Session 5: Best Paper Session

SPAA *22, July 11-14, 2022, Philadelphia, PA, USA

Parallel Shortest Paths with Negative Edge Weights

Nairen Cao
nairen@ir.cs.georgetown.edu
Georgetown University
Washington D.C., USA

ABSTRACT

This paper presents a parallel version of Goldberg’s algorithm for
the problem of single-source shortest paths with integer (including
negatives) edge weights. Given an input graph with n vertices, m
edges, and integer weights > —N, our algorithms solves the problem
with O(m+nlog N) work and n®/4*°(1) Jog N span, both with high
probability. Our algorithm thus has work similar to Goldberg’s
algorithm while also achieving at least m1/4-0(1) parallelism. To
generate our parallel version of Goldberg’s algorithm, we solve two
specific distance-limited shortest-path problems, both with work

O(m) and span VL - n'/2+0(1) \where L is the distance limit.

CCS CONCEPTS

« Theory of computation — Shortest paths; Parallel algo-
rithms.

KEYWORDS

Parallel algorithm; shortest paths.

ACM Reference Format:

Nairen Cao, Jeremy T. Fineman, and Katina Russell. 2022. Parallel Short-
est Paths with Negative Edge Weights. In Proceedings of the 34th ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA °22), July
11-14, 2022, Philadelphia, PA, USA. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3490148.3538583

1 INTRODUCTION

This paper presents a parallel algorithm for the single-source short-
est paths (SSSP) problem on directed graphs with integer weights
(both positive and negative). Here the input comprises a directed
graph G = (V, E), an integer edge-weight function w : E — Z, and
a source vertex s € V. The goal is to either determine that the graph
contains a negative-weight cycle, or to output for each vertexv € V
the shortest-path distance from s to v.

The classic sequential algorithm for SSSP with general weights
is the Bellman-Ford algorithm [11], which has running time O(nm)
on a graph with n vertices and m edges. To date, this algorithm is
the best known that tolerates (negative) real edge weights.

Throughout the paper, we use n to denote the number of vertices
and m to denote the number of edges in the graph. We also adopt
the soft-O notation O to hide logarithmic factors. This notation is

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SPAA *22, July 11-14, 2022, Philadelphia, PA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9146-7/22/07...$15.00
https://doi.org/10.1145/3490148.3538583

Jeremy T. Fineman
jfineman@cs.georgetown.edu
Georgetown University
Washington D.C., USA

177

Katina Russell
katina.russell@cs.georgetown.edu
Georgetown University
Washington D.C., USA

convenient when focusing on polynomial improvements, especially
in parallel algorithms as then the specific parallel model variant
does not matter—there are simulation results across many parallel
models that incur only logarithmic overheads [17]. Moreover, many
of the black-box results we leverage also use this notation.

For integer edge weights, there are several more efficient se-
quential alternatives to the Bellman-Ford algorithm. This paper
focuses on Goldberg’s algorithm [16], which has sequential running
time O(m+/nlog N), where —N is the most negative weight. Gold-
berg’s algorithm is appealing because it uses a scaling technique
coupled with relatively simple combinatorial algorithms designed
specifically for the shortest-path problem. There are several other
alternatives [2, 10, 22] relying on more sophisticated continuous-
optimization methods. Some of these algorithms do achieve better
bounds depending on graph density, i.e., O((m + n3/2) log W) [22]
and O(m*/3+o(1) log W) [2], where W is the largest absolute value
of edge weights, but the techniques seem even more difficult to
parallelize. All of these algorithms have running times depending
logarithmically on the magnitude of edge weights.

Since the completion of our work on this paper, Bernstein et
al. [3] have very recently discovered an algorithm for SSSP with
integer weights that has O(mlog W) sequential running time. This
algorithm’s running time is so good that it subsumes our main result.
Nevertheless, we believe that the core distance-limited problems
we solve are interesting.

Parallel algorithms. The Bellman-Ford algorithm has the advantage
that it is trivial to parallelize to achieve moderate parallelism. In the
binary-forking model [5], a straightforward parallel version of this
algorithm has work O(mn) and span O(nlogn), where the work
is defined as the total number of instructions executed across all
processors, and the span is the length of the critical path (i.e., the
length of the longest chain of sequential dependencies).! Although
a span of O(nlogn) indicates a high degree of sequential depen-
dency in the algorithm, the work is so large that the algorithm still
exhibits significant parallelism. In particular, parallel Bellman-Ford
has ©(n/logn) parallelism, where the parallelism is defined as
work over span.

The key shortcoming of parallel Bellman-Ford is that it is not
work efficient as compared to any of the more-efficient sequential
alternatives for integer weights [2, 10, 16, 22]. But thus far, there is
no nontrivial parallelization algorithm for any of those.

1.1 Main result

The main problem we set out to solve is to parallelize Goldberg’s
algorithm. We provide an algorithm that solves the integer-weight
(negative and positive) SSSP problem with work O(m+/nlogN)

1Span is commonly called “depth” or “parallel time” in the parallel algorithms literature.

https://doi.org/10.1145/3490148.3538583
https://doi.org/10.1145/3490148.3538583

Session 5: Best Paper Session

and span n%4*°(1) Jog N, both with high probability.? The work of
our algorithm matches Goldberg’s algorithm to within logarithmic
factors. When the edge weights are not too negative, e.g., all at least
—n9W | the work of this algorithm is nearly v/n-times lower than
Bellman-Ford. Much like parallel Bellman-Ford, the algorithm is still
quite sequential. But it also exhibits a moderate level of parallelism;
specifically the parallelism is at least m/n3/4+0(1) > m1/4=0(1) we
thus achieve a polynomial level of parallelism without increasing
the work too much beyond Goldberg’s sequential algorithm [16].
There are fundamental limits to how low a span we can hope to
achieve when parallelizing Goldberg’s algorithm. We provide an
overview of Goldberg’s algorithm in Section 5, but suffice it to say
that the high-level algorithm comprises O(+y/nlog N) inherently
sequential iterations. The only parallelism that can be achieved in
Goldberg’s algorithm is thus within each iteration. But each itera-
tion involves solving directed-graph problems that are at least as
hard as (and possibly much harder than) single-source reachability.
Because the current-best O(m)-work algorithm for single-source
reachability has span n1/2+0(1) 18], we cannot hope to achieve a
span better than n*°()) for a low-work parallel version of Gold-
berg’s algorithm. Our solution with n° [4+o(1) span falls a bit short of
this optimistic target, but this is not surprising as the core problems
do indeed seem significantly harder than single-source reachability.

1.2 Background on other SSSP problems

Most classic SSSP problems that can be solved sequentially in O(m)
time are still effectively open problems in parallel algorithms. No-
tably, consider the problem of SSSP with nonnegative weights. This
problem can be solved sequentially in O(m) time using Dijkstra’s
algorithm [11], but there is yet no parallel algorithm that achieves
both O(m) work and span sublinear in n. Thus for sparse graphs,
the only nearly work-efficient solutions are effectively sequential.
There are several parallel solutions for this problem, but they all
tradeoff higher work for lower span, for example: (1) parallel ver-
sions [7, 12] of Dijkstra’s algorithm have O(m) work and O(n)
span, which are effectively sequential for sparse graphs (2) solu-
tions that involve repeated squaring of the distance matrix [17]
have O(n®) work and polylogarithmic span, and (3) Klein and Sub-
ramanian’s algorithm [19] for integer weights from {0,1,... W}
has é(m\/ﬁlog W) work and é(\/ﬁlog W) span. In fact, even for
the simplest case of unweighted and undirected graphs, we are not
aware of any solution with O(m) work and span sublinear in n.

In light of this difficulty, most progress on parallel SSSP with non-
negative weights is with respect to relaxed versions of the problem.
Most notably, there has been significant progress on approximate
SSSP (ASSSP), where the goal is to output for each vertex a dis-
tance estimate that falls between the true shortest-path distance
d(s,v) and (1 +€)d(s,v). (Note the ASSSP problem always refers to
nonnegative weights.) For directed graphs, the ASSSP problem had
remained open until recently when Cao et al. [8] gave an algorithm
that has O(m) work and n'/2**(1) span_ with high probability, as-
suming for conciseness that € is a constant and the maximum ratio
of strictly positive edge weights is n©W For undirected graphs, the
approximate problem has a much longer history [1, 9, 13, 14, 20, 21],

“The little-o terms throughout this paper are all O(1/loglogn). These terms are
inhereted from several parallel subroutines [8, 18] that we apply as a black box.

178

SPAA *22, July 11-14, 2022, Philadelphia, PA, USA

and the best solutions [1, 20] have O(m) work and polylogarithmic
span when subject to the same assumptions on € and weights.

An alternate natural relaxation of the problem is to consider
distance-limited SSSP. Here the goal is to output the exact shortest-
path distance only to those vertices that are not too far from the
source. The only interesting distance-limited variant we are aware
of is for unweighted graphs, where the problem can be solved by
parallel breadth-first search (BFS). In particular, it is straightfor-
ward to parallelize breadth-first search to achieve O(m) work and
O(Llogn) span and to correctly output the exact distances to all
vertices with distance at most L from the source.

1.3 Our technical contributations

This paper provides parallel algorithms for two distance-limited
SSSP problems. These distance-limited solutions represent the main
technical contribution of the paper, and we solve the main problem
of integer SSSP with negative weights by reducing to these distance-
limited problems with distance limit L = O(~y/n).

Distance-limited SSSP with nonnegative integer weights. For this vari-
ant of the problem, the edge weights are all nonnegative integers,
but the problem is still nontrivial even if all weights are from {0, 1}.
The goal is to return the correct shortest-path distance to all vertices
having shortest-path distance < L from the source, where L is part
of the input to the problem. Moreover, the algorithm should also
identify which vertices have shortest-path distance strictly more
than L from the source.

Section 4 presents our parallel algorithm for distance-limited
SSSP with nonnegative integer weights. We solve the problem
assuming L = O(n), as otherwise parallel Dijkstra’s [7, 12] is more
efficient. Our algorithm has O(m) work and VL - nl/2+o(1) span,
with high probability. When L = O(+/n), the span is thus n3/4+0(1).

We note that the main difficulty in this problem arises from the
presence of 0-weight edges mixed with positive weights, as paths
through 0-weight edges do not add to the distance. Without the 0s,
it is not too hard to solve the problem even more efficiently using a
generalization of parallel BFS.

Distance-limited DAG SSSP with weights from {0, —1}. For this vari-
ant of the problem, the input graph is a directed acyclic graph
(DAG), and all weights are taken from {0, —1}. The goal is to return
the correct shortest-path distance to all vertices having distance
> —L from the source, where L is specified in the input. Moreover,
the algorithm should also identify which vertices have shortest-
path distance strictly less than —L from the source. (An equivalent
formulation would be the problem of single-source longest paths
on DAGs with {0, 1} weights.)

Section 3 presents our parallel algorithm for this DAG SSSP prob-
lem. Our algorithm has O(m) work and VL - nl/2+o(1) span, with
high probability. For L = O(+/n), the span simplifies to n>/4+0(1)

1.4 Outline

Section 3 gives our parallel algorithm for distance-limited DAG
SSSP, and Section 4 gives our solution for distance-limited SSSP
with nonnegative integer weights. Section 5 gives an overview
of Goldberg’s algorithm, and Section 6 gives an overview of our
parallel version. Section 6 also explains how to reduce the core

Session 5: Best Paper Session

problem solved by Goldberg’s algorithm, namely finding a “Vk-
improvement”, to the two distance-limited SSSP problems discussed
above.

We emphasize that the bulk of the technical contribution of
this work appears in Sections 3 and 4, which are described as self-
contained problems in their respective sections. Sections 5 and
Sections 6 are only necessary if the reader wishes to understand
how these subroutines suffice to parallelize Goldberg’s algorithm.

2 DEFINITIONS AND PRELIMINARIES

The soft-O notation is defined as follows. We say that a func-
tion g(n) = (5(f(n)) if there exists a constant k such that g(n) =
O(f(n) logk f(n)). When we say that an algorithm achieves some
performance O(f(n)) with high probability, we mean the follow-
ing: for any particular choice of constant ¢ > 0, with probability at
least 1 — 1/n° the algorithm achieves performance O(f(n)).

Consider a directed graph G = (V, E). For any subset V/ C V of
vertices, we use G[V’] to denote the vertex-induced subgraph of
G. A path is a sequence of vertices joined by edges; we sometimes
refer to the path by the sequence of vertices, and sometimes by the
edges, depending on what is more convenient. In general, paths
need not be simple; vertices may repeat. A cycle is a path that
starts and ends at the same vertex and has at least one edge. A
directed graph with no cycles is a directed acyclic graph (DAG).
We say that a node u is an ancestor of v, and conversely that v is a
descendant of u, if there is a directed path from u to v in G. We also
say that u can reach v. Every node is an ancestor and descendant
of itself. We use Anc(v) and Des(v) to denote the set of all nodes
that are ancestors or descendants, respectively, of v.

For the following, consider a weighted directed graph G = (V, E)
with a function w : E — Z providing edge weights. For a path T =
(vo, 1, . . .,0k), the length of T is given by w(T') = Zle w(0i-1,0;),
i.e., the sum of the weights of edges in the path. If " is a cycle (i.e.,
v = vg) and w(T') < 0, then we call T a negative-weight cycle.
For a pair of nodes u,v € V, the shortest-path distance from u
to v is the minimum length over all paths that start at u and end
at v. We use disty, (u, v) to denote this shortest-path distance with
respect to the weight function w. When the weight function w is
clear from context, we simply write dist(u,v). If there is no u-to-v
path, then we define dist(u, v) = co. Similarly, if there is no shortest
path (which only occurs if there is a negative-weight cycle), then
dist(u,v) = —co.

Key parallel subroutines

We use solutions to the following two problems as a black box. We
define the multisource reachability problem as follows. The in-
put includes a directed graph G = (V,E) and a set S C V of source
vertices. The goal is to compute for each vertex v € V just one
source vertex that can reach it, or to conclude that none can. That
is, output a function 7 : V.— (VU{L}) such that #(v) € SNAnc(v)
if S N Anc(v) is nonempty, and 7(v) = L otherwise. We empha-
size that v need only know one source that can reach it, not all
of them. We note that all of the parallel “shortcutting”-based al-
gorithms for single-source reachability, which is the case that
|S| = 1, can trivially be extended to solve this version of the multi-
source problem. This is because these algorithms employ parallel

179

SPAA *22, July 11-14, 2022, Philadelphia, PA, USA

BFS, which can be augmented to send information (e.g., a relevant
source) along edges as vertices are discovered. The current best
solution for shortcut-based single-source reachability, and hence
also multisource reachability, is Jambulapati et als [18] algorithm
having O(m) work and nl/2+o(1) span, with high probability.

The approximate single-source shortest paths (ASSSP) prob-
lem takes as input a directed graph G = (V, E) and nonnegative
edge-weight function w, a source vertex s, and an approximation
parameter € > 0. A distance overestimate is a function d’ such
that d’(v) > dist(s,v). The ASSSP problem is to compute a distance
overestimate such that d’(v) < (1 + €)dist(s,v) for all v. Cao et
al. [8] provide an algorithm that, for the case of constant ¢ and
integer weights smaller than n9(that we apply in this paper,
solves this problem with O(m) work and n'/2+°(1) span, with high
probability. Note that the success of the algorithm is also with
high probability; the output always satisfies d’(v) > dist(s,v), but
with small failure probability (at most 1/ n®W) it is possible that
d’(v) £ (1+¢€)dist(s,0).

3 SHORTEST PATHS ON ACYCLIC GRAPHS
WITH {0, -1} EDGE WEIGHTS

This section gives our algorithm for distance-limited DAG shortest
paths. Specifically, given a directed acyclic graph G = (V, E) with
edge weights in {0, —1}, source node s € V, and distance limit L, the
algorithm computes shortest-path distances to nodes with distance
at most L from s. In particular, it outputs a distance value d(v)
where d(v) = dist(s,v) if d(v) > —L, and d(v) = —oco otherwise. In
addition, we also output for each node v a negative edge parent(v) =
(x, y) that satisfies the following, if one exists: (1) w(x,y) = -1, (2)
dist(s, x) = dist(s,v) + 1, and (3) there is a path from y to v.

We assume throughout this section that all vertices in the graph
are reachable from s, which is without loss of generality as reacha-
bility can be solved more efficiently than this problem [18].

Definitions. We call an edge (x, y) a negative ancestor edge of v if
the following hold: (1) w(x,y) < 0, and (2) there is a directed path
from y to v. If (x, y) is a negative ancestor of v, then we also call x
negative originator for v.

3.1 Overview

At a high level, the algorithm is a peeling algorithm proceeding in
rounds 0, 1, ..., L. Round i identifies the set of vertices with distance
exactly —i and removes them from the graph. The challenge is to
identify the set of nodes to peel by an efficient parallel algorithm.
First, consider a natural inefficient algorithm: (1) Identify the set
S C V of negative vertices, i.e., those with incoming negative edges.
(2) Run multisource reachability with sources S, thereby identifying
all vertices having a negative ancestor. (3) All vertices not reached
in the reachability step have distance —i; remove them, and all of
their incident edges, from the graph. An indirect approach like this
seems necessary because the weights are negative; the problem is
equivalent to finding longest paths in DAGs with weights {0, 1}.
The main problem with this algorithm is that it is not efficient,
as each execution of multisource reachability has O(m) work and
nl/2+o(1) span [18], and we cannot afford to multiply these by L.

Session 5: Best Paper Session

Our algorithm follows the same peeling approach, but we do not
recompute reachability on the entire graph in each round. Instead,
for each vertex v we maintain label(v), which corresponds to a
negative ancestor edge (u, x) if at least one exists. While u remains
in the graph, v cannot be peeled. We thus do not include v in any
reachability steps until u disappears. Eventually, u is peeled from
the graph, rendering label(v) invalid. Our “propagate” algorithm
applies multisource reachability to the subgraph of such invalid
vertices and finds new negative ancestors, restoring the invariant.

We now give an overview of the analysis. Imagine for the sake
of argument that v always finds a negative ancestor uniformly at
random. Then it is fairly easy to see that v’s label changes O(log n)
times. (Roughly a constant fraction of the negative ancestors need
to be peeled before there is a constant probability that the sampled
ancestor is one of the peeled ones.) Each vertex thus belongs to
only O(log n) subgraphs on which reachability/propagation is per-
formed, keeping the total work down to O(m). Moreover, because
n1/2+0(1) is concave, the worst-case for the span is that each of the
L calls to reachability operate on graphs with O(n/L) vertices. We
thus get span L - (n/L)}/2t0(1) = \/Lpl/2+o(1),

Priorities. We do not know how to maintain a uniformly random
negative ancestor efficiently, but we achieve roughly the effect. We
assign each vertex an independently random priority chosen from
a geometric distribution with a rounded tail. Specifically, for 1 <
i < [log, n], we set priority(v) = i with probability 1/2; and with
the remaining probability 1/ 2llogzn] e set priority(v) = [log, n].
Priorities never change throughout the execution. For an edge (x, y),
we use priority(x, y) as a shorthand for priority(x). To approximate
uniformly random ancestors, our algorithm ensures that nodes are
labeled by a negative ancestor of maximum priority.

3.2 Algorithm details

Our algorithm for computing {0, —1} DAG shortest paths is shown
in Algorithm 1. Our style of pseudocode here reflects higher-level
directives, not parallel code. With the exception of the black-box
reachability subroutine, it is fairly straightforward and uninterest-
ing to parallelize each of the steps. We thus defer a slightly more
detailed discussion to Section 3.5.

As noted in the overview, the algorithm proceeds in rounds, and
these rounds are ordered sequentially. In each round i, we identify
the frontier F of nodes at distance —i and logically peel them from
the graph. Note that we do not actually remove the nodes from
the graph®; instead, we mark these nodes as finalized. We call the
nodes that are not finalized live. Initially, all nodes are live.

We initialize a distance d(v) = —oo for all nodes and update this
value when the vertex is eventually peeled. Similarly, we maintain
a negative ancestor edge parent(v) that is only guaranteed to be a
correct parent edge when the vertex is finalized.

The crux of the algorithm is to maintain a negative ancestor edge
label(v) for each vertex v. Initially, all labels are invalid, indicated
by L. Labels are restored by running PROPAGATE, which occurs first
in Line 5. We shall prove that when PROPAGATE returns, a node v
has label(v) = L only if all of v’s negative originators have been
finalized. The set of nodes with no label even after PROPAGATE

3This is primarily to avoid having to discuss how to update the graph in parallel.

180

SPAA *22, July 11-14, 2022, Philadelphia, PA, USA

returns is denoted by F. We also maintain a particular inversion of
these labels: namely, SentLabel(u) is the set of all vertices that have
any edge (u, *) leaving u as their label. This SentLabel facilitates
invalidating labels when u is finalized/peeled from the graph.

In each round of the algorithm (Lines 7-14), the current frontier
F of nodes to peel is processed as follows. First, we identify the set
of nodes R that have a label including one of the peeled nodes, and
we invalidate their labels. Then we set the distance to all nodes in F
and finalize them, which logically peels them from the graph. Next,
we call propagate on the nodes R (i.e., those with invalid label) to
restore their labels. Finally, we let F C R be the next frontier of
nodes, i.e., those with no label after calling propagate.

Propagate. The PROPAGATE(G, V') function, see Algorithm 2,
takes as input the graph G = (V, E) and a subset V' C V of vertices.
As called, V” always corresponds to the set of vertices with invalid
label. The goal is to label the nodes in V’ with one of their highest-
priority negative ancestor edges, or L if none exists.

PROPAGATE considers each of the priorities in turn, from high
to low. Each iterations starts by initializing the vertices in V' by
inheriting any “nearby” labels. Specifically, we define the function
GETNEARBYLABEL(G, V', i,0) to return an edge (or L) as follows:

e If v has at least one incoming edge (u,v) € E with: (1) u is
live, (2) w(u,v) = —1, and (3) priority(u) = i, then choose
any one such u and return the edge (u,v).

o If v has at least one incoming edge (u,v) € E with: (1) u
is live, (2) u ¢ V', i.e,, it already has a valid label, and (3)
priority(label(u)) = i, then choose any one such u and return
the edge indicated by label(u).

o If neither of the above two cases applies, return L

After initializing the nearby labels for nodes in V’, those nodes
in V’ with labels are the set of sources S. We next run multisource
reachability on the induced subgraph G’ = G[V’] with sources S.
When multisource reachability returns, for each node inov € V’,
7(v) indicates a node s € S that can reach v, if one exists. If 7(v) #
1, then we simply update v by inheriting 7 (v)’s label information.

Finally, each iteration ends by removing all newly labeled nodes
from V’. In this way, V"’ reflects the nodes that are still unlabeled.

After all iterations complete, PROPAGATE updates the SentLabel
of all nodes as appropriate. In particular, SentLabel(u) should be
updated to also include all newly label nodes that have a label
(u, *). Note that this update is applied across the entire graph as
appropriate, not just those nodes in V.

3.3 Correctness

This section proves the correctness of our peeling algorithm. We
start by focusing on PROPAGATE. For a live node v, we use NA(v)
to denote the set of live negative ancestors of v. That is

NA(v) ={(x,y) € E | xis live, w(x,y) = —1,and y € Anc(v)}.

We use maxPri(v) = max(x,y)eNA(o) Priority(x,y) to denote the
maximum priority over all of v’s live negative ancestors. For com-
pleteness, we define maxPri(v) = 0 if NA(v) = 0. Finally, we say
that a live node v is correctly labeled if one of the applies:

e NA(v) = 0 and label(v) = L, or
o label(v) € NA(v) and priority(label(v)) = maxPri(v).

Session 5: Best Paper Session

Algorithm 1 Peeling Algorithm

Input: Graph G = (V, E), whose edge weights w : E — {0, -1}, and
a source nodes € V.

Output: For all v, d(v) is the shortest path distance from s to v
parent(v) = (x,y) is a negative ancestor edge with d(x) = d(v) + 1.

1: foreachv € V do > Initialization

2: d(v) — —00
3 label(v) « L; parent(v) « L; SentLabel(v) = {}
4 assign a (geometric) random priority(v) € {1,...,[log, n]}

5. PROPAGATE(G, V)

6: let F={u eV | label(u) = L}
7: fori=0to L do

8 let R = U, cF SentLabel(u)
9 foreach v € Rdo

10: label(v) «— L
11 foreach u € F do
12: d(u) = —i ; mark the node as finalized
13: PrROPAGATE(G, R)

14: let F ={u € R| label(u) = L}

Algorithm 2 Propagate Algorithm
1: function PRoPAGATE(G = (V,E),V’ C V)
2 fori= [logz rf| downto 1 do
3 foreach v € V' do
4: e <« GETNEARBYLABEL(G, V', i,0)
5
6

label(v) « e
if e # L then parent(v) «— e

7 let S={v e V'] label(v) # L}

8: G G[V’]

9 run multisource reachability on G’ with sources S
and let & be the output

10: for each v € V' do

11: if 7(v) # L then

12: label(v) « label(7(v))

13: parent(v) « label(v)

14: remove all nodes with label(v) # L from V’

15: update SentLabel sets to include new label assignments

Our first goal is to show that when PROPAGATE, all live nodes are
correctly labeled.

LeEMMA 1. Consider a call to PRoPAGATE(G = (V,E),V’), where
V’ C V is exactly the subset of live nodes in G that have label 1. If
all live nodes in V\V’ are correctly labeled before the call, then all
live nodes in V' are correctly labeled after the call.

Proor. Because no labels are updated for any nodes outside of
V’, establishing the correct labeling of V” is sufficient. The proof is
by induction over the iterations of the main loop in PROPAGATE. The
iterations are numbered in decreasing order, from |-log2 n] downto 1.
Our inductive claim is that after iteration i: (1) all nodes outside V'
are correctly labeled, and (2) all nodes in V' have maxPri(v) < i.
The remainder of the proof focuses on proving the inductive step.
Specifically, we show that all nodes with maxPri(v) = i become

181

SPAA *22, July 11-14, 2022, Philadelphia, PA, USA

correctly labeled, and also that those nodes with maxPri(v) < i do
not get a label incorrectly.

Consider iteration i and any live node v € V’ having maxPri(v) <
i. Consider also any ancestor z € Anc(v) N V’. We first claim that
if z gains a label during GETNEARBYLABEL, then that label would
be a valid label for v. To prove the claim, we observe that the only
labels considered during this iteration have priority i by construc-
tion. Moreover, by transitivity of reachability, NA(z) € NA(v)
and hence maxPri(v) > maxPri(z). Therefore, if z gains a label,
that label would be a correct label for v. It follows that whenever
m(v) # L after running multisource reachability on G[V’], the
label label((v)) is always a correct label for v.

We next claim that if maxPri(v) = i, for v € V’, then there exists
at least one node z € V' such that: (1) z becomes labeled during
GETNEARBYLABEL, and (2) there is a path from z to v in G[V’]. If
this claim holds, we have that whenever maxPri(v) = i, n(v) # L.
Coupled with the above claim, v becomes correctly labeled.

To prove the claim, consider any node v € V’ with maxPri(v) = i.
By definition, there exists at least one edge (x,y) € NA(v) with
priority(x,y) = i. Consider any path I' from y to v in G. If the
entire path is in V’, then T is a path in G[V’]. Moreover, y has
an incident negative edge with appropriate priority, so z = y is
indeed labeled during GETNEARBYLABEL. Otherwise, let (r, z) be
the latest edge on the path with r ¢ V' and z € V’. Then the
subpath of T from z to v is a path in G[V’]. Moreover, r is outside
V’ so it is correctly labeled by inductive assumption. We have
i = priority(x,y) < maxPri(r) < maxPri(v) = i, so r is already
labeled with priority exactly i. Thus, z is also assigned a label
during GETNEARBYLABEL. O

We next turn to correctness of the higher-level algorithm. The
following lemma essentially indicates that if finalizing nodes in
order of distances, then all labels involving farther-away (more
negative distance) nodes are still valid.

LEmMMA 2. Consider a DAG G = (V,E) with edge weights from
{0, -1} and source vertex s € V that can reach all vertices.

Consider the following generic process. A nodev is initially correctly
labeled with label(v) = (x,y). Let F C V be any subset of nodes nearer
to the source than x, i.e., for all f € F, dist(s, f) > dist(s, x). Suppose
that the nodes in F are finalized (or removed from the graph). Then v
is still correctly labeled.

Proor. We first observe that for all nodes z € Des(y), we have
dist(s,z) < dist(s,x) + w(x,y) + dist(y,z) < dist(s, x), because
distances are all nonpositive and finite. Thus, no descendants of y
are part of F, and in particular the path from y to v remains in the
graph. Because no nodes higher priority nodes or paths are created,
it follows that v is still correctly labeled. O

The next lemma indicates unlabeled nodes can be finalized.

LEMMA 3. Consider a DAG G = (V,E) with edge weights from
{0, —1} and source vertexs € V that can reach all vertices. Suppose all
the nodes, and only the nodes, with distance > —i from the source have
been finalized. For any live node v, if NA(v) = 0 then dist(s,v) = —i.

Proor. By assumption, dist(s,v) < —1. Suppose for the sake of
contraction that dist(s,v) < —i. Then there exists some shortest

Session 5: Best Paper Session

path T from s to v. Let (x, y) be the last negative edge on the path.
Then dist(s,v) = dist(s,y) = dist(s,x) — 1, or —i > dist(s,0) =
dist(s,x) — 1, or —i > dist(s,x). Therefore, neither x nor y has
not been finalized, and hence (x,y) € NA(v). This contradicts the
assumption that NA(v) = 0. O

Finally, we prove that the output of the algorithm is correct.

THEOREM 4. Consider a directed acyclic graph G = (V, E) with
edge weights from {0, —1}, let s € V be the source node, and suppose
that all nodes in the graph are reachable from s. Then Algorithm 1
correctly solves the distance-limited DAG SSSP problem.

More precisely, on completion, for allv € V we have:

e d(v) = dist(s,v) if dist(s,v) = —L, or d(v) = —oo otherwise.
o parent(v) = (x,y) € NA(v) and dist(x) = dist(v) + 1.

Proor. The proofis by induction over rounds of the Algorithm 1.
The inductive claim is that after round i, all nodes and only nodes
with distance at least —i have been finalized. Moreover, their dis-
tance is marked correctly. In addition, we include in the claim that
F is exactly the set of live nodes that currently have no label.

Now the inductive step. Consider the start of iteration i. By
Lemma 3, all nodes in F have distance equal to —i. By Lemma 2, the
labels are still correct for all nodes not in R. Thus, by Lemma 1, all
live nodes are correctly labeled when PROPAGATE returns. Finally,
F is restored to be the live nodes with no label.

Finally, we argue that the parent references are correct. To do
so, we simply observe that the parent only changes when the label
changes. Thus, parent(v) = (x,y) corresponds to the final label
that v had before arriving at a label of L. Since v is finalized in
round —dist(s,v), v must have lost its label in the preceding round.
In other words, dist(s, x) = dist(s,0) + 1. O

3.4 Key performance claims

This section gives the core components of the performance analysis,
specifically bounding the total work and span of all multisource
reachability invocations. The other straightforward details of the
parallel implementation are shown next in Section 3.5.

Our main goal is to show that for each vertex v, v’s label does not
change too many times. We do so by first arguing v does not have
too many negative originators with priority equal to maxPri(v).

LEmMMA 5. Consider the state of the graph at the start of a round i,
i.e., when all nodes with distance > —i have already been finalized.
Let v be any live vertex. With high probability, v has at most O(log n)
negative originators that have priority equal to maxPri(v).

Proor. We shall consider a specific priority and argue that some,
but not too many, negative originators of v have at least that priority.
Specifically, let S be the total number of live negative originators
of v. Consider a priority x = [lg f — lgln(n) — 1g(c)], for constant
¢ > 1. (The © absorbs the rounding of x to an integer.) Observe that
c2*Inn < f < 2 Inn.

We first claim that, with failure probability at most 1/n¢, v has
at least one negative originator with priority > x. For a particular
negative originator u, we have probability 1/2¥~! that priority(u) >
x. There are > ¢2* In(n) negative originators, so the probability
that none of them has priority > x is at most (1 — 1/2¥"1)f <
((1- 1/2x—1)2x‘1c1nn < (1/e)clnn =1/n".

182

SPAA *22, July 11-14, 2022, Philadelphia, PA, USA

We next claim that not too many negative originators have prior-
ity > x. Each negative originator has an independent priority, and
the expected number of originators having at least this priority is
B/2X71 < 4clnn. We can thus apply a Chernoff-Hoeffding bound
to conclude that with probability at most 1/n¢, no more than say
8cIn n negative originators have priority > x. O

CoROLLARY 6. Consider a particular node v across the execution of
the algorithm, and assume that the algorithm operates correctly. Then
v’s label changes at most O(log® n) times across the entire execution,
with high probability.

Proor. Lemma 5 states that with high probability, at the start
of each round, v has at most O(logn) negative originators with
priority equal to maxPri(v). Because which nodes are peeled is
deterministic, there are not many events to take a union bound
over. In particular, the probability of even one failure for any vertex
across the execution is at most n(L + 1)/n®(©).

For the remainder, assume no failures. Then Lemma 5 holds
specifically each time maxPri(v) changes. Since there are only
O(log n) nodes with that priority, v can only get subsequent labels
with the same priority O(log n) times. Multiplying this O(log n) by
the number of different priorities completes the proof. O

We are now ready to bound the total cost of the calls to multi-
source reachability, which dominates the costs of the algorithm.

LEmMA 7. Consider the total across all invocations of multisource
reachability across the execution of the algorithm. The total cost of
these calls is O(m) work and VL - n'/2+0(D) yith high probability.

Proor. From Corollary 6, each node’s label changes at most
O(log? n) times, with high probability. This also bounds the num-
ber of times each node is passed to PROPAGATE. During each call,
the node and its incident edges may be built into O(log n) induced
subgraphs, one for each priority. Adding up across all edges and
calls, we get a total induced subgraph size of O(n log® n) vertices
and O(mlog® n) edges. Because the work of multisource reachabil-
ity [18] is nearly linear, the total across all calls is also O(m) no
matter how the edges are divided across calls. Because the span is
concave, the worst case (according to Jensen’s inequality) is that all
calls are on graphs of size O(nlog® n/Llog n) which yields a total
span of Llogn - (nlog® n/Llogn)'/2+0(1) < \/[pl/2+e(1), m|

THEOREM 8. For a DAG G containing integer edge weights of
{0, —1} and a source node s, there is a parallel algorithm that outputs
for each node v € V, d(v) = dist(s,v) if dist(s,v) > —L, and —co
otherwise. The algorithm runs in O(m) work and n'/2*0() 1/2 spap,

Proor. Proof follows from Lemmas 3, 7, and 9, where the latter
(in Section 3.5) includes of the remaining parallel steps. O

3.5 Remaining Details of the Peeling Algorithm

This section discusses some of the more straightforward steps for
making the algorithm parallel. Our main claim is the following
lemma. Proof appears at the end of the section.

LEMMA 9. Algorithm 1 (PEELINGALGORITHM) runs in O(m) work
and nt/#oW /2 gpan.

Session 5: Best Paper Session

Before showing the proof, we will show a data structure that we
will use.

Parallel sets. There exist implementations of parallel sets that
can perform merge in O(mlog(n/m + 1)) work and O(log mlog n)
span for sets of size m and n where n > m [4]. The parallel set
can also enumerate all elements in a size n set in O(n) work and
O(log n) span [4].

Parallel Implementation. Now that we have parallel sets we can
show the parallel implementation of the peeling algorithm. We will
first discuss parallel propagate and then the main loop of the peeling
algorithm. The PROPAGATE(G, R) function runs on a subgraph G’
which changes during each iteration of the algorithm. We will show
how to update the graph in parallel and other steps that are non-
trivial. A key point is that we can afford to look at each node in
the subgraph G’, since as we showed in Corollary 6 that in each
node is added to O(log? n) subgraphs across the whole algorithm.
However, we cannot afford to look at the original graph G. Also,
for a node v in G’ we can afford v’s edges in G, and not just the
edges in G’. This makes building the induced subgraph trivial once
we are given the nodes.

In each iteration of propagate we must update the graph by
removing any nodes that get a label. Since we have O(log n) priori-
ties, we can afford to sort all V/ nodes in each iteration. By sorting
we can group the nodes together that are not removed from G’ in
previous iterations. The cost of the sort is O(V’) work and O(1)
span.

We implement the SentLabel(u) sets as parallel sets. To update
the SentLabel(u) sets (Line 15 in Algorithm 2), first sort all the
nodes v € V' by their label, i.e. sort edges (u,v) by ordering
on u. This groups all the nodes together that will be added to
SentLabel(u). To add these nodes to SentLabel(u), we merge these
nodes with the current set SentLabel(u). In total, the cost is O(V”)
work and O(1) span to update SentLabel(u) for all the nodes in
each round of PROPAGATE(G, V). It is fairly straightforward to
implement the rest of the steps in parallel for PROPAGATE(G, V).

Before we return to the loop in the main algorithm, we sort the
nodes by label, which groups together all the nodes that have no
label, and thus are finalized. This has the cost of parallel sort for the
number of nodes in propagate. When we return to the main loop,
we need to compute the next set of nodes to run propagate on. To
implement this step, in parallel each finalized node u determines
the number of nodes in SentLabel(u). We can then run parallel
prefix sums to allocate space in an array for the nodes in R. Then
the nodes can be added to the new array in parallel, which is passed
to the next call to propagate. The work and span of these steps
is dominated by the cost of sorting the number of elements in
propagate at each round.

Proof of Lemma 9. The initialization steps can be performed
in O(n) work and O(1) span. Previously we discussed how the
SentLabel sets can be maintained in O(|V’]) work and O(1) span.
By Lemma 7, the cost of all the runs of multisource reachability
is O(m) and n!/2+o(D1/2 span. Based on Corollary 6, the total
number of nodes in all calls to PROPAGATE(G, V) is O(n). We also
showed that we can update the nodes in R, and perform the updates
to the graph G’ in total work O(n), and O(1) span.

183

SPAA *22, July 11-14, 2022, Philadelphia, PA, USA

Combining everything together, the algorithm runs in O(m)
work and n!/2+0() [1/2 gpan

4 DISTANCE-LIMITED SSSP WITH
NONNEGATIVE INTEGER WEIGHTS

Given a directed graph G = (V, E) with source s € V, nonnega-
tive integer edge weights, and distance L < n, the problem is to
return the shortest-path distances d(v) = dist(s,v) for all v with
dist(s,v) < L, and d(v) = co otherwise. We also want to report
a shortest-paths tree to recover shortest paths, which can be ac-
complished through a postprocessing step discussed in Section
4.2.

Algorithm overview. Similar to the peeling algorithm in the pre-
vious section, this algorithm will solve shortest paths in order by
distance and peel off solved nodes. Once a node is finalized, its
distance is set and not considered for the rest of the algorithm. The
algorithm will use a (1 + €)-approximate shortest paths algorithm
to guess the distances of nodes in the graph. Using the distance
estimate, each unfinalized node v is assigned to a 2!-sized interval
for some integer i. As long as the ASSSP never returns an incorrect
answer, the true shortest-path distance to v always falls within its
assigned interval. Section 4.2 discusses how to cope with the possi-
bility that the ASSSP algorithm fails to achieve the approximation.
After each layer of the peeling, the algorithm refines the distance
intervals, by again running ASSSP. Since the shortest paths have
gotten shorter, the approximation becomes better, and so the node
can be assigned to an interval of smaller length. Once the interval
size is a small enough constant, the distance can be solved directly.

It is too expensive to refine all distance estimates in each round,
so the algorithm must choose when to include each node.

4.1 Algorithm Description

Let D be the smallest power of 2 strictly greater than L. The al-
gorithm operates on intervals [d, d + 2°) of length 2, for 0 < i <
lg(2D), where the intervals are aligned to multiples of 271 e,
d = k2'~1, Unfininished nodes are assigned to intervals that (bar-
ring ASSSP failures) contain their true distance, and they are moved
to smaller intervals as the algorithm progresses. Initially the algo-
rithm runs 2-approximate ASSSP; all nodes with estimate > 2D
(and hence true distance > D) are finalized to a distance of oo; all
other nodes are assigned to [0, 2D).

The rest of the algorithm proceeds in rounds 0, 1, .. ., D, where
nodes with distance d are finalized during round d. In each round,
the value d encroaches (reaches the left side) of some intervals. For
each of these intervals I = [d,d + 21), from largest to smallest, the
goal is to “refine” the distance estimates of all nodes assigned to I
to smaller intervals or finalize nodes with size-1 intervals.

We compute the shortest-path tree as straightforward a postpro-
cessing step in Section 4.2.

Refine. The function REFINE(d, 2°) takes as input the interval
[d,d + 2%). It builds a graph G’ on nodes whose interval overlaps
[d,d + 2%). More details of building the graph are discussed next.
The key idea is that since all unfinalized nodes have distance d,
we can shift distances downward by d; i.e., distances of d in G are
translated to distances of 0 in G’; roughly speaking, this allows us to

Session 5: Best Paper Session

apply an algorithm with multiplicative approximation to improve
the additive approximation. The next step is to run ASSSP on G’,
which improves the distance estimates for those nodes assigned to
[0,d + 2). Those nodes are reassigned to one of the 3 overlapping
subintervals of size 2°~1, as shown in Lines 14-20 of Algorithm 3.

Build Graph G’. Add each node to the V’ who’s interval overlaps
[d,d + 2%). Create graph G’ = G[V’]. Add a source node s’ to V".
For each node v with d(v) = +c0, and each incoming edge (u,v),
where d(u) is not infinity, add an edge from s’ to v with weight
d(u) +w(u,0) —d.

4.2 Verification and Shortest Paths tree

Verification. The algorithm for parallel approximate shortest
paths works with high probability, meaning that it never gives an
underestimate of the shortest paths, but may fail to achieve the (1+
€) approximation. In this section, we will show how to verify that
our algorithm is correct. After running the algorithm, first contract
cycles 0-weight edges, and then look at each nodes incoming edges.
For each node v € V, verify that d(v) = min,) (d(u) + w(u,0)),
and if any node fails then the algorithm has failed and must be
repeated.

LEMMA 10. Assume we set source node d(s) = 0, then for all
v € V,d(v) = dist(s,v) if and only if for all v, we have d(v) =
miny,) (d(u) + w(y,0)).

PROOF. (&) Based on our definition of shortest path, for any o,
d(v) = dist(v) = min,) (dist(s,u) + w(u,0)) = min(,) (d(u) +
w(u,0)).

(=) Proof by contradiction. We first want to show if d(v) =
min,) (d(u) + w(u,v)) for v and d(s) = 0, then d(v) > dist(v).
Consider the path (vg, 01, ...,0; = v), such that d(v;) = d(vi-1) +
w(vj—1,v;). Each edge w(v;j—1,v;) > 0 is in the graph, so d(v) to
d(v;) is increasing and we can set vp = s. Notice that d(v;) =
>, w(vi—1,0;) is weight of a path from s to v, so d(v) > dist(v).

Let S be set of node x with d(x) # dist(s, x). Let v the the node
in S with smallest dist(v). Let u be the parent of v in the shortest
path tree. Since w(u,v) > 0, we have dist(u) < dist(v) and d(u) =
dist(u). Then, d(v) < d(u) + w(u,v) = dist(u) + w(u,v) < dist(v).
and this contradicts to the fact that d(v) > dist(v) and the definition
of S. O

Shortest Paths Tree. We would like to output the shortest path
tree for the contracted graph (zero weight cycles are contracted).
The algorithm can be extended to find pointers for all nodes in the
graph. We follow a similar strategy as the verification algorithm.
First contract any zero weight cycles, and then each node looks at
its incoming edges to find its parent in the tree. Specifically, for
each node v, set parent(v) to be u such that d(v) = d(u) + w(u,v).

4.3 Limited Distance Shortest Paths Analysis

Next we will show that the algorithm correctly computes the short-
est paths distances for nodes up to distance D. The algorithm for
approximate shortest paths that we use as a black box achieves the
approximation with high probability. In the following lemma we
assume the approximate shortest paths runs successfully, since in

184

SPAA *22, July 11-14, 2022, Philadelphia, PA, USA

Algorithm 3 LimitedSP

Input: Graph G = (V, E) and source node s

Output: Shortest path distance d(v) for each node s from v up to
distance L, and co for nodes with distance greater than L

1: function LimiTEDSP(G = (V, E), s)
2 for each v € V do d(v) « +o0
3: d(S) =0
& d’ — ASSSP(G,s, e = 1)
5 for eachv € V withd’(v) < 2D do add v to interval [0, 2D)
ford = 0to D: do
for i = 1g(2D) to 0: do
if d is a multiple of 2!~ then
REFINE(d, 2°)
10: function REFINE(d, 2)
11: Build graph G’ = (V', E’)
12: d’ « ASSSP(G',s’, e < 1/4)
13: for each v € V/ withd'(v) =0do d(v) «— d
for each v € V/ with I(v) = [d,d + 2!) do

15: if d’(v) € [0,2i71) then

16: add v to interval [d, d + 2i71)

17: else if d’(v) € [217,3 - 2/72) then

18: add v to interval [d + 2172, d + 3 - 2172)
19: else

20: add v to interval [d + 2171, d + 27)

Section 4.2 we showed how to overcome the issue that approximate
shortest paths does not achieve the desired approximation.

LEmMA 11. Consider a call to LimiTEDSP(G) for some graph G =
(V,E). For any node v € V with d(v) < D, the shortest path distance
is correctly computed.

Proor. For any given node v, recall dist(s, v) is the shortest path
distance. Let I(v) be the interval v is located in. We change I(v) if
and only if I(v) = [d,d + 2!) when we call REFINE(d, 2}). We will
use induction on REFINE(d, 2!) on d and i to show

e for any node v with dist(s,v) < d, d(v) = dist(s,v)
e for any node v with dist(s,v) < D, dist(s,0) € I(v).

The base case is d = 0 and i = 1g(2D). For any node v with
dist(s,v) < D,I(v) = [0,2D), we run approximate shortest paths on
the whole graph. In this case, d’(v) = 0 if and only if dist(s,v) = 0.
We set d(v) = dist(s,0) = 0if d’(v) = 0. For any node v with
dist(s,0) < D, if d’(v) < 2171, we know that dist(s,0) < d’(v) <
2071 271 < @7 (v) < 3 - 272, we know that dist(s,v) < d’(v) <
32172 and dist(s,0) > d’(v) /(1 +€) > 2172, if &’ (v) > 3- 2172, we
know that dist(s,0) > d’(v)/(1+¢€) > 2/~1. Combining these three
cases, node v will be added to I(v) such that dist(s,v) € I(v).

Now assume that for d and i, the claim holds, consider d and
i — 1, for the first claim, for any node with dist(s,v) < d, d(v) =
dist(s,v). For the second claim, for any node v with dist(s,v) < D,
dist(s,v) € I(v). When we call REFINE(d, 2/~1), we change I(0v) if
and only if I(v) = [d,d + 2!~!). Consider a node v with I(v) =
[d.d + 2i=1) and a path p from s to o. Let u be the last node on
the path with dist(s,u) < d and u’ be the next node on this path.
We will add an edge from s’ to u’ with weight d(u) + w(u,u") — d.
Let [be the weight of path from u’ to v. Notice that weight of p’

Session 5: Best Paper Session

isw(p’) =d(u) + w(u,u’) —d +1 > dist(s,0) — d. When p is the
shortest path, for any node w on path p between u’ and v, we know
d < dist(s,w) < dist(s,v) < d+2'. Thus I(w) overlaps [d, d+2) and
we add w to the graph, and then w(p) = dist(s,v) — d. Combining
these two points, we know in the new graph, the shortest path
distance for v is dist(s,0) —d € [0,2}). If d’(v) < 271, then we
know dist(s,0) —d < d’(v) < 207! and dist(s,0) € [d,d +2171); If
2171 < d’'(v) < 3-2172, we know dist(s,0)—d > d’(v)/(1+€) > 2i72
and dist(s,0) —d < d’(v) < 3-2072; Last, if d’(v) > 3 - 2772, we
know that dist(s,0) —d > d’(v)/(1 + €) > 21", In either case, we
have dist(s,v) € I(v).

The last thing is to show for any d and i = 0, we set d(v) = d if
dist(s,v) = d. Notice that based on our assumption, for any node u
with dist(s,u) < D, dist(s,u) € I(u). If dist(s,v) = d, then we add
v to the graph. Similar to the above argument, in the new graph,
the shortest path distance for v is 0 and thus d’(v) = 0 and we will
set d(v) to be d for any node v with dist(s,v) = d. O

Next we will show the work and span the of the algorithm. Each
call to REFINE(d, 2°) builds a graph and runs approximate shortest
paths. Our main goal is to show that each node is not added to too
many of these graphs. By bounding the number of graphs a node is
added to, we are able to bound the total size of these graphs.

LEmMA 12. Consider a call to LimiTEDSP(G) for some graph G =
(V,E). For a nodev € V, while v is assigned to a particular interval
X, v is added to O(1g D) graphs G’ in REFINE.

Proo¥. Node v is only added to a graph G’ in REFINE(d, 2})
when interval X overlaps the interval [d, d + 2!). Let the interval
X = [c2/, (¢ + 1)2/) have length 2/, for some integer c. Consider
the following two cases of calls to REFINE(d, 2°) for size 2! intervals.
The two cases are j < i, and j > i. In both cases we will show at
most three intervals of size 2/ overlap X, which implies X overlaps
at most O(lg D) intervals, and v is added to at most O(lg D) graphs
in calls to REFINE(d, 2}).

Case 1: j < i. In this case, there will be at most three intervals
that intersects X, i.e, [d, 2}), [d+2/71,2!) and [d + 2, 27) since j < i
and interval [d, d + 2"*1) must cover X if [d, 2!) intersects X.

Case 2: j > i. For this case we will show that at most one interval
of size 2! overlaps X. Consider the first d such that REFINE(d, 2¢)
intersects with X = [c2/, (¢ + 1)2/), we have d < c2/. That’s
because when we refine REFINE(d, 2!), it’s impossible such that
for some u with interval I(u) = [¢2/,c2/ + 27), ¢2/ < d.If such
node u exists, notice that when we update interval in REFINE(d’, 27),
we never put a node to some interval starting earlier than d’, so
I(u) = [c2/,c2/ + 27) must be updated in some REFINE(a’, 2/*1)
with a’ < c2/. Then when we call REFINE(c2/, 27), we will refine
node u and it’s no longer in I(u).

Assume that the first time REFINE(d, 21) intersects with X, we
have d < ¢2/. Since 27! < 2771 and both are powers of 2, each
multiple of of 2/~ is also a multiple of 2/~1. Therefore there is a
size 2 interval starting at ¢2/~1. This interval has size 2, and any
that start later will be refined after X since the intervals are refined
in order by distance and decreasing size. For intervals that start
before X, there is one size 2! interval that starts at c2/~1 — 2i~1
which overlaps X. The next size 2 interval to the left starts at

185

SPAA *22, July 11-14, 2022, Philadelphia, PA, USA

c2J71—2.2171 = ¢2J=1_2i and since it has length 2! the interval is
[c2/=1 — 2%, c2771), s0 it does not overlap X. Any intervals starting
at smaller multiples of 2/~! also do not overlap X, by the same
reasoning. Thus X overlaps one interval of size 2’ foreachi < j. O

LEmMA 13. Consider a call to LimiTEDSP(G) for some graph G =
(V,E). For anodev € V, v is added to 0(lg? D) graphs G in calls to
REFINE(d, 2').

Proor. If node v has its initial distance estimate d(v) > 2D,
then o is not added to any intervals and therefore no graphs G’
either. Otherwise, v starts in the interval [0, 2D). Each time it is
added to a graph in Refine, either it stays in the same interval or
moves to a smaller interval. By Lemma 12, v gets added to O(lg D)
refinement graphs for each interval it is in. Since the interval sizes
are monotonically decreasing, and there are O(lg D) of them, v is
added to O(Ig? D) refinement graphs. O

We next turn to the work and span of the algorithm. Some of
this relies on the straightforward parallel details, but the bulk of
the work falls in ASSSP. Analogous to Lemma 7, we can leverage
Lemma 13 to argue that the in total, these calls are not too expensive.

Before proving the work and span, we will show a data structure
that we will use in the implementation.

Vector of parallel sets. We construct a vector of parallel sets V'S,
where each set has an identifier. Assume that there are polynomial
bounded elements in total across all sets. The vector of sets VS
supports the following.

o Initialization, we can set up a vector, each item of the vector
contains a pointer to the set. The set is identified by the
identifier. All sets are set to be empty at the beginning, the
work is O(number of sets) and the span is 0(1).

e Given t sets, where each set contains x; elements, we can
add the elements of the t sets into V'S in O(} x;) work and
O(1) span because we can merge each set separately.
Given the identifiers of t sets, we can merge the elements
from all ¢ sets into a vector with O(x) work and O(1) span,
where x is the total number of elements across the ¢ sets. To
copy all elements, we first compute the number of elements
in each set, then we run prefix sum to compute the location of
each set should be transferred and access each sets elements
in parallel.

Given the identifiers of t sets, we can empty all elements in
those t sets in O(x) work and O(1) span, where x is the total
number of elements across the t sets.

Note that, to manipulate on the vector of parallel sets, we must
know the identifier of each set to locate the pointer to the set.

Now we can show the following lemma which bounds the work
and span of the algorithm.

LEMMA 14. Algorithm 3 has O(m) work and n'/2*°() [1/2 span.

Proor. Algorithm 3 first runs the approximate shortest paths
algorithm which takes O(m) work and nl/2+o(1) span. Next, it
assigns each node with to an interval which can be done in O(n)
work and O(1) span. Last, it calls REFINE(d, 2) O(D) times.

The subroutine REFINE(d, 2!) first identifies all nodes whose
interval intersects with [d, d +2). Let x; and y; be number of nodes

Session 5: Best Paper Session

in the overlapping intervals and number of edges neighboring the
nodes. We will show later that the algorithm copies all nodes in
O(x; + 2') work and O(1) span. After identifying those nodes, we
can construct the graph with O(x; + y;) work and O(1) span. The
approximate shortest path algorithm also depends on x; and y;,
and takes é(y,-) work and xl.1/2+0(1)
interval [d,d + 2), will be reassigned to a different interval. To
reassign the nodes, we can sort the nodes based on d” value. Sorting
takes O(x;) work and O(1) span. Moving the nodes to different
intervals relies on the implementation of the sets. We will later show

span. Lastly, each node in the

this step can be performed in O(x;) work and O(1) span. In total,
each call to REFINE(d, 2) takes é(yi +2%) work and xl.l/2+0(1) span,
where x; and y; are the number of nodes and edges, respectively,
inG’.

Notice that for each (d, 2!), we have d/2! different calls to REFINE
with interval size 2!, so the 2! term will contribute O(D) to the
work in total. By Lemma 13, each node is added to G’ at most
O(lg®D) times, so Y x; = O(nlg?D) = O(nlg?D), and Y y; =
O(mlg?D+1) = O(m + L) = O(m) because of the fact that L =
O(n). The total work is O(m + D) = O(m). Notice there are at
most O(Dlg D) calls to REFINE, and the span of the algorithm is
inl/2+0(1) = pl/2+o() 1/2+0(1) 4 [— p1/2+0()1/2.

The remaining problem is to maintain a set for each interval.
We will use the vector of parallel sets data structure to maintain
a vector of sets for each possible interval [d, d + 2). Notice that
the identifier for each set is the interval [d, d + 2!) for different d
and i and the identifier for each set can be sorted by the starting
point of the interval. If the starting point is the same, we sort by
ending point of the interval. Initialization takes O(D) work and
0(1) span. Then we add all elements to the interval [0, 2D). It takes
O(1) work and span to specify the identifier of the set and O(n)
work and O(1) span to add all elements.

In a call to REFINE(d, 21), since the interval is sorted by starting
point, the interval that intersects with [d, d +2i) and starts no earlier
than d is continuous and we can identify all identifiers of intervals
in O(2%) work and O(1) span. Once we get all the interval that
intersects with [d, d + 2%), it takes O(|V’]) work and O(1) span to
copy all elements in the sets. After we identify all nodes in G’, the
graph can be built by using parallel sort to group together the nodes
that are in the subgraph. The last piece is to empty all elements
for interval [d,d + 2¢) and add those elements to three different
intervals. This can be done in O(|V’|) and O(1) span. O

From Lemmas 11 and 14, we conclude:

THEOREM 15. There exists a parallel algorithm solving nonnegative
L-distance-limited SSSP with work O(m) and span nl/2to(1) 1/2 span,
with high probability. That is, consider a directed graph G = (V,E)
with nonnegative integer weights and source s € V. The algorithm
outputs for each nodev € V, d(v) = dist(s,v) if dist(s,v) < L, and
infinity otherwise. O

5 OVERVIEW OF GOLDBERG’S ALGORITHM

This section summarizes Goldberg’s sequential algorithms [16]
for computing exact shortest paths on a graph with integer edge
weights. Our description here differs slightly from Goldberg’s [16],

186

SPAA *22, July 11-14, 2022, Philadelphia, PA, USA

in part to facilitate our parallel extension, but these differences are
not technically relevant as far as the sequential algorithm goes. The
main goal of Goldberg’s algorithm is to reweight the graph such
that all weights are nonnegative. Then the single-source shortest
paths problem can be solved efficiently by Dijkstra’s algorithm.

For the reweighting of the graph to be meaningful, the new
weight function must preserve shortest paths. That is, a path should
be a shortest path with respect to the updated weight function if and
only if it is a shortest path with respect to the original function w.
Goldberg [16] achieves valid reweightings by defining the reweight-
ing by way of a price function p : V. — Z over vertices. Given the
price function p, the updated weights of the graph are given by
wp (u,0) = w(u,0) + p(u) — p(v), where w is the original weight
function. This type of price function always produces a meaningful
reweighting that preserves shortest paths; see Cormen et al’s [11]
discussion of Johnson’s algorithm for a general correctness argu-
ment. Moreover, given the shortest-path distance d(v) from s to v
with respect to weight function wy, the shortest-path distance with
respect to the input weights is simply d(v) + p(v) — p(s).

We say that a price function, or the induced reweighting, is
Jeasible if all edge weights wy(u,0) 2 0 are nonnegative. The
goal is thus to produce a feasible price function if possible, or to
determine that the graph has a negative-weight cycle. As noted
above, a feasible price function implies a solution to SSSP.

Reducing the negativity by scaling

Goldberg’s main algorithm [16] is an algorithm that produces a
feasible price function for the special case that all edge weights are
integers with value at least —1. (That is, the weights may take any
nonnegative value, but the only negative value they may have is
—1.) We call this special case the 1-reweighting problem. His algo-
rithm [16] solves the 1-reweighting problem in time O(m+/n). He
then applies a bit-scaling technique [15, 16] to generalize the solu-
tion to arbitrary integer weights. If all weights are at least —N, then
O(log N) repetitions of the 1-reweighting algorithm are sufficient
to find a feasible price function for general integer weights [16].

Overview of 1-reweighting

Goldberg’s algorithm [16] solves the 1-reweighting problem grad-
ually, refining the price function iteratively before arriving at a
final reweighting. This refinement improves monotonically in the
following sense. We call a vertex a negative vertex if it has any
incoming edges with negative weight.* We call a price function a
T-improvement if it has the following properties:
(1) (Valid.) The edge weights after reweighting are all integers
with value at least —1. Thus, the reweighted graph is still a
valid instance of the 1-reweighting problem.

(2) (Monotonic.) If an edge has nonnegative weight before reweight-

ing, then it has nonnegative weight after. Consequently,
reweighting does not introduce negative vertices.

(3) (Progress.) At least 7 negative vertices before reweighting
are no longer negative vertices after reweighting. That is, all
of their incoming edges are reweighted to at least 0. We also
say that those 7 vertices are improved or eliminated.

4Goldberg uses the term “improvable” instead of negative vertex, but we find the latter
more intuitive.

Session 5: Best Paper Session

Algorithm 4 Outline of Goldberg’s algorithms [16] for the 1-
reweighting problem

Input: Graph G = (V, E) and weight function w : E — Z where all
weights are integers of at least —1.

Output: a feasible price function p, or a negative cycle if none exists.

1: initially p(v) = 0 for all v
2: let wy, denote the weights w, = w(u,0) + p(u) — p(v) with
respect to the price function p

3: while there are negative vertices with respect to w;, do
4 contract cycles of 0-weight edges

5 let k be the number of negative vertices remaining
6: find one of the two following objects:

7: (1) a negative cycle C

8 (2) price function p’: a \/E—improvement w.rt. wp
9: if a negative cycle was found then

10: extend C to a cycle in the uncontracted graph
1 return the cycle C

12: foreach vertex v in the contracted graph do

13: foreach x in v’s component do

14: update p(x) < p(x) +p’(v)

15: return the price function p

At a high level, Goldberg’s algorithm [16] simply repeatedly finds
“large” r-improvements until no negative vertices remain.

Algorithm 4 gives an outline of Goldberg’s algorithm for the
1-reweighting problem. The algorithm repeatedly contracts cycles
of 0-weight edges and then finds r-improvements. The reason for
contraction will make more sense as we go into more detail on
the algorithm. But it should be obvious that (1) contraction can
only reduce the number of negative vertices, and (2) all vertices
in a contracted component are equivalent with respect to distance
to/from all other vertices. As vertices in the contracted graph are
reweighted, the same reweighting is trivially extended to vertices
in the same contracted component (Line 14).

More specifically, the algorithm finds Vk-improvements (Line 8),
where k is the current number of negative vertices in the contracted
graph. The number of negative vertices thus reduces from k to at
most k — Vk in each iteration. The algorithm terminates in O(VK)
iterations [16], where K is the initial number of negative vertices.
Since K < n, the algorithm completes in O(+/n) iterations.

Contraction and finding a Vk-improvement

The core of the reweighting problem is the problem of either finding
a Vk-improvement or a negative cycle, where k denotes the current
number of negative vertices in the graph. Goldberg [16] provides an
algorithm for this subroutine that has running time O(m). This thus
implies a running time of O(m+/n) for the 1-reweighting problem,
and O(m+/n log N) for SSSP with integer weights. The remainder of
this section gives an overview of Goldberg’s algorithm for finding
a Vk improvement.

SWe are vague about bookkeeping details here because it does not actually matter
whether the contracted graph is maintained across iterations, or whether each iteration
begins from the original graph. This is because all cycles of 0’s are preserved across
the reweighting steps.

187

SPAA *22, July 11-14, 2022, Philadelphia, PA, USA

Much of Goldberg’s algorithm operates on a subgraph of G.
Specifically, let G<o denote the subgraph of G containing only
those edges whose weights are 0 and —1. That is, all edges with
strictly positive edge weight are removed from the graph.

Step 1: strongly connected components. Goldberg’s algorithm [16]
begins by finding the strongly connected components in G<o. If
any component contains a negative edge, ie., w(u, U) =-landu
and v are strongly connected, then report a negative-weight cycle
by finding any path from v to u in G<¢. Otherwise, contract each
strongly connected component to get the condensation G, of G<o.
The main reason for this contraction step is that the condensation
G, is acyclic; the remaining steps rely on the graph being acyclic.

Step 2: find a large chain or independent set of negative vertices.
The next step involves finding one of the following two objects:

e (Chain.) A length r > Vk sequence of negative-weight edges
{(u1,01), (u2,92), ..., (ur,v7)) such that, for 1 < i < r, there
is a path from v; to uj41 in G’SO.

o (Independent set.) A set S of negative vertices, with |S| > Vk,
such that for all u,v € S, there is no negative-weight path
from u to v in G

To find these, augment G ; with a supersource s, add edges
from s to all other vertices with weight 0, and solve SSSP on the
augmented graph from source s. Because G,SO is acyclic, this SSSP
problem can be solved in O(m) time (see, e.g., [11]). Partition the
vertices into sets Vo, V1, Va, . .. by distance, where V; denotes the set
of vertices having shortest-path distance —i from the supersource.

If any vertex has distance —r < —Vk, then any shortest path to
that vertex contains 7 negative edges — the chain is the sequence
of negative edges along any such shortest path.

Otherwise, all negative vertices are in V1, V3, .. .,Vr VE]-1° Let
Si € V; be the negative vertices in V;. Select the largest S; as the
independent set.

Step 3: improve the chain or independent set. It is important to
note that although the chain or independent set is found in G,
the improvement/reweighting is applied to the original graph G.

Reweighting to improve all vertices in an independent set is
straightforward. Let S be the independent set, and let VR be the set
of vertices reachable in G’SO from any vertex in S. For each v € VR ,
set p(v) = —1. For all other vertices, set p(v) = 0. If the independent
set is found by the algorithm above, identifying V¥ requires no
additional work: for S = S;, we have VR = V; UVj4 U - - - U V[\/E]—l'

Improving the vertices on the chain is harder because the price
function takes on many values. Goldberg solves that problem in
two ways [16], one of which involves reducing the problem to
nonnegative single-source shortest paths. We describe a slightly
different reduction in Section 6. In contrast to the independent-set
case, improvement here may not be possible if there is a negative-
weight cycle in the full graph G. Thus, the algorithm may report a
negative-weight cycle instead of performing the improvement.

Summary of key subroutines. Goldberg’s algorithm [16] for Vk
improvement uses the following subroutines: strongly connected
components, SSSP in a directed acyclic graph with negative weights,
and SSSP in a general graph with nonnegative integer weights.

Session 5: Best Paper Session

Each of these subroutines can be solved easily in O(m) sequential
running time using classic algorithms [11]. In fact, they can be
solved in O(m) time with some care [16].

6 OVERVIEW OF PARALLEL ALGORITHM

As discussed in Section 5, Goldberg’s algorithm for SSSP is a scaling
algorithm that performs multiple iterations of 1-reweighting and
\/E-improvement. The correctness argument [16] relies on these
iterations being performed one at a time, (i.e., sequentially). We
thus apply the same sequential scaling technique. Moreover, we use
the same sequential loop as given in Algorithm 4. The difference is
that we use a parallel subroutine for the relevant contractions and
the \/E—improvement, we use a parallel version of Dijkstra’s for the
final SSSP output, and that the obvious trivial steps (e.g., updating
the price function) are performed in parallel. With no changes to
the main structure, correctness follows from Goldberg [16].

This section outlines our algorithm assuming no negative-weight
cycles. We discuss reporting cycles in Appendix A.2.

The main technical contribution of this paper are the new distance-
limited SSSP problems we use for \/E—improvement. The resulting
performance for \/E-improvement is summarized by the follow-
ing theorem; this is a direct consequence of our efficient distance-
limited SSSP algorithms.

THEOREM 16. There exists a randomized parallel algorithm having
work O(m) and span n®/*t°() | with high probability, for the Vk-
improvement problem. Specifically, the algorithm takes as input a
directed graph with n vertices, m edges, and integer weights of at
least —1. The algorithm contracts all cycles of 0-weight edges and
either finds a price function giving a Vk-improvement, where k is the
number of vertices with incoming negative edges in the contracted
graph, or it determines that a negative-weight cycle exists.

Assuming correctness of our algorithm for improving the chain
(see Lemma 19 in Appendix A.1), correctness follows from Gold-
berg’s [16] version of the algorithm. It remains to analyze the work
and span of the algorithm. As noted previously, Step 1 can be com-
pleted with O(m) work and n1/2+o(1) span. Step 2 is dominated by
the Vk-distance-limited {0, —1}-weight acyclic SSSP. In Section 3,
we give an algorithm for that problem that has work O(m) and
span n3/4+°() for distance limit L = [\/_] = O(+/n). Finally, Step 3
is dominated by the problem of improving the chain, which we
have reduced to Vk-distance-limited nonnegative SSSP. Section 4
gives our solution to that problem, which also has work O(m) and
span n*/4*°(1) when the distance is limited to O(y/n).

Finally, we must also consider the cost of determining whether
the algorithm should terminate due to the presence of a negative-
weight cycle. (Finding the actual cycle is harder, but that only occurs
once; just determining that such a cycle exists is easier.) Goldberg’s
algorithm [16] and our extension only terminate due to negative-
weight cycles in two spots: in Step 1 and in Step 3, specifically
when trying to eliminate the chain. Testing for a negative-weight
cycle in Step 1 involves simply testing whether a negative-weight
edge falls within a component, which is trivial to perform in O(m)
work and O(log n) span. Lemma 19 gives us a way of testing for a
negative-weight cycle—simply perform the reweighting and see if
all v; on the chain are indeed improved. If not, then there must be a

188

SPAA *22, July 11-14, 2022, Philadelphia, PA, USA

negative-weight cycle. Again, this test is trivial to perform in O(m)
work and O(log n) span.

Adding the work and span across all steps yields the claimed
bounds.

Given our efficient parallel algorithm for \/E-improvement, we
get our main result on SSSP as a simple corollary.

THEOREM 17. There exists a randomized parallel algorithm for
the problem of SSSP with integer edge weights with the following
characteristics: for an input graph with n vertices, m edges, integer
weights of at least —N, and no negative-weight cycles, the algorithm
returns the shortest-path distance from the source to all vertices with
O(mynlog N) work and n3/4+o(1) log N span, both with high prob-
ability. Moreover, the algorithm can be augmented to find and return
a negative-weight cycle, if one exists, in the same work and span.

Proor. Goldberg’s main algorithm performs O(log N) iterations
of scaling and O(+/n) iterations of vk improvement [16] to reweight
the graph. Assuming no negative-weight cycle, the cost to find a
feasible reweighting of the original graph can thus be obtained
by multiplying the bounds of Theorem 16 by O(+/nlog N), which
matches the claimed bounds.

After finding a feasible reweighting, we also need to solve the
nonnegative SSSP problem. There exist several parallel versions [7,
12] of Dijkstra’s algorithm having work O(m) and span O(n), which
falls within the target bounds.

As discussed in Section A.2, a negative cycle can be reported
O(m) work and O(n) span. o

6.1 Parallel contraction and Vk-improvement

We now discuss each of the main steps of \/E-improvement for the
parallel version. This remainder of this section describes how each
of the steps differ from those given in Section 5. Steps 2 and 3 are
where we apply new algorithms, namely those given in Sections 3
and 4, respectively.

Step 1: strongly connected components. We use existing algorithms
as a black box. Notably Blelloch et al. [6] reduce strongly connected
components to single-source reachability (with logarithmic over-
heads), and Jambulapati et al. [18] solve single-source reachability
with work O(m) and span nl/2+o(1) | with high probability. Given
the strongly connected components, constructing the contracted
graph is an easy reduction to sorting, for which there are many
parallel algorithms with O(m) work and polylogarithmic span [17].

Step 2: find a large chain or independent set of negative vertices.
Section 5 reduces this problem to that of single-source shortest
paths in an acyclic graph with edge weights from {0, —1}. The
observation we make here is that it is only important to find the
exact distances to vertices with small distance. In particular, the
goal is to identify sets Vo, V1, V2, ..., VL, where V; is the set of all
vertices with shortest-path distance exactly —i from the source
vertex. We need only compute these sets up to L = [Vk]. For the
remaining vertices, i.e., those at distance strictly less than —L, we
do not need their exact distances.

Section 3 provides our parallel algorithm for this {0, -1} weight
distance-limited shortest-path problem. To facilitate reporting the
chain, our algorithm also reports negative-edge ancestors along the

Session 5: Best Paper Session

shortest paths. Specifically, for each vertexv € V; with1 < i < L, we
also identify an ancestor negative edge (x, y) such that (1) x € V;_1,
and (2) there is a path from y to v in G . To find a chain, simply
start with any vertex x € Vr; the last edge on the chain is x’s
negative ancestor (ur,vr); each preceding edge can be obtained
sequentially/iteratively by taking u;’s negative ancestor Finding
the chain thus takes O(L) = O(+/n) work and span.

Step 3: improve the chain or independent set. Improving an inde-
pendent set follows the process outlined in Section 5. This process
is already trivial to parallelize by considering all vertices in parallel.

In the case of a chain, we adapt Goldberg [16]’s reduction to non-
negative SSSP, except that our reduction also works for distance-
limited SSSP. Because Goldberg’s [16] reduction is not distance
limited, we present our reduction and correctness here. Never-
theless, the ideas are the same. Here we present our reduction to
distance-limited SSSP. For completeness, we include a correctness
argument in Appendix A.1. Section 4 provides our solution to the
distance-limited SSSP problem, which is the hard part.

Suppose we have a length-L chain ((u1, v1), (u2,02), ..., (ur, 1))
of negative edges. (For correctness below, it does not matter what
algorithm is used to find a chain.) To improve the chain, construct
a graph G as follows. Start with G = G. (Note we are working
with the contracted version of the full graph G, not G<¢.) For all
existing edges, use the weight function W(x, y) = max {0, wp (x,) }.
The weights thus reflect the current reweighting of G but with all
negative edges rounded up to 0. Add a supersource s to G, and add
the edges (s, x) for each vertex x € V in the graph. For each v; in
the chain, set w(s,v;) = L —i. For all other vertices, set w(x, v;) = L.
Observe that all weights w are, by construction, nonnegative. Next,
for all x, compute the shortest path distance from s to x, denoted
by d(x). Note that by construction, all such shortest-path distances
are at most L, so using a distance-limited SSSP algorithm suffices.
Finally, for each vertex x, set p’(x) = d(x) — L.

ACKNOWLEDGEMENTS

This research was supported in part by NSF grants CCF-1918989
and CCF-2106759.

REFERENCES

[1] Alexandr Andoni, Clifford Stein, and Peilin Zhong. Parallel approximate undi-
rected shortest paths via low hop emulators. In Proceedings of the 52nd ACM
Symposium on Theory of Computing, 2020.

Kyriakos Axiotis, Aleksander Madry, and Adrian Vladu. Circulation control for
faster minimum cost flow in unit-capacity graphs. In Sandy Irani, editor, 61st
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham,
NC, USA, November 16-19, 2020, pages 93-104. IEEE, 2020.

Aaron Bernstein, Danupon Nanongkai, and Christian Wulff-Nilsen. Negative-
weight single-source shortest paths in almost-linear time. CoRR, abs/2203.03456,
2022.

Guy E. Blelloch, Daniel Ferizovic, and Yihan Sun. Just join for parallel ordered
sets. In Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA 16, page 253-264, New York, NY, USA, 2016. Association for
Computing Machinery.

Guy E. Blelloch, Jeremy T. Fineman, Yan Gu, and Yihan Sun. Optimal parallel al-
gorithms in the binary-forking model. In Proceedings of the 32nd ACM Symposium
on Parallelism in Algorithms and Architectures, pages 89-102, July 2020.

Guy E. Blelloch, Yan Gu, Julian Shun, and Yihan Sun. Parallelism in randomized
incremental algorithms. In Proceedings of the 28th ACM Symposium on Parallelism
in Algorithms and Architectures, pages 467-478, 2016.

Gerth Stelting Brodal, Jesper Larsson Traff, and Christos D. Zaroliagis. A parallel
priority queue with constant time operations. J. Parallel Distrib. Comput., 49(1):4—
21, February 1998.

189

SPAA *22, July 11-14, 2022, Philadelphia, PA, USA

[8] Nairen Cao, Jeremy T. Fineman, and Katina Russell. Efficient construction of
directed hopsets and parallel approximate shortest paths. In Proceedings of the
52nd Annual ACM SIGACT Symposium on Theory of Computing, page 336-349,
New York, NY, USA, 2020. Association for Computing Machinery.

Edith Cohen. Polylog-time and near-linear work approximation scheme for

undirected shortest paths. J. ACM, 47(1):132-166, January 2000.

Michael B. Cohen, Aleksander Madry, Piotr Sankowski, and Adrian Vladu.

Negative-weight shortest paths and unit capacity minimum cost flow in O(m10/7

log w) time: (extended abstract). In Proceedings of the Twenty-Eighth Annual

ACM-SIAM Symposium on Discrete Algorithms, SODA 17, page 752-771, USA,

2017. Society for Industrial and Applied Mathematics.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

Introduction to Algorithms. MIT Press, Cambridge, MA, USA, 2nd edition, 2001.

James R. Driscoll, Harold N. Gabow, Ruth Shrairman, and Robert E. Tarjan.

Relaxed heaps: An alternative to fibonacci heaps with applications to parallel

computation. Commun. ACM, 31(11):1343-1354, November 1988.

M. Elkin and O. Neiman. Hopsets with constant hopbound, and applications

to approximate shortest paths. In 57th Annual Symposium on Foundations of

Computer Science (FOCS), pages 128-137, Los Alamitos, CA, USA, oct 2016. IEEE

Computer Society.

Michael Elkin and Ofer Neiman. Linear-size hopsets with small hopbound, and

constant-hopbound hopsets in rnc. In The 31st ACM Symposium on Parallelism

in Algorithms and Architectures, SPAA 19, pages 333-341, New York, NY, USA,

2019. ACM.

Harold N. Gabow. Scaling algorithms for network problems. Journal of Computer

and System Sciences, 31(2):148-168, 1985.

Andrew V. Goldberg. Scaling algorithms for the shortest paths problem. SIAM

Journal on Computing, 24(3):494-504, 1995.

Joseph JaJa. An Introduction to Parallel Algorithms. Addison-Wesley, 1992.

Arun Jambulapati, Yang P. Liu, and Aaron Sidford. Parallel reachability in almost

linear work and square root depth. In David Zuckerman, editor, 60th IEEE Annual

Symposium on Foundations of Computer Science, FOCS 2019, Baltimore, Maryland,

USA, November 9-12, 2019, pages 1664-1686. IEEE Computer Society, 2019.

Philip N Klein and Sairam Subramanian. A randomized parallel algorithm for

single-source shortest paths. J. Algorithms, 25(2):205-220, November 1997.

[20] Jason Li. Faster parallel algorithm for approximate shortest path. In Proceedings

of the 52nd ACM Symposium on Theory of Computing, 2020.

Gary L. Miller, Richard Peng, Adrian Vladu, and Shen Chen Xu. Improved parallel

algorithms for spanners and hopsets. In Proceedings of the 27th ACM Symposium

on Parallelism in Algorithms and Architectures, pages 192-201, 2015.

[22] Jan van den Brand, Yin Tat Lee, Danupon Nanongkai, Richard Peng, Thatchaphol
Saranurak, Aaron Sidford, Zhao Song, and Di Wang. Bipartite matching in nearly-
linear time on moderately dense graphs. In Sandy Irani, editor, 61st IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA,
November 16-19, 2020, pages 919-930. IEEE, 2020.

[9]

[10]

[11

(12]

(13]

=
&

ey
&

(19]

[21]

A ELIMINATE CHAIN, REPORTING A
NEGATIVE CYCLE, AND MAIN THEOREMS

This section presents some details omitted from Section 6. Specifi-
cally, we prove that the reduction for eliminating a chain is correct,
and we discuss how to report a specific negative-weight cycle as
needed.

A.1 Correctness of eliminate chain

Consider the algorithm for reweighting the chain discussed in
6.1. We first argue that this reweighting is always at least a 0-
improvement. We then argue that, if there are no negative-weight
cycles in the graph, then it also improves all v; on the chain, making
it an L-improvement.

LEMMA 18. Consider a graph G = (V,E) with integer weights
wp(x,y) = —1 for all edges (x,y) € V. Suppose that the above
algorithm for eliminating a chain is applied to the graph on some
chain. Then the resulting weights wy (x,y) = wp(x,y) +p’(x) —p(y)
satisfy the following:

e (Valid.) wy (x,y) are integers, and wy (x,y) = —1.
e (Monotonic.) wy (x,y) < 0 only if wp(x,y) < 0.

Session 5: Best Paper Session

Proor. All edge weights in G are integers, so all shortest-path
distances are also integers. It follows that p’ is always an integer,
and hence so is wy.

Consider any edge (x,y) in G. By the triangle inequality of SSSP,
we have d(y) < d(x) +w(x,y),ord(y) — L < d(x) —L+w(x,y).
Substituting in p” we get p’(y) < p’(x)+w(x,y), orp’(x)—p’(y) >
—w(x,y). It follows that the reweighting in G satisfies wy (x,y) =
wp(x,y) + p’(x) — p’(y) = wp(x,y) — Ww(x,y). In the event that
wp(x,y) 2 0, w(x,y) = wp(x,y), and we have wy (x,y) = 0,
satisfying the two conditions for this edge. Otherwise, Wp (x,y) =
—1 (the edge is already negative) and w(x,y) = 0, now yielding
wy (x,y) 2 —1, which again satisfies the conditions. O

LEMMA 19. Consider the algorithm for eliminating a chain applied
to a chain ((u1,v1), (u2,v2), ..., (ur,vr)) on graphG = (V,E). If the
graph G contains no negative-weight cycles, then the reweighting p’
improves all v; along the chain, i.e., these vertices have no incoming
negative edges w.r.t. wy .

Proor. The only aspect missing from Lemma 18 is to show that
the specific vertices are actually improved.

We first argue that if the distance from s to v; in Giisd(v;) < L—1,
then there is a negative-weight cycle in the graph G. (Note d(v;) <
L — i due to the direct edge from the source, so no negative-weight
cycle in G implies d(v;) = L —i.) Consider a shortest path I from s
to v; in G. This path I} must start with some edge (s,v;), for j > i,
as these are the only edges leaving s with weight strictly less than
L —i.Let T'j~; be the subpath of I; from v; to v;. The total length of
T; is thus w(I}) = W(rj,\,)i)+\7v(s, Z)j) = W(Fjv,—)+(L—j). ForL—i >
w(I;),wehave L—i—1 > W(Tj~i)+(L—j), or w(Tjsi) < j—i—1.
Edge weights only increase in w, so wp (Iji) < j—i—1in G as well.
Finally, let I, j be any shortest path in G from v; to v;. Because
these vertices fall along the chain, we have wy (T~ ;) < i — j. The
cycle formed by linking I'j~,; with T}~ ; thus has total length at
most (j—i—1)+(i—j) < -1.

For the remainder, suppose that d(v;) = L — i for all i, and
hence p’(v;) = —i. Consider any edge (x, v;). We now argue that
if wy (x,0;) < 0, then the graph contains a negative-weight cycle.
It follows that if there are no negative-weight cycles, then all of
v;’s incoming edges are reweighted to nonnegative weight. To start,
by Lemma 18 the reweighted edge is only negative if wy (x, ;) =
wp(x,0;) = —1. Thus, we must have p’(x) = p’(v), which means
that p’(x) = L — i. We can now complete the proof as above: a
shortest path from s to x in G must contain a subpath from some
vj to x with length at most j — i. Similarly, the shortest path length
from v; to v; in G is at most i — j. Because the edge (x, v;) itself has
negative length, the total cycle length is at most —1. O

A.2 Reporting a negative-weight cycle

This section addresses the problem of identifying a specific negative-
weight cycle when our parallel version of Goldberg’s algorithm
(Section 6) terminates early. Because a negative-weight cycle is only
reported once, there is no reason to optimize the work and span
bounds of this algorithm beyond those stated in Theorem 17. We
thus only shoot for O(m) work and O(n) span here.

First, suppose a negative-weight cycle is detected in Step 1. That
is, there is a negative-weight edge (x,y) where x and y are in

190

SPAA *22, July 11-14, 2022, Philadelphia, PA, USA

the same strongly connected component of G<g. Then finding the
cycle entails simply finding any path from y to x. This can be
achieved by running any parallel version of breadth-first search
having work O(m) and span O(n).

Suppose instead that the cycle is detected in Step 3 for the chain
((u1,0v1), (u2,02), ..., (ur,vr)). Then we need identify the vertices
on a negative-weight cycle. Observe that the proof of Lemma 19
actually gives us a way of identifying a specific cycle constructively.
The main takeaway is that we need to find two shortest paths: (1)
a shortest path to some vertex x in é, where either x = v; from
some v; along the chain, or (x,v;) is a negative edge in G, and (2) a
shortest path in G’ from v; to some v; with j > i

Our algorithm for nonnegative distance-limited SSSP (Section 4)
returns a shortest-path tree in the form of predecessor pointers, so
a shortest path in G can be recovered in O(n) sequential time, and
hence O(n) work and span, by tracing backwards.

Our algorithm for producing the chain (Section 3) does not output
a shortest path tree, but recovering such a shortest path in G is
also not hard. Observe that by construction for the edges (u;, v;)
on the chain, 1 < i < L: (1) w; € Vi—1, (2) vj—1 € Vi1, and (3)
there exists a path from v;_1 to u; in G<g. The goal is to recover
specific subpaths from v;_; to u; to fill-in the complete shortest
path. Observe that because both v;_1,u; € Vj_1, it follows that
every shortest path from v;_1 to u; uses only 0-weight edges in the
subgraph of G__; induced by V;_1. So we need only look for any
path from v;_1 to u; in this induced subgraph, e.g., by using parallel
BFS. Because the V;’s are disjoint, the total work across all L BFSes
is at most é(m). Moreover, all L BFSes can be performed in parallel,
keeping the span to O(n).

To conclude, we note that the paths in G'SO and G are both
with respect to the contracted graph. Extending these paths to the
original graph is also straightforward. For each component, we just
need to find a path from the endpoint of the entering edge to the
endpoint of the exiting edge. Because the components are disjoint,
we can again apply parallel BFS to each such component in parallel.

%Specifically, if there is any v; with d(v;) < L—iin G, then choose x = v;. Otherwise,
choose any unimproved incoming edge (x, v;). Finally, the vertex v; is the first hop
on a shortest-path from s to x in G.

	Abstract
	1 Introduction
	1.1 Main result
	1.2 Background on other SSSP problems
	1.3 Our technical contributations
	1.4 Outline

	2 Definitions and Preliminaries
	3 Shortest paths on Acyclic Graphs with {0, -1} Edge Weights
	3.1 Overview
	3.2 Algorithm details
	3.3 Correctness
	3.4 Key performance claims
	3.5 Remaining Details of the Peeling Algorithm

	4 Distance-Limited SSSP with nonnegative integer weights
	4.1 Algorithm Description
	4.2 Verification and Shortest Paths tree
	4.3 Limited Distance Shortest Paths Analysis

	5 Overview of Goldberg's algorithm
	6 Overview of parallel algorithm
	6.1 Parallel contraction and k-improvement

	References
	A Eliminate chain, reporting a negative cycle, and main theorems
	A.1 Correctness of eliminate chain
	A.2 Reporting a negative-weight cycle

