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Abstract—Shared communication media are widely used in
many applications including safety critical applications such as
control systems on flights or autonomous vehicles. Noise and
transient errors can cause transmission failures. We consider
the problem of designing fault tolerant static schedules for
transmitting messages in these media. In particular, we assume
that the schedule of transmission over all messages must be
computed in advance and must guarantee that all messages will
be delivered as long as the number of medium errors falls below
a provided upper bound, regardless of when the medium errors
occur. It is crucial that the messages be delivered in a timely
manner, and hence we are interested in minimizing the length
of the schedule that achieves the desired level of fault tolerance.
In this paper, we provide an efficient algorithm for producing a
schedule for n messages with total length n+O(f2 log2 n) that
can tolerate f medium errors. We also prove that fault-tolerant
schedules with length n+O(f log f logn) exist. Since n steps are
required to transmit n messages, the overhead of fault tolerance
is characterized by the additive terms of O(f2 log2 n) and
O(f log f logn), respectively. Both of these terms are sublinear
in n and represent asymptotic improvements to the previously
best known schedule, which has overhead fn/2.

Index Terms—Fault-tolerant transmission; Static scheduling

I. INTRODUCTION

Shared communication medium such as a shared bus, wire-
less network, CAN, are commonly used in myriad systems.
On safety-critical systems and/or on embedded devices, it is
often beneficial to generate a static schedule — where time for
sending each message is predetermined — since these enable
both simpler implementation and a deterministic upper bound
on message delivery time. For instance, static schedules are
used on time-triggered systems, like TTA [1], where timeline
is divided into a series of identical and exclusive time slots,
and messages are sent in pre-allocated slots.

A transmission algorithm on (especially wireless) channels
for messages must tolerate noise or transmission errors in the
medium — such noise leads to message failure or corrupts the
message. When a message encounters noise, it must be sent
repeatedly until it is correctly transmitted. Therefore, a static
schedule for message transmission must reserve sufficient slots
for each message to tolerate medium errors in transmission.

Problem Statement and Prior Work In this paper, we con-
sider the scenario where we have n messages to be transmitted
(possibly by different senders) on a shared medium where time
is divided into slots. We assume that the channel has upto f
medium errors — that is, upto f time slots experience noise.

In addition, if more than one message is transmitted in the
same time slot, a collision occurs and neither message will be
sent. If a time slot experiences a medium error or a collision,
the message(s) transmitted during the slot fail. We assume that
the sender knows when a message fails and must retransmit. 1

In static schedules, each sender has a list of slots. It transmits
its message on each successive slot assigned to it until the
message succeeds and then stops transmitting the message.
We assume that senders are not aware of and cannot react
to other runtime conditions (such as which other messages
have successfully transmitted or how many medium errors or
collisions have occurred so far).

The goal is to generate a fault-tolerant static schedule
which minimizes makespan while guaranteeing that all n
messages are transmitted successfully for all possible settings
of up to f slots experiencing medium errors. This strong
correctness requirement means that we do not make any
assumptions about the distribution of medium errors and
the schedule must guarantee that all messages successfully
transmit even if an adversary that knows the static schedule
generates (upto f ) medium errors. We are interested in finding
fault-tolerant schedules with length as short as possible. Even
with f = 0, all schedules must have length at least n (and in
fact with f = 0 achieving length n is trivial). We thus focus
on how much we need to add to the schedule length in order
to achieve fault tolerance as f increases. Specifically, if the
schedule has length n + T , we say that the fault-tolerance
overhead, or simply the overhead, of this schedule is T . The
goal is to minimize this overhead.

It is clear that each message must be assigned to at least
f + 1 slots under this adversarial model — if any message m
is assigned to fewer slots, the f medium errors can occur on
all the slots where m is assigned and m will fail to transmit.
The simplest schedule is to send each message for f+1 times
which uses n + n × f slots and the overhead is n × f . This
is the best we can do if we assign at most one message to
each slot in the static schedule. One can take advantage of the
fact that the sender knows when a message has transmitted
successfully and will not transmit such a message again to
generate shorter schedules. The state-of-the-art schedule [3]
uses n + n × f/2 slots and the overhead is n × f/2, which

1This is a fairly standard assumption and is often implemented using some
sort of acknowledgment mechanism, like the use of a short ”acknowledge-
ment” frame in AirTight [2].
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is better than the naive one. These overheads increase linearly
along with n — as n increases, the overhead can be quite
large even for a small f .

Main Results Can the fault-tolerant overhead increases sub-
linearly in the number of messages n? In this paper, we present
techniques for designing static schedules with sublinear over-
heads for the model described above. In particular, we provide
two mappings, one with overhead O(f2 log2 n) and the other
with overhead O(f log f log n). While the problem (fixed
number of messages and medium errors) and the objective
(minimize overhead) considered may not directly apply to real
systems, this simple model allows us to investigate whether
sublinear overheads are even possible using static schedules
and we answer this question in the affirmative. We believe
that these insights can be applied to more complex and realistic
problems as well.

Contributions The main results of this paper are:
• (Section III.) We give an algorithm for generating fault-

tolerant schedules with overhead O(f2 log2 n) and hence
total length n+O(f2 log2 n). The overhead depends only
logarithmically on n and is asymptotically better than the
state of the art algorithm [3] whenever f = o(n/ log2 n),
and can be significantly better when f is much smaller
that n. This mapping can be generated efficiently.

• (Section IV.) We prove the existence of fault-tolerant
schedules with overhead O(f log f log n) and hence the
static schedule length is n+O(f log f log n). The algo-
rithm is randomized, and generates a fault-tolerant map-
ping with a non-zero probability. Although the algorithm
for generating the schedule is efficient, verifying that the
schedule is fault tolerant takes time exponential in f .
Therefore, this may not be a viable approach for large
f , but can be practical for small f since the schedule
need be generated just once offline.

• (Section V.) While our methods are asymptotically better
than prior methods, they do have constant factors. We
analytically compute schedule lengths of our methods
and compare against the method proposed by Agrawal
et al. [3] for concrete values of n and f to verify that
under certain conditions, sublinear mappings are shorter.

The main technical building block for our schedules is
something called an α-good mapping. (We discuss these
mappings in Section II.) Bender et al. [4] introduced α-good
mappings for a different problem that also uses some degree of
static scheduling. In their setting, the main issue is coping with
collisions, not fault tolerance. It turns out that we can leverage
the same α-good mappings to achieve fault tolerance. Doing so
involves either proving stronger properties about the mapping
(Section III), or carefully integrating multiple mappings of
different sizes (Section IV).

II. BACKGROUND

This section provides definitions as well as relevant back-
ground on α-good mappings [4].

We build static schedules by concatenating multiple sub-
schedules that we call mappings. A mapping is defined over
a contiguous interval of slots, and it specifies which messages
transmit in each slot. There is no technical difference between
the terms, but we use the word mapping to refer to components
of the schedule and schedule to refer to the whole. We assume
throughout that messages have distinct IDs from 1, 2, . . . , n
and use these to define mappings. The simplest mapping is
the identity mapping.

Definition 1 (Identity mapping — I(n)). The identity mapping
for n messages spans n slots. Message i is mapped to slot i.

There is no apparent advantage in assigning multiple mes-
sages to a slot the first time a message is scheduled. All
fault-tolerant schedules thus begin with the identity mapping
of length n. We refer to what follows the identity mapping
as the retransmission mapping or retransmission schedule.
The retransmission mapping is the interesting part of fault-
tolerant schedules and the overhead due to fault-tolerance is
the length of the retransmission mapping. For example, the
dual mapping [3] has retransmission mapping length of nf/2.

We will rely on the notion of α-good mappings introduced
by Bender et al. [4] to generate sublinear length retransmission
mappings. It is a property that (lower) bounds the number
of collision-free slots with respect to subsets of remaining
messages. Here X = {1, 2, . . . , n} is the set of n message
IDs and m ≤ n is the size of the subsets. As given by the
mathematical definition below, a mapping is said to be α-good
with respect to subset size m if: for all subsets S ⊂ X of size
m, at least an α fraction of the messages in S are mapped to
a slot that does not contain any other messages from S. This
means that if we have m remaining messages to transmit, at
least αm messages are, effectively, collision free, no matter
which m messages remain.

Definition 2 (α-good mapping). Let X be the set of message
IDs and let n = |X|. Consider a mapping and let slots(x)
denote the set of slots to which x ∈ X is assigned. For a given
0 ≤ α ≤ 1 and a given subset size m ≤ n, a mapping is an
α-good for subset size m if the mapping satisfies: ∀S ⊆ X
with |S| = m, ∃Z ⊆ S with |Z| ≥ αm such that ∀x ∈ Z,
∃s ∈ slots(x) with s /∈

⋃
y∈S\x slots(y).

To clarify this concept, consider some examples. The first
example of an α-good mapping with α = 1 and n = 4 and
m = 2: 〈

{X1, X2}{X2, X3}{X3, X4}{X1, X4}
〉
,

where Xi represents the message i and ”{}” represents a slot
— this schedule contains 4 slots, and each slot contains 2
messages. Since m = 2, the mapping must ensure that for
each pair of messages x, y, there exists a slot that contains x
and not y and vice versa. To see why this is useful, consider
that X3 and X4 have transmitted before this schedule, but X1

and X2 remain. If there are no errors during the transmission
of this schedule, then X2 will successfully transmit during slot
2 and X1 will successfully transmit during slot 4. This is true
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regardless of which two messages remain at the beginning
of the mapping. Note that this mapping is not particularly
short — we could also use the schedule where each message
transmits in its own slot, which is trivially 1-good; however,
for larger values of n and m, non-trivial 1-good schedules
where messages share slots can be shorter, as we will soon
see.

Now let us consider an example where α = 1/2. We have
n = 4 messages X1, X2, X3, X4 and m = 2. It turns out that
the schedule 〈

{X1, X2}{X2, X3}
〉

is 1/2-good. Note that for a 1/2-good mapping, we have fewer
constraints. Now for each pair of messages x, y, either x has
to have a slot which does not contain y or y has to have a slot
that does not contain x. This allows us to generate this counter-
intuitive mapping where X4 is never transmitted. For instance,
consider X1 and X4 — since the first slot contains X1, but
not X4, it satisfies the condition. We can check similarly for
all pairs.

The advantage of α-good mappings is realized when the
size of the mapping is relatively small. Bender et al. [4] give
the following methods for creating a 1-good mapping and a
1/2-good mapping with sizes O(m2 log2 n) and O(m log n),
respectively. Importantly, for both methods if m � n, then
the number of slots is far below n. Both of their constructions
involve concatenating several simple mappings that they call
collections. A collection is a mapping in which each message
is assigned to exactly one slot.

We first describe the modulo mapping which is a small
1-good mapping.

Definition 3 (Modulo mapping). Let n be the number of
messages and let 1 ≤ m ≤ n be a parameter of the map-
ping. Let C = mdlog n/ log(m log n)e, and let p1, p2, . . . , pC
denote the C smallest prime numbers greater than m log n.
The modulo mapping consists of the concatenation of C
submappings called collections. Collection i spans pi slots
numbered consecutively from 0, and all messages x ∈ X with
x ≡ j (mod pi) are assigned to slot j in collection i.

Bender et al. [4] prove the following bound on the length of
this mapping — it follows from the density of primes, allowing
all primes considered to have value O(m log n).

Lemma 1 (From [4]). The modulo mapping with parameter
m is a 1-good mapping for subset size m, and it spans a total
of O(m2 log2 n) slots.

Without doing the full proof, here is the intuition for why
the modulo mapping is 1-good. Consider two integers j and
k where j 6= k. In the modulo mapping, j and k collide in
collections i iff j ≡ k (mod pi), where pi is the prime used
for collection i. Consider the first C0 = logn/ log(m log n)
collections. For j and k to collide in all these collections, we
must have |j − k| ≥

∏C0

i=1 pi for all primes pi used in these
collections. Since all the primes pi are large (≥ m log n), this
necessarily implies |j − k| ≥

∏C0

i=1 pi ≥ (m log n)C0 = n.

Therefore, if our messages are numbered from 1 to n, the
difference between the two numbers is at most n − 1, and
no two messages can collide in all C0 collections. This
observation can be generalized: In particular, since we have
a total of C = mC0 = m log n/ log(m log n) collections, we
can show that there exists a collection such that j will not
collide with any other subset of m − 1 messages implying
that this is a 1-good mapping. Now consider the size of the
mapping. The size of the mapping is the

∑C
i=1 pi where pi

is the ith prime number larger than m log n. Since primes
are relatively dense, any interval of size N logN contains
approximately N primes for sufficiently large N . Therefore, if
we consider an interval (m log n, km log n) for some constant
k, we will find C primes. Thus, pi = O(m log n) for all pi,
implying that the mapping size is O(m2 log2 n).

Definition 4 (Ball-bin method). Let n be the number of mes-
sage IDs and let 1 ≤ m ≤ n be a parameter of the mapping.
The mapping is also parameterized by constant d, c > 0. The
ball-bin mapping is the concatenation of dd log ne collections,
each spanning dcme slots. In each collection, each message is
assigned to one slot independently and uniformly at random.

By construction, the number of slots used by the ball-bin
method is bounded. But because ball-bin method is random-
ized, the resulting mapping is not always α-good. Bender et
al. [4] show that the ball-bin method is likely to produce a 1/2-
good mapping, as stated by the following lemma. Note that
the method simply returns a mapping, without any indication
of whether the mappings is 1/2-good or not. Thus, we need to
verify the quality of the mapping before incorporating it into
the fault-tolerant schedule, repeating the random generation in
the unlucky event that the mapping is not 1/2-good.

Lemma 2 (From [4]). There exist constant settings of param-
eters c > 0, d > 0 and constant probability p > 0 such that:
for any setting of parameter m, with probability at least p
the ball-bin method produces a mapping that is 1/2-good for
subset size m. Moreover, the mapping produced always uses
O(m log n) slots.

III. GENERATING FAULT-TOLERANT MAPPING WITH
DIVISIBLE 1-GOOD MAPPINGS

This section uses 1-good mappings to produce a fault-
tolerant schedules. As mentioned in Section II, a fault-tolerant
schedule consisting of an identity mapping followed by a
retransmission mapping must ensure that all messages are
transmitted even if there are up to f errors during the trans-
mission regardless of which slots have the errors. We will
now design retransmission mappings using 1-good mappings.
We first argue that a single arbitrary 1-good mapping as the
retransmission mapping does not guarantee fault-tolerance.
We then define an additional condition on 1-good mappings,
called divisibility, and argue that the identity mapping followed
by a divisible 1-good mapping is sufficient to guarantee
fault tolerance. We then argue that the modulo mapping [4]
(Section II, Definition 3) is in fact divisible. We therefore
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achieve a retransmission mapping with length O(f2 log2 n)
for a total schedule length of n+O(f2 log2 n)

First, consider a simple scenario to see why 1-good map-
pings are useful — say all f errors occur during the identity
mapping and none during the retransmission mapping.

Observation 1. If no errors occur during the retransmission
mapping, then using a 1-good mapping for subset size f as the
retransmission mapping is a sufficient to transmit all messages.

To see why this is true, recall that, by definition of 1-good
mappings, for any subset S of f messages (and therefore the
subset of messages which experienced medium errors during
the identity mapping), there will be at least one slot for each
of these messages in the 1-good mapping where they do not
collide with other messages in S. Therefore, all f messages
will transmit without collisions.

However, in the general case, when there may be errors
during the retransmission phase, an arbitrary 1-good mapping
is not sufficient. To see this, observe that the identity mapping
is a 1-good mapping. However, if we have an identity mapping,
followed by another identity mapping for retransmission, we
cannot guarantee fault tolerance. More generally, in order to
guarantee fault tolerance, each message must be assigned to at
least f slots in the retransmission mapping (f + 1 slots when
we include the initial identity mapping); otherwise, every slot
containing the message may have a medium error and the
message cannot transmit. Therefore, just relying on a mapping
being 1-good is not sufficient for fault tolerance. One option
is to use multiple 1-good mappings, but that would increase
the overhead (length of the retransmission phase). Instead, we
argue that the modulo mapping has a much stronger property
that makes a single modulo mapping sufficient.

A. Divisible α-good mapping

We define divisible mappings specifically for the case of 1-
good mappings. It turns out this definition generalizes for any
α ≤ 1. However, since we only use this property for 1-good
mappings, we only define it for α = 1.

Definition 5 (Divisible 1-good mappings). Given n messages,
a 1-good mapping for subset size m is divisible if it can be
decomposed into m phases each containing a contiguous set
of slots such that the following condition holds. For every
positive integer k ≤ m, every grouping of k consecutive
phases constitutes a 1-good mapping for subset size k. In other
words, for every size-k subset S of messages and any group
of k consecutive phases, there is a slot in the phases to which
x and no other message in S is assigned.

Divisibility is a counter-intuitive property. The idea is that a
divisible mapping is made up of m phases and as we compose
these phases, we get divisible mappings for larger and larger
subsets. Each phase, in itself, is a 1-good mapping for a subset
of size k = 1 — that is, if we only have 1 message left,
then one phase is sufficient to transmit this one message.
Such mappings are trivial — a single slot with all n messages
mapped to it is 1-good for all subsets of size 1. But then the

definition gets stricter. It says that if we look at all the slots
from any k = 2 contiguous phases together, they form a 1-
good mapping for all subsets of size 2 — that is, for any pair
of messages, there are slots within these phases where these
messages do not conflict with each other. We continue in this
vein for all values of k.

Note that an arbitrary 1-good mapping is not necessarily
divisible. For example, the following identity mapping is 1-
good for n = 4 and m = 4:〈

{X1}{X2}{X3}{X4}
〉
,

since each message has an exclusive slot. However, the map-
ping is not divisible since we cannot split the mapping into
smaller parts such that each part is 1-good for a smaller m.

B. Divisible 1-good mappings guarantee fault-tolerance

It is not at all clear how one would design such mappings
and we will show that the modulo mapping is divisible in
Section III-C. This subsection argues that a divisible 1-good
mapping provides fault-tolerance.

Before getting to the main result, we start by formalizing a
generalization of Observation 1.

Lemma 3. Suppose that there are η unsent messages, and a
1-good mapping for subset size η is performed. Let φ be the
number of medium errors suffered during the mapping. Then
at most min(η, φ) unsent messages remain at the completion
of the mapping.

Proof. Let U , with η = |U |, be the set of unsent messages
at the beginning of the mapping. Clearly once a message has
been sent, it cannot become unsent, so the number of unsent
messages that remain at the end is at most η.

We focus here on showing that the number of unsent
messages that remain at the end is also at most the number of
errors φ. Consider any particular message u ∈ U . By definition
of a 1-good mapping, there exists at least one slot su to which
u is assigned and to which no other message in U is assigned,
which we call a collision-free slot for u. Let su be any one
such collision-free slot for u. If no medium error occurs in
slot su, then u successfully transmits. If a medium error does
occur in slot su, then we say that u is blocked. Since the
chosen collision-free slots are, by definition, distinct for each
unsent message (i.e., su 6= sv for u 6= v ∈ U ), each medium
error blocks at most one message in U . Because only blocked
messages may remain at the end, the number of messages that
remain is thus at most the number of medium errors φ.

Theorem 1. Consider a schedule comprising the identity
mapping followed by a divisible 1-good mapping for subset
size f . If at most f medium errors occur in total, then
all messages are successfully sent by the conclusion of the
schedule.

Proof. Let e0 ≤ f be the number of medium errors that occur
during the identity mapping. The identity mapping is a 1-good
mapping for subsets of size n, so by Lemma 3, the number of
unsent messages that remain at the end of the identity mapping
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is at most e0. (In fact, the number of remaining messages is
exactly e0, but we just need an upper bound.)

We now partition the divisible 1-good mapping into some
number of rounds starting the numbering from round 1, and we
call the identity mapping round 0. This partition is designed in
an online fashion as follows. Let ni be the number of messages
that remain at the end of round i − 1. If ni = 0, then the
process terminates. Otherwise, round i corresponds to the next
ni phases of the divisible 1-good mapping. To be well-defined,
we must ensure that enough phases remain in the divisible
mapping, which we revisit in the next paragraph. Notice that
by definition of divisibility, the round i is 1-good for subset
size ni. Let ei be the number of medium errors occurring
during the round. Then by Lemma 3, the number of unsent
messages that remain at the end of round i is at most ni+1 ≤
ei. (In fact, we have ni+1 ≤ min(ni, ei), but we only need to
leverage the weaker claim here.)

It remains to show that the process successfully terminates
(i.e., we reach ni = 0 for some i) before we run out of phases
in the divisible mapping. Suppose for the sake of contradiction
that the process does not successfully terminate, meaning that
there exists some earliest round r for which not enough phases
remain in the divisible mapping. There are f phases in the
divisible mapping, so by the nontermination assumption we
have that

∑r
i=1 ni > f . Applying the fact that ni ≤ ei−1 as

proved in the previous paragraph, we have f <
∑r

i=1 ni ≤∑r
i=1 ei−1 =

∑r−1
i=0 ei, i.e., the total number of medium errors

incurred through rounds 0, 1, . . . , r − 1 is strictly more than
f . This contradicts the assumption that a total of at most f
medium errors occur, and thus the assumption that the process
does not terminate is false.

C. Modulo Mapping is divisible

Now that we know a divisible mapping is useful, we will
argue that the Modulo mapping described in Section II from
Bender et al. [4] is an instance of a divisible 1-good mapping.
The first part of the proof is very similar to the argument in
Bender et al. [4] where they prove that it is a 1-good mapping.
We will then extend this argument to prove that the same
property also implies divisibility.

Theorem 2. The Modulo mapping (definition 3) is a divisible
1-good mapping.

Proof. Consider a pair of messages j and `, j 6= `, and
suppose they collide in collection pi. Then it must be the
case that j ≡ ` (mod pi), i.e., their difference is a multiple
of pi. Now consider multiple collections. In particular, let
C0 = dlog n/ log(m log n)e. We argue that in total, j and
` cannot collide in C0 (or more) collections. Suppose for
the sake of contradiction that j and ` collide in at least C0

collections. Then their difference must be the product of at
least C0 different primes, all with value at least m log n. Thus
|j − `| ≥ (m log n)C0 ≥ n. But the maximum difference
between IDs is n− 1, which gives us a contradiction. Thus, j
and ` must collide fewer than C0 times.

Bender et al. [4] used the same observation to prove the
mapping 1-good. We use this property to prove divisibility.
Let C0 successive collections constitute a phase. Since the
mapping contains C = mdlog n/ log(m log n)e collections,
there are C/C0 = m phases. Given an integer k (k ≤ m),
consider any size-k subset S of messages, and consider any
particular message j in this set. By the logic above, each other
message collides with j in fewer than C0 collections. If we
sum across the collisions with all k−1 other messages in S, in
total j must experience fewer than (k − 1)C0 collisions with
other messages from S. Thus, for any k contiguous phases
and hence kC0 contiguous collections, message j must have at
least one collection in which it does not experience a collision.
Therefore, the slots of any k phases (each phase contains C0

collections) make a 1-good mapping for a subset of size k for
all k < m, which is the definition of divisibility.

Putting everything together, the retransmission phase con-
sists of a modulo mapping, generated according to Definition 3
with parameter m = f . By Lemma 1, for m = f this
mapping has length O(f2 log2 n). By Theorem 2, this mapping
is divisible. By Theorem 1, a divisible 1-good mapping is
sufficient. We thus conclude with the following:

Corollary 2.1. Consider the schedule consisting of the identity
mapping followed by the modulo mapping for subset size f .
If at most f medium errors occur, then all messages are
successfully sent by the conclusion of the schedule. Moreover,
the retransmission length (i.e., the overhead) is O(f2 log2 n).

IV. GENERATING FAULT-TOLERANT MAPPING WITH
REDUCIBLE α-GOOD MAPPINGS

This section applies multiple α-good mappings to produce
a shorter fault-tolerant schedule. In order to apply the method
described in this section, we will define a property of α-good
mappings, namely reducibility. Once we define this property,
we will show that the algorithm given here works for any
reducible α-good mapping, including the 1-good mapping. The
main advantage is achieved when α < 1, which allows for a
shorter mapping length and hence better overall schedule. As a
simple extension of Bender et al. [4], we show that there exists
a reducible 1/2-good mapping for m with length Θ(m log n).
Coupled with the main algorithm in this section for producing
a good retransmission mapping from α-good mappings, this
gives us a retransmission mapping length of O(f log f log n)
for an overall schedule length of n+O(f log f log n).

This bound is asymptotically better than the schedule pro-
duced using divisible 1-good mappings. It should be noted,
however, that we do not know of any efficient algorithm
for producing a reducible 1/2-good mapping. Rather the
simple random ball-bin method is likely to generate a 1/2-
good mapping, but verifying that the resulting mapping is
actually 1/2-good is computationally expensive. Nevertheless,
a mapping for each set of parameters need only be generated
once — therefore, we could use it to get small schedules.
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A. Reducible α-good mapping

Recall that an α-good mapping for subset size m only
guarantees that for subsets of size m, at least αm of the
message are assigned to time slots without collision. What if
there are only k � m unsent messages still trying to send? It
turns out that the α-good property as defined does not directly
ensure progress.

To understand the issue, consider a specific subset S of
size |S| = k, m = 2k and α = 1/2. One valid (but not
very effective) 1/2-good mapping would be a mapping that
assigns every element of S to the same single slot, and all other
n − k elements to their own individual slots. This mapping
meets the definitions of being 1/2 good for subsets of size
m = 2k, as all such subsets must include at least k elements
assigned to their own slots. However, if we only have k unsent
messages corresponding exactly to the subset S, then none of
the messages may be collision free.2

For example, consider the following mapping is 1/2-good
for n = 8 and m = 8.〈

{X1}{X2}{X3}{X4}{X5, X6, X7, X8}
〉
.

In the mapping, 4 messages — X1, X2, X3, X4 have their own
slots. However, this mapping is not 1/2-good for n = 8 and
m = 4 since all the messages in the subset X5, X6, X7, X8

collide with each other. It is also not 1/2-good for many other
values of m.

To overcome this issue, we extend the property to also be
reducible, which simply means that the mapping needs to be
α-good for subsets of size at most m, not just exactly equal
to m. The preceding example is not reducible.

Definition 6 (Reducible α-good mapping). Given n messages,
a reducible α-good mapping for subset size m is a mapping
that is α-good for all subset sizes k ≤ m.

This property guarantees that if there are k ≤ f unsent
messages, a reducible α-good mapping for m = f will
send at least αk messages without collisions (in the absence
of medium errors). We note here that 1-good mappings are
always reducible.

Lemma 4. Any 1-good mapping is reducible.

Proof. Consider a 1-good mapping for subset size m. We must
show that it is also 1-good for k < m. In particular, for a
subset S with |S| = k, we must show that every element in
the subset has a collision free slot. Let S′ be any subset with
|S′] = m and S ⊂ S′, i.e., augment S by adding any m − k
elements. By definition of 1-good, every element in S′ has a
collision-free slot, and hence so does every element in S.

However, since we already have a retransmission schedule
which contains only one 1-good mapping, we will focus here
on reducible mappings for α < 1 in order to get shorter
retransmission mappings overall.

2This is a problem with the definition of α-good mapping. We will see in
Section IV that the mapping from [4] has a stronger property of reducibility.

B. Achieving fault-tolerance by repetitions

This section gives two methods that integrate multiple
reducible α-good mappings to generate a retransmission map-
ping. We will argue that the schedule consisting of an identity
mapping followed by this retransmission mapping guarantees
fault tolerance. The overall schedule length depends on the
sizes of the α-good mappings. Section IV-C proves that small
1/2-good reducible mappings exist and analyzes the overall
schedule length.

We begin by defining a geometric schedule (shown in
Algorithm 1) — so called since the subset size for subsequent
mappings decreases geometrically. For this schedule, we will
prove that it achieves fault tolerance.

Algorithm 1 Constructing a retransmission mapping from
reducible 1/2 good mappings using the geometric method

1: . I(n) is the identity mapping for n messages
2: . M(n,m) is a reducible α-good mapping for subset size
m.

3: function GEOMETRIC-INTEGRATION(n, f , α)
4: schedule = I(n)
5: for i← 0 to log f do
6: append d((1/α)(1 + 2i+1)e copies of M(n, f/2i)

to schedule
7: end for
8: return schedule
9: end function

The schedule comprises the identity mapping followed by
the retransmission mapping, which contains several reducible
α-good mappings for different subset sizes m. Consider an
instance on n messages, f total medium errors, and goodness
parameter α. The retransmission mapping comprises roughly
log f phases (logarithms are base 2), where each phase cor-
responds to an iteration of the main loop in Algorithm 1.
The ith phase consists of d(1/α)(1 + 2i+1)e (roughly Θ(2i))
repetitions of a reducible mapping that is α-good for subset
size f/2i. In each phase, the number of mappings doubles,
but the length of each repetition of the mapping halves.

To prove correctness, the main goal is to prove the following
invariant: at the start of phase i, there are at most f/2i unsent
messages. This invariant is necessary — if more unsent mes-
sages exist, then a mapping that is α-good for m = f/2i has
no guarantees on collisions for subsets of size larger than m.
Moreover, if the invariant holds, then there are no unsent
messages at the end of all the iterations. This invariant, or
more precisely the inductive step of the invariant, is captured
by the following lemma.

Lemma 5. Suppose that the ith phase (iteration i) begins with
at most f/2i unsent messages. Suppose also that at most f
medium errors occur during the phase. Then at the end of the
phase, there are at most f/2i+1 unsent messages.

Proof. Suppose, for the sake of contradiction, that a phase
fails, i.e., ends with at least f/2i+1 unsent messages. Then
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there must be at least that many unsent messages at the start
of every repetition of the α-good mapping. We shall show that
with only f medium errors, keeping this many messages alive
would require more than f medium errors, hence generating
the contradiction.

Each reducible α-good mapping in the phase is good for
subset sizes up to f/2i. Since by assumption there are at
least f/2i+1 unsent messages throughout, in each mapping
repetition there must be at least αf/2i+1 messages that are
assigned to at least one collision-free slots. For each message,
consider just one such collision free slot. These messages
would successfully transmit as long their slot does not suffer
a medium error. That is to say, every such collision-free slot
that does not incur a medium error results in a message being
successfully transmitted. Note that this number of collision-
free messages depends only on the assumption that there are
still a lot of unsent messages — it does not depend on how
medium errors are assigned in previous repetitions.

Summing across all repetitions, the total number of
collision-free slots is at least αf/2i+1 times the number of
repetitions, or at least (1/α)(1+2i+1)·αf/2i+1 = f+f/2i+1

collision-free assignments. If f̂ medium errors occur, the num-
ber of successful transmission is thus at least f + f/2i+1− f̂ .
To conclude the proof, we observe that the phase begins with
at most f/2i unsent messages by assumption, and hence there
must be fewer than f/2i+1 successful transmissions to keep
the surviving number of unsent messages above f/2i+1. Thus
we have f+f/2i+1−f̂ < f/2i+1 or f̂ > f , which contradicts
the assumption that there are only f medium errors in the
phase.

Note that the preceding lemma is stronger than necessary
in that it allows for f medium errors in each phase, whereas
there are only f medium errors in total.

Theorem 3. Consider the schedule generated by the algorithm
described in Algorithm 1 for a particular settings of n, f , and
α > 0 for which the specified mappings exist. If at most f
medium errors occur, then all n messages successfully transmit
by the end of the schedule.

Proof. Via induction over phases, we can show that at the start
(and end) of iteration i, there are at most f/2i (and f/2i+1)
unsent messages. For the base case, at the beginning of the
retransmission mapping (start of phase i = 0) there are at
most f = f/20 unsent messages. For each subsequent phase,
Lemma 5 shows the inductive step. Thus, after log(f) phases,
there is ≤ 1/2 unsent message i.e., no unsent messages.

For the types of mappings we know, there are not many
interesting values of α—just α = 1, which gives an easy
constructive mapping, and α = 1/2, which gives a much
smaller mapping. Pushing α smaller may result in the α-good
mapping being smaller, but this mapping-size improvement is
offset by increasing the number of repetitions with (1/α).

Nevertheless, it is possible to improve some constant factors
in the integration algorithm itself, albeit at a cost of compli-
cating the proof. We thus chose to lead with the algorithm

with the clearer proof in this section. Algorithm 2 gives an
alternative harmonic algorithm — so called since the subset
size decreases harmonically in each iteration — specifically for
α = 1/2, which decreases the overall number of repetitions at
each subset size. This is the version we use in our experiments.
The main loop structure is different in this algorithm: there are
now f phases, where phase i now corresponds to subset size
m = f/i, but the advantage is that each phase now has just
a constant number of repetitions. Though quite different at
first glance, it’s worth noting that the algorithms and proofs
are conceptually similar: as with the geometric sequence, the
harmonic sequence includes Θ(2i) numbers that are between
1/2i and 1/2i−1.

Algorithm 2 A modified (harmonic) algorithm for construct-
ing a retransmission mapping using reducible 1/2-good map-
pings.

1: . I(n) is the identity mapping for n messages
2: . M(n,m) is a reducible 1/2-good mapping for subset

size m.
3: function HARMONIC-INTEGRATION(n, f )
4: schedule = I(n)
5: for i← 1 to f do
6: append 3 copies of M(n, f/i) to schedule
7: end for
8: return schedule
9: end function

The key to proving correctness of this harmonic mapping
is to show that iteration i begins with at most f/i, and ends
with at most f/(i + 1), unsent messages. This property is
analogous to Lemma 5, and it is necessary and sufficient for
similar reasons. That is, the mapping applied during iteration
i is only good for subsets of size at most f/i, so to argue
anything about the number of collision-free messages we need
to have at most f/i unsent messages. Moreover, at the end,
having f/(f + 1) < 1 unsent messages implies that there are
no unsent messages.

Our proof of this key invariant follows a somewhat different
structure from the analogous argument for the geometric ver-
sion. To understand the setup, it is best to consider what would
happen if there were no medium error — each invocation of
a 1/2-good mapping (for sufficiently large subset size) would
reduce the number of unsent messages by 1/2, which would
mean 1/8 per iteration. Thus, in the absence of medium errors,
the number of unsent messages at the start of iteration i would
be f/8i−1, which is far lower than the harmonic guarantee
we set out to achieve. The point is that to keep the number of
unsent messages as high as f/i in every iteration, the number
of medium errors must already be quite large.

Our analysis thus somewhat decouples the iteration number
from the number of messages remaining. Our goal is to
characterize each phase according to how many steps it takes
in the harmonic sequence. For example, going from f/2 unsent
messages down to f/5 takes three steps (the step from f/2
to f/3, the step from f/3 to f/4, and the step from f/4
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to f/5) in the harmonic sequence. To this end, we define
the harmonic rank over positive integers 1, 2, . . . , f , denoted
by hrank(x), to be the value j = hrank(x) such that
f/(j + 1) < x ≤ f/j. For example, for f = 16, we have
hrank(10) = 1, hrank(7) = 2, and hrank(4) = 4.

As before, we call iteration i of the main loop the ith phase,
which now comprises three 1/2-good mappings for subset size
f/i. As noted above, without medium errors the harmonic
rank should increase by more than 1 in each phase. If there
are some medium errors, the harmonic rank may increase by
less. The following lemma flips this dependence around — the
change to the harmonic rank gives us a bound on the number
of medium errors.

Lemma 6. Let u and u′ denote the number of unsent messages
at the start and end of a particular phase, respectively.
Suppose that u ≤ f and that u′ ≥ 1, let h = hrank(u),
and let h′ = hrank(u′). Suppose also that the phase number
i satisfies i ≤ h, or equivalently u ≤ f/i. Then the number
of medium errors that occurred during the phase is strictly
greater than 2f/(h′ + 1)− f/(2h).

Proof. Because by assumption u ≤ f/i, each copy of the 1/2-
good mapping during this phase is 1/2-good for all m ≥ u.
It follows that throughout the phase, for each copy of the
mapping, at least half of the remaining unsent messages are
each assigned to at least one collision-free slot.

We now consider each of the copies of the 1/2-good
mapping. Let uk, for k ∈ {1, 2, 3} denote the number of unsent
messages that remain after performing the kth repetition of the
1/2-good mapping in this phase. Similarly, let xk denote the
number of medium errors occurring during copy k. Our goal
is to prove that x1 + x2 + x3 > 2f/(h′ + 1) − f/(2h). To
start, observe that

u1 ≤ u/2 + x1,

u2 ≤ u1/2 + x2, and
u3 ≤ u2/2 + x3 .

These inequalities follow from the fact that each unsent
message assigned to a collision-free slot only remains unsent
if it suffers a medium error.

Combining the three inequalities, we have

u1 + u2 + u3 ≤ x1 + x2 + x3 + u/2 + u1/2 + u2/2, or
x1 + x2 + x3 ≥ u3 + u1/2 + u2/2− u/2

Since the number of unsent messages is monotonically de-
creasing, we have ui ≥ u′ > f/(h′ + 1). We also have
u ≤ f/h. Substituting these back into our inequality yields

x1 + x2 + x3 ≥ 2u′ − u/2 > 2f

h′ + 1
− f

2h
.

Observe that if the harmonic rank increases by a lot during
the phase (for instance, if h′ ≥ 4 × h), then Lemma 6 does
not say anything about the number of medium errors — in
this case 2f/(h′+1)−f/(2h) is negative. On the other hand,

a slower increase to the harmonic rank can only occur in the
presence of medium errors.

The next lemma shall be useful to bound the number of
errors for a sequence of k phases starting with harmonic rank
h0 and ending with harmonic rank hk. Roughly speaking, the
implication is that the lowest number of errors necessary3 to
keep x messages alive across multiple phases is realized by
allowing all but x messages to succeed immediately in the
first phase, and then using all medium errors to maintain x
messages in the subsequent phases.

Lemma 7. Consider a monotonically increasing sequence of
1 ≤ h0 ≤ h1 ≤ · · · ≤ hk. Then we have

k∑
i=1

(
2

1 + hi
− 1

2hi−1

)
≥ k + 1

1 + hk
− 1

2h0
.

Proof. We start by splitting the sum into

k∑
i=1

(
2

1 + hi
− 1

2hi−1

)

=

k∑
i=1

1

1 + hi
+

k∑
i=1

(
1

1 + hi
− 1

2hi−1

)

≥
k∑

i=1

1

1 + hk
+

k∑
i=1

(
1

1 + hi
− 1

2hi−1

)

=
k

1 + hk
+

k∑
i=1

(
1

1 + hi
− 1

2hi−1

)
To complete the proof, we simply observe that for hi ≥ 1,

we have 1/(1 + hi) ≥ 1/(2hi), or equivalently 1/(1 + hi)−
1/(2hi) ≥ 0. We can thus cancel all consecutive intermediate
terms in the sum (the sum telescopes), and we are left with

k∑
i=1

(
1

1 + hi
− 1

2hi−1

)
≥ 1

1 + hk
− 1

2h0
.

We are now ready to prove the main correctness invariant:
that each phase i starts and ends with at most f/i and f/(i+1)
unsent messages, respectively, and hence the mapping is good
for the number of remaining unsent messages.

Lemma 8. Let ui−1 and ui denote the number of unsent
messages at the start and end, respectively, of phase i. If
at most a total of f medium errors occur (over the whole
schedule), then for all i, 0 ≤ i ≤ f , we have ui ≤ f/(i+ 1).

Proof. Suppose for the sake of contradiction that there exists
an i such that ui > f/(i+1). Let x = min{i|ui > f/(i+1)}
be the first such phase number.

Note that ui is always an integer, and f/(i + 1) > 0, so
ui ≥ 1 for all i ≤ x. Moreover, we also have ui ≤ f due to

3This statement is with respect to the lower bound of Lemma 6, which
allows a negative number of errors. That lower bound is thus looser than the
reality, where the number of medium errors cannot be negative.
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Lemma 3, which applies because the identity mapping is 1-
good and suffers at most f medium errors. Thus for 0 ≤ i ≤ x,
we have 1 ≤ ui ≤ f , and the harmonic rank is well-defined for
all i in this range. We thus let hi = hrank(ui) for 0 ≤ i ≤ x.

By choice of x, we have ui−1 ≤ f/i for all i ≤ x. Thus
the conditions of Lemma 6 are met for all i ≤ x. (We map
each ui−1 and ui to u and u′, respectively, in the statement of
that lemma.) Following from Lemma 6, the total number of
medium errors during phases 1 through x inclusive is strictly
greater than

x∑
i=1

(
2f

1 + hi
− f

2hi−1

)
= f

x∑
i=1

(
2

1 + hi
− 1

2hi−1

)
.

Applying Lemma 7,

f

x∑
i=1

(
2

1 + hi
− 1

2hi−1

)
≥ f

(
x+ 1

1 + hx
− 1

2h0

)
.

If u0 messages survive the identity mapping, then the num-
ber of medium errors during the identity mapping is u0
(Lemma 3). We have u0 > f/(h0 + 1) by definition of the
harmonic rank. Adding all the errors together, the total number
of medium errors is strictly greater than

f

(
x+ 1

1 + hx
− 1

2h0

)
+

f

1 + h0
≥ f(x+ 1)

1 + hx
,

which follows because h0 ≥ 1.
By choice of x, ux > f/(x + 1) and hence hx =

hrank(ux) < x + 1, or hx ≤ x. We thus have a strictly
more than

f(x+ 1)

1 + hx
≥ f(x+ 1)

1 + x
= f

medium errors. This generates a contradiction as the number
of medium errors is assumed to be at most f and cannot be
strictly more than f .

Theorem 4. Consider the schedule generated by the algorithm
described in Algorithm 2 for a particular settings of n and
f . If at most f medium errors occur, then all n messages
successfully transmit by the end of the schedule.

Proof. Lemma 8 implies that uf ≤ f/(f + 1) < 1 — the
number of unsent messages at the end of phase f is 0. Thus,
all messages must successfully transmit by the schedule.

C. Applying reducible 1/2-good mappings of small size

We have shown how to build fault-tolerant schedules via in-
tegrating many reducible α-good mappings. In this subsection,
we present a 1/2-good mapping that is reducible and hence
applies to achieve fault tolerance.

The mapping is the same mapping described by Bender et
al. [4]. We are not claiming the mapping itself as a contribu-
tion, but we present some of the analysis for completeness.
Bender et al. [4] use the probabilistic method on random
assignments to argue that 1/2-good mappings of modest size
exist. That is, they show that a random process for generating a
mapping has some chance of producing a 1/2-good mapping.

Thus, one can obtain a 1/2-good mapping by repeating the
random process and testing the result.

Bender et al. [4] omit several of the proofs from their paper,
however, so we include those details here. Moreover, we show
that the same mapping is also reducible.

The following lemma is similar to one given by Bender et
al. [4], but no proof is provided in their paper. This balls-
in-bins lemma is the main crux of the mapping: the full
mapping comprises Θ(log n) uniformly random (balls-in-bins)
assignments of this form.

Lemma 9. Let 18m denote the number of bins and
k ≤ m be the number of balls. There exists a con-
stant δ ∈ (0, 1) such that: if the k balls are thrown
uniformly at random into the 18m bins, then we have
Pr(fewer than k/2 bins have exactly one ball) < δk.

Proof. Let cm be the number of bins (where we shall derive
the c ≥ 18 in the proof). Consider tossing k balls, k ≤ m,
into those bins. Let ρ denote the number of bins containing at
least 1 ball. Let x denote the number of bins having at least
2 balls. We want to bound the number y = ρ− x of bins that
contain exactly 1 ball. We have (ρ−x)×1+x×2 ≤ k, which
leads x ≤ k − ρ. Thus, we have

y ≥ 2ρ− k

We want y ≥ 2ρ − k ≥ k/2. Observe that 2ρ − k ≥ k/2 is
equivalent to ρ ≥ 3k/4. It follows that if ρ ≥ 3k/4, then y ≥
2ρ − k ≥ k/2. Thus, we have Pr[y ≥ k/2] ≥ Pr[ρ ≥ 3k/4]
which leads

Pr[y <
k

2
] ≤ Pr[ρ <

3k

4
]

Now, we want to show Pr[ρ < 3k/4] < δk. For any subset
of [1, i] bins where i ≤ m, we have the probability p that all
balls land in those bins is p ≤ ( i

cm )k. The number of subsets
of [1, i] bins is

(
cm+i−1

i

)
< ei( i

(c+1)m )−i. Apply a union
bound over all the subsets, we have Pr[ρ < i] < Pr[ρ ≤ i] ≤
ei( i

(c+1)m )−i( i
cm )k. In particular, for i = 3k/4, we have

Pr

[
ρ <

3

4
k

]
<

((3e3

4c

)(
c+ 1

c

)3
) 1

4

k

(1)

Select δ = (( 3e3

4c )( c+1
c )3)

1
4 , and notice that for c ≥ 18, we

have δ < 1. Above all, we have

Pr

[
y <

k

2

]
≤ Pr

[
ρ <

3k

4

]
< δk . (2)

We now show that the balls-in-bins method has a non-
zero chance of producing a reducible 1/2-good mapping.
Therefore, a reducible 1/2-good mapping must exist.

Theorem 5. The balls-in-bins method (definition 4) produces
a reducible 1/2-good mapping with at least a constant prob-
ability.
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Proof. The method generates Θ(log n) independent collec-
tions. For each collection, we randomly (uniformly) allocate n
messages to Θ(m) slots. Due to Lemma 9, given k (k ≤ m)
messages, the probability P1 that fewer than k/2 slots that
each slot has exactly one of the k messages is P1 < δk

for some δ ∈ (0, 1). Since we have θ(log n) independent
collections. Thus, we have the probability P2 that every
collection has less than k/2 slots that each slot has exactly one
of the k messages is P2 = P d logn

1 < (δk)d logn for d ≥ 1.
Since there are

(
n+k−1

k

)
≤
(
2n
k

)
≤ ( 2en

k )k ≤ ek2k logn ways
to pick [1, k] messages out of n messages. We apply a union
bound over all possible subsets that contain [1, k] messages, we
have the probability P3 that the mapping is reducible 1/2-good
for subset size k is P3 < ek2k lognδdk logn < 1 for sufficiently
large d. Thus, it is possible to get a reducible 1/2-good
mapping for subset size m via the probability method.

Now that we have shown that reducible 1/2-good mappings
of length O(m log n) exist, we can now compute the total
length of the the retransmission mapping created using the
method in Algorithm 1 or Algorithm 2.

Lemma 10. Assuming we generate reducible 1/2-good map-
pings using balls-in-bins method and then use the above
methods to generate a retransmission mapping, the size of the
retransmission mapping in either case is O(f log f log n)

Proof. For the geometric method shown in Algorithm 1, we
have log f phases. Phase i contains 2i+1 copies of a reducible
mapping for subset size f/2i. Therefore, the length of phase i
is O(2i+1f/2i log n) = O(f log n). Therefore, the total length
is O(f log f log n).

For the harmonic method shown in Algorithm 2, we
have f phases and each phase contains 3 copies of a re-
ducible mapping for subset size f/i. Therefore, the length
of each phase is O(f/i log n). If we add over all i, we get
O(
∑f

i=1 f/i log n) = O(f log f log n).

Putting everything together, by Theorem 5, reducible 1/2-
good mappings exist. By Theorem 3, we can compose these
mappings into a retransmission mapping which guarantees
fault tolerance for f errors and the length of this retransmission
schedule is O(f log f log n) (Lemma 10 for the total schedule
length of n+O(f log f log n)).

V. EVALUATION

This section describes our analytical evaluation of the
overhead due to fault tolerance using various methods for
generating the retransmission mapping. The methods described
in this paper are have asymptotically better overheads than
previous methods — sublinear in n instead of O(nf). Until
n or f grow large, however, the constants involved are of
practical concern. We now try to understand at what values of
n and f these new methods begin to become effective.

We compare the lengths of the retransmission schedules.
Our baseline is the dual mapping [3], henceforth denoted as
DUAL. In DUAL, every message appears in f slots and each
slot contains at most 2 messages. Let |M | denote the length

of mapping M . From [3], we have |DUAL| = nf/2. We first
compare DUAL with our approach based on the modulo map-
ping of Section III, denoted by DIV for “divisible.” We then
compare DUAL against our second approach in Section IV.
We use RDC, for “reducible,” to denote the retransmission
schedule that results from generating 1/2-good mappings with
the ball-bin method and the harmonic integration.

A. Divisible 1-good mapping

The modulo mapping lends itself to a simple algorithm for
constructing a divisible 1-good mapping. We build the DIV
mapping following the specification in Definition 3 — that is,
we simply identify the smallest f log n/ log f primes and then
use these primes to construct each collection by applying the
appropriate modulo operation to each message ID.

We begin by presenting the exact length of DIV for different
n’s and f ’s. We observe that DIV outperforms the baseline
DUAL when the ratio n/f is sufficiently large, as expected
by the asymptotic bound. We then determine the minimum
value of n/f for which DIV outperforms the baseline.

Figure 1 shows the comparison of DIV against the baseline
from different perspectives. For Figure 1a, we try different val-
ues of n ranging between 1000 and 10000 in steps of 1000 and
values of f between 20 and 100 in steps of 20. For each pair of
n and f , we calculate the length of DIV divided by the length
of the baseline (lower is better, and the value below 1 indicates
DIV outperforms the baseline). To highlight some numbers,
when n = 5000 and f = 40, DIV’s length is roughly 2/3 the
length of DUAL. When n = 10000 and f = 40 or at n = 5000
and f = 20, the ratio is about 1/3. Because the asymptotic
ratio between the two retransmission mapping lengths is
O(|DIV|/|DUAL|) = O(f2 log2 n/(nf)) = O((f/n) log2 n),
these experiments confirm the expected behavior that the ratio
between their lengths is roughly inversely proportional to n/f .

Figure 1b keeps f constant and shows the dependence on
n. Again, we see that as n increases, the 1-good mapping
gains advantage — the size of the mapping increases very
slowly with increasing n compared to the baseline. Thus,
in low medium-error environments, DIV scales very well
as n increases. In contrast, for fixed f DUAL’s length is
proportional to n.

Figure 1c tries to understand the performance in a slightly
different way. In the above evaluation, we see that when n/f
is sufficient large, DIV outperforms the baseline, as is to be ex-
pected from the bound. In particular, the asymptotics indicate
that DIV (with —DIV— = O(f2 log2 n)) should outperform
DUAL (with —DUAL— = nf/2) when f = O(n/ log2 n)
or equivalently when n/f = Ω(log2 n) for sufficiently large
c. We next try to understand how large n/f needs to be to
overcome the true constants in that Ω(log2 n) term. Let r1 be
the minimal n/f s.t. |DIV| < |DUAL|. As n increases, r1 also
increases, but slowly due to the dependence is on log2 n.

Let ri denote the minimal n/f s.t |DIV| < |DUAL|/i. We
call i the outperformance level and want to understand at what
values of n, we start to see a particular level of advantage
from using a divisible mapping rather than the baseline. In
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(a) Normalized mapping length (b) Mapping length when f = 100 (c) The value of r1, r2, r3, r4

Fig. 1: Numerical results of DIV. Figure 1a presents the ratio of DIV length to DUAL length for n ∈ [1000, 10000] and
f ∈ [20, 100]; Figure 1b keep f constant and shows the sub-linear trend of DIV length as n increases, comparing to the linear
trend of DUAL; Figure 1c presents the trend of r1, r2, r3, r4 as n increases, where ri denotes the minimal n/f such that the
length of DIV is shorter than DUAL length over i. DUAL mapping is the baseline.

n f c d RDC DUAL
200 2 1 2 97 200
200 3 1 2 169 300
200 4 1 2 385 400
400 2 1 2 109 400
400 3 1 2 190 600
400 4 1 2 433 800

TABLE I: Comparison of number of slots between RDC and
DUAL (baseline) for small n’s and f ’s

the evaluation, we evenly select n in [2000, 50000] (the step
is 200). We calculate ri for each n and the results are in Figure
1c. As n gets bigger, ri increases with n as expected but very
slowly. Therefore, above a certain value of n it might always
be useful to use divisible mappings unless f is very large. We
can also see that for n ∈ [2000, 50000], r1 ≤ 120, r2 ≤ 200,
r3 ≤ 300, r4 ≤ 400. It indicates that DIV can be significantly
better than the baseline in a low medium-error environments.

B. Reducible 1/2-good mappings

We now consider the retransmission schedule RDC, which
is built using the ball-bin method coupled with the harmonic
technique in Section IV. These experiments are more com-
plicated as the ball-bin method is not guaranteed to generate
a 1/2-good mapping. Instead, we must randomly construct
candidate mappings and check if they are 1/2-good. This
check is prohibitively expensive for large values of n and f
since we must check for collisions for all f -size subsets of n
messages and there are about nf of them.

There are some interesting questions to be asked about
1/2-good mappings, however, including the specific setting
of constant parameters c and d in Definition 4. In this section,
we will first explore which values of these constants for small
values of n and f lead to producing mappings that are actually
1/2-good. We then compare the (potential) length of 1/2-good
mappings for various values of c and d to the baseline.

Determining c and d of the reducible 1/2-good mapping
in practice: Recall that RDC is built up with reducible 1/2-

good mappings. We see in Lemma 9 that a constant of c = 18
is sufficient. The constant d appears in Theorem 5, and it
is also large. (We do not solve for d, merely arguing that a
sufficiently large d exists.) The size of reducible 1/2-good
mapping depends on c × d. While the theoretical value of
this quantity is large (since they are based on what can be
proven using simple mathematical techniques, in practice, we
can often get a valid mapping for smaller values.

For small values of n and f , we can try small values of
c and d and try to generate 1/2-good mappings by trying
the balls-into-bin method several times. Table I shows the
values of c and d that were sufficient to find valid mappings
for n = 200, 400 and f = 2, 3, 4. Note, in the table, that
relatively small values of c and d are sufficient to get valid
mappings — c × d = 2 is sufficient for all values that we
tested. This indicates that although our mathematically proven
upper bounds have high constants, the effective values of the
true constants may not be that large. The table also shows the
length of the smallest correct schedule we were able to find
using reducible mappings. We see that even for such small
values of f and n, RDC generally uses fewer slots than DUAL
for its retransmission mapping, often by a significant amount.
This advantage is only likely to increase for large n and f if
we can find an efficient way to generate these mappings.

a) Projection of performance of RDC for large n and f :
It is difficult to properly evaluate RDC for large n and f since
checking whether a randomly generated mapping is correct is
prohibitively expensive. Thus, we can only speculate here.

Figure 2 shows the comparison of length of the retrans-
mission schedule constructed using reducible mappings to the
baseline for various guesses for the correct value of c×d. We
saw earlier that small values of c × d is often sufficient, but
we do not know if that is also true when n and f are large.
Therefore, we show the comparison for various values.

Again, we use the values of r1, r2, r3 and r4 as defined for
divisible mappings earlier. We see that different from the ri
of DIV, the ri of RDC decreases to 1 when n gets sufficiently
large — implying that for large enough n, all values of f ≤ n
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(a) c× d = 2 (b) c× d = 4 (c) c× d = 18

Fig. 2: The trend of r1, r2, r3, r4 of RDC as n increase, where ri denotes the minimal n/f such that the length of RDC is
shorter than DUAL length over i.

benefit from using reducible mappings. This is also easy to see
from the theoretical results — the length of both the baseline
and reducible mapping method increase (almost) linearly with
f , while divisible 1-good mapping had a quadratic dependence
on f . While the divisible mapping was only good for small f
and (relatively) large n, this method is better than (at least as
good as) the baseline for all values of f for large enough n.

However, the correct values of c and d matters since
constants matter in practice. For example, let us focus on r3
in Figure 2 — r3 = 1 shows the value of n at which RDC is
better than DUAL by a factor of 3. Roughly, when c× d = 2,
r3 = 1 if n ≥ 4000. When c × d = 4, r3 = 1 if n ≥ 8000.
When c × d = 18, r3 = 1 if n ≥ 60000. Therefore, the
smaller the value of c×d, the smaller the value of n at which
we should prefer to use RDC over DUAL for all values of f .
However, even when c×d is large, there still exists a sufficient
large n such that RDC always outperforms the baseline. It is
also worth noting that RDC is significantly better than DIV
even for large c× d for reasonable values of n.

VI. RELATED WORK

We now discuss some related work on both contention
resolution and fault tolerance.

Contention resolution technologies such as randomized
backoff protocols are widely used to resolve contention for
simple multiple access channels. In a randomized backoff
protocol, when multiple jobs try to access a simple channel at
the same time, they collide with each other and both back off
for a random amount of time before retrying. Jobs can arrive
at the simple channel following the statistical queuing-theory
model [5] or in bursty (all jobs arrive at time 0) [6]. Jobs
can have unit-sizes [6], or heterogeneous sizes [4]. Jamming,
which is similar to our notion of medium errors has also been
studied in this context [7]–[9]. In contrast to the type of fault-
tolerant scheduling studied in this paper, however, backoff
protocols are not typically static.

Fault tolerance has also been studied in the context of
real-time scheduling. There are two kinds of fault-tolerant
techniques: the replication approach (also called the primary-
backup approach) [10] [11] [12] and the re-execution approach

[13] [14]. The re-execution approach is similar in flavor to the
idea here where we might transmit the messages again.

VII. DISCUSSION AND CONCLUSIONS

In this paper, we have provided schedules with sublinear
overhead for fault-tolerant transmissions. While the model
we consider is simple, the goal of this paper is to provide
evidence that sublinear overheads are possible. We argued
that these sublinear overhead schedules have the potential to
provide benefits in realistic situations and should be investi-
gated further. Many open questions remain. For instance, in
practice, one could have a more complex model consisting of
tuples {(f1, t1), (f2, t2), ...} model where there are at most fi
medium errors in any consecutive ti steps and fi/ti decreases
with ti. Again, we can, in principle use our method iteratively
for this model, but it would be better and less pessimistic
to directly generate schedules for this model. Second, real-
time systems usually need a more complex message model
where messages are generated periodically and have deadlines.
We believe sublinear overhead schedules can benefit these
tasks, but further work is needed to design these schedules.
Finally, the 1/2-good mapping in this paper is computationally
expensive to generate, even though it is short. A constructive
method for generating reducible 1/2-good mapping is highly
desirable.
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