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ABSTRACT
This paper presents a parallel version of Goldberg’s algorithm for

the problem of single-source shortest paths with integer (including

negatives) edge weights. Given an input graph with 𝑛 vertices,𝑚

edges, and integer weights ≥ −𝑁 , our algorithms solves the problem

with 𝑂̃ (𝑚
√
𝑛 log𝑁 ) work and 𝑛5/4+𝑜 (1) log𝑁 span, both with high

probability. Our algorithm thus has work similar to Goldberg’s

algorithm while also achieving at least𝑚1/4−𝑜 (1)
parallelism. To

generate our parallel version of Goldberg’s algorithm, we solve two

specific distance-limited shortest-path problems, both with work

𝑂̃ (𝑚) and span

√
𝐿 · 𝑛1/2+𝑜 (1) , where 𝐿 is the distance limit.
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• Theory of computation → Shortest paths; Parallel algo-
rithms.
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1 INTRODUCTION
This paper presents a parallel algorithm for the single-source short-

est paths (SSSP) problem on directed graphs with integer weights

(both positive and negative). Here the input comprises a directed

graph 𝐺 = (𝑉 , 𝐸), an integer edge-weight function𝑤 : 𝐸 → Z, and
a source vertex 𝑠 ∈ 𝑉 . The goal is to either determine that the graph

contains a negative-weight cycle, or to output for each vertex 𝑣 ∈ 𝑉
the shortest-path distance from 𝑠 to 𝑣 .

The classic sequential algorithm for SSSP with general weights

is the Bellman-Ford algorithm [11], which has running time𝑂 (𝑛𝑚)
on a graph with 𝑛 vertices and𝑚 edges. To date, this algorithm is

the best known that tolerates (negative) real edge weights.

Throughout the paper, we use 𝑛 to denote the number of vertices

and𝑚 to denote the number of edges in the graph. We also adopt

the soft-O notation 𝑂̃ to hide logarithmic factors. This notation is

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9146-7/22/07. . . $15.00

https://doi.org/10.1145/3490148.3538583

convenient when focusing on polynomial improvements, especially

in parallel algorithms as then the specific parallel model variant

does not matter—there are simulation results across many parallel

models that incur only logarithmic overheads [17]. Moreover, many

of the black-box results we leverage also use this notation.

For integer edge weights, there are several more efficient se-

quential alternatives to the Bellman-Ford algorithm. This paper

focuses on Goldberg’s algorithm [16], which has sequential running

time 𝑂̃ (𝑚
√
𝑛 log𝑁 ), where −𝑁 is the most negative weight. Gold-

berg’s algorithm is appealing because it uses a scaling technique

coupled with relatively simple combinatorial algorithms designed

specifically for the shortest-path problem. There are several other

alternatives [2, 10, 22] relying on more sophisticated continuous-

optimization methods. Some of these algorithms do achieve better

bounds depending on graph density, i.e., 𝑂̃ ((𝑚 + 𝑛3/2) log𝑊 ) [22]
and 𝑂̃ (𝑚4/3+𝑜 (1)

log𝑊 ) [2], where𝑊 is the largest absolute value

of edge weights, but the techniques seem even more difficult to

parallelize. All of these algorithms have running times depending

logarithmically on the magnitude of edge weights.

Since the completion of our work on this paper, Bernstein et

al. [3] have very recently discovered an algorithm for SSSP with

integer weights that has 𝑂̃ (𝑚 log𝑊 ) sequential running time. This

algorithm’s running time is so good that it subsumes ourmain result.

Nevertheless, we believe that the core distance-limited problems

we solve are interesting.

Parallel algorithms. The Bellman-Ford algorithm has the advantage

that it is trivial to parallelize to achieve moderate parallelism. In the

binary-forking model [5], a straightforward parallel version of this

algorithm has work 𝑂 (𝑚𝑛) and span 𝑂 (𝑛 log𝑛), where the work
is defined as the total number of instructions executed across all

processors, and the span is the length of the critical path (i.e., the

length of the longest chain of sequential dependencies).
1
Although

a span of 𝑂 (𝑛 log𝑛) indicates a high degree of sequential depen-

dency in the algorithm, the work is so large that the algorithm still

exhibits significant parallelism. In particular, parallel Bellman-Ford

has Θ(𝑛/log𝑛) parallelism, where the parallelism is defined as

work over span.

The key shortcoming of parallel Bellman-Ford is that it is not

work efficient as compared to any of the more-efficient sequential

alternatives for integer weights [2, 10, 16, 22]. But thus far, there is

no nontrivial parallelization algorithm for any of those.

1.1 Main result
The main problem we set out to solve is to parallelize Goldberg’s

algorithm. We provide an algorithm that solves the integer-weight

(negative and positive) SSSP problem with work 𝑂̃ (𝑚
√
𝑛 log𝑁 )

1
Span is commonly called “depth” or “parallel time” in the parallel algorithms literature.
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and span 𝑛5/4+𝑜 (1) log𝑁 , both with high probability.
2
The work of

our algorithm matches Goldberg’s algorithm to within logarithmic

factors. When the edge weights are not too negative, e.g., all at least

−𝑛𝑂 (1) , the work of this algorithm is nearly

√
𝑛-times lower than

Bellman-Ford. Much like parallel Bellman-Ford, the algorithm is still

quite sequential. But it also exhibits a moderate level of parallelism;

specifically the parallelism is at least𝑚/𝑛3/4+𝑜 (1) ≥ 𝑚1/4−𝑜 (1)
. We

thus achieve a polynomial level of parallelism without increasing

the work too much beyond Goldberg’s sequential algorithm [16].

There are fundamental limits to how low a span we can hope to

achieve when parallelizing Goldberg’s algorithm. We provide an

overview of Goldberg’s algorithm in Section 5, but suffice it to say

that the high-level algorithm comprises 𝑂 (
√
𝑛 log𝑁 ) inherently

sequential iterations. The only parallelism that can be achieved in

Goldberg’s algorithm is thus within each iteration. But each itera-

tion involves solving directed-graph problems that are at least as

hard as (and possibly much harder than) single-source reachability.

Because the current-best 𝑂̃ (𝑚)-work algorithm for single-source

reachability has span 𝑛1/2+𝑜 (1) [18], we cannot hope to achieve a
span better than 𝑛1+𝑜 (1) for a low-work parallel version of Gold-

berg’s algorithm. Our solution with𝑛5/4+𝑜 (1) span falls a bit short of
this optimistic target, but this is not surprising as the core problems

do indeed seem significantly harder than single-source reachability.

1.2 Background on other SSSP problems
Most classic SSSP problems that can be solved sequentially in 𝑂̃ (𝑚)
time are still effectively open problems in parallel algorithms. No-

tably, consider the problem of SSSP with nonnegative weights. This

problem can be solved sequentially in 𝑂̃ (𝑚) time using Dijkstra’s

algorithm [11], but there is yet no parallel algorithm that achieves

both 𝑂̃ (𝑚) work and span sublinear in 𝑛. Thus for sparse graphs,

the only nearly work-efficient solutions are effectively sequential.

There are several parallel solutions for this problem, but they all

tradeoff higher work for lower span, for example: (1) parallel ver-

sions [7, 12] of Dijkstra’s algorithm have 𝑂̃ (𝑚) work and 𝑂̃ (𝑛)
span, which are effectively sequential for sparse graphs (2) solu-

tions that involve repeated squaring of the distance matrix [17]

have 𝑂̃ (𝑛3) work and polylogarithmic span, and (3) Klein and Sub-

ramanian’s algorithm [19] for integer weights from {0, 1, . . .𝑊 }
has 𝑂̃ (𝑚

√
𝑛 log𝑊 ) work and 𝑂̃ (

√
𝑛 log𝑊 ) span. In fact, even for

the simplest case of unweighted and undirected graphs, we are not

aware of any solution with 𝑂̃ (𝑚) work and span sublinear in 𝑛.

In light of this difficulty, most progress on parallel SSSP with non-

negative weights is with respect to relaxed versions of the problem.

Most notably, there has been significant progress on approximate

SSSP (ASSSP), where the goal is to output for each vertex a dis-

tance estimate that falls between the true shortest-path distance

𝑑 (𝑠, 𝑣) and (1 + 𝜖)𝑑 (𝑠, 𝑣). (Note the ASSSP problem always refers to

nonnegative weights.) For directed graphs, the ASSSP problem had

remained open until recently when Cao et al. [8] gave an algorithm

that has 𝑂̃ (𝑚) work and 𝑛1/2+𝑜 (1) span, with high probability, as-

suming for conciseness that 𝜖 is a constant and the maximum ratio

of strictly positive edge weights is 𝑛𝑂 (1) . For undirected graphs, the

approximate problem has a much longer history [1, 9, 13, 14, 20, 21],

2
The little-𝑜 terms throughout this paper are all 𝑂 (1/log log𝑛) . These terms are

inhereted from several parallel subroutines [8, 18] that we apply as a black box.

and the best solutions [1, 20] have 𝑂̃ (𝑚) work and polylogarithmic

span when subject to the same assumptions on 𝜖 and weights.

An alternate natural relaxation of the problem is to consider

distance-limited SSSP. Here the goal is to output the exact shortest-

path distance only to those vertices that are not too far from the

source. The only interesting distance-limited variant we are aware

of is for unweighted graphs, where the problem can be solved by

parallel breadth-first search (BFS). In particular, it is straightfor-

ward to parallelize breadth-first search to achieve 𝑂̃ (𝑚) work and

𝑂 (𝐿 log𝑛) span and to correctly output the exact distances to all

vertices with distance at most 𝐿 from the source.

1.3 Our technical contributations
This paper provides parallel algorithms for two distance-limited

SSSP problems. These distance-limited solutions represent the main

technical contribution of the paper, and we solve the main problem

of integer SSSP with negative weights by reducing to these distance-

limited problems with distance limit 𝐿 = 𝑂 (
√
𝑛).

Distance-limited SSSP with nonnegative integer weights. For this vari-
ant of the problem, the edge weights are all nonnegative integers,

but the problem is still nontrivial even if all weights are from {0, 1}.
The goal is to return the correct shortest-path distance to all vertices

having shortest-path distance ≤ 𝐿 from the source, where 𝐿 is part

of the input to the problem. Moreover, the algorithm should also

identify which vertices have shortest-path distance strictly more

than 𝐿 from the source.

Section 4 presents our parallel algorithm for distance-limited

SSSP with nonnegative integer weights. We solve the problem

assuming 𝐿 = 𝑂 (𝑛), as otherwise parallel Dijkstra’s [7, 12] is more

efficient. Our algorithm has 𝑂̃ (𝑚) work and

√
𝐿 · 𝑛1/2+𝑜 (1) span,

with high probability. When 𝐿 = 𝑂 (
√
𝑛), the span is thus 𝑛3/4+𝑜 (1) .

We note that the main difficulty in this problem arises from the

presence of 0-weight edges mixed with positive weights, as paths

through 0-weight edges do not add to the distance. Without the 0s,

it is not too hard to solve the problem even more efficiently using a

generalization of parallel BFS.

Distance-limited DAG SSSP with weights from {0,−1}. For this vari-
ant of the problem, the input graph is a directed acyclic graph

(DAG), and all weights are taken from {0,−1}. The goal is to return
the correct shortest-path distance to all vertices having distance

≥ −𝐿 from the source, where 𝐿 is specified in the input. Moreover,

the algorithm should also identify which vertices have shortest-

path distance strictly less than −𝐿 from the source. (An equivalent

formulation would be the problem of single-source longest paths

on DAGs with {0, 1} weights.)
Section 3 presents our parallel algorithm for this DAG SSSP prob-

lem. Our algorithm has 𝑂̃ (𝑚) work and

√
𝐿 · 𝑛1/2+𝑜 (1) span, with

high probability. For 𝐿 = 𝑂 (
√
𝑛), the span simplifies to 𝑛3/4+𝑜 (1) .

1.4 Outline
Section 3 gives our parallel algorithm for distance-limited DAG

SSSP, and Section 4 gives our solution for distance-limited SSSP

with nonnegative integer weights. Section 5 gives an overview

of Goldberg’s algorithm, and Section 6 gives an overview of our

parallel version. Section 6 also explains how to reduce the core

Session 5: Best Paper Session SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

178



Parallel Shortest Paths with Negative Edge Weights SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA

problem solved by Goldberg’s algorithm, namely finding a “

√
𝑘-

improvement”, to the two distance-limited SSSP problems discussed

above.

We emphasize that the bulk of the technical contribution of

this work appears in Sections 3 and 4, which are described as self-

contained problems in their respective sections. Sections 5 and

Sections 6 are only necessary if the reader wishes to understand

how these subroutines suffice to parallelize Goldberg’s algorithm.

2 DEFINITIONS AND PRELIMINARIES
The soft-O notation is defined as follows. We say that a func-

tion 𝑔(𝑛) = 𝑂̃ (𝑓 (𝑛)) if there exists a constant 𝑘 such that 𝑔(𝑛) =
𝑂 (𝑓 (𝑛) log𝑘 𝑓 (𝑛)). When we say that an algorithm achieves some

performance𝑂 (𝑓 (𝑛)) with high probability, we mean the follow-

ing: for any particular choice of constant 𝑐 > 0, with probability at

least 1 − 1/𝑛𝑐 the algorithm achieves performance 𝑂 (𝑓 (𝑛)).
Consider a directed graph 𝐺 = (𝑉 , 𝐸). For any subset 𝑉 ′ ⊆ 𝑉 of

vertices, we use 𝐺 [𝑉 ′] to denote the vertex-induced subgraph of

𝐺 . A path is a sequence of vertices joined by edges; we sometimes

refer to the path by the sequence of vertices, and sometimes by the

edges, depending on what is more convenient. In general, paths

need not be simple; vertices may repeat. A cycle is a path that

starts and ends at the same vertex and has at least one edge. A

directed graph with no cycles is a directed acyclic graph (DAG).
We say that a node 𝑢 is an ancestor of 𝑣 , and conversely that 𝑣 is a

descendant of𝑢, if there is a directed path from𝑢 to 𝑣 in𝐺 . We also

say that 𝑢 can reach 𝑣 . Every node is an ancestor and descendant

of itself. We use Anc(𝑣) and Des(𝑣) to denote the set of all nodes

that are ancestors or descendants, respectively, of 𝑣 .

For the following, consider a weighted directed graph𝐺 = (𝑉 , 𝐸)
with a function𝑤 : 𝐸 → Z providing edge weights. For a path Γ =

⟨𝑣0, 𝑣1, . . . , 𝑣𝑘 ⟩, the length of Γ is given by𝑤 (Γ) = ∑𝑘
𝑖=1𝑤 (𝑣𝑖−1, 𝑣𝑖 ),

i.e., the sum of the weights of edges in the path. If Γ is a cycle (i.e.,

𝑣0 = 𝑣𝑘 ) and 𝑤 (Γ) < 0, then we call Γ a negative-weight cycle.
For a pair of nodes 𝑢, 𝑣 ∈ 𝑉 , the shortest-path distance from 𝑢

to 𝑣 is the minimum length over all paths that start at 𝑢 and end

at 𝑣 . We use dist𝑤 (𝑢, 𝑣) to denote this shortest-path distance with

respect to the weight function𝑤 . When the weight function𝑤 is

clear from context, we simply write dist (𝑢, 𝑣). If there is no 𝑢-to-𝑣
path, then we define dist (𝑢, 𝑣) = ∞. Similarly, if there is no shortest

path (which only occurs if there is a negative-weight cycle), then

dist (𝑢, 𝑣) = −∞.

Key parallel subroutines
We use solutions to the following two problems as a black box. We

define themultisource reachability problem as follows. The in-

put includes a directed graph 𝐺 = (𝑉 , 𝐸) and a set 𝑆 ⊆ 𝑉 of source

vertices. The goal is to compute for each vertex 𝑣 ∈ 𝑉 just one

source vertex that can reach it, or to conclude that none can. That

is, output a function 𝜋 : 𝑉 → (𝑉 ∪{⊥}) such that 𝜋 (𝑣) ∈ 𝑆∩Anc(𝑣)
if 𝑆 ∩ Anc(𝑣) is nonempty, and 𝜋 (𝑣) = ⊥ otherwise. We empha-

size that 𝑣 need only know one source that can reach it, not all

of them. We note that all of the parallel “shortcutting”-based al-

gorithms for single-source reachability, which is the case that

|𝑆 | = 1, can trivially be extended to solve this version of the multi-

source problem. This is because these algorithms employ parallel

BFS, which can be augmented to send information (e.g., a relevant

source) along edges as vertices are discovered. The current best

solution for shortcut-based single-source reachability, and hence

also multisource reachability, is Jambulapati et al.’s [18] algorithm

having 𝑂̃ (𝑚) work and 𝑛1/2+𝑜 (1) span, with high probability.

The approximate single-source shortest paths (ASSSP) prob-
lem takes as input a directed graph 𝐺 = (𝑉 , 𝐸) and nonnegative

edge-weight function𝑤 , a source vertex 𝑠 , and an approximation

parameter 𝜖 > 0. A distance overestimate is a function 𝑑 ′ such
that 𝑑 ′(𝑣) ≥ dist (𝑠, 𝑣). The ASSSP problem is to compute a distance

overestimate such that 𝑑 ′(𝑣) ≤ (1 + 𝜖)dist (𝑠, 𝑣) for all 𝑣 . Cao et

al. [8] provide an algorithm that, for the case of constant 𝜖 and

integer weights smaller than 𝑛𝑂 (1) that we apply in this paper,

solves this problem with 𝑂̃ (𝑚) work and 𝑛1/2+𝑜 (1) span, with high

probability. Note that the success of the algorithm is also with

high probability; the output always satisfies 𝑑 ′(𝑣) ≥ dist (𝑠, 𝑣), but
with small failure probability (at most 1/𝑛Θ(1) ), it is possible that
𝑑 ′(𝑣) ≰ (1 + 𝜖)dist (𝑠, 𝑣).

3 SHORTEST PATHS ON ACYCLIC GRAPHS
WITH {0, -1} EDGEWEIGHTS

This section gives our algorithm for distance-limited DAG shortest

paths. Specifically, given a directed acyclic graph 𝐺 = (𝑉 , 𝐸) with
edge weights in {0,−1}, source node 𝑠 ∈ 𝑉 , and distance limit 𝐿, the

algorithm computes shortest-path distances to nodes with distance

at most 𝐿 from 𝑠 . In particular, it outputs a distance value 𝑑 (𝑣)
where 𝑑 (𝑣) = dist (𝑠, 𝑣) if 𝑑 (𝑣) ≥ −𝐿, and 𝑑 (𝑣) = −∞ otherwise. In

addition, we also output for each node 𝑣 a negative edge parent (𝑣) =
(𝑥,𝑦) that satisfies the following, if one exists: (1)𝑤 (𝑥,𝑦) = −1, (2)
dist (𝑠, 𝑥) = dist (𝑠, 𝑣) + 1, and (3) there is a path from 𝑦 to 𝑣 .

We assume throughout this section that all vertices in the graph

are reachable from 𝑠 , which is without loss of generality as reacha-

bility can be solved more efficiently than this problem [18].

Definitions. We call an edge (𝑥,𝑦) a negative ancestor edge of 𝑣 if
the following hold: (1)𝑤 (𝑥,𝑦) < 0, and (2) there is a directed path

from 𝑦 to 𝑣 . If (𝑥,𝑦) is a negative ancestor of 𝑣 , then we also call 𝑥

negative originator for 𝑣 .

3.1 Overview
At a high level, the algorithm is a peeling algorithm proceeding in

rounds 0, 1, . . . , 𝐿. Round 𝑖 identifies the set of vertices with distance

exactly −𝑖 and removes them from the graph. The challenge is to

identify the set of nodes to peel by an efficient parallel algorithm.

First, consider a natural inefficient algorithm: (1) Identify the set

𝑆 ⊆ 𝑉 of negative vertices, i.e., those with incoming negative edges.

(2) Run multisource reachability with sources 𝑆 , thereby identifying

all vertices having a negative ancestor. (3) All vertices not reached

in the reachability step have distance −𝑖; remove them, and all of

their incident edges, from the graph. An indirect approach like this

seems necessary because the weights are negative; the problem is

equivalent to finding longest paths in DAGs with weights {0, 1}.
The main problem with this algorithm is that it is not efficient,

as each execution of multisource reachability has 𝑂̃ (𝑚) work and

𝑛1/2+𝑜 (1) span [18], and we cannot afford to multiply these by 𝐿.
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Our algorithm follows the same peeling approach, but we do not

recompute reachability on the entire graph in each round. Instead,

for each vertex 𝑣 we maintain label(𝑣), which corresponds to a

negative ancestor edge (𝑢, 𝑥) if at least one exists. While 𝑢 remains

in the graph, 𝑣 cannot be peeled. We thus do not include 𝑣 in any

reachability steps until 𝑢 disappears. Eventually, 𝑢 is peeled from

the graph, rendering label(𝑣) invalid. Our “propagate” algorithm
applies multisource reachability to the subgraph of such invalid

vertices and finds new negative ancestors, restoring the invariant.

We now give an overview of the analysis. Imagine for the sake

of argument that 𝑣 always finds a negative ancestor uniformly at

random. Then it is fairly easy to see that 𝑣 ’s label changes𝑂 (log𝑛)
times. (Roughly a constant fraction of the negative ancestors need

to be peeled before there is a constant probability that the sampled

ancestor is one of the peeled ones.) Each vertex thus belongs to

only 𝑂 (log𝑛) subgraphs on which reachability/propagation is per-

formed, keeping the total work down to 𝑂̃ (𝑚). Moreover, because

𝑛1/2+𝑜 (1) is concave, the worst-case for the span is that each of the

𝐿 calls to reachability operate on graphs with 𝑂̃ (𝑛/𝐿) vertices. We

thus get span 𝐿 · (𝑛/𝐿)1/2+𝑜 (1) =
√
𝐿𝑛1/2+𝑜 (1) .

Priorities. We do not know how to maintain a uniformly random

negative ancestor efficiently, but we achieve roughly the effect. We

assign each vertex an independently random priority chosen from

a geometric distribution with a rounded tail. Specifically, for 1 ≤
𝑖 <

⌈
log

2
𝑛
⌉
, we set priority(𝑣) = 𝑖 with probability 1/2𝑖 ; and with

the remaining probability 1/2⌈log2 𝑛⌉ , we set priority(𝑣) =
⌈
log

2
𝑛
⌉
.

Priorities never change throughout the execution. For an edge (𝑥,𝑦),
we use priority(𝑥,𝑦) as a shorthand for priority(𝑥). To approximate

uniformly random ancestors, our algorithm ensures that nodes are

labeled by a negative ancestor of maximum priority.

3.2 Algorithm details
Our algorithm for computing {0,−1} DAG shortest paths is shown

in Algorithm 1. Our style of pseudocode here reflects higher-level

directives, not parallel code. With the exception of the black-box

reachability subroutine, it is fairly straightforward and uninterest-

ing to parallelize each of the steps. We thus defer a slightly more

detailed discussion to Section 3.5.

As noted in the overview, the algorithm proceeds in rounds, and

these rounds are ordered sequentially. In each round 𝑖 , we identify

the frontier 𝐹 of nodes at distance −𝑖 and logically peel them from

the graph. Note that we do not actually remove the nodes from

the graph
3
; instead, we mark these nodes as finalized. We call the

nodes that are not finalized live. Initially, all nodes are live.
We initialize a distance 𝑑 (𝑣) = −∞ for all nodes and update this

value when the vertex is eventually peeled. Similarly, we maintain

a negative ancestor edge 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑣) that is only guaranteed to be a

correct parent edge when the vertex is finalized.

The crux of the algorithm is to maintain a negative ancestor edge

label(𝑣) for each vertex 𝑣 . Initially, all labels are invalid, indicated

by ⊥. Labels are restored by running Propagate, which occurs first

in Line 5. We shall prove that when Propagate returns, a node 𝑣

has label(𝑣) = ⊥ only if all of 𝑣 ’s negative originators have been

finalized. The set of nodes with no label even after Propagate

3
This is primarily to avoid having to discuss how to update the graph in parallel.

returns is denoted by 𝐹 . We also maintain a particular inversion of

these labels: namely, SentLabel(𝑢) is the set of all vertices that have
any edge (𝑢, ∗) leaving 𝑢 as their label. This SentLabel facilitates

invalidating labels when 𝑢 is finalized/peeled from the graph.

In each round of the algorithm (Lines 7–14), the current frontier

𝐹 of nodes to peel is processed as follows. First, we identify the set

of nodes 𝑅 that have a label including one of the peeled nodes, and

we invalidate their labels. Then we set the distance to all nodes in 𝐹

and finalize them, which logically peels them from the graph. Next,

we call propagate on the nodes 𝑅 (i.e., those with invalid label) to

restore their labels. Finally, we let 𝐹 ⊆ 𝑅 be the next frontier of

nodes, i.e., those with no label after calling propagate.

Propagate. The Propagate(𝐺,𝑉 ′) function, see Algorithm 2,

takes as input the graph𝐺 = (𝑉 , 𝐸) and a subset𝑉 ′ ⊆ 𝑉 of vertices.

As called, 𝑉 ′ always corresponds to the set of vertices with invalid

label. The goal is to label the nodes in 𝑉 ′ with one of their highest-

priority negative ancestor edges, or ⊥ if none exists.

Propagate considers each of the priorities in turn, from high

to low. Each iterations starts by initializing the vertices in 𝑉 ′ by
inheriting any “nearby” labels. Specifically, we define the function

GetNearbyLabel(𝐺,𝑉 ′, 𝑖, 𝑣) to return an edge (or ⊥) as follows:
• If 𝑣 has at least one incoming edge (𝑢, 𝑣) ∈ 𝐸 with: (1) 𝑢 is

live, (2) 𝑤 (𝑢, 𝑣) = −1, and (3) priority(𝑢) = 𝑖 , then choose

any one such 𝑢 and return the edge (𝑢, 𝑣).
• If 𝑣 has at least one incoming edge (𝑢, 𝑣) ∈ 𝐸 with: (1) 𝑢

is live, (2) 𝑢 ∉ 𝑉 ′, i.e., it already has a valid label, and (3)

priority(label(𝑢)) = 𝑖 , then choose any one such𝑢 and return
the edge indicated by label(𝑢).
• If neither of the above two cases applies, return ⊥

After initializing the nearby labels for nodes in 𝑉 ′, those nodes
in 𝑉 ′ with labels are the set of sources 𝑆 . We next run multisource

reachability on the induced subgraph 𝐺 ′ = 𝐺 [𝑉 ′] with sources 𝑆 .

When multisource reachability returns, for each node in 𝑣 ∈ 𝑉 ′,
𝜋 (𝑣) indicates a node 𝑠 ∈ 𝑆 that can reach 𝑣 , if one exists. If 𝜋 (𝑣) ≠
⊥, then we simply update 𝑣 by inheriting 𝜋 (𝑣)’s label information.

Finally, each iteration ends by removing all newly labeled nodes

from 𝑉 ′. In this way, 𝑉 ′ reflects the nodes that are still unlabeled.
After all iterations complete, Propagate updates the SentLabel

of all nodes as appropriate. In particular, SentLabel(𝑢) should be

updated to also include all newly label nodes that have a label

(𝑢, ∗). Note that this update is applied across the entire graph as

appropriate, not just those nodes in 𝑉 ′.

3.3 Correctness
This section proves the correctness of our peeling algorithm. We

start by focusing on Propagate. For a live node 𝑣 , we use 𝑁𝐴(𝑣)
to denote the set of live negative ancestors of 𝑣 . That is

𝑁𝐴(𝑣) = {(𝑥,𝑦) ∈ 𝐸 | 𝑥 is live,𝑤 (𝑥,𝑦) = −1, and 𝑦 ∈ Anc(𝑣)} .

We use maxPri(𝑣) = max(𝑥,𝑦) ∈𝑁𝐴(𝑣) priority(𝑥,𝑦) to denote the

maximum priority over all of 𝑣 ’s live negative ancestors. For com-

pleteness, we define maxPri(𝑣) = 0 if 𝑁𝐴(𝑣) = ∅. Finally, we say
that a live node 𝑣 is correctly labeled if one of the applies:

• 𝑁𝐴(𝑣) = ∅ and label(𝑣) = ⊥, or
• label(𝑣) ∈ 𝑁𝐴(𝑣) and priority(label(𝑣)) = maxPri(𝑣).
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Algorithm 1 Peeling Algorithm

Input: Graph𝐺 = (𝑉 , 𝐸), whose edge weights𝑤 : 𝐸 → {0,−1}, and
a source node 𝑠 ∈ 𝑉 .
Output: For all 𝑣 , 𝑑 (𝑣) is the shortest path distance from 𝑠 to 𝑣

parent (𝑣) = (𝑥,𝑦) is a negative ancestor edge with 𝑑 (𝑥) = 𝑑 (𝑣) + 1.
1: foreach 𝑣 ∈ 𝑉 do ⊲ Initialization

2: 𝑑 (𝑣) ← −∞
3: label(𝑣) ← ⊥; parent (𝑣) ← ⊥; SentLabel(𝑣) = {}
4: assign a (geometric) random priority(𝑣) ∈

{
1, . . . ,

⌈
log

2
𝑛
⌉}

5: Propagate(𝐺,𝑉 )

6: let 𝐹 = {𝑢 ∈ 𝑉 | label(𝑢) = ⊥}
7: for 𝑖 = 0 to 𝐿 do
8: let 𝑅 =

⋃
𝑢∈𝐹 SentLabel(𝑢)

9: foreach 𝑣 ∈ 𝑅 do
10: label(𝑣) ← ⊥
11: foreach 𝑢 ∈ 𝐹 do
12: 𝑑 (𝑢) = −𝑖 ; mark the node as finalized

13: Propagate(𝐺, 𝑅)

14: let 𝐹 = {𝑢 ∈ 𝑅 | label(𝑢) = ⊥}

Algorithm 2 Propagate Algorithm

1: function Propagate(𝐺 = (𝑉 , 𝐸),𝑉 ′ ⊆ 𝑉 )
2: for 𝑖 =

⌈
log

2
𝑛
⌉
downto 1 do

3: foreach 𝑣 ∈ 𝑉 ′ do
4: 𝑒 ← GetNearbyLabel(𝐺,𝑉 ′, 𝑖, 𝑣)
5: label(𝑣) ← 𝑒

6: if 𝑒 ≠ ⊥ then parent (𝑣) ← 𝑒

7: let 𝑆 = {𝑣 ∈ 𝑉 ′ | label(𝑣) ≠ ⊥}
8: 𝐺 ′ ← 𝐺 [𝑉 ′]
9: run multisource reachability on 𝐺 ′ with sources 𝑆

and let 𝜋 be the output

10: for each 𝑣 ∈ 𝑉 ′ do
11: if 𝜋 (𝑣) ≠ ⊥ then
12: label(𝑣) ← label(𝜋 (𝑣))
13: parent (𝑣) ← label(𝑣)
14: remove all nodes with label(𝑣) ≠ ⊥ from 𝑉 ′

15: update 𝑆𝑒𝑛𝑡𝐿𝑎𝑏𝑒𝑙 sets to include new label assignments

Our first goal is to show that when Propagate, all live nodes are

correctly labeled.

Lemma 1. Consider a call to Propagate(𝐺 = (𝑉 , 𝐸),𝑉 ′), where
𝑉 ′ ⊆ 𝑉 is exactly the subset of live nodes in 𝐺 that have label ⊥. If
all live nodes in 𝑉 \𝑉 ′ are correctly labeled before the call, then all

live nodes in 𝑉 are correctly labeled after the call.

Proof. Because no labels are updated for any nodes outside of

𝑉 ′, establishing the correct labeling of 𝑉 ′ is sufficient. The proof is

by induction over the iterations of the main loop in Propagate. The

iterations are numbered in decreasing order, from

⌈
log

2
𝑛
⌉
downto 1.

Our inductive claim is that after iteration 𝑖: (1) all nodes outside 𝑉 ′

are correctly labeled, and (2) all nodes in 𝑉 ′ have maxPri(𝑣) < 𝑖 .

The remainder of the proof focuses on proving the inductive step.

Specifically, we show that all nodes with maxPri(𝑣) = 𝑖 become

correctly labeled, and also that those nodes with maxPri(𝑣) < 𝑖 do
not get a label incorrectly.

Consider iteration 𝑖 and any live node 𝑣 ∈ 𝑉 ′ havingmaxPri(𝑣) ≤
𝑖 . Consider also any ancestor 𝑧 ∈ Anc(𝑣) ∩𝑉 ′. We first claim that

if 𝑧 gains a label during GetNearbyLabel, then that label would

be a valid label for 𝑣 . To prove the claim, we observe that the only

labels considered during this iteration have priority 𝑖 by construc-

tion. Moreover, by transitivity of reachability, 𝑁𝐴(𝑧) ⊆ 𝑁𝐴(𝑣)
and hence maxPri(𝑣) ≥ maxPri(𝑧). Therefore, if 𝑧 gains a label,

that label would be a correct label for 𝑣 . It follows that whenever

𝜋 (𝑣) ≠ ⊥ after running multisource reachability on 𝐺 [𝑉 ′], the
label label(𝜋 (𝑣)) is always a correct label for 𝑣 .

We next claim that if maxPri(𝑣) = 𝑖 , for 𝑣 ∈ 𝑉 ′, then there exists

at least one node 𝑧 ∈ 𝑉 ′ such that: (1) 𝑧 becomes labeled during

GetNearbyLabel, and (2) there is a path from 𝑧 to 𝑣 in 𝐺 [𝑉 ′]. If
this claim holds, we have that whenever maxPri(𝑣) = 𝑖 , 𝜋 (𝑣) ≠ ⊥.
Coupled with the above claim, 𝑣 becomes correctly labeled.

To prove the claim, consider any node 𝑣 ∈ 𝑉 ′ withmaxPri(𝑣) = 𝑖 .
By definition, there exists at least one edge (𝑥,𝑦) ∈ 𝑁𝐴(𝑣) with
priority(𝑥,𝑦) = 𝑖 . Consider any path Γ from 𝑦 to 𝑣 in 𝐺 . If the

entire path is in 𝑉 ′, then Γ is a path in 𝐺 [𝑉 ′]. Moreover, 𝑦 has

an incident negative edge with appropriate priority, so 𝑧 = 𝑦 is

indeed labeled during GetNearbyLabel. Otherwise, let (𝑟, 𝑧) be
the latest edge on the path with 𝑟 ∉ 𝑉 ′ and 𝑧 ∈ 𝑉 ′. Then the

subpath of Γ from 𝑧 to 𝑣 is a path in 𝐺 [𝑉 ′]. Moreover, 𝑟 is outside

𝑉 ′ so it is correctly labeled by inductive assumption. We have

𝑖 = priority(𝑥,𝑦) ≤ maxPri(𝑟 ) ≤ maxPri(𝑣) = 𝑖 , so 𝑟 is already

labeled with priority exactly 𝑖 . Thus, 𝑧 is also assigned a label

during GetNearbyLabel. □

We next turn to correctness of the higher-level algorithm. The

following lemma essentially indicates that if finalizing nodes in

order of distances, then all labels involving farther-away (more

negative distance) nodes are still valid.

Lemma 2. Consider a DAG 𝐺 = (𝑉 , 𝐸) with edge weights from

{0,−1} and source vertex 𝑠 ∈ 𝑉 that can reach all vertices.

Consider the following generic process. A node 𝑣 is initially correctly

labeled with label(𝑣) = (𝑥,𝑦). Let 𝐹 ⊂ 𝑉 be any subset of nodes nearer

to the source than 𝑥 , i.e., for all 𝑓 ∈ 𝐹 , dist (𝑠, 𝑓 ) > dist (𝑠, 𝑥). Suppose
that the nodes in 𝐹 are finalized (or removed from the graph). Then 𝑣

is still correctly labeled.

Proof. We first observe that for all nodes 𝑧 ∈ Des(𝑦), we have
dist (𝑠, 𝑧) ≤ dist (𝑠, 𝑥) + 𝑤 (𝑥,𝑦) + dist (𝑦, 𝑧) < dist (𝑠, 𝑥), because
distances are all nonpositive and finite. Thus, no descendants of 𝑦

are part of 𝐹 , and in particular the path from 𝑦 to 𝑣 remains in the

graph. Because no nodes higher priority nodes or paths are created,

it follows that 𝑣 is still correctly labeled. □

The next lemma indicates unlabeled nodes can be finalized.

Lemma 3. Consider a DAG 𝐺 = (𝑉 , 𝐸) with edge weights from

{0,−1} and source vertex 𝑠 ∈ 𝑉 that can reach all vertices. Suppose all

the nodes, and only the nodes, with distance > −𝑖 from the source have

been finalized. For any live node 𝑣 , if 𝑁𝐴(𝑣) = ∅ then dist (𝑠, 𝑣) = −𝑖 .

Proof. By assumption, dist (𝑠, 𝑣) ≤ −1. Suppose for the sake of
contraction that dist (𝑠, 𝑣) < −𝑖 . Then there exists some shortest
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path Γ from 𝑠 to 𝑣 . Let (𝑥,𝑦) be the last negative edge on the path.

Then dist (𝑠, 𝑣) = dist (𝑠,𝑦) = dist (𝑠, 𝑥) − 1, or −𝑖 > dist (𝑠, 𝑣) =
dist (𝑠, 𝑥) − 1, or −𝑖 ≥ dist (𝑠, 𝑥). Therefore, neither 𝑥 nor 𝑦 has

not been finalized, and hence (𝑥,𝑦) ∈ 𝑁𝐴(𝑣). This contradicts the
assumption that 𝑁𝐴(𝑣) = ∅. □

Finally, we prove that the output of the algorithm is correct.

Theorem 4. Consider a directed acyclic graph 𝐺 = (𝑉 , 𝐸) with
edge weights from {0,−1}, let 𝑠 ∈ 𝑉 be the source node, and suppose

that all nodes in the graph are reachable from 𝑠 . Then Algorithm 1

correctly solves the distance-limited DAG SSSP problem.

More precisely, on completion, for all 𝑣 ∈ 𝑉 we have:

• 𝑑 (𝑣) = dist (𝑠, 𝑣) if dist (𝑠, 𝑣) ≥ −𝐿, or 𝑑 (𝑣) = −∞ otherwise.

• parent (𝑣) = (𝑥,𝑦) ∈ 𝑁𝐴(𝑣) and dist (𝑥) = dist (𝑣) + 1.

Proof. The proof is by induction over rounds of the Algorithm 1.

The inductive claim is that after round 𝑖 , all nodes and only nodes

with distance at least −𝑖 have been finalized. Moreover, their dis-

tance is marked correctly. In addition, we include in the claim that

𝐹 is exactly the set of live nodes that currently have no label.

Now the inductive step. Consider the start of iteration 𝑖 . By

Lemma 3, all nodes in 𝐹 have distance equal to −𝑖 . By Lemma 2, the

labels are still correct for all nodes not in 𝑅. Thus, by Lemma 1, all

live nodes are correctly labeled when Propagate returns. Finally,

𝐹 is restored to be the live nodes with no label.

Finally, we argue that the parent references are correct. To do

so, we simply observe that the parent only changes when the label

changes. Thus, parent (𝑣) = (𝑥,𝑦) corresponds to the final label

that 𝑣 had before arriving at a label of ⊥. Since 𝑣 is finalized in

round −dist (𝑠, 𝑣), 𝑣 must have lost its label in the preceding round.

In other words, dist (𝑠, 𝑥) = dist (𝑠, 𝑣) + 1. □

3.4 Key performance claims
This section gives the core components of the performance analysis,

specifically bounding the total work and span of all multisource

reachability invocations. The other straightforward details of the

parallel implementation are shown next in Section 3.5.

Our main goal is to show that for each vertex 𝑣 , 𝑣 ’s label does not

change too many times. We do so by first arguing 𝑣 does not have

too many negative originators with priority equal to maxPri(𝑣).
Lemma 5. Consider the state of the graph at the start of a round 𝑖 ,

i.e., when all nodes with distance > −𝑖 have already been finalized.

Let 𝑣 be any live vertex. With high probability, 𝑣 has at most𝑂 (log𝑛)
negative originators that have priority equal to maxPri(𝑣).

Proof. We shall consider a specific priority and argue that some,

but not toomany, negative originators of 𝑣 have at least that priority.

Specifically, let 𝛽 be the total number of live negative originators

of 𝑣 . Consider a priority 𝑥 = ⌈lg 𝛽 − lg ln(𝑛) − lg(𝑐)⌉, for constant
𝑐 > 1. (The Θ absorbs the rounding of 𝑥 to an integer.) Observe that

𝑐2𝑥 ln𝑛 ≤ 𝛽 ≤ 𝑐2𝑥+1 ln𝑛.
We first claim that, with failure probability at most 1/𝑛𝑐 , 𝑣 has

at least one negative originator with priority ≥ 𝑥 . For a particular
negative originator𝑢, we have probability 1/2𝑥−1 that priority(𝑢) ≥
𝑥 . There are 𝛽 ≥ 𝑐2𝑥 ln(𝑛) negative originators, so the probability

that none of them has priority ≥ 𝑥 is at most (1 − 1/2𝑥−1)𝛽 ≤
((1 − 1/2𝑥−1)2𝑥−1𝑐 ln𝑛 ≤ (1/𝑒)𝑐 ln𝑛 = 1/𝑛𝑐 .

We next claim that not too many negative originators have prior-

ity ≥ 𝑥 . Each negative originator has an independent priority, and

the expected number of originators having at least this priority is

𝛽/2𝑥−1 ≤ 4𝑐 ln𝑛. We can thus apply a Chernoff-Hoeffding bound

to conclude that with probability at most 1/𝑛𝑐 , no more than say

8𝑐 ln𝑛 negative originators have priority ≥ 𝑥 . □

Corollary 6. Consider a particular node 𝑣 across the execution of

the algorithm, and assume that the algorithm operates correctly. Then

𝑣 ’s label changes at most 𝑂 (log2 𝑛) times across the entire execution,

with high probability.

Proof. Lemma 5 states that with high probability, at the start

of each round, 𝑣 has at most 𝑂 (log𝑛) negative originators with

priority equal to maxPri(𝑣). Because which nodes are peeled is

deterministic, there are not many events to take a union bound

over. In particular, the probability of even one failure for any vertex

across the execution is at most 𝑛(𝐿 + 1)/𝑛Θ(𝑐) .
For the remainder, assume no failures. Then Lemma 5 holds

specifically each time maxPri(𝑣) changes. Since there are only

𝑂 (log𝑛) nodes with that priority, 𝑣 can only get subsequent labels

with the same priority𝑂 (log𝑛) times. Multiplying this𝑂 (log𝑛) by
the number of different priorities completes the proof. □

We are now ready to bound the total cost of the calls to multi-

source reachability, which dominates the costs of the algorithm.

Lemma 7. Consider the total across all invocations of multisource

reachability across the execution of the algorithm. The total cost of

these calls is 𝑂̃ (𝑚) work and
√
𝐿 · 𝑛1/2+𝑜 (1) , with high probability.

Proof. From Corollary 6, each node’s label changes at most

𝑂 (log2 𝑛) times, with high probability. This also bounds the num-

ber of times each node is passed to Propagate. During each call,

the node and its incident edges may be built into 𝑂 (log𝑛) induced
subgraphs, one for each priority. Adding up across all edges and

calls, we get a total induced subgraph size of 𝑂 (𝑛 log3 𝑛) vertices
and 𝑂 (𝑚 log

3 𝑛) edges. Because the work of multisource reachabil-

ity [18] is nearly linear, the total across all calls is also 𝑂̃ (𝑚) no
matter how the edges are divided across calls. Because the span is

concave, the worst case (according to Jensen’s inequality) is that all

calls are on graphs of size 𝑂 (𝑛 log3 𝑛/𝐿 log𝑛) which yields a total

span of 𝐿 log𝑛 · (𝑛 log3 𝑛/𝐿 log𝑛)1/2+𝑜 (1) ≤
√
𝐿𝑛1/2+𝑜 (1) . □

Theorem 8. For a DAG 𝐺 containing integer edge weights of

{0,−1} and a source node 𝑠 , there is a parallel algorithm that outputs

for each node 𝑣 ∈ 𝑉 , 𝑑 (𝑣) = dist (𝑠, 𝑣) if 𝑑𝑖𝑠𝑡 (𝑠, 𝑣) ≥ −𝐿, and −∞
otherwise. The algorithm runs in 𝑂̃ (𝑚) work and 𝑛1/2+𝑜 (1)𝐿1/2 span.

Proof. Proof follows from Lemmas 3, 7, and 9, where the latter

(in Section 3.5) includes of the remaining parallel steps. □

3.5 Remaining Details of the Peeling Algorithm
This section discusses some of the more straightforward steps for

making the algorithm parallel. Our main claim is the following

lemma. Proof appears at the end of the section.

Lemma 9. Algorithm 1 (PeelingAlgorithm) runs in 𝑂̃ (𝑚) work
and 𝑛1/2+𝑜 (1)𝐿1/2 span.
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Before showing the proof, we will show a data structure that we

will use.

Parallel sets. There exist implementations of parallel sets that

can perform merge in 𝑂 (𝑚 log(𝑛/𝑚 + 1)) work and 𝑂 (log𝑚 log𝑛)
span for sets of size 𝑚 and 𝑛 where 𝑛 ≥ 𝑚 [4]. The parallel set

can also enumerate all elements in a size 𝑛 set in 𝑂 (𝑛) work and

𝑂 (log𝑛) span [4].

Parallel Implementation. Now that we have parallel sets we can

show the parallel implementation of the peeling algorithm. We will

first discuss parallel propagate and then themain loop of the peeling

algorithm. The Propagate(𝐺, 𝑅) function runs on a subgraph 𝐺 ′

which changes during each iteration of the algorithm. We will show

how to update the graph in parallel and other steps that are non-

trivial. A key point is that we can afford to look at each node in

the subgraph 𝐺 ′, since as we showed in Corollary 6 that in each

node is added to 𝑂 (log2 𝑛) subgraphs across the whole algorithm.

However, we cannot afford to look at the original graph 𝐺 . Also,

for a node 𝑣 in 𝐺 ′ we can afford 𝑣 ’s edges in 𝐺 , and not just the

edges in𝐺 ′. This makes building the induced subgraph trivial once

we are given the nodes.

In each iteration of propagate we must update the graph by

removing any nodes that get a label. Since we have𝑂 (log𝑛) priori-
ties, we can afford to sort all 𝑉 ′ nodes in each iteration. By sorting

we can group the nodes together that are not removed from 𝐺 ′ in
previous iterations. The cost of the sort is 𝑂̃ (𝑉 ′) work and 𝑂̃ (1)
span.

We implement the 𝑆𝑒𝑛𝑡𝐿𝑎𝑏𝑒𝑙 (𝑢) sets as parallel sets. To update

the 𝑆𝑒𝑛𝑡𝐿𝑎𝑏𝑒𝑙 (𝑢) sets (Line 15 in Algorithm 2), first sort all the

nodes 𝑣 ∈ 𝑉 ′ by their label, i.e. sort edges (𝑢, 𝑣) by ordering

on 𝑢. This groups all the nodes together that will be added to

𝑆𝑒𝑛𝑡𝐿𝑎𝑏𝑒𝑙 (𝑢). To add these nodes to 𝑆𝑒𝑛𝑡𝐿𝑎𝑏𝑒𝑙 (𝑢), we merge these

nodes with the current set 𝑆𝑒𝑛𝑡𝐿𝑎𝑏𝑒𝑙 (𝑢). In total, the cost is 𝑂̃ (𝑉 ′)
work and 𝑂̃ (1) span to update 𝑆𝑒𝑛𝑡𝐿𝑎𝑏𝑒𝑙 (𝑢) for all the nodes in
each round of Propagate(𝐺,𝑉 ′). It is fairly straightforward to

implement the rest of the steps in parallel for Propagate(𝐺,𝑉 ′).
Before we return to the loop in the main algorithm, we sort the

nodes by label, which groups together all the nodes that have no

label, and thus are finalized. This has the cost of parallel sort for the

number of nodes in propagate. When we return to the main loop,

we need to compute the next set of nodes to run propagate on. To

implement this step, in parallel each finalized node 𝑢 determines

the number of nodes in 𝑆𝑒𝑛𝑡𝐿𝑎𝑏𝑒𝑙 (𝑢). We can then run parallel

prefix sums to allocate space in an array for the nodes in 𝑅. Then

the nodes can be added to the new array in parallel, which is passed

to the next call to propagate. The work and span of these steps

is dominated by the cost of sorting the number of elements in

propagate at each round.

Proof of Lemma 9. The initialization steps can be performed

in 𝑂̃ (𝑛) work and 𝑂̃ (1) span. Previously we discussed how the

SentLabel sets can be maintained in 𝑂 ( |𝑉 ′ |) work and 𝑂̃ (1) span.
By Lemma 7, the cost of all the runs of multisource reachability

is 𝑂̃ (𝑚) and 𝑛1/2+𝑜 (1)𝐿1/2 span. Based on Corollary 6, the total

number of nodes in all calls to Propagate(𝐺,𝑉 ′) is 𝑂̃ (𝑛). We also

showed that we can update the nodes in 𝑅, and perform the updates

to the graph 𝐺 ′ in total work 𝑂̃ (𝑛), and 𝑂̃ (1) span.

Combining everything together, the algorithm runs in 𝑂̃ (𝑚)
work and 𝑛1/2+𝑜 (1)𝐿1/2 span.

4 DISTANCE-LIMITED SSSP WITH
NONNEGATIVE INTEGERWEIGHTS

Given a directed graph 𝐺 = (𝑉 , 𝐸) with source 𝑠 ∈ 𝑉 , nonnega-
tive integer edge weights, and distance 𝐿 ≤ 𝑛, the problem is to

return the shortest-path distances 𝑑 (𝑣) = dist (𝑠, 𝑣) for all 𝑣 with
dist (𝑠, 𝑣) ≤ 𝐿, and 𝑑 (𝑣) = ∞ otherwise. We also want to report

a shortest-paths tree to recover shortest paths, which can be ac-

complished through a postprocessing step discussed in Section

4.2.

Algorithm overview. Similar to the peeling algorithm in the pre-

vious section, this algorithm will solve shortest paths in order by

distance and peel off solved nodes. Once a node is finalized, its

distance is set and not considered for the rest of the algorithm. The

algorithm will use a (1 + 𝜖)-approximate shortest paths algorithm

to guess the distances of nodes in the graph. Using the distance

estimate, each unfinalized node 𝑣 is assigned to a 2
𝑖
-sized interval

for some integer 𝑖 . As long as the ASSSP never returns an incorrect

answer, the true shortest-path distance to 𝑣 always falls within its

assigned interval. Section 4.2 discusses how to cope with the possi-

bility that the ASSSP algorithm fails to achieve the approximation.

After each layer of the peeling, the algorithm refines the distance

intervals, by again running ASSSP. Since the shortest paths have

gotten shorter, the approximation becomes better, and so the node

can be assigned to an interval of smaller length. Once the interval

size is a small enough constant, the distance can be solved directly.

It is too expensive to refine all distance estimates in each round,

so the algorithm must choose when to include each node.

4.1 Algorithm Description
Let 𝐷 be the smallest power of 2 strictly greater than 𝐿. The al-

gorithm operates on intervals [𝑑,𝑑 + 2𝑖 ) of length 2
𝑖
, for 0 ≤ 𝑖 ≤

lg(2𝐷), where the intervals are aligned to multiples of 2
𝑖−1

, i.e.,

𝑑 = 𝑘2𝑖−1. Unfininished nodes are assigned to intervals that (bar-

ring ASSSP failures) contain their true distance, and they are moved

to smaller intervals as the algorithm progresses. Initially the algo-

rithm runs 2-approximate ASSSP; all nodes with estimate > 2𝐷

(and hence true distance > 𝐷) are finalized to a distance of∞; all
other nodes are assigned to [0, 2𝐷).

The rest of the algorithm proceeds in rounds 0, 1, . . . , 𝐷 , where

nodes with distance 𝑑 are finalized during round 𝑑 . In each round,

the value 𝑑 encroaches (reaches the left side) of some intervals. For

each of these intervals 𝐼 = [𝑑, 𝑑 + 2𝑖 ), from largest to smallest, the

goal is to “refine” the distance estimates of all nodes assigned to 𝐼

to smaller intervals or finalize nodes with size-1 intervals.

We compute the shortest-path tree as straightforward a postpro-

cessing step in Section 4.2.

Refine. The function Refine(𝑑, 2𝑖 ) takes as input the interval

[𝑑, 𝑑 + 2𝑖 ). It builds a graph 𝐺 ′ on nodes whose interval overlaps

[𝑑, 𝑑 + 2𝑖 ). More details of building the graph are discussed next.

The key idea is that since all unfinalized nodes have distance 𝑑 ,

we can shift distances downward by 𝑑 ; i.e., distances of 𝑑 in 𝐺 are

translated to distances of 0 in𝐺 ′; roughly speaking, this allows us to
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apply an algorithm with multiplicative approximation to improve

the additive approximation. The next step is to run ASSSP on 𝐺 ′,
which improves the distance estimates for those nodes assigned to

[0, 𝑑 + 2𝑖 ). Those nodes are reassigned to one of the 3 overlapping

subintervals of size 2
𝑖−1

, as shown in Lines 14-20 of Algorithm 3.

Build Graph𝐺 ′. Add each node to the𝑉 ′ who’s interval overlaps
[𝑑, 𝑑 + 2𝑖 ). Create graph 𝐺 ′ = 𝐺 [𝑉 ′]. Add a source node 𝑠 ′ to 𝑉 ′.
For each node 𝑣 with 𝑑 (𝑣) = +∞, and each incoming edge (𝑢, 𝑣),
where 𝑑 (𝑢) is not infinity, add an edge from 𝑠 ′ to 𝑣 with weight

𝑑 (𝑢) +𝑤 (𝑢, 𝑣) − 𝑑 .

4.2 Verification and Shortest Paths tree
Verification. The algorithm for parallel approximate shortest

paths works with high probability, meaning that it never gives an

underestimate of the shortest paths, but may fail to achieve the (1+
𝜖) approximation. In this section, we will show how to verify that

our algorithm is correct. After running the algorithm, first contract

cycles 0-weight edges, and then look at each nodes incoming edges.

For each node 𝑣 ∈ 𝑉 , verify that 𝑑 (𝑣) = min(𝑢,𝑣) (𝑑 (𝑢) +𝑤 (𝑢, 𝑣)),
and if any node fails then the algorithm has failed and must be

repeated.

Lemma 10. Assume we set source node 𝑑 (𝑠) = 0, then for all

𝑣 ∈ 𝑉 , 𝑑 (𝑣) = dist (𝑠, 𝑣) if and only if for all 𝑣 , we have 𝑑 (𝑣) =
min(𝑢,𝑣) (𝑑 (𝑢) +𝑤 (𝑢, 𝑣)).

Proof. (⇐) Based on our definition of shortest path, for any 𝑣 ,

𝑑 (𝑣) = dist (𝑣) = min(𝑢,𝑣) (dist (𝑠,𝑢) + 𝑤 (𝑢, 𝑣)) = min(𝑢,𝑣) (𝑑 (𝑢) +
𝑤 (𝑢, 𝑣)).

(⇒) Proof by contradiction. We first want to show if 𝑑 (𝑣) =
min(𝑢,𝑣) (𝑑 (𝑢) + 𝑤 (𝑢, 𝑣)) for 𝑣 and 𝑑 (𝑠) = 0, then 𝑑 (𝑣) ≥ dist (𝑣).
Consider the path (𝑣0, 𝑣1, ..., 𝑣𝑡 = 𝑣), such that 𝑑 (𝑣𝑖 ) = 𝑑 (𝑣𝑖−1) +
𝑤 (𝑣𝑖−1, 𝑣𝑖 ). Each edge 𝑤 (𝑣𝑖−1, 𝑣𝑖 ) > 0 is in the graph, so 𝑑 (𝑣0) to
𝑑 (𝑣𝑡 ) is increasing and we can set 𝑣0 = 𝑠 . Notice that 𝑑 (𝑣𝑡 ) =∑
𝑤 (𝑣𝑖−1, 𝑣𝑖 ) is weight of a path from 𝑠 to 𝑣 , so 𝑑 (𝑣) ≥ dist (𝑣).
Let 𝑆 be set of node 𝑥 with 𝑑 (𝑥) ≠ dist (𝑠, 𝑥). Let 𝑣 the the node

in 𝑆 with smallest dist (𝑣). Let 𝑢 be the parent of 𝑣 in the shortest

path tree. Since𝑤 (𝑢, 𝑣) > 0, we have dist (𝑢) < dist (𝑣) and 𝑑 (𝑢) =
dist (𝑢). Then, 𝑑 (𝑣) ≤ 𝑑 (𝑢) +𝑤 (𝑢, 𝑣) = dist (𝑢) +𝑤 (𝑢, 𝑣) ≤ dist (𝑣).
and this contradicts to the fact that𝑑 (𝑣) ≥ dist (𝑣) and the definition
of 𝑆 . □

Shortest Paths Tree. We would like to output the shortest path

tree for the contracted graph (zero weight cycles are contracted).

The algorithm can be extended to find pointers for all nodes in the

graph. We follow a similar strategy as the verification algorithm.

First contract any zero weight cycles, and then each node looks at

its incoming edges to find its parent in the tree. Specifically, for

each node 𝑣 , set 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑣) to be 𝑢 such that 𝑑 (𝑣) = 𝑑 (𝑢) +𝑤 (𝑢, 𝑣).

4.3 Limited Distance Shortest Paths Analysis
Next we will show that the algorithm correctly computes the short-

est paths distances for nodes up to distance 𝐷 . The algorithm for

approximate shortest paths that we use as a black box achieves the

approximation with high probability. In the following lemma we

assume the approximate shortest paths runs successfully, since in

Algorithm 3 LimitedSP

Input: Graph 𝐺 = (𝑉 , 𝐸) and source node 𝑠

Output: Shortest path distance 𝑑 (𝑣) for each node 𝑠 from 𝑣 up to

distance 𝐿, and∞ for nodes with distance greater than 𝐿

1: function LimitedSP(𝐺 = (𝑉 , 𝐸), 𝑠)
2: for each 𝑣 ∈ 𝑉 do 𝑑 (𝑣) ← +∞
3: 𝑑 (𝑠) = 0

4: 𝑑 ′ ← ASSSP(𝐺, 𝑠, 𝜖 = 1)

5: for each 𝑣 ∈ 𝑉 with𝑑 ′(𝑣) ≤ 2𝐷 do add 𝑣 to interval [0, 2𝐷)
6: for 𝑑 = 0 to 𝐷 : do
7: for 𝑖 = lg(2𝐷) to 0: do
8: if 𝑑 is a multiple of 2

𝑖−1 then
9: Refine(𝑑, 2𝑖 )

10: function Refine(𝑑, 2𝑖 )

11: Build graph 𝐺 ′ = (𝑉 ′, 𝐸 ′)
12: 𝑑 ′ ← ASSSP(𝐺 ′, 𝑠 ′, 𝜖 < 1/4)
13: for each 𝑣 ∈ 𝑉 ′ with 𝑑 ′(𝑣) = 0 do 𝑑 (𝑣) ← 𝑑

14: for each 𝑣 ∈ 𝑉 ′ with 𝐼 (𝑣) = [𝑑,𝑑 + 2𝑖 ) do
15: if 𝑑 ′(𝑣) ∈ [0, 2𝑖−1) then
16: add 𝑣 to interval [𝑑, 𝑑 + 2𝑖−1)
17: else if 𝑑 ′(𝑣) ∈ [2𝑖−1, 3 · 2𝑖−2) then
18: add 𝑣 to interval [𝑑 + 2𝑖−2, 𝑑 + 3 · 2𝑖−2)
19: else
20: add 𝑣 to interval [𝑑 + 2𝑖−1, 𝑑 + 2𝑖 )

Section 4.2 we showed how to overcome the issue that approximate

shortest paths does not achieve the desired approximation.

Lemma 11. Consider a call to LimitedSP(𝐺) for some graph 𝐺 =

(𝑉 , 𝐸). For any node 𝑣 ∈ 𝑉 with 𝑑 (𝑣) ≤ 𝐷 , the shortest path distance

is correctly computed.

Proof. For any given node 𝑣 , recall dist (𝑠, 𝑣) is the shortest path
distance. Let 𝐼 (𝑣) be the interval 𝑣 is located in. We change 𝐼 (𝑣) if
and only if 𝐼 (𝑣) = [𝑑,𝑑 + 2𝑖 ) when we call Refine(𝑑, 2𝑖 ). We will

use induction on Refine(𝑑, 2𝑖 ) on 𝑑 and 𝑖 to show

• for any node 𝑣 with dist (𝑠, 𝑣) < 𝑑 , 𝑑 (𝑣) = dist (𝑠, 𝑣)
• for any node 𝑣 with dist (𝑠, 𝑣) ≤ 𝐷 , dist (𝑠, 𝑣) ∈ 𝐼 (𝑣).

The base case is 𝑑 = 0 and 𝑖 = lg(2𝐷). For any node 𝑣 with

dist (𝑠, 𝑣) ≤ 𝐷 , 𝐼 (𝑣) = [0, 2𝐷), we run approximate shortest paths on

the whole graph. In this case, 𝑑 ′(𝑣) = 0 if and only if dist (𝑠, 𝑣) = 0.

We set 𝑑 (𝑣) = dist (𝑠, 𝑣) = 0 if 𝑑 ′(𝑣) = 0. For any node 𝑣 with

dist (𝑠, 𝑣) ≤ 𝐷 , if 𝑑 ′(𝑣) < 2
𝑖−1

, we know that dist (𝑠, 𝑣) ≤ 𝑑 ′(𝑣) <
2
𝑖−1

; if 2
𝑖−1 ≤ 𝑑 ′(𝑣) < 3 · 2𝑖−2, we know that dist (𝑠, 𝑣) ≤ 𝑑 ′(𝑣) ≤

3 · 2𝑖−2 and dist (𝑠, 𝑣) ≥ 𝑑 ′(𝑣)/(1 + 𝜖) ≥ 2
𝑖−2

; if 𝑑 ′(𝑣) ≥ 3 · 2𝑖−2, we
know that dist (𝑠, 𝑣) ≥ 𝑑 ′(𝑣)/(1 + 𝜖) ≥ 2

𝑖−1
. Combining these three

cases, node 𝑣 will be added to 𝐼 (𝑣) such that dist (𝑠, 𝑣) ∈ 𝐼 (𝑣).
Now assume that for 𝑑 and 𝑖 , the claim holds, consider 𝑑 and

𝑖 − 1, for the first claim, for any node with dist (𝑠, 𝑣) < 𝑑 , 𝑑 (𝑣) =
dist (𝑠, 𝑣). For the second claim, for any node 𝑣 with dist (𝑠, 𝑣) ≤ 𝐷 ,
dist (𝑠, 𝑣) ∈ 𝐼 (𝑣). When we call Refine(𝑑, 2𝑖−1), we change 𝐼 (𝑣) if
and only if 𝐼 (𝑣) = [𝑑,𝑑 + 2𝑖−1). Consider a node 𝑣 with 𝐼 (𝑣) =
[𝑑, 𝑑 + 2𝑖−1) and a path 𝑝 from 𝑠 to 𝑣 . Let 𝑢 be the last node on

the path with dist (𝑠,𝑢) < 𝑑 and 𝑢 ′ be the next node on this path.

We will add an edge from 𝑠 ′ to 𝑢 ′ with weight 𝑑 (𝑢) +𝑤 (𝑢,𝑢 ′) − 𝑑 .
Let 𝑙 be the weight of path from 𝑢 ′ to 𝑣 . Notice that weight of 𝑝 ′
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is 𝑤 (𝑝 ′) = 𝑑 (𝑢) +𝑤 (𝑢,𝑢 ′) − 𝑑 + 𝑙 ≥ dist (𝑠, 𝑣) − 𝑑 . When 𝑝 is the

shortest path, for any node𝑤 on path 𝑝 between 𝑢 ′ and 𝑣 , we know
𝑑 ≤ dist (𝑠,𝑤) ≤ dist (𝑠, 𝑣) < 𝑑+2𝑖 . Thus 𝐼 (𝑤) overlaps [𝑑, 𝑑+2𝑖 ) and
we add𝑤 to the graph, and then𝑤 (𝑝) = dist (𝑠, 𝑣) − 𝑑 . Combining

these two points, we know in the new graph, the shortest path

distance for 𝑣 is dist (𝑠, 𝑣) − 𝑑 ∈ [0, 2𝑖 ). If 𝑑 ′(𝑣) ≤ 2
𝑖−1

, then we

know dist (𝑠, 𝑣) − 𝑑 ≤ 𝑑 ′(𝑣) ≤ 2
𝑖−1

and dist (𝑠, 𝑣) ∈ [𝑑,𝑑 + 2𝑖−1); If
2
𝑖−1 ≤ 𝑑 ′(𝑣) ≤ 3·2𝑖−2, we know dist (𝑠, 𝑣)−𝑑 ≥ 𝑑 ′(𝑣)/(1+𝜖) ≥ 2

𝑖−2

and dist (𝑠, 𝑣) − 𝑑 ≤ 𝑑 ′(𝑣) ≤ 3 · 2𝑖−2; Last, if 𝑑 ′(𝑣) ≥ 3 · 2𝑖−2, we
know that dist (𝑠, 𝑣) − 𝑑 ≥ 𝑑 ′(𝑣)/(1 + 𝜖) ≥ 2

𝑖−1
. In either case, we

have dist (𝑠, 𝑣) ∈ 𝐼 (𝑣).
The last thing is to show for any 𝑑 and 𝑖 = 0, we set 𝑑 (𝑣) = 𝑑 if

dist (𝑠, 𝑣) = 𝑑 . Notice that based on our assumption, for any node 𝑢

with dist (𝑠,𝑢) ≤ 𝐷 , dist (𝑠,𝑢) ∈ 𝐼 (𝑢). If dist (𝑠, 𝑣) = 𝑑 , then we add

𝑣 to the graph. Similar to the above argument, in the new graph,

the shortest path distance for 𝑣 is 0 and thus 𝑑 ′(𝑣) = 0 and we will

set 𝑑 (𝑣) to be 𝑑 for any node 𝑣 with dist (𝑠, 𝑣) = 𝑑 . □

Next we will show the work and span the of the algorithm. Each

call to Refine(𝑑, 2𝑖 ) builds a graph and runs approximate shortest

paths. Our main goal is to show that each node is not added to too

many of these graphs. By bounding the number of graphs a node is

added to, we are able to bound the total size of these graphs.

Lemma 12. Consider a call to LimitedSP(𝐺) for some graph 𝐺 =

(𝑉 , 𝐸). For a node 𝑣 ∈ 𝑉 , while 𝑣 is assigned to a particular interval
𝑋 , 𝑣 is added to 𝑂 (lg𝐷) graphs 𝐺 ′ in Refine.

Proof. Node 𝑣 is only added to a graph 𝐺 ′ in Refine(𝑑, 2𝑖 )
when interval 𝑋 overlaps the interval [𝑑, 𝑑 + 2𝑖 ). Let the interval
𝑋 = [𝑐2𝑗 , (𝑐 + 1)2𝑗 ) have length 2

𝑗
, for some integer 𝑐 . Consider

the following two cases of calls to Refine(𝑑, 2𝑖 ) for size 2𝑖 intervals.
The two cases are 𝑗 ≤ 𝑖 , and 𝑗 > 𝑖 . In both cases we will show at

most three intervals of size 2
𝑖
overlap 𝑋 , which implies 𝑋 overlaps

at most𝑂 (lg𝐷) intervals, and 𝑣 is added to at most𝑂 (lg𝐷) graphs
in calls to Refine(𝑑, 2𝑖 ).

Case 1: 𝑗 ≤ 𝑖 . In this case, there will be at most three intervals

that intersects 𝑋 , i.e, [𝑑, 2𝑖 ), [𝑑 + 2𝑖−1, 2𝑖 ) and [𝑑 + 2𝑖 , 2𝑖 ) since 𝑗 ≤ 𝑖
and interval [𝑑,𝑑 + 2𝑖+1) must cover X if [𝑑, 2𝑖 ) intersects 𝑋 .

Case 2: 𝑗 > 𝑖 . For this case we will show that at most one interval

of size 2
𝑖
overlaps 𝑋 . Consider the first 𝑑 such that Refine(𝑑, 2𝑖 )

intersects with 𝑋 = [𝑐2𝑗 , (𝑐 + 1)2𝑗 ), we have 𝑑 ≤ 𝑐2𝑗 . That’s

because when we refine Refine(𝑑, 2𝑖 ), it’s impossible such that

for some 𝑢 with interval 𝐼 (𝑢) = [𝑐2𝑗 , 𝑐2𝑗 + 2𝑗 ), 𝑐2𝑗 < 𝑑 . If such

node𝑢 exists, notice that when we update interval in Refine(𝑑 ′, 2𝑖 ),
we never put a node to some interval starting earlier than 𝑑 ′, so
𝐼 (𝑢) = [𝑐2𝑗 , 𝑐2𝑗 + 2𝑗 ) must be updated in some Refine(𝑎′, 2𝑗+1)
with 𝑎′ ≤ 𝑐2𝑗 . Then when we call Refine(𝑐2𝑗 , 2𝑗 ), we will refine
node 𝑢 and it’s no longer in 𝐼 (𝑢).

Assume that the first time Refine(𝑑, 2𝑖 ) intersects with 𝑋 , we
have 𝑑 ≤ 𝑐2𝑗 . Since 2𝑖−1 < 2

𝑗−1
, and both are powers of 2, each

multiple of of 2
𝑗−1

is also a multiple of 2
𝑖−1

. Therefore there is a

size 2
𝑖
interval starting at 𝑐2𝑗−1. This interval has size 2𝑖 , and any

that start later will be refined after 𝑋 since the intervals are refined

in order by distance and decreasing size. For intervals that start

before 𝑋 , there is one size 2
𝑖
interval that starts at 𝑐2𝑗−1 − 2

𝑖−1

which overlaps 𝑋 . The next size 2
𝑖
interval to the left starts at

𝑐2𝑗−1−2 ·2𝑖−1 = 𝑐2𝑗−1−2𝑖 , and since it has length 2
𝑖
, the interval is

[𝑐2𝑗−1 − 2𝑖 , 𝑐2𝑗−1), so it does not overlap 𝑋 . Any intervals starting

at smaller multiples of 2
𝑖−1

also do not overlap 𝑋 , by the same

reasoning. Thus𝑋 overlaps one interval of size 2
𝑖
for each 𝑖 < 𝑗 . □

Lemma 13. Consider a call to LimitedSP(𝐺) for some graph 𝐺 =

(𝑉 , 𝐸). For a node 𝑣 ∈ 𝑉 , 𝑣 is added to 𝑂 (lg2 𝐷) graphs 𝐺 ′ in calls to

Refine(𝑑, 2𝑖 ).

Proof. If node 𝑣 has its initial distance estimate 𝑑 (𝑣) > 2𝐷 ,

then 𝑣 is not added to any intervals and therefore no graphs 𝐺 ′

either. Otherwise, 𝑣 starts in the interval [0, 2𝐷). Each time it is

added to a graph in Refine, either it stays in the same interval or

moves to a smaller interval. By Lemma 12, 𝑣 gets added to 𝑂 (lg𝐷)
refinement graphs for each interval it is in. Since the interval sizes

are monotonically decreasing, and there are 𝑂 (lg𝐷) of them, 𝑣 is

added to 𝑂 (lg2 𝐷) refinement graphs. □

We next turn to the work and span of the algorithm. Some of

this relies on the straightforward parallel details, but the bulk of

the work falls in ASSSP. Analogous to Lemma 7, we can leverage

Lemma 13 to argue that the in total, these calls are not too expensive.

Before proving the work and span, we will show a data structure

that we will use in the implementation.

Vector of parallel sets. We construct a vector of parallel sets 𝑉𝑆 ,

where each set has an identifier. Assume that there are polynomial

bounded elements in total across all sets. The vector of sets 𝑉𝑆

supports the following.

• Initialization, we can set up a vector, each item of the vector

contains a pointer to the set. The set is identified by the

identifier. All sets are set to be empty at the beginning, the

work is 𝑂 (number of sets) and the span is 𝑂̃ (1).
• Given 𝑡 sets, where each set contains 𝑥𝑖 elements, we can

add the elements of the 𝑡 sets into 𝑉𝑆 in 𝑂 (∑𝑥𝑖 ) work and

𝑂̃ (1) span because we can merge each set separately.

• Given the identifiers of 𝑡 sets, we can merge the elements

from all 𝑡 sets into a vector with 𝑂 (𝑥) work and 𝑂̃ (1) span,
where 𝑥 is the total number of elements across the 𝑡 sets. To

copy all elements, we first compute the number of elements

in each set, thenwe run prefix sum to compute the location of

each set should be transferred and access each sets elements

in parallel.

• Given the identifiers of 𝑡 sets, we can empty all elements in

those 𝑡 sets in𝑂 (𝑥) work and 𝑂̃ (1) span, where 𝑥 is the total

number of elements across the 𝑡 sets.

Note that, to manipulate on the vector of parallel sets, we must

know the identifier of each set to locate the pointer to the set.

Now we can show the following lemma which bounds the work

and span of the algorithm.

Lemma 14. Algorithm 3 has 𝑂̃ (𝑚) work and 𝑛1/2+𝑜 (1)𝐿1/2 span.

Proof. Algorithm 3 first runs the approximate shortest paths

algorithm which takes 𝑂̃ (𝑚) work and 𝑛1/2+𝑜 (1) span. Next, it
assigns each node with to an interval which can be done in 𝑂 (𝑛)
work and 𝑂 (1) span. Last, it calls Refine(𝑑, 2𝑖 ) 𝑂̃ (𝐷) times.

The subroutine Refine(𝑑, 2𝑖 ) first identifies all nodes whose
interval intersects with [𝑑, 𝑑 +2𝑖 ). Let 𝑥𝑖 and 𝑦𝑖 be number of nodes
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in the overlapping intervals and number of edges neighboring the

nodes. We will show later that the algorithm copies all nodes in

𝑂̃ (𝑥𝑖 + 2𝑖 ) work and 𝑂̃ (1) span. After identifying those nodes, we
can construct the graph with 𝑂̃ (𝑥𝑖 + 𝑦𝑖 ) work and 𝑂̃ (1) span. The
approximate shortest path algorithm also depends on 𝑥𝑖 and 𝑦𝑖 ,

and takes 𝑂̃ (𝑦𝑖 ) work and 𝑥
1/2+𝑜 (1)
𝑖

span. Lastly, each node in the

interval [𝑑,𝑑 + 2𝑖 ), will be reassigned to a different interval. To

reassign the nodes, we can sort the nodes based on 𝑑 ′ value. Sorting
takes 𝑂̃ (𝑥𝑖 ) work and 𝑂̃ (1) span. Moving the nodes to different

intervals relies on the implementation of the sets.Wewill later show

this step can be performed in 𝑂̃ (𝑥𝑖 ) work and 𝑂̃ (1) span. In total,

each call to Refine(𝑑, 2𝑖 ) takes 𝑂̃ (𝑦𝑖 + 2𝑖 ) work and 𝑥
1/2+𝑜 (1)
𝑖

span,

where 𝑥𝑖 and 𝑦𝑖 are the number of nodes and edges, respectively,

in 𝐺 ′.
Notice that for each (𝑑, 2𝑖 ), we have𝑑/2𝑖 different calls to Refine

with interval size 2
𝑖
, so the 2

𝑖
term will contribute 𝑂̃ (𝐷) to the

work in total. By Lemma 13, each node is added to 𝐺 ′ at most

𝑂 (𝑙𝑔2𝐷) times, so

∑
𝑥𝑖 = 𝑂 (𝑛 lg2 𝐷) = 𝑂 (𝑛 lg2 𝐷), and ∑

𝑦𝑖 =

𝑂 (𝑚 lg
2 𝐷 + 𝐿) = 𝑂̃ (𝑚 + 𝐿) = 𝑂̃ (𝑚) because of the fact that 𝐿 =

𝑂 (𝑛). The total work is 𝑂̃ (𝑚 + 𝐷) = 𝑂̃ (𝑚). Notice there are at

most 𝑂 (𝐷 lg𝐷) calls to Refine, and the span of the algorithm is∑
𝑥
1/2+𝑜 (1)
𝑖

= 𝑛1/2+𝑜 (1)𝐿1/2+𝑜 (1) + 𝐿 = 𝑛1/2+𝑜 (1)𝐿1/2.
The remaining problem is to maintain a set for each interval.

We will use the vector of parallel sets data structure to maintain

a vector of sets for each possible interval [𝑑,𝑑 + 2𝑖 ). Notice that
the identifier for each set is the interval [𝑑,𝑑 + 2𝑖 ) for different 𝑑
and 𝑖 and the identifier for each set can be sorted by the starting

point of the interval. If the starting point is the same, we sort by

ending point of the interval. Initialization takes 𝑂̃ (𝐷) work and

𝑂̃ (1) span. Then we add all elements to the interval [0, 2𝐷). It takes
𝑂̃ (1) work and span to specify the identifier of the set and 𝑂̃ (𝑛)
work and 𝑂̃ (1) span to add all elements.

In a call to Refine(𝑑, 2𝑖 ), since the interval is sorted by starting

point, the interval that intersects with [𝑑,𝑑+2𝑖 ) and starts no earlier
than 𝑑 is continuous and we can identify all identifiers of intervals

in 𝑂̃ (2𝑖 ) work and 𝑂̃ (1) span. Once we get all the interval that

intersects with [𝑑, 𝑑 + 2𝑖 ), it takes 𝑂 ( |𝑉 ′ |) work and 𝑂̃ (1) span to

copy all elements in the sets. After we identify all nodes in 𝐺 ′, the
graph can be built by using parallel sort to group together the nodes

that are in the subgraph. The last piece is to empty all elements

for interval [𝑑,𝑑 + 2𝑖 ) and add those elements to three different

intervals. This can be done in 𝑂 ( |𝑉 ′ |) and 𝑂̃ (1) span. □

From Lemmas 11 and 14, we conclude:

Theorem 15. There exists a parallel algorithm solving nonnegative

𝐿-distance-limited SSSPwith work 𝑂̃ (𝑚) and span𝑛1/2+𝑜 (1)𝐿1/2 span,
with high probability. That is, consider a directed graph 𝐺 = (𝑉 , 𝐸)
with nonnegative integer weights and source 𝑠 ∈ 𝑉 . The algorithm
outputs for each node 𝑣 ∈ 𝑉 , 𝑑 (𝑣) = dist (𝑠, 𝑣) if dist (𝑠, 𝑣) ≤ 𝐿, and
infinity otherwise. □

5 OVERVIEW OF GOLDBERG’S ALGORITHM
This section summarizes Goldberg’s sequential algorithms [16]

for computing exact shortest paths on a graph with integer edge

weights. Our description here differs slightly from Goldberg’s [16],

in part to facilitate our parallel extension, but these differences are

not technically relevant as far as the sequential algorithm goes. The

main goal of Goldberg’s algorithm is to reweight the graph such

that all weights are nonnegative. Then the single-source shortest

paths problem can be solved efficiently by Dijkstra’s algorithm.

For the reweighting of the graph to be meaningful, the new

weight function must preserve shortest paths. That is, a path should

be a shortest path with respect to the updated weight function if and

only if it is a shortest path with respect to the original function𝑤 .

Goldberg [16] achieves valid reweightings by defining the reweight-

ing by way of a price function 𝑝 : 𝑉 → Z over vertices. Given the

price function 𝑝 , the updated weights of the graph are given by

𝑤𝑝 (𝑢, 𝑣) = 𝑤 (𝑢, 𝑣) + 𝑝 (𝑢) − 𝑝 (𝑣), where 𝑤 is the original weight

function. This type of price function always produces a meaningful

reweighting that preserves shortest paths; see Cormen et al.’s [11]

discussion of Johnson’s algorithm for a general correctness argu-

ment. Moreover, given the shortest-path distance 𝑑 (𝑣) from 𝑠 to 𝑣

with respect to weight function𝑤𝑝 , the shortest-path distance with

respect to the input weights is simply 𝑑 (𝑣) + 𝑝 (𝑣) − 𝑝 (𝑠).
We say that a price function, or the induced reweighting, is

feasible if all edge weights 𝑤𝑝 (𝑢, 𝑣) ≥ 0 are nonnegative. The

goal is thus to produce a feasible price function if possible, or to

determine that the graph has a negative-weight cycle. As noted

above, a feasible price function implies a solution to SSSP.

Reducing the negativity by scaling
Goldberg’s main algorithm [16] is an algorithm that produces a

feasible price function for the special case that all edge weights are

integers with value at least −1. (That is, the weights may take any

nonnegative value, but the only negative value they may have is

−1.) We call this special case the 1-reweighting problem. His algo-

rithm [16] solves the 1-reweighting problem in time 𝑂 (𝑚
√
𝑛). He

then applies a bit-scaling technique [15, 16] to generalize the solu-

tion to arbitrary integer weights. If all weights are at least −𝑁 , then

𝑂 (log𝑁 ) repetitions of the 1-reweighting algorithm are sufficient

to find a feasible price function for general integer weights [16].

Overview of 1-reweighting
Goldberg’s algorithm [16] solves the 1-reweighting problem grad-

ually, refining the price function iteratively before arriving at a

final reweighting. This refinement improves monotonically in the

following sense. We call a vertex a negative vertex if it has any

incoming edges with negative weight.
4
We call a price function a

𝜏-improvement if it has the following properties:
(1) (Valid.) The edge weights after reweighting are all integers

with value at least −1. Thus, the reweighted graph is still a

valid instance of the 1-reweighting problem.

(2) (Monotonic.) If an edge has nonnegativeweight before reweight-

ing, then it has nonnegative weight after. Consequently,

reweighting does not introduce negative vertices.

(3) (Progress.) At least 𝜏 negative vertices before reweighting

are no longer negative vertices after reweighting. That is, all

of their incoming edges are reweighted to at least 0. We also

say that those 𝜏 vertices are improved or eliminated.

4
Goldberg uses the term “improvable” instead of negative vertex, but we find the latter

more intuitive.
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Algorithm 4 Outline of Goldberg’s algorithms [16] for the 1-

reweighting problem

Input: Graph 𝐺 = (𝑉 , 𝐸) and weight function𝑤 : 𝐸 → Z where all
weights are integers of at least −1.
Output: a feasible price function 𝑝 , or a negative cycle if none exists.

1: initially 𝑝 (𝑣) = 0 for all 𝑣

2: let 𝑤𝑝 denote the weights 𝑤𝑝 = 𝑤 (𝑢, 𝑣) + 𝑝 (𝑢) − 𝑝 (𝑣) with
respect to the price function 𝑝

3: while there are negative vertices with respect to𝑤𝑝 do
4: contract cycles of 0-weight edges

5: let 𝑘 be the number of negative vertices remaining

6: find one of the two following objects:

7: (1) a negative cycle 𝐶

8: (2) price function 𝑝 ′: a
√
𝑘-improvement w.r.t.𝑤𝑝

9: if a negative cycle was found then
10: extend 𝐶 to a cycle in the uncontracted graph

11: return the cycle 𝐶

12: foreach vertex 𝑣 in the contracted graph do
13: foreach 𝑥 in 𝑣 ’s component do
14: update 𝑝 (𝑥) ← 𝑝 (𝑥) + 𝑝 ′(𝑣)
15: return the price function 𝑝

At a high level, Goldberg’s algorithm [16] simply repeatedly finds

“large” 𝜏-improvements until no negative vertices remain.

Algorithm 4 gives an outline of Goldberg’s algorithm for the

1-reweighting problem. The algorithm repeatedly contracts cycles

of 0-weight edges and then finds 𝜏-improvements. The reason for

contraction will make more sense as we go into more detail on

the algorithm.
5
But it should be obvious that (1) contraction can

only reduce the number of negative vertices, and (2) all vertices

in a contracted component are equivalent with respect to distance

to/from all other vertices. As vertices in the contracted graph are

reweighted, the same reweighting is trivially extended to vertices

in the same contracted component (Line 14).

More specifically, the algorithm finds

√
𝑘-improvements (Line 8),

where 𝑘 is the current number of negative vertices in the contracted

graph. The number of negative vertices thus reduces from 𝑘 to at

most 𝑘 −
√
𝑘 in each iteration. The algorithm terminates in 𝑂 (

√
𝐾)

iterations [16], where 𝐾 is the initial number of negative vertices.

Since 𝐾 ≤ 𝑛, the algorithm completes in 𝑂 (
√
𝑛) iterations.

Contraction and finding a
√
𝑘-improvement

The core of the reweighting problem is the problem of either finding

a

√
𝑘-improvement or a negative cycle, where 𝑘 denotes the current

number of negative vertices in the graph. Goldberg [16] provides an

algorithm for this subroutine that has running time𝑂 (𝑚). This thus
implies a running time of 𝑂 (𝑚

√
𝑛) for the 1-reweighting problem,

and𝑂 (𝑚
√
𝑛 log𝑁 ) for SSSP with integer weights. The remainder of

this section gives an overview of Goldberg’s algorithm for finding

a

√
𝑘 improvement.

5
We are vague about bookkeeping details here because it does not actually matter

whether the contracted graph is maintained across iterations, or whether each iteration

begins from the original graph. This is because all cycles of 0’s are preserved across

the reweighting steps.

Much of Goldberg’s algorithm operates on a subgraph of 𝐺 .

Specifically, let 𝐺≤0 denote the subgraph of 𝐺 containing only

those edges whose weights are 0 and −1. That is, all edges with
strictly positive edge weight are removed from the graph.

Step 1: strongly connected components. Goldberg’s algorithm [16]

begins by finding the strongly connected components in 𝐺≤0. If
any component contains a negative edge, i.e.,𝑤 (𝑢, 𝑣) = −1 and 𝑢
and 𝑣 are strongly connected, then report a negative-weight cycle

by finding any path from 𝑣 to 𝑢 in 𝐺≤0. Otherwise, contract each
strongly connected component to get the condensation𝐺 ′≤0 of𝐺≤0.
The main reason for this contraction step is that the condensation

𝐺 ′≤0 is acyclic; the remaining steps rely on the graph being acyclic.

Step 2: find a large chain or independent set of negative vertices.

The next step involves finding one of the following two objects:

• (Chain.) A length 𝜏 ≥
√
𝑘 sequence of negative-weight edges

⟨(𝑢1, 𝑣1), (𝑢2, 𝑣2), . . . , (𝑢𝜏 , 𝑣𝜏 )⟩ such that, for 1 ≤ 𝑖 < 𝜏 , there
is a path from 𝑣𝑖 to 𝑢𝑖+1 in 𝐺 ′≤0.

• (Independent set.) A set 𝑆 of negative vertices, with |𝑆 | ≥
√
𝑘 ,

such that for all 𝑢, 𝑣 ∈ 𝑆 , there is no negative-weight path

from 𝑢 to 𝑣 in 𝐺 ′≤0.

To find these, augment 𝐺 ′≤0 with a supersource 𝑠 , add edges

from 𝑠 to all other vertices with weight 0, and solve SSSP on the

augmented graph from source 𝑠 . Because 𝐺 ′≤0 is acyclic, this SSSP
problem can be solved in 𝑂 (𝑚) time (see, e.g., [11]). Partition the

vertices into sets𝑉0,𝑉1,𝑉2, . . . by distance, where𝑉𝑖 denotes the set

of vertices having shortest-path distance −𝑖 from the supersource.

If any vertex has distance −𝜏 ≤ −
√
𝑘 , then any shortest path to

that vertex contains 𝜏 negative edges — the chain is the sequence

of negative edges along any such shortest path.

Otherwise, all negative vertices are in 𝑉1,𝑉2, . . . ,𝑉⌈
√
𝑘 ⌉−1. Let

𝑆𝑖 ⊆ 𝑉𝑖 be the negative vertices in 𝑉𝑖 . Select the largest 𝑆𝑖 as the
independent set.

Step 3: improve the chain or independent set. It is important to

note that although the chain or independent set is found in 𝐺 ′≤0,
the improvement/reweighting is applied to the original graph 𝐺 .

Reweighting to improve all vertices in an independent set is

straightforward. Let 𝑆 be the independent set, and let𝑉𝑅
be the set

of vertices reachable in 𝐺 ′≤0 from any vertex in 𝑆 . For each 𝑣 ∈ 𝑉𝑅
,

set 𝑝 (𝑣) = −1. For all other vertices, set 𝑝 (𝑣) = 0. If the independent

set is found by the algorithm above, identifying 𝑉𝑅
requires no

additional work: for 𝑆 = 𝑆𝑖 , we have𝑉
𝑅 = 𝑉𝑖 ∪𝑉𝑖+1 ∪ · · · ∪𝑉⌈√𝑘 ⌉−1.

Improving the vertices on the chain is harder because the price

function takes on many values. Goldberg solves that problem in

two ways [16], one of which involves reducing the problem to

nonnegative single-source shortest paths. We describe a slightly

different reduction in Section 6. In contrast to the independent-set

case, improvement here may not be possible if there is a negative-

weight cycle in the full graph 𝐺 . Thus, the algorithm may report a

negative-weight cycle instead of performing the improvement.

Summary of key subroutines. Goldberg’s algorithm [16] for

√
𝑘

improvement uses the following subroutines: strongly connected

components, SSSP in a directed acyclic graph with negative weights,

and SSSP in a general graph with nonnegative integer weights.
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Each of these subroutines can be solved easily in 𝑂̃ (𝑚) sequential
running time using classic algorithms [11]. In fact, they can be

solved in 𝑂 (𝑚) time with some care [16].

6 OVERVIEW OF PARALLEL ALGORITHM
As discussed in Section 5, Goldberg’s algorithm for SSSP is a scaling

algorithm that performs multiple iterations of 1-reweighting and√
𝑘-improvement. The correctness argument [16] relies on these

iterations being performed one at a time, (i.e., sequentially). We

thus apply the same sequential scaling technique. Moreover, we use

the same sequential loop as given in Algorithm 4. The difference is

that we use a parallel subroutine for the relevant contractions and

the

√
𝑘-improvement, we use a parallel version of Dijkstra’s for the

final SSSP output, and that the obvious trivial steps (e.g., updating

the price function) are performed in parallel. With no changes to

the main structure, correctness follows from Goldberg [16].

This section outlines our algorithm assuming no negative-weight

cycles. We discuss reporting cycles in Appendix A.2.

Themain technical contribution of this paper are the new distance-

limited SSSP problems we use for

√
𝑘-improvement. The resulting

performance for

√
𝑘-improvement is summarized by the follow-

ing theorem; this is a direct consequence of our efficient distance-

limited SSSP algorithms.

Theorem 16. There exists a randomized parallel algorithm having

work 𝑂̃ (𝑚) and span 𝑛3/4+𝑜 (1) , with high probability, for the

√
𝑘-

improvement problem. Specifically, the algorithm takes as input a

directed graph with 𝑛 vertices, 𝑚 edges, and integer weights of at

least −1. The algorithm contracts all cycles of 0-weight edges and

either finds a price function giving a

√
𝑘-improvement, where 𝑘 is the

number of vertices with incoming negative edges in the contracted

graph, or it determines that a negative-weight cycle exists.

Assuming correctness of our algorithm for improving the chain

(see Lemma 19 in Appendix A.1), correctness follows from Gold-

berg’s [16] version of the algorithm. It remains to analyze the work

and span of the algorithm. As noted previously, Step 1 can be com-

pleted with 𝑂̃ (𝑚) work and 𝑛1/2+𝑜 (1) span. Step 2 is dominated by

the

√
𝑘-distance-limited {0,−1}-weight acyclic SSSP. In Section 3,

we give an algorithm for that problem that has work 𝑂̃ (𝑚) and
span 𝑛3/4+𝑜 (1) for distance limit 𝐿 =

⌈√
𝑘

⌉
= 𝑂 (
√
𝑛). Finally, Step 3

is dominated by the problem of improving the chain, which we

have reduced to

√
𝑘-distance-limited nonnegative SSSP. Section 4

gives our solution to that problem, which also has work 𝑂̃ (𝑚) and
span 𝑛3/4+𝑜 (1) when the distance is limited to 𝑂 (

√
𝑛).

Finally, we must also consider the cost of determining whether

the algorithm should terminate due to the presence of a negative-

weight cycle. (Finding the actual cycle is harder, but that only occurs

once; just determining that such a cycle exists is easier.) Goldberg’s

algorithm [16] and our extension only terminate due to negative-

weight cycles in two spots: in Step 1 and in Step 3, specifically

when trying to eliminate the chain. Testing for a negative-weight

cycle in Step 1 involves simply testing whether a negative-weight

edge falls within a component, which is trivial to perform in 𝑂 (𝑚)
work and 𝑂 (log𝑛) span. Lemma 19 gives us a way of testing for a

negative-weight cycle—simply perform the reweighting and see if

all 𝑣𝑖 on the chain are indeed improved. If not, then there must be a

negative-weight cycle. Again, this test is trivial to perform in𝑂 (𝑚)
work and 𝑂 (log𝑛) span.

Adding the work and span across all steps yields the claimed

bounds.

Given our efficient parallel algorithm for

√
𝑘-improvement, we

get our main result on SSSP as a simple corollary.

Theorem 17. There exists a randomized parallel algorithm for

the problem of SSSP with integer edge weights with the following

characteristics: for an input graph with 𝑛 vertices,𝑚 edges, integer

weights of at least −𝑁 , and no negative-weight cycles, the algorithm

returns the shortest-path distance from the source to all vertices with

𝑂̃ (𝑚
√
𝑛 log𝑁 ) work and 𝑛5/4+𝑜 (1) log𝑁 span, both with high prob-

ability. Moreover, the algorithm can be augmented to find and return

a negative-weight cycle, if one exists, in the same work and span.

Proof. Goldberg’s main algorithm performs𝑂 (log𝑁 ) iterations
of scaling and𝑂 (

√
𝑛) iterations of

√
𝑘 improvement [16] to reweight

the graph. Assuming no negative-weight cycle, the cost to find a

feasible reweighting of the original graph can thus be obtained

by multiplying the bounds of Theorem 16 by 𝑂 (
√
𝑛 log𝑁 ), which

matches the claimed bounds.

After finding a feasible reweighting, we also need to solve the

nonnegative SSSP problem. There exist several parallel versions [7,

12] of Dijkstra’s algorithm havingwork 𝑂̃ (𝑚) and span 𝑂̃ (𝑛), which
falls within the target bounds.

As discussed in Section A.2, a negative cycle can be reported

𝑂̃ (𝑚) work and 𝑂̃ (𝑛) span. □

6.1 Parallel contraction and
√
𝑘-improvement

We now discuss each of the main steps of

√
𝑘-improvement for the

parallel version. This remainder of this section describes how each

of the steps differ from those given in Section 5. Steps 2 and 3 are

where we apply new algorithms, namely those given in Sections 3

and 4, respectively.

Step 1: strongly connected components. Weuse existing algorithms

as a black box. Notably Blelloch et al. [6] reduce strongly connected

components to single-source reachability (with logarithmic over-

heads), and Jambulapati et al. [18] solve single-source reachability

with work 𝑂̃ (𝑚) and span 𝑛1/2+𝑜 (1) , with high probability. Given

the strongly connected components, constructing the contracted

graph is an easy reduction to sorting, for which there are many

parallel algorithms with 𝑂̃ (𝑚) work and polylogarithmic span [17].

Step 2: find a large chain or independent set of negative vertices.

Section 5 reduces this problem to that of single-source shortest

paths in an acyclic graph with edge weights from {0,−1}. The
observation we make here is that it is only important to find the

exact distances to vertices with small distance. In particular, the

goal is to identify sets 𝑉0,𝑉1,𝑉2, . . . ,𝑉𝐿 , where 𝑉𝑖 is the set of all

vertices with shortest-path distance exactly −𝑖 from the source

vertex. We need only compute these sets up to 𝐿 = ⌈
√
𝑘⌉. For the

remaining vertices, i.e., those at distance strictly less than −𝐿, we
do not need their exact distances.

Section 3 provides our parallel algorithm for this {0,−1} weight
distance-limited shortest-path problem. To facilitate reporting the

chain, our algorithm also reports negative-edge ancestors along the
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shortest paths. Specifically, for each vertex 𝑣 ∈ 𝑉𝑖 with 1 ≤ 𝑖 ≤ 𝐿, we
also identify an ancestor negative edge (𝑥,𝑦) such that (1) 𝑥 ∈ 𝑉𝑖−1,
and (2) there is a path from 𝑦 to 𝑣 in 𝐺 ′≤0. To find a chain, simply

start with any vertex 𝑥 ∈ 𝑉𝐿 ; the last edge on the chain is 𝑥 ’s

negative ancestor (𝑢𝐿, 𝑣𝐿); each preceding edge can be obtained

sequentially/iteratively by taking 𝑢𝑖 ’s negative ancestor Finding

the chain thus takes 𝑂 (𝐿) = 𝑂 (
√
𝑛) work and span.

Step 3: improve the chain or independent set. Improving an inde-

pendent set follows the process outlined in Section 5. This process

is already trivial to parallelize by considering all vertices in parallel.

In the case of a chain, we adapt Goldberg [16]’s reduction to non-

negative SSSP, except that our reduction also works for distance-

limited SSSP. Because Goldberg’s [16] reduction is not distance

limited, we present our reduction and correctness here. Never-

theless, the ideas are the same. Here we present our reduction to

distance-limited SSSP. For completeness, we include a correctness

argument in Appendix A.1. Section 4 provides our solution to the

distance-limited SSSP problem, which is the hard part.

Supposewe have a length-𝐿 chain ⟨(𝑢1, 𝑣1), (𝑢2, 𝑣2), . . . , (𝑢𝐿, 𝑣𝐿)⟩
of negative edges. (For correctness below, it does not matter what

algorithm is used to find a chain.) To improve the chain, construct

a graph 𝐺 as follows. Start with 𝐺 = 𝐺 . (Note we are working

with the contracted version of the full graph 𝐺 , not 𝐺≤0.) For all
existing edges, use the weight function 𝑤̂ (𝑥,𝑦) = max

{
0,𝑤𝑝 (𝑥,𝑦)

}
.

The weights thus reflect the current reweighting of 𝐺 but with all

negative edges rounded up to 0. Add a supersource 𝑠 to 𝐺 , and add

the edges (𝑠, 𝑥) for each vertex 𝑥 ∈ 𝑉 in the graph. For each 𝑣𝑖 in

the chain, set 𝑤̂ (𝑠, 𝑣𝑖 ) = 𝐿− 𝑖 . For all other vertices, set 𝑤̂ (𝑥, 𝑣𝑖 ) = 𝐿.
Observe that all weights 𝑤̂ are, by construction, nonnegative. Next,

for all 𝑥 , compute the shortest path distance from 𝑠 to 𝑥 , denoted

by 𝑑 (𝑥). Note that by construction, all such shortest-path distances

are at most 𝐿, so using a distance-limited SSSP algorithm suffices.

Finally, for each vertex 𝑥 , set 𝑝 ′(𝑥) = 𝑑 (𝑥) − 𝐿.
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A ELIMINATE CHAIN, REPORTING A
NEGATIVE CYCLE, AND MAIN THEOREMS

This section presents some details omitted from Section 6. Specifi-

cally, we prove that the reduction for eliminating a chain is correct,

and we discuss how to report a specific negative-weight cycle as

needed.

A.1 Correctness of eliminate chain
Consider the algorithm for reweighting the chain discussed in

6.1. We first argue that this reweighting is always at least a 0-

improvement. We then argue that, if there are no negative-weight

cycles in the graph, then it also improves all 𝑣𝑖 on the chain, making

it an 𝐿-improvement.

Lemma 18. Consider a graph 𝐺 = (𝑉 , 𝐸) with integer weights

𝑤𝑝 (𝑥,𝑦) ≥ −1 for all edges (𝑥,𝑦) ∈ 𝑉 . Suppose that the above

algorithm for eliminating a chain is applied to the graph on some

chain. Then the resulting weights𝑤𝑝′ (𝑥,𝑦) = 𝑤𝑝 (𝑥,𝑦) +𝑝 ′(𝑥) −𝑝 (𝑦)
satisfy the following:

• (Valid.)𝑤𝑝′ (𝑥,𝑦) are integers, and𝑤𝑝′ (𝑥,𝑦) ≥ −1.
• (Monotonic.)𝑤𝑝′ (𝑥,𝑦) < 0 only if𝑤𝑝 (𝑥,𝑦) < 0.
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Proof. All edge weights in 𝐺 are integers, so all shortest-path

distances are also integers. It follows that 𝑝 ′ is always an integer,

and hence so is𝑤𝑝′ .

Consider any edge (𝑥,𝑦) in𝐺 . By the triangle inequality of SSSP,
we have 𝑑 (𝑦) ≤ 𝑑 (𝑥) + 𝑤̂ (𝑥,𝑦), or 𝑑 (𝑦) − 𝐿 ≤ 𝑑 (𝑥) − 𝐿 + 𝑤̂ (𝑥,𝑦).
Substituting in 𝑝 ′ we get 𝑝 ′(𝑦) ≤ 𝑝 ′(𝑥)+𝑤̂ (𝑥,𝑦), or 𝑝 ′(𝑥)−𝑝 ′(𝑦) ≥
−𝑤̂ (𝑥,𝑦). It follows that the reweighting in 𝐺 satisfies𝑤𝑝′ (𝑥,𝑦) =
𝑤𝑝 (𝑥,𝑦) + 𝑝 ′(𝑥) − 𝑝 ′(𝑦) ≥ 𝑤𝑝 (𝑥,𝑦) − 𝑤̂ (𝑥,𝑦). In the event that

𝑤𝑝 (𝑥,𝑦) ≥ 0, 𝑤̂ (𝑥,𝑦) = 𝑤𝑝 (𝑥,𝑦), and we have 𝑤𝑝′ (𝑥,𝑦) ≥ 0,

satisfying the two conditions for this edge. Otherwise,𝑤𝑝 (𝑥,𝑦) =
−1 (the edge is already negative) and 𝑤̂ (𝑥,𝑦) = 0, now yielding

𝑤𝑝′ (𝑥,𝑦) ≥ −1, which again satisfies the conditions. □

Lemma 19. Consider the algorithm for eliminating a chain applied

to a chain ⟨(𝑢1, 𝑣1), (𝑢2, 𝑣2), . . . , (𝑢𝐿, 𝑣𝐿)⟩ on graph𝐺 = (𝑉 , 𝐸). If the
graph 𝐺 contains no negative-weight cycles, then the reweighting 𝑝 ′

improves all 𝑣𝑖 along the chain, i.e., these vertices have no incoming

negative edges w.r.t.𝑤𝑝′ .

Proof. The only aspect missing from Lemma 18 is to show that

the specific vertices are actually improved.

We first argue that if the distance from 𝑠 to 𝑣𝑖 in𝐺𝑖 is𝑑 (𝑣𝑖 ) < 𝐿−𝑖 ,
then there is a negative-weight cycle in the graph𝐺 . (Note 𝑑 (𝑣𝑖 ) ≤
𝐿 − 𝑖 due to the direct edge from the source, so no negative-weight

cycle in𝐺 implies 𝑑 (𝑣𝑖 ) = 𝐿 − 𝑖 .) Consider a shortest path Γ𝑖 from 𝑠

to 𝑣𝑖 in 𝐺 . This path Γ𝑖 must start with some edge (𝑠, 𝑣 𝑗 ), for 𝑗 > 𝑖 ,
as these are the only edges leaving 𝑠 with weight strictly less than

𝐿− 𝑖 . Let Γ𝑗{𝑖 be the subpath of Γ𝑖 from 𝑣 𝑗 to 𝑣𝑖 . The total length of

Γ𝑖 is thus 𝑤̂ (Γ𝑖 ) = 𝑤̂ (Γ𝑗{𝑖 )+𝑤̂ (𝑠, 𝑣 𝑗 ) = 𝑤̂ (Γ𝑗{𝑖 )+(𝐿− 𝑗). For 𝐿−𝑖 >
𝑤̂ (Γ𝑖 ), we have 𝐿−𝑖−1 ≥ 𝑤̂ (Γ𝑗{𝑖 ) + (𝐿− 𝑗), or 𝑤̂ (Γ𝑗{𝑖 ) ≤ 𝑗 −𝑖−1.
Edge weights only increase in 𝑤̂ , so𝑤𝑝 (Γ𝑗{𝑖 ) ≤ 𝑗−𝑖−1 in𝐺 as well.

Finally, let Γ𝑖{ 𝑗 be any shortest path in 𝐺 from 𝑣𝑖 to 𝑣 𝑗 . Because

these vertices fall along the chain, we have𝑤𝑝 (Γ𝑖{ 𝑗 ) ≤ 𝑖 − 𝑗 . The
cycle formed by linking Γ𝑗{𝑖 with Γ𝑖{ 𝑗 thus has total length at

most ( 𝑗 − 𝑖 − 1) + (𝑖 − 𝑗) ≤ −1.
For the remainder, suppose that 𝑑 (𝑣𝑖 ) = 𝐿 − 𝑖 for all 𝑖 , and

hence 𝑝 ′(𝑣𝑖 ) = −𝑖 . Consider any edge (𝑥, 𝑣𝑖 ). We now argue that

if𝑤𝑝′ (𝑥, 𝑣𝑖 ) < 0, then the graph contains a negative-weight cycle.

It follows that if there are no negative-weight cycles, then all of

𝑣𝑖 ’s incoming edges are reweighted to nonnegative weight. To start,

by Lemma 18 the reweighted edge is only negative if𝑤𝑝′ (𝑥, 𝑣𝑖 ) =
𝑤𝑝 (𝑥, 𝑣𝑖 ) = −1. Thus, we must have 𝑝 ′(𝑥) = 𝑝 ′(𝑣), which means

that 𝑝 ′(𝑥) = 𝐿 − 𝑖 . We can now complete the proof as above: a

shortest path from 𝑠 to 𝑥 in 𝐺 must contain a subpath from some

𝑣 𝑗 to 𝑥 with length at most 𝑗 − 𝑖 . Similarly, the shortest path length

from 𝑣𝑖 to 𝑣 𝑗 in𝐺 is at most 𝑖 − 𝑗 . Because the edge (𝑥, 𝑣𝑖 ) itself has
negative length, the total cycle length is at most −1. □

A.2 Reporting a negative-weight cycle
This section addresses the problem of identifying a specific negative-

weight cycle when our parallel version of Goldberg’s algorithm

(Section 6) terminates early. Because a negative-weight cycle is only

reported once, there is no reason to optimize the work and span

bounds of this algorithm beyond those stated in Theorem 17. We

thus only shoot for 𝑂̃ (𝑚) work and 𝑂̃ (𝑛) span here.

First, suppose a negative-weight cycle is detected in Step 1. That

is, there is a negative-weight edge (𝑥,𝑦) where 𝑥 and 𝑦 are in

the same strongly connected component of 𝐺≤0. Then finding the

cycle entails simply finding any path from 𝑦 to 𝑥 . This can be

achieved by running any parallel version of breadth-first search

having work 𝑂̃ (𝑚) and span 𝑂̃ (𝑛).
Suppose instead that the cycle is detected in Step 3 for the chain

⟨(𝑢1, 𝑣1), (𝑢2, 𝑣2), . . . , (𝑢𝐿, 𝑣𝐿)⟩. Then we need identify the vertices

on a negative-weight cycle. Observe that the proof of Lemma 19

actually gives us a way of identifying a specific cycle constructively.

The main takeaway is that we need to find two shortest paths: (1)

a shortest path to some vertex 𝑥 in 𝐺 , where either 𝑥 = 𝑣𝑖 from

some 𝑣𝑖 along the chain, or (𝑥, 𝑣𝑖 ) is a negative edge in𝐺 , and (2) a

shortest path in 𝐺 ′≤0 from 𝑣𝑖 to some 𝑣 𝑗 with 𝑗 > 𝑖 .
6

Our algorithm for nonnegative distance-limited SSSP (Section 4)

returns a shortest-path tree in the form of predecessor pointers, so

a shortest path in 𝐺 can be recovered in 𝑂 (𝑛) sequential time, and

hence 𝑂 (𝑛) work and span, by tracing backwards.

Our algorithm for producing the chain (Section 3) does not output

a shortest path tree, but recovering such a shortest path in 𝐺 ′≤0 is
also not hard. Observe that by construction for the edges (𝑢𝑖 , 𝑣𝑖 )
on the chain, 1 < 𝑖 ≤ 𝐿: (1) 𝑢𝑖 ∈ 𝑉𝑖−1, (2) 𝑣𝑖−1 ∈ 𝑉𝑖−1, and (3)

there exists a path from 𝑣𝑖−1 to 𝑢𝑖 in 𝐺≤0. The goal is to recover

specific subpaths from 𝑣𝑖−1 to 𝑢𝑖 to fill-in the complete shortest

path. Observe that because both 𝑣𝑖−1, 𝑢𝑖 ∈ 𝑉𝑖−1, it follows that
every shortest path from 𝑣𝑖−1 to 𝑢𝑖 uses only 0-weight edges in the

subgraph of 𝐺 ′≤0 induced by 𝑉𝑖−1. So we need only look for any

path from 𝑣𝑖−1 to 𝑢𝑖 in this induced subgraph, e.g., by using parallel

BFS. Because the 𝑉𝑖 ’s are disjoint, the total work across all 𝐿 BFSes

is at most 𝑂̃ (𝑚). Moreover, all 𝐿 BFSes can be performed in parallel,

keeping the span to 𝑂̃ (𝑛).
To conclude, we note that the paths in 𝐺 ′≤0 and 𝐺 are both

with respect to the contracted graph. Extending these paths to the

original graph is also straightforward. For each component, we just

need to find a path from the endpoint of the entering edge to the

endpoint of the exiting edge. Because the components are disjoint,

we can again apply parallel BFS to each such component in parallel.

6
Specifically, if there is any 𝑣𝑖 with𝑑 (𝑣𝑖 ) < 𝐿−𝑖 in 𝐺̂ , then choose 𝑥 = 𝑣𝑖 . Otherwise,

choose any unimproved incoming edge (𝑥, 𝑣𝑖 ) . Finally, the vertex 𝑣𝑗 is the first hop
on a shortest-path from 𝑠 to 𝑥 in 𝐺̂ .
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