k].

(28)

Case 2: Let n = 2k + 1 be an odd number. A Gaussian half-
duplex diamond n-relay network N for which the ratio in (3)
is tight is given by (see Fig. 3(c) for n = 5)

`1 = 1, r1 = L→∞,

`2i = `2i+1 =
sin (iθ) + sin ((i+ 1)θ)

sin ((i+ 1)θ)
, i ∈ [1 : k] ,

r2i = r2i+1 =
sin (iθ) + sin ((i+ 1)θ)

sin (iθ)
, i ∈ [1 : k] .

(29)
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