


GPS-denied environments that consists of a downward-facing

camera, an IMU, and a downward-oriented ultrasonic or laser

rangefinder [21], [22].

In this paper, we present, to our knowledge, the first avion-

ics system to be suitable in terms of mass and power usage

for a sub-gram FIR to perform sensor-autonomous hovering

flight (Fig. 1). Our sensor package and estimator algorithm is

able to estimate attitude, altitude, and lateral velocity of the

vehicle. Our contributions address four objectives: 1) arrive

at the most optimal state estimate given different update rates

of the different sensors, 2) minimize the computation power

consumed, 3) minimize the total weight of the sensor suite,

4) transmit this data for online estimation or offline analysis

without cumbersome wires. In the remainder of the paper

we describe the sensors, dynamics and measurement model,

compare state estimation approaches in terms of computation

power, and validate our results on data collected from our

sensor suite that was transmitted wirelessly to a desktop

computer for analysis.

II. DYNAMICS

The equations describing the dynamics of any aircraft in

flight follow the Euler-Lagrange equations of motion for a

rigid body:
mv̇ = Σf

Jω̇ = Στ − ω × Jω
(1)

where f is the force and τ is the torque acting on the robot,

m and J are the mass and moment of inertia, v is the velocity

vector, and ω is the angular velocity vector. The first equation

is typically expressed in world coordinates and the second

in body-attached coordinates.

Let θx and θy be the angular rotation (Euler Angles) of the

robot about body-fixed x and y axes. The 3D dynamics in

Eq. (1) of the robot can be decoupled into two independent

2D dynamics in the x-z and y-z planes if the robot attitude is

restricted to the neighborhood of the upright position (θx ≈
0, θy ≈ 0) and ωz, the angular velocity component in the

body z direction is small [16].

We consider motion in x-z plane; the y-z plane is only

slightly different. We define a minimal state vector that

is observable with our proposed sensor suite that provides

enough information to attain both stable hovering flight as

well as the ability to follow trajectories:

q =
[

θ vx z vz
]T

, (2)

where θ is the robot’s angular rotation w.r.t. the body-fixed

y-axis, vx is the velocity along the world x-axis, and z and

vz are the position and velocity along global z-axis.

Controlling flight entails varying wing amplitude and off-

set to produce forces and torques [17]. As in other domains

of control, we assume that the model of the actuator is

uncertain and rely on our sensors to provide robustness to

this uncertainty. Instead of feeding motor inputs into the

estimator, we use the more precise gyroscope measurement

itself as an “input.” In addition to allowing us to test the

estimator without knowing inputs, this reduces the number

of states, reducing computation requirements. Thus, in the

2-D plane in consideration, we can write the dynamics as

q̇ =
[

ω 0 vz 0
]T

, (3)

where ω is the angular velocity along the body-fixed y-axis.

As justified above, we define the control input vector as

u =
[

ωm

]

, (4)

where ωm is the angular velocity measurement from the

gyroscope. This allows us to write the dynamics in Eq. (3)

as

q̇ = fc(q,u). (5)

III. SENSOR SUITE

For the estimator design, we consider a suite of sensors

mounted on the robot consisting of a laser rangefinder, an

optical flow sensor, and an IMU that houses a gyroscope and

an accelerometer. Table I summarizes the relevant specifica-

tions of these sensors. We assume the noise in each of the

sensors to be a zero-mean additive, uncorrelated Gaussian

white noise.

component size mass data rate power

IMU 2.5×3×0.91 14 1000 3

rangefinder 4.9×2.5×1.56 16 50 6

optical flow 5×5×3.08 97 100 12

discretes – 40 – –

board+solder – 20 – –

total – 187 – 21

TABLE I: Sensor specifications. Units are mm, mg, Hz, and mW, respec-
tively.

A. Inertial Measurement Unit

We selected the ICM-20600 (TDK Invensense, USA)

as the IMU for our system because it is small

(2.5×3×0.91 mm) and light (14 mg). This single package

contains both a 3-axis gyroscope and a 3-axis accelerom-

eter. Briefly, the gyroscope operates by measuring angular

velocity by sensing Coriolis forces in an electromechanical

resonator; the accelerometer senses deflections in a proof

mass. Both support data rates of over 1 kHz over the I2C

communication protocol and have a programmable full-scale

range. They were configured for a range of ±250◦/s and

±2g respectively. The sensors are mounted close to the robot

body’s center of gravity to avoid the effects of centripetal

accelerations.

The sensor measurements for ω, and accelerations ax
about the world x-axis and world az about the z-axis can be

expressed as

ωm = ω + νg

axm = ax + νax

azm = az + νaz,

where νg, νax and νaz are the additive noise terms.



B. Rangefinder

A laser rangefinder (also known as a time-of-flight sen-

sor) emits laser pulses towards a surface and estimates the

distance to it based upon the time taken by the pulse to

reach back to the sensor after reflecting from the surface.

We used the VL53L1X (STMicroelectronics), which comes

in a small package of 4.9×2.5×1.56 mm weighing 16 mg,

and supports a data rate of up to 50 Hz over the I2C protocol.

We mounted this sensor below the robot, facing the ground,

to get a measurement of the robot altitude (in the robot’s

rotated reference frame). This measurement can be expressed

as [23]

rm =
z

cos(θ)
+ νr

where νr is an additive noise term.

C. Optical Flow

An optical flow sensor is typically a camera module which

computes the rate of relative visual motion by comparing

consecutive frames. We used the PAW3902JF-TXQT (PixArt

Imaging) which comes in a package of 5×5×3.08 mm and

weighs 97 mg. The sensor provides an accumulated pixel

count, which we then convert to rad/s with a scaling factor,

at a frame rate of 126 fps over the SPI communication

protocol. This high rate allows us to sample data at 100 Hz.

We estimated its latency to be approximately 2 ms, negligible

compared to its update rate. To do so we found the maximum

cross-correlation between its output read in from an SPI-to-

USB adaptor, and the time-derivative of the voltage from a

linear potentiometer to which it was attached (measured by

NI-6000 USB DAQ).

As with the rangefinder, we mounted this sensor at the

bottom of the sensor package facing the directly down in

the negative z-direction. In addition to translational motion,

the rotation of the robot also contributes to the optical

flow measured by the sensor, and therefore we place it

exactly below the IMU in order to accurately compensate

for the rotational effects in the measurement model. The

measurement equation for the optical flow measured along

the body x-axis can be written as

Ωm =
cos(θ)

z
(vx cos(θ) + vz sin(θ))− ω + νo

where νo is the additive noise term.

D. Fabrication

We fabricated three separate circuit boards for the sensors

using thin copper-clad flex circuit material (DuPont Pyralux

AC121200E, 12.5 µm copper, 12.5 µm polyimide) to mini-

mize the total board weight. We first coated the copper with

an ink mask and patterned the circuit traces using a UV

diode-pumped solid-state (DPSS) laser machining system.

The remaining copper was etched using ferric chloride to

produce the final circuit. Components and 43-gauge copper

wires for power, I2C and SPI connections were manually

soldered onto the circuit. Figure 1 shows the final assembly

and Table I gives the weight break-down of the assembly

and estimated power requirements taken from datasheets.

E. Data Acquisition

Our sensor suite communicates over two different proto-

cols, I2C and SPI. Adding power and ground, this requires

providing a total of 8 signals to the robot. We observe that

even thin (>50 AWG) wires cause significant disturbance on

a fly-sized flying robot. Our sensor suite instead incorporates

an onboard wireless microcontroller to transfer the sensor

data. We selected the nRF52832 (Nordic Semiconductors)

because it offers a small 3.0x3.2 mm wafer-level package

and, in addition to 2.4 Ghz Bluetooth low-energy wireless

communication, it provides a high-speed protocol known as

Enhanced ShockBurst (ESB). We wrote firmware for the

microcontroller that uses hardware timers to query each

sensor at its corresponding time intervals. As soon as the

data is fetched for any sensor, it is transmitted over ESB

to another nRF52832 chip acting as a receiver and can

communicate over UART (RS-232) to a Windows PC.

In order to evaluate the state estimates from our estimator

we used a four-camera motion capture arena (Prime13,

OptiTrack Inc., Salem, OR) operating at 240 Hz to provide

ground-truth measurements for our estimator. We attached

reflective markers to the sensor suite. We recorded incoming

sensor data and motion capture outputs simultaneously on the

PC, along with timestamps from its internal clock, using a

Python script running in Cygwin. Post-processing in Python

was done to time-align sensor measurements with motion

capture estimates.

IV. ESTIMATOR DESIGN

For designing a useful yet computationally efficient es-

timator, we start by introducing the full Extended Kalman

Filter (EKF), before exploring simplifications aimed at power

reduction.

We discretize the dynamics in Eq. (5) as

qk+1 = f(qk,uk,wk) = qk +∆tfc(qk,uk) +Gwk, (6)

where ∆t is the time interval between subsequent estimator

updates (which varies depending on communication latency

or dropouts), k ∈ {0}∪Z+ is the time index, and wk is the

input noise vector propagated through linear dynamics G.

We denote the covariance of wk by Q = E[wkw
T
k ].

The complete measurement model including rangefinder,

optic flow camera, and accelerometer, is given by

yk = h(qk,uk,νk)

=









z
cos(θ)

cos(θ)
z

(vx cos(θ) + vz sin(θ))− ω
−g sin(θ)
g cos(θ)









+ νk.
(7)

We denote the covariance of νk by R = E[νkν
T
k ]. We

further assume that the measurement and process noise are

uncorrelated, i.e, E[wkν
T
k ] = 0. We further define the



Jacobians

F k =
∂f(q,u, 0)

∂q
|(qk,uk) =









0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0









Hk =
∂h(q,u, 0)

∂q
|(qk,uk)

. (8)

The simplicity of the dynamics model given by Eq. (3)

results in a time-invariant dynamics Jacobian F . We per-

formed an observability analysis at anticipated hover equi-

librium, q = [0, 0, zop, 0]
T , in which the Jacobian for the

measurement model (Eq. (8)) is given by

Hk =









0 0 1 0
0 1

zop
0 0

−g 0 0 0
0 0 0 0









.

We used the obsv command in python-control [24] to com-

pute the observability matrix. The rank of the observability

matrix is 4, which satisfies the observability criterion [25]

and indicates that all states are observable in a neighborhood

of this point.

The standard discrete-time EKF [26] (Supplement:

Optimization-based control) is a widely used state estimation

technique for nonlinear systems. At each time instant, the

estimator starts with a knowledge of the present state and

inputs and predicts the state at the next time instant based

on the system dynamics f(q̂k,uk, 0). The estimator then

computes the Kalman gain K which is multiplied to the

difference in the observed and predicted measurements to

produce a correction which is added to the earlier predicted

state to provide an updated estimate.

In practice, different sensors produce readings at different

rates, requiring an alternate formulation of the EKF. In

our estimator, an update is performed every time a new

IMU measurement arrives. The polling of the IMU, and

consequently the estimator calls, runs at about 1 kHz. Given

the different data rates of the sensors, at each update, we

keep track of which sensors in the measurement model are

available, based on which, we modify the update step of

the EKF as described in more detail below. Occasionally,

data arrives from one or two of the other sensors but not

from the IMU. We implemented a workaround in which

this data is stored and then used in combination with the

subsequent IMU reading. This imposes an occasional, small

latency penalty that is relatively insignificant compared to

the intermittency of non-IMU measurements.

To incorporate the effect of disparate sensor update rates,

we consider the general case in which there are n measure-

ments possible, but at a given instant only m are available.

A. Sequential Update

In this approach we start with a measurement noise

covariance matrix R̃ such that the standard deviations of all

the sensors is∞, or equivalently, R̃
−1

= 0. Computationally

we implement this as R̃ = ξIn×n, where ξ is a very large

finite number. Then we loop through all the sensors, and

for each j-th sensor that is available, we set R̃j,j = Rj,j ,

and proceed with the usual EKF update step of computing

the gain matrix and applying the correction. This update

procedure is repeated until all the available sensors are

accounted for, and then we consider the final update to be

the state estimate. This approach is outlined in Algorithm 1.

Algorithm 1: Sequential Update

Data: q̂k,uk,yk,F k,Hk,P k

1 q̂
−

k+1 ← f(q̂k,uk, 0)

2 P−

k+1 ← F kP kF
T
k +GQGT

3 for j ∈ {1, · · · , n} do

4 R̃← ξIn×n

5 if j-th sensor is available then

6 R̃j,j ← Rj,j

7 K ← P−

k+1H
T
k

(

HkP
−

k+1H
T
k + R̃

)

−1

8 q̂k+1 ← q̂
−

k+1 +K
(

yk − h(q̂−

k+1,uk, 0)
)

9 P k+1 ← (I −KHk)P
−

k+1

10 end

11 end

B. Truncate Measurement Model

Let S be the set of m integers representing the in-

dices of the available sensors. In this approach, we trun-

cate the measurement model to include only the elements

for the sensors that are available, i.e, define a vector

z̃ = h(q̂−

k+1,uk, 0)[j] ∈ R
m×1, j ∈ S of m rows from

h(qk,uk, 0) which correspond to the available sensors. This

vector has a noise covariance R̃ = diag{Rj,j | j ∈ S} ∈
R

m×m. We similarly truncate the Jacobian Hk to H̃k =
Hk[j , :] and the measurement vector yk to ỹk = yk[j], j ∈
S. We then proceed with the update step similar to that in the

standard discrete-time EKF with these modifications. This

approach is outlined in Algorithm 2.

Algorithm 2: Truncate Measurement Model

Data: q̂k,uk,yk,F k,Hk,P k

1 q̂
−

k+1 ← f(q̂k,uk, 0)

2 P−

k+1 ← F kP kF
T
k +GQGT

3 R̃← diag{Rj,j | j ∈ S}

4 H̃ ←Hk[j, :], j ∈ S

5 ỹ ← yk[j], j ∈ S

6 z̃ ← h(q̂−

k+1,uk, 0)[j], j ∈ S

7 K ← P−

k+1H̃
T
(

H̃P−

k+1H̃
T
+ R̃

)

−1

8 q̂k+1 ← q̂
−

k+1 +K (ỹ − z̃)

9 P k+1 ←
(

I −KH̃
)

P−

k+1

V. COMPUTATIONAL LOAD

Table II lists the number of cycles required for the algo-

rithms to compute the state estimate based on the number of





Algorithm
# Available

sensors)

Occurrences
per second

# Single-cycle
operations
per update

# Divisions
per update
(14 cycles)

# sin or cos
operations per

update (20 cycles)

Total
cycles

per update

Total
cycles

per second
(MHz)

Power
usage
(µW)

Sequential
update

2 900 1935 41 2 2549
5.394 965.383 50 2695 57 2 3533

4 50 3455 73 2 4517

Truncate
measurement

model

2 900 773 13 2 995
2.072 370.943 50 956 18 2 1248

4 50 1175 25 2 1565

TABLE II: Estimate of computational resources and power consumed by the algorithms on an STM32F4 microcontroller. For both the algorithms, we
estimated the total number of cycles in each update by adding the number of single cycle operations, the number of divisions, and one call each to sine and
cosine functions, and multiplying by the respective estimated number of cycles required. The last column shows estimated power usage per EKF (update
in both x-z and y-z planes).

State Exp 1 Exp 2 Exp 3 Exp 4

θ (rad) 0.027 0.042 0.068 0.031

vx (m/s) 0.03 0.03 0.039 0.033

z (m) 0.007 0.007 0.01 0.01

vz (m/s) 0.035 0.035 0.058 0.043

TABLE III: RMSE for the estimated states w.r.t to the motion capture
estimates in four separate experiments

VII. CONCLUSIONS

In this work we presented a framework for on-board state

estimation on sub-gram flying robots. We proposed a suite of

sensors comprising of an optical flow sensor, a rangefinder,

and a MEMS IMU. Using this sensor data we are able to

formulate a model of the system that guarantees observability

of attitude, altitude, and lateral and vertical velocities. The

sensor-suite as a whole weighs less than 200 mg. Even

with the addition of a microcontroller, it comes within the

estimated 252 mg payload capacity of the 143 mg robot

described in [18]. We also explored modifications to the

standard EKF that are capable of handling varying sensor

availability. We demonstrate satisfactory performance on data

collected from physical sensors. The estimator is able to

converge to the true state within 0.5 s, does not drift, and

was able to maintain close tracking for over 20 s.

We also estimated the computational and power resources

required by our sensing package. We estimate that sensor

power usage is approximately 21 mW (Table I). Anticipated

power usage by the microcontroller for EKF computation,

using the more efficient Truncate Measurement Update, is

negligible in comparison at 370 µW. We anticipate the

power required to fly for an enlarged Robofly capable of

carrying a 100 mg power system [29], 100 mg battery [30],

200 mg flapping mechanism, and our 200 mg sensor suite

will be approximately 1.2 W after accounting for a 50%

boost converter efficiency [31], [32]. A reasonable target for

sensor suite efficiency is 10% of flight power: flight time

is impacted as sensing power increases. Important examples

of autonomous drones, e.g. the 1.5 kg system in [33] and

the 30 g system in [34] hold to this. Our proposed avionics

package power therefore falls well within this target.

It is worth remarking that our sensor suite does not provide

estimates for x, y, or θz (the position and heading angle of

the robot). In practice this means that these three quantities

will slowly drift. For many applications, velocity control is

sufficient. One important example is source seeking. In [35]

our group showed that it is possible to use passive fins

to steer into the wind during plume source seeking. The

cast-and-surge algorithm is entirely specified in terms of

velocities in the wind-aligned coordinate frame. If needed,

drift could be mitigated by using the optic flow camera to

intermittently take snapshot images. By computing the direc-

tion of deviations from an “initial condition” image, the robot

can be brought into registration (“visual servoing” [36]).

Because drift rate is low, this could be performed very

intermittently, perhaps at 10 Hz, and still maintain reasonable

performance without much more computational load.

The results presented in this paper are an important step to-

ward on-board feedback control. By implementing a wireless

connection using a tiny microcontroller, we have paved the

way for future work in which state estimation is performed

on-board the robot and then either transmitted wirelessly

to an off-board computer for control. While the proposed

system dynamics work well for a hand-held platform, to

have a similarly robust estimation in free flight may require

a slightly different dynamics model that accounts for the

disturbance due to aerodynamic drag. An additional element

is to include the effect that lateral velocities are influenced

by gravity due a coupling with the attitude. Future work will

validate our estimator on a freely-flying aerial platform by

explicitly introducing these effects in the system model. We

will also address any unexpected sensor non-idealities that

occur in flight, such as distortion from vibration induced by

flapping wings. Though initial results for the rangefinder [15]

and gyroscope [13] suggest that such effects are likely to be

minimal. Eventually, both estimation and control will happen

on-board, with the wireless link used only for telemetry.

All of the components reported here have undergone mass

reductions of 25–50% in the past few years due to minia-

turization pressure from the consumer electronics industry,

and we anticipate that this trend will continue. We used a

100 mg optic flow camera for simplicity, but much lighter

cameras weighing 24 mg or less are possible [9], [10]. In the

longer term, we foresee eventual mass production of robot

flies in which avionics and power systems, including custom

application-specific logic (ASIC) [37], are combined into just

a few silicon parts. This will facilitate substantial further

reductions in mass and power.
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