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In this work we demonstrate that the mixed gravitational and scalar sectors of the five-dimensional
Goldberger-Wise (GW) model, in which the size of a warped extra dimension is dynamically determined,
has a “hidden” dual N ¼ 2 supersymmetric structure. This symmetry structure, a generalization of one
found in the unstabilized Randall-Sundrum model, is a result of the spontaneously broken five-dimensional
diffeomorphism invariance of the underlying gravitational theory. The supersymmetries relate the
properties of the spin-1 and spin-0 modes “eaten” by the massive spin-2 Kaluza-Klein states of the
theory to the mode functions of the spin-2 modes. Because the symmetries relate the couplings and masses
of the massive spin-2 states to those of the tower of physical spin-0 states of the GW model, they enable us
to analytically prove the sum rule relations which ensure the tree-level scattering amplitudes of the massive
spin-2 states will grow no faster thanOðsÞ. The analysis given here also explains the unconventional forms
of the spin-0 mode equation, boundary condition(s), and normalization found in the GW model.
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I. INTRODUCTION

The possibility that there are extra dimensions of space
has been explored since the pioneering work of Kaluza and
Klein [1,2] almost a century ago.1 Of particular interest
recently has been the possibility that extra-dimensional
models might be relevant to solving the hierarchy problem
[4–6]. In the context of the Randall-Sundrum (RS) model
[7,8], the hierarchy problem is recast in terms of the warped
geometry of a compact dimension. In particular, the extra
dimension is taken to be an interval with boundaries (or
“branes”) at each end; if the curvature and proper length of
the extra dimension are chosen correctly, the natural high-
energy scale at a brane located at one end of the extra
dimension can correspond to the Planck scale, while the
scale at the other brane (due to the warped geometry) can be
the TeV scale.
As originally formulated, however, the size of the extra

dimension in the RSmodel is arbitrary. While the RSmodel
could incorporate a hierarchy, the size of the hierarchy was
not determined by other physical parameters of the theory.
Furthermore, fluctuations of the five-dimensional metric in
the RS model which correspond to (locally) changing the
proper length of the compact dimension gave rise to a

phenomenologically unacceptable massless scalar particle
in the four-dimensional effective theory, the radion.2

Goldberger and Wise (GW) [9,10] introduced a model in
which the size of the extra dimension was dynamically
determined. In the GW model an additional five-dimen-
sional real scalar field is added with potential energy terms
on the branes and in the bulk. These potentials are chosen
such that the background scalar-field value is different on
the two branes, and hence the background scalar field has
an expectation value which depends on position in the extra
dimension. As shown by Goldberger and Wise, in this case
the competition between the expectation values of
kinetic and potential energy of this background field can
naturally fix the proper length of the extra dimension.
This stabilization of the size of the extra dimension then
implies that the mode corresponding to the radion becomes
massive [9–12].

In this paper we study the properties of the scalar and
gravitational sectors of the GW model and the mode
expansions which give rise to the massive spin-2
Kaluza-Klein (KK) gravitons and the tower of physical
scalar states. We show that these sectors have a hidden dual
N ¼ 2 supersymmetry (SUSY) structure which relates the
mode expansions of the four-dimensional massive spin-2
fields to those of the spin-1 and spin-0 fields which
are “eaten” due to the spontaneous breaking of five-
dimensional diffeomorphism invariance [13]. This dual
N ¼ 2 SUSY structure of the GWmodel is a generalization
of one discovered by Lim et. al. [14,15] in the unstabilizedPublished by the American Physical Society under the terms of
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1For a review, see [3].

2In particular, in the RS model the radion has couplings
suppressed by the TeV scale, and is experimentally excluded.
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RS model, which is in turn a generalization of a hidden
N ¼ 2 SUSY structure uncovered in extra-dimensional
gauge theory [16].
The existence of this dual supersymmetry in the GW

model depends crucially on the consistency between the
eigenfunction equations of the modes and the equations of
motion satisfied by the background metric and scalar fields.
The symmetry analysis we present allows one to clearly
separate the unphysical eaten scalar modes from the
physical tower of GW scalars in the theory, and to under-
stand the unconventional forms of the mode equation,
boundary condition(s), and normalization of these modes
[17–20] in this model.3

Our findings have implications for the scattering ampli-
tudes of the massive spin-2 Kaluza-Klein states in the GW
model. In general, the scattering of the helicity-zero
massive spin-2 states grow as fast as Oðs5Þ, where s is
the center of mass scattering energy squared [22–25]. As
previously demonstrated [19,20,26–29],4 in a theory of
compactified extra-dimensional gravity the masses and
couplings of the massive spin-2 Kaluza-Klein states and
the radion (in the RS model) or the tower of GW scalar
states (in the GW model) satisfy a set of sum rule relations
which enforce cancellations such that the full amplitude
grows no faster than OðsÞ. While the sum rules have all
been demonstrated numerically, the sum rules which have
been confirmed analytically were those which could be
rewritten to depend only on the properties of the wave
functions of the spin-2 modes. The single sum rule which
depends explicitly on the coupling of the massive spin-2
states to the scalar states (the radion or GW tower) has, so
far, resisted analytic proof.
The dual N ¼ 2 supersymmetry uncovered here relates

the mode wave functions of the spin-2 states to those of the
spin-1 and spin-0 states, thereby relating the couplings
(which are computed in terms of overlap integrals of these
mode functions) and masses of these particles. Using the
results of the analysis here, we demonstrate that the
couplings of the spin-2 KK modes with one another and
with the radion or tower of GW scalar states, along with the
masses of these spin-2 and spin-0 particles, obey the
additional so-far unproven sum rule. Our results here
complete the analytic demonstration that the scattering
amplitudes of the massive spin-2 states in the RS and GW
models grow no faster than OðsÞ.
In the next section we review the dual N ¼ 2 SUSY

structure discovered in Ref. [14]. This allows us to set our
notational conventions, introduce the symmetry structure in
a simpler setting, and develop the machinery needed to
prove the sum rules in the unstabilized RS model [26–28].

The third section shows how the dual N ¼ 2 SUSY
structure generalizes to the GW model—in particular,
allowing us to separate the physical and unphysical states
in the scalar sector. We show how 5D diffeomorphism
invariance and gauge-fixing proceeds in the GWmodel in a
manner entirely analogous to the RS model [14]. The fourth
section describes how the supersymmetries, along with the
completeness of the relevant mode expansions, can be
used to prove the remaining scalar sum rule found in
[19,20,26–28], which had previously only been demon-
strated numerically. The last section gives our conclusions,
and we include appendixes which connect our analysis
more directly to that given in [17–20,26–29].

II. SUSY IN THE RANDALL-SUNDRUM MODEL

We first review the dual N ¼ 2 supersymmetric structure
[14] of the spectrum of the unstabilized Randall-
Sundrum model.

A. Geometry, field definitions, and quadratic
Lagrangian

The 5D Lagrangian in RS1 model [7,8] can be written as

LðRSÞ
5D ¼ LEH þ LCC þ ΔL; ð2:1Þ

where LEH is the five-dimensional Einstein-Hilbert
Lagrangian, LCC includes the bulk and brane cosmological
constants, and ΔL includes total derivative terms needed to
create a well-defined variational principle for the action
[28,32]. We parametrize the RS metric in the conformal
coordinates ðxμ; zÞ as

GMN ¼ e2AðzÞ

0
B@

e−κφ̂=
ffiffi
6

p
ðημν þ κĥμνÞ κffiffi

2
p Âμ

κffiffi
2

p Âμ −
�
1þ κffiffi

6
p φ̂

�
2

1
CA;

ð2:2Þ

where the field ĥμνðxα; zÞ is a four-dimensional spin-2 field,
Âμðxα; zÞ and φ̂ðxα; zÞ are the four-dimensional spin-1 and
spin-0 fields, respectively, and κ2 ¼ 4=M3

Pl;5D defines the
five-dimensional gravitational constant. The extra dimen-
sion is taken to be the interval z1 ≤ z ≤ z2, where we
associate z1 as the location of the “Planck brane” and z2 as
the location of the “TeV brane.” Finally, the warp factor

AðzÞ ¼ − lnðkzÞ ð2:3Þ
satisfies the background geometry bulk Einstein equation

A00 − ðA0Þ2 ¼ 0; ð2:4Þ
and the value of k is set by the bulk and brane cosmological
constants.

3See also [21] for a discussion of the identification of the
radion in the RS model.

4See also [30,31] for related work on the sum rules in
unstabilized Ricci-flat extra-dimensional gravity models.
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Using these definitions, we find the kinetic (quadratic)
terms of the fluctuating fields in the metric can be written as

S ¼
Z

d4xdze3AðzÞðLh−h þ Lh−A

þ Lh−φ þ LA−A þ LA−φ þ Lφ−φÞ; ð2:5Þ

with

Lh−h ¼ ĥμν

�
1

4
ðημρ∂ν∂σ þ ημσ∂ν∂ρ þ ηνρ∂μ∂σ þ ηνσ∂μ∂ρÞ

−
1

2
ðημν∂ρ∂σ þ ηρσ∂μ∂νÞ

−
1

4
ðημρηνσ þ ημσηνρ − 2ημνηρσÞð□þD†DÞ

�
ĥρσ;

ð2:6Þ

Lh−A ¼ ĥμν

�
1ffiffiffi
2

p ðημρ∂ν þ ηνρ∂μ − 2ημν∂ρÞD†
�
Âρ; ð2:7Þ

LA−A ¼ Âμ

�
−
1

2
ð∂μ∂ν − ημν□Þ

�
Âν; ð2:8Þ

Lh−φ ¼ −ĥμν
� ffiffiffi

3

2

r
ημνD†D̄†

�
φ̂; ð2:9Þ

LA−φ ¼ Âμ½
ffiffiffi
3

p
∂
μD̄†�φ̂; ð2:10Þ

Lφ−φ ¼ φ̂

�
−
1

2
□þ 2D̄D̄†

�
φ̂: ð2:11Þ

In the expressions above we have defined [14] the
differential operators

D ¼ ∂z; D† ¼ −ð∂z þ 3A0Þ;
D̄ ¼ ∂z þ A0; D̄† ¼ −ð∂z þ 2A0Þ: ð2:12Þ

With respect to the inner product implicit in the action of
Eq. (2.5)

hFðzÞGðzÞi≡
Z

z2

z1

dze3AðzÞFðzÞGðzÞ; ð2:13Þ

these operators form (as implied by the notation) two
Hermitian pairs

hFðDGÞi ¼ hðD†FÞGi; ð2:14Þ

hFðD̄GÞi ¼ hðD̄†FÞGi; ð2:15Þ

so long as F and G satisfy the boundary conditions

Fðz2ÞGðz2Þ − Fðz1ÞGðz1Þ ¼ 0: ð2:16Þ

B. Supersymmetric structure and mode expansions

It is reasonable, given the form of Eq. (2.6), to consider
expanding the field ĥμνðxα; zÞ in terms of eigenmodes
fðnÞðzÞ of the operator D†D on the interval ½z1; z2�.
Furthermore, given the form of Eq. (2.7), we see that it
would be convenient to expand the field Âνðxα; zÞ in terms
of modes related to DfðnÞðzÞ. Motivated by N ¼ 2 super-
symmetric quantum mechanics [33,34], we consider the
supersymmetric partner of the operator D†D. In particular,
the operator DD† will have the same nonzero eigenvalues

D†DfðnÞ ¼ −ð∂z þ 3A0Þ∂zfðnÞ ¼ m2
nfðnÞ; ð2:17Þ

DD†gðnÞ ¼ −∂zð∂z þ 3A0ÞgðnÞ ¼ m2
ngðnÞ; ð2:18Þ

where the SUSY structure implies that5

�
DfðnÞ ¼ mngðnÞ;

D†gðnÞ ¼ mnfðnÞ;
ð2:19Þ

relating the eigenfunctions of the two operators. We note,
however, that the SUSY relations are empty for a zero
mode, which we will need to discuss separately.
Next, from the form of Eq. (2.11), we see that we would

like to expand the modes of φ̂ðxα; zÞ in terms of the
eigenmodes of the operator D̄D̄†. Remarkably, as noted
by [14] and of crucial importance in uncovering the
supersymmetry structure(s) of the mode equations for
the fluctuating fields, the Einstein equation (2.4) implies
[14] that

D̄†D̄ −DD† ¼ 2ðA0Þ2 − 2A00 ¼ 0: ð2:20Þ

Therefore the massive modes among the gðnÞ are automati-
cally eigenmodes of D̄†D̄, the SUSY partner of the operator
D̄D̄†, and we can write

D̄†D̄gðnÞ ¼ −ð∂z þ 2A0Þð∂z þ A0ÞgðnÞ ¼ m2
ngðnÞ; ð2:21Þ

D̄D̄†kðnÞ ¼ −ð∂z þ A0Þð∂z þ 2A0ÞkðnÞ ¼ m2
nkðnÞ; ð2:22Þ

where the kðnÞ are the eigenmodes paired with gðnÞ through
this second supersymmetric structure. The corresponding
SUSY relations for the massive modes are

5The SUSY algebras are explicitly constructed in [14].
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�
D̄gðnÞ ¼ mnkðnÞ;

D̄†kðnÞ ¼ mngðnÞ:
ð2:23Þ

Next, we consider the boundary conditions that can be
imposed. We must find boundary conditions such that the
four operators D†D, DD†, D̄†D̄, and D̄D̄† are Hermitian
under the inner product defined in Eq. (2.13). Consider first
the mode equations for fðnÞ and kðnÞ: the most general
boundary conditions are of the form

BiDfðnÞðziÞ þ CifðnÞðziÞ ¼ 0; ð2:24Þ

B0
iD̄

†kðnÞ þ C0
ik

ðnÞðziÞ ¼ 0 ð2:25Þ

for i ¼ 1, 2. As noted in [14], however, these conditions are
in general not consistent with the SUSY relations in
Eqs. (2.19) and (2.23), which impose (for all nonzero
eigenvalues) two separate and potentially conflicting con-
ditions for gðnÞðziÞ:

Bim2
ngðnÞðziÞ þ CiD†gðnÞðziÞ ¼ 0; ð2:26Þ

B0
im

2
ngðnÞðziÞ þ C0

iD̄gðnÞðziÞ ¼ 0 ⇒

ðB0
im

2
n − 2A0ðziÞÞgðnÞðziÞ þ C0

iD
†gðnÞðziÞ ¼ 0; ð2:27Þ

where in the last line we have used the relation
D̄ ¼ −D† − 2A0. Equations (2.26) and (2.27), which both
specify boundary conditions for gðnÞ, are generally incon-
sistent given the differing dependence on m2

n and A0ðziÞ.
The unique boundary conditions that are consistent with
SUSY [14] are then those withCi ¼ C0

i ¼ 0 and Bi; B0
i ≠ 0,

implying that

DfðnÞ ¼ gðnÞ ¼ D̄†kðnÞ ¼ 0; at z ¼ z1; z2: ð2:28Þ

With these boundary conditions there exist massless
modes for both fð0Þ and kð0Þ, but not for gð0Þ,

fð0ÞðzÞ¼const; kð0ÞðzÞ¼N e−2AðzÞ; gð0ÞðzÞ¼0: ð2:29Þ

As we will see, the mode associated with fð0Þ is the usual
massless 4D graviton, while that associated with kð0Þ is the
massless scalar radion of the RS model. The infinite tower
of massive modes, fðnÞ, gðnÞ, and kðnÞ for n > 0 have, due to
the SUSY relations, the same eigenvalues for their respec-
tive mode equations.
Inspired by this, and following [14], we perform the

following KK decomposition of the metric fluctuations:

ĥμνðxα; zÞ ¼
X∞
n¼0

ĥðnÞμν ðxαÞfðnÞðzÞ; ð2:30Þ

Âμðxα; zÞ ¼
X∞
n¼1

ÂðnÞ
μ ðxαÞgðnÞðzÞ; ð2:31Þ

φ̂ðxα; zÞ ¼ r̂ðxαÞkð0ÞðzÞ þ
X∞
n¼1

π̂ðnÞðxÞkðnÞðzÞ; ð2:32Þ

where we choose the normalizations of the modes fðnÞðzÞ,
gðnÞðzÞ, and kðnÞðzÞ with respect to the inner product in
Eq. (2.13), hfðnÞfðmÞi ¼ δn and analogously for gðnÞ and

kðnÞ. As we see below, the massive KK gravitons ĥðnÞμν

(n > 0) acquire their masses by absorbing the KK

Goldstone modes ÂðnÞ
μ and π̂ðnÞ with n ≠ 0, as in the case

when the internal manifold is toroidal or flat [13,30,31].

C. 5D diffeomorphism invariance

The 5D Lagrangian is invariant under an infinitesimal
coordinate transformation,

xM ↦ x̄M ¼ xM þ ξM: ð2:33Þ

At linearized level, the induced transformation on the
metric and fields are

GMN ↦GMN−GMA∂Nξ
A−GNA∂Mξ

A−ξA∂AGMN; ð2:34Þ

ĥμν ↦ ĥμν − ∂μξν − ∂νξμ − ημνð∂z þ 3A0Þξ5; ð2:35Þ

Âμ ↦ Âμ −
ffiffiffi
2

p
∂zξμ þ ∂μξ

5; ð2:36Þ

φ̂ ↦ φ̂ −
ffiffiffi
6

p
ð∂z þ A0Þξ5: ð2:37Þ

Expanding the transformation parameters ξμ and ξ5 using
the eigenfunctions fðnÞ and gðnÞ,

ξμðxα; zÞ ¼
X∞
n¼0

ξðnÞμ ðxαÞfðnÞðzÞ; ð2:38Þ

θðxα; zÞ≡ ξ5ðxα; zÞ ¼
X∞
n¼0

θðnÞðxαÞgðnÞðzÞ; ð2:39Þ

the above transformations on the individual KK modes can
be written as

ĥðnÞμν ↦ ĥðnÞμν − ∂μξ
ðnÞ
ν − ∂νξ

ðnÞ
μ þmnημνθ

ðnÞ; ð2:40Þ

ÂðnÞ
μ ↦ ÂðnÞ

μ −
ffiffiffi
2

p
mnξ

ðnÞ
μ þ ∂μθ

ðnÞ; ð2:41Þ

π̂ðnÞ ↦ π̂ðnÞ −
ffiffiffi
6

p
mnθ

ðnÞ; ð2:42Þ

r̂ ↦ r̂: ð2:43Þ
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Note that π̂ðnÞ and ÂðnÞ
μ transform as Goldstone bosons of

the spontaneously broken 5D diffeomorphism transforma-

tions parametrized by ξðnÞμ and θðnÞ with n > 0 [13].
Unitary gauge, in which the “eaten” Goldstone fields

ÂðnÞ and π̂ðnÞ with n ≥ 1 are set to zero, can be achieved by
choosing

ξðnÞμ ¼ 1ffiffiffi
2

p
mn

�
ÂðnÞ
μ þ 1ffiffiffi

6
p

mn

∂μπ̂
ðnÞ
�
; n ≥ 1; ð2:44Þ

θðnÞ ¼ 1ffiffiffi
6

p
mn

π̂ðnÞ; n ≥ 1; ð2:45Þ

where these transformations fix all five-dimensional diffeo-
morphisms modulo residual four-dimensional ones (which

are generated by ξð0Þμ ). Correspondingly, we can redefine
the KK graviton fields as

h̃ðnÞμν ¼ ĥðnÞμν −
1ffiffiffi
2

p
mn

�
∂μÂ

ðnÞ
ν þ ∂νÂ

ðnÞ
μ þ

ffiffiffi
2

3

r
1

mn
∂μ∂νπ̂

ðnÞ
�

þ 1ffiffiffi
6

p ημνπ̂
ðnÞ; n ≥ 1: ð2:46Þ

Since both h̃ðnÞμν and r̂ are invariant under these five-
dimensional coordinate transformations (modulo four-
dimensional diffeomorphisms), they are the physical
degrees of freedom—the KK gravitons and the (massless)
radion respectively.
Alternatively, the gauge redundancy can be removed by

introducing the 5D ’t Hooft-Feynman gauge fixing term
[15,31]

LGF ¼ FμFμ − F5F5; ð2:47Þ

where

Fμ ¼ −
�
∂
νĥμν −

1

2
∂μĥ

ν
ν þ

1ffiffiffi
2

p D†Âμ

�
; ð2:48Þ

F5 ¼ −
�
1

2
Dĥμμ −

1ffiffiffi
2

p ∂μÂ
μ þ

ffiffiffi
3

2

r
D̄†φ̂

�
: ð2:49Þ

The gauge-fixed kinetic terms in ’t Hooft-Feynman gauge
are then given by

S ¼
Z

d4x
X
n

�
1

2
ĥðnÞμν

�
1

2
ðημρηνσ þ ημσηνρ − ημνηρσÞð−□ −m2

nÞ
�
ĥðnÞρσ

þ 1

2
ÂðnÞ
μ ½−ημνð−□ −m2

nÞ�ÂðnÞ
ν þ 1

2
π̂ð−□ −m2

nÞπ̂
�
þ 1

2
r̂ð−□Þr̂: ð2:50Þ

Note that as a consequence of the SUSY conditions all of
the particles at each level n are degenerate, as expected in ’t
Hooft-Feynman gauge.

III. SUSY IN THE GOLDBERGER-WISE MODEL

We now show that the dual N ¼ 2 SUSY structures
uncovered in [14] for the (unstabilized) RS1 model general-
ize to the case in which the size of the extra dimension is
dynamically stabilized via the Goldberger-Wise mecha-
nism [9,10].

A. Fields and quadratic Lagrangian

The Goldberger-Wise mechanism [9,10] introduces a
bulk scalar field Φ̂ with the kinetic term and potential
terms

LΦΦ ¼
ffiffiffiffi
G

p �
1

2
GMN

∂MΦ̂∂NΦ̂
�
; ð3:1Þ

Lpot ¼ −
4

κ2
½
ffiffiffiffi
G

p
V½Φ̂� þ

ffiffiffiffi
Ḡ

p
V1½Φ̂�δ1ðz − z1Þ

þ
ffiffiffiffi
Ḡ

p
V2½Φ̂�δ1ðz − z2Þ�: ð3:2Þ

The potential terms are chosen such that the ground state
has a nonzero z-dependent expectation value for Φ̂, and
such that minimizing the action fixes the proper length of
the extra dimension. The bulk scalar field Φ̂ can be
expanded around the background as

Φ̂ðxα; zÞ ¼ 1

κ
ðϕ0ðzÞ þ ϕ̂ðxα; zÞÞ: ð3:3Þ

The form of the background metric remains as in Eq. (2.2),
and the background gravity and scalar field equations in the
bulk z1 < z < z2 are given by the Einstein equations and
scalar equations of motion6

6The first equation, which is a convenient Einstein equation to
use since it is independent of the bulk potential V, follows from
the second two equations via the Bianchi identity.
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A02 − A00 ¼ 1

12
ðϕ0

0Þ2; ð3:4Þ

e2AV ¼ −6A02 þ 1

8
ðϕ0

0Þ2; ð3:5Þ

4e2A _V ¼ ϕ00
0 þ 3A0ϕ0

0; ð3:6Þ

where _V is the functional derivative δV=δϕ evaluated at the
background field configuration ϕ0. As we discuss later, the
presence of the brane potential terms lead to nontrivial
boundary conditions for the scalar sector of the theory
[11,12,17,18,21]. Note that these equations depend only on
the derivative of the background scalar field configura-
tion, ϕ0

0.
The quadratic terms of the fluctuating fields can be

written as

S ¼
Z

d4xdze3AðzÞðLh−h þ Lh−A þ Lh−ϕ=φ

þ LA−A þ LA−ϕ=φ þ Lϕ=φ−ϕ=φÞ; ð3:7Þ

where, due to symmetry, terms involving only the spin-2 or
spin-1 fields only involve the warp factor A and their form
is unchanged from that given in Eqs. (2.6)–(2.8). In the
presence of a nontrivial background with ϕ0

0 ≠ 0, there is
mixing between the gravitational and scalar fields of the
theory. The terms involving the combined scalar sector, the
fields φ̂ and ϕ̂, are

Lh−ϕ=φ ¼ −ĥμν
� ffiffiffi

3

2

r
ημνD†ðD̄†Ψ̂Þ1

�
; ð3:8Þ

LA−ϕ=φ ¼ Âμ½
ffiffiffi
3

p
∂
μðD̄†Ψ̂Þ1�; ð3:9Þ

Lϕ=φ−ϕ=φ ¼ Ψ̂
�
−
1

2
□þ 1

2
D̄ΛD̄†

�
Ψ̂; ð3:10Þ

whereD† ¼ −ð∂z þ 3A0Þ, as before. The linear operators D̄
and D̄† are defined as

D̄ ¼
 
∂z þ A0 − 1ffiffi

6
p ϕ0

0

1ffiffi
6

p ϕ0
0 − 1

ϕ0
0

ð∂z þ 2A0Þϕ0
0

!
;

D̄† ¼

0
B@−ð∂z þ 2A0Þ 1ffiffi

6
p ϕ0

0

− 1ffiffi
6

p ϕ0
0 ϕ0

0ð∂z þ A0Þ 1
ϕ0
0

1
CA; ð3:11Þ

acting on a two-component doublet

Ψ̂ðxα; zÞ ¼
�
φ̂ðxα; zÞ
ϕ̂ðxα; zÞ

�
: ð3:12Þ

Here

Λ ¼
�
2

−1

�
ð3:13Þ

is a constant matrix, and

ðD̄†Ψ̂Þ1 ¼
�
−ð∂z þ 2A0Þφ̂þ 1ffiffiffi

6
p ϕ0

0ϕ̂

�
ð3:14Þ

is the upper component of the doublet D̄†Ψ̂.
Note that when ϕ0

0 ≠ 0 there is mixing between ϕ and φ,
and that the operators D̄ and D̄† are Hermitian conjugate to
one another with respect to the two-component generali-
zation of the inner product in Eq. (2.13),

hϒ · D̄Ξi ¼
Z

z2

z1

dze3AðzÞ½ϒðzÞ · D̄ΞðzÞ� ¼ hD̄†ϒ · Ξi;

ð3:15Þ

for two-component real vectors ϒðxα; zÞ and Ξðxα; zÞ such
that

ϒðz2Þ · Ξðz2Þ −ϒðz1Þ · Ξðz1Þ ¼ 0: ð3:16Þ

B. Supersymmetric structure of the
Goldberger-Wise model

Since the quadratic terms involving only the spin-2 or
spin-1 fields are the same as those in Eqs. (2.6)–(2.8), we
will expand these fields in terms of the eigenfunctions
defined by Eq. (2.18), where the operator is now defined in
the warp-factor AðzÞ satisfying Eq. (3.4). The scalar sector
of the GW model, however, is more complicated.
Based on the form of the scalar-sector kinetic energy

terms in Eq. (3.8), we should find the eigenfunctions and
eigenvalues of D̄ΛD̄†. Inspired by the SUSY structure of
the unstabilized model [14], we will begin our analysis of
the scalar sector by examining the operator D̄†D̄. We find
that it is diagonal:
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D̄†D̄ ¼
�−ð∂z þ 2A0Þð∂z þ A0Þ þ 1

6
ϕ02
0

−ϕ0
0ð∂z þ A0Þ 1

ϕ02
0

ð∂z þ 2A0Þϕ0
0 þ 1

6
ϕ02
0

�

≡
�
H

H̃

�
: ð3:17Þ

Furthermore, using the GWEinstein equation (3.4), we find
an immediate generalization of Eq. (2.20) to the stabilized
model

DD† ¼ −∂zð∂z þ 3A0Þ

¼ −ð∂z þ 2A0Þð∂z þ A0Þ þ 1

6
ϕ02
0 ¼ H: ð3:18Þ

Hence we immediately see that the operatorH has the same
nonzero eigenmodes as the operator DD†, and hence this
portion of the scalar sector has the same nonzero eigen-
values as the spin-2 and spin-1 sector.
Since D̄†D̄ is diagonal, the two-component eigenfunc-

tions may be written as

�
GðnÞ ¼

�
gðnÞ

0

�
; G̃ðnÞ ¼

�
0

g̃ðnÞ

��
; ð3:19Þ

where gðnÞ and g̃ðnÞ are the eigenfunctions of H and H̃,
respectively,

�
HgðnÞ ¼ m2

ngðnÞ;

H̃g̃ðnÞ ¼ m̃2
ng̃ðnÞ;

ð3:20Þ

and, hence

D̄†D̄GðnÞ ¼ m2
nGðnÞ; ð3:21Þ

D̄†D̄G̃ðnÞ ¼ m̃2
nG̃

ðnÞ: ð3:22Þ

Note that, due to the relation in Eq. (3.18), the gðnÞ’s are
those given in the “f − g” SUSY system of Eq. (2.19) and
g̃ðnÞ are the additional eigenfunctions of H̃ which will be
needed to describe the GW scalar sector.
Based on theN ¼ 2 SUSY form of the operator D̄†D̄, we

know that the operator D̄D̄† will have exactly the same
eigenvalues (more precisely, only the nonzero eigenvalues
are shared, but the GW scalar sector will contain only
massive scalars). Hence we can construct two-component
eigenvectors of D̄D̄†

D̄D̄†KðnÞ ¼ m2
nKðnÞ; ð3:23Þ

D̄D̄†K̃ðnÞ ¼ m̃2
nK̃ðnÞ; ð3:24Þ

which can be computed directly from the eigenvectors GðnÞ

and G̃ðnÞ through the SUSY relations which are the analogs
of Eq. (2.23)

8>>>>><
>>>>>:

D̄GðnÞ ¼ mnKðnÞ;

D̄†KðnÞ ¼ mnGðnÞ;

D̄G̃ðnÞ ¼ m̃nK̃ðnÞ;

D̄†K̃ðnÞ ¼ m̃nG̃
ðnÞ:

ð3:25Þ

Since the operators D̄ and D̄† are Hermitian conjugate
with respect to the generalized inner product in
Eq. (3.15), we will choose the vectors KðnÞ and K̃ðnÞ to be
normalized

hKðnÞ · KðmÞi ¼ hK̃ðnÞ · K̃ðmÞi ¼ δnm; ð3:26Þ

hKðnÞ · K̃ðmÞi ¼ 0: ð3:27Þ

We write the eigenfunctions of D̄D̄† in components as

KðnÞðzÞ ¼
�
kðnÞðzÞ
lðnÞðzÞ

�
; K̃ðnÞðzÞ ¼

�
k̃ðnÞðzÞ
l̃ðnÞðzÞ

�
: ð3:28Þ

In terms of these definitions we can explicitly compute the
components of these modes in terms of the eigenfunctions
gðnÞ and g̃ðnÞ. In particular, Eqs. (3.25) become

8>>>>>><
>>>>>>:

−ð∂z þ 2A0ÞkðnÞ þ 1ffiffi
6

p ϕ0
0l

ðnÞ ¼ mngðnÞ

− 1ffiffi
6

p ϕ0
0k

ðnÞ þ ϕ0
0ð∂z þ A0Þ lðnÞϕ0

0

¼ 0

ð∂z þ A0ÞgðnÞ ¼ mnkðnÞ

1ffiffi
6

p ϕ0
0g

ðnÞ ¼ mnlðnÞ;

ð3:29Þ

8>>>>>><
>>>>>>:

−ð∂z þ 2A0Þk̃ðnÞ þ 1ffiffi
6

p ϕ0
0 l̃

ðnÞ ¼ 0

− 1ffiffi
6

p ϕ0
0k̃

ðnÞ þ ϕ0
0ð∂z þ A0Þ l̃ðnÞϕ0

0

¼ m̃ng̃ðnÞ

− 1ffiffi
6

p ϕ0
0g̃

ðnÞ ¼ m̃nk̃
ðnÞ

− 1
ϕ0
0

ð∂z þ 2A0Þðϕ0
0g̃

ðnÞÞ ¼ m̃nl̃
ðnÞ

: ð3:30Þ
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The functions gðnÞ, which are associated with Eq. (2.18) are
normalized as before, and we also normalize g̃ðnÞ such
that hg̃ðnÞg̃ðmÞi ¼ δnm.
We then perform the following KK decomposition for

the fields in the GW model:

ĥμνðxα; zÞ ¼
X∞
n¼0

ĥðnÞμν ðxαÞfðnÞðzÞ; ð3:31Þ

Âμðxα; zÞ ¼
X∞
n¼1

ÂðnÞ
μ ðxαÞgðnÞðzÞ; ð3:32Þ

Ψ̂ðxα; zÞ ¼
X∞
n¼1

π̂ðnÞðxαÞKðnÞðzÞ þ
X∞
n¼0

r̂ðnÞðxÞK̃ðnÞðzÞ;

ð3:33Þ

where the first two are precisely of the same form as in the
Randall-Sundrum model, as shown in Eqs. (2.30)–(2.32)
where the operators are defined in terms of the GW model
warp-factor AðzÞ.7
Computing D̄†Ψ̂ and using the relations in Eq. (3.25), we

find

D̄†Ψ̂ðxα; zÞ ¼

0
BBB@
X∞
n¼0

mnπ̂
ðnÞðxαÞgðnÞðzÞ

X∞
n¼0

m̃nr̂ðnÞðxαÞg̃ðnÞðzÞ

1
CCCA: ð3:34Þ

Using the orthogonality of the mode functions gðnÞ and g̃ðnÞ,
we find that the terms Ψ̂½D̄ΛD̄†�Ψ̂ simplifyZ

d4xdze3AðzÞΨ̂½D̄ΛD̄†�Ψ̂ ¼
X
n

½2m2
nðπ̂ðnÞÞ2 − m̃2

nðr̂ðnÞÞ2�:

ð3:35Þ

In total, the kinetic terms in the GW model involving the
scalar sector become

Leff
h−π ¼

X
n

ĥðnÞμν

� ffiffiffi
3

2

r
m2

nη
μν

�
π̂ðnÞ; ð3:36Þ

Leff
A−π ¼

X
n

ÂðnÞ
μ ½

ffiffiffi
3

p
mn∂

μ�π̂ðnÞ; ð3:37Þ

Leff
π−π ¼

X
n

π̂ðnÞ
�
−
1

2
ð□ − 2m2

nÞ
�
π̂ðnÞ; ð3:38Þ

Leff
r−r ¼

X
n

r̂ðnÞ
�
−
1

2
ð□þ m̃2

nÞ
�
r̂ðnÞ: ð3:39Þ

Note that the scalar Goldstone bosons are given by the
fields π̂ðnÞ—the r̂ðnÞ fields will be the physical scalar states
in the model.

C. Boundary conditions and SUSY

Next we examine which boundary conditions respecting
the Hermiticity of the operator D̄ΛD̄†, or equivalently D̄D̄†

by the arguments given above, are also consistent with the
dual N ¼ 2 SUSY structures of the mode equations. We
give the precise argument below, but the result is easy to
anticipate since the modes associated with the Goldstone
spin-0 modes are the two-component eigenfunctions KðnÞ,
hence these are partnered with spin-1 modes gðnÞ in one
SUSY doublet, while the spin-1 modes gðnÞ are also
partnered with the spin-2 modes fðnÞ through the second
supersymmetry. Hence, the generalization of the consistent
SUSY boundary conditions in the RS model, Eq. (2.28),
will be

DfðnÞ ¼ gðnÞ and D̄†KðnÞ ¼ GðnÞ ¼ 0; at z ¼ z1; z2:

ð3:40Þ

The modes K̃ðnÞ (and their SUSY partners G̃ðnÞ) on the
other hand, are decoupled from the gravitational sector in
the quadratic terms of the theory [see Eq. (3.36)], and will
be less constrained, as we now show.
The operator D̄D̄† is Hermitian if

D̄†Ψðxα; ziÞ þ BiΨðxα; ziÞ ¼ 0; at zi ¼ z1; z2; ð3:41Þ

where Bi is an arbitrary 2 × 2 real matrix, and Dirichlet
boundary conditions are obtained by taking entries of B to
infinity. In general, as discussed above in the Randall-
Sundrummodel, the boundary conditionsDfðnÞ ¼ gðnÞ ¼ 0
and those in (3.41) are not compatible with the supersym-
metry relations given in Eqs. (2.19) and (3.25). Since these
relations must hold for arbitrary fields π̂ðnÞðxαÞ and r̂ðnÞðxαÞ,
we can impose these conditions separately on the terms
involving KðnÞ and K̃ðnÞ in the mode expansion for Ψ̂.
Considering the terms proportional to KðnÞ, and rewriting
them in terms of gðnÞ using Eq. (3.29), we find the relation

�
mngðnÞðziÞ

0

�
þ Bi

0
B@ D̄gðnÞðziÞ

mn

1ffiffi
6

p
mn

ϕ0
0ðziÞgðnÞðziÞ

1
CA ¼ 0: ð3:42Þ

The argument now proceeds just as before: the combination
of the boundary conditions for the spin-2/spin-1 system,
Eq. (2.26), which involves D†gðnÞ, is incompatible with the

7Note that we have started the ÂðnÞ and π̂ðnÞ sums at n ¼ 1
since, as we shall show, neither sector has a massless state. As we
will also show, the lightest r̂ðnÞ will be massive as well, but is
parametrically lighter than the other scalar states in the ϕ0

0 → 0
limit—in which case it corresponds to the massless radion r̂ of the
RS model.
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relation above unless gðnÞðziÞ≡ 0. Imposing gðnÞðziÞ ¼ 0,
we also see that the first column of Bi must also vanish
to eliminate the nonzero contributions proportional to
D̄gðnÞðziÞ.
Using the SUSY relations, the modes gðnÞðzÞ can be

derived either from Eq. (2.18) or (3.20), and the boundary
conditions gðnÞðziÞ ¼ 0. The SUSY conditions in
Eqs. (3.29) then allow one to compute the individual
components of KðnÞ, which satisfy the boundary conditions

�
D̄†kðnÞðziÞ ¼ 0;

lðnÞðziÞ ¼ 0:
ð3:43Þ

Next, consider the terms in Eq. (3.41) proportional to
K̃ðnÞ. Using Eq. (3.30) we find

�
0

m̃ng̃ðnÞðziÞ

�
þBi

0
B@− 1ffiffi

6
p

m̃n
ϕ0
0ðziÞg̃ðnÞðziÞ

D̄†ðϕ0
0
g̃ðnÞÞðziÞ

m̃nϕ
0
0
ðziÞ

1
CA¼ 0: ð3:44Þ

From the argument above, we know that the first column of
Bi is zero—now we see that the first row must be zero as
well. There are no other constraints imposed by SUSY,
however, and the fields associated with g̃ðnÞ may have
arbitrary Robin boundary conditions. The general form of
Bi is hence given by

Bi ¼
�
0 0

0 βi

�
: ð3:45Þ

The modes g̃ðnÞðzÞ are determined by the eigenvalue
equations for H̃ in Eq. (3.20), with the boundary conditions
determined by Eq. (3.44) to be

βiD̄†ðϕ0
0g̃

ðnÞÞðziÞ ¼ −m̃2
nϕ

0
0ðziÞg̃ðnÞðziÞ: ð3:46Þ

Using the SUSY relations (3.30), the boundary conditions
on the components of K̃ðnÞ become8<
:

− 1ffiffi
6

p ϕ0
0ðziÞk̃ðnÞðziÞ þ ϕ0

0ðziÞD̄ l̃ðnÞðziÞ
ϕ0
0
ðziÞ þ βil̃

ðnÞðziÞ ¼ 0;

D̄†k̃ðnÞðziÞ þ 1ffiffi
6

p ϕ0
0ðziÞl̃ðnÞðziÞ ¼ 0:

ð3:47Þ
The values of the boundary condition coefficients βi

depend on the brane potentials and the background field
values. Translating the analysis in [17–19] into conformal
coordinates and using our field definitions, we find

βi ¼∓ 2eAðziÞ  Viðϕ0ðziÞÞ þ
ϕ00
0ðziÞ

ϕ0
0ðziÞ

− A0ðziÞ; ð3:48Þ

where  Vi are the second variational derivatives of the
brane potentials δ2Vi=δϕ2 evaluated at the background

field value ϕ0. The βi → ∞ in the “stiff wall limit,” in
which case the boundary conditions corresponding to g̃ðnÞ

are D̄†ðϕ0
0g̃

ðnÞÞðziÞ ¼ 0, with l̃ðnÞðziÞ ¼ D̄†k̃ðnÞðziÞ ¼ 0.
The analysis here demonstrates that, for the boundary

conditions given above, the operator D̄ΛD̄† is Hermitian.
Hence the mode equations determining the properties of the
scalar sector of the GW model are Sturm-Liouville equa-
tions, and the completeness of these eigenstates (which is
unclear in unitary gauge [12]) follows. Furthermore, since
the boundary conditions found here are consistent with
the dual N ¼ 2 SUSY structure of the GW model, they
are necessarily diffeomorphism invariant as well—as we
examine in Sec. III E.

D. Absence of massless scalar modes

We now show, using the SUSY relations, that the scalar
sector of the GW model has no massless modes. If there
were a massless spin-0 Goldstone boson π̂ð0Þ, its wave
function would be constrained by Eq. (3.29), which
becomes for m0 ¼ 0

8<
:

−ð∂z þ 2A0Þkð0ÞðzÞ þ 1ffiffi
6

p ϕ0
0ðzÞlð0ÞðzÞ ¼ 0;

− 1ffiffi
6

p ϕ0
0ðzÞkð0ÞðzÞ þ ϕ0

0ðzÞð∂z þ A0Þ lð0ÞðzÞϕ0
0
ðzÞ ¼ 0;

ð3:49Þ

or, equivalently, using Eq. (3.18)

∂zð∂z þ 3A0Þ
�
lð0ÞðzÞ
ϕ0
0ðzÞ

�
¼ 0: ð3:50Þ

This equation has no nontrivial solution compatible with
the conditions D̄†KðnÞðziÞ ¼ Gð0ÞðziÞ ¼ 0, which we saw in
the last section is required to maintain the SUSY structure
of the mode equations, and which implies lð0ÞðziÞ ¼ 0. The
lowest eigenstate in this sector is therefore related to gð1Þ

and hð1Þ, and is paired with the lowest mass spin-2
Kaluza-Klein state.
Precisely the same considerations apply to the scalar r̂ð0Þ.

First, we get relations exactly analogous to Eq. (3.49) for
k̃ðnÞ, l̃ðnÞ, and g̃ðnÞ if we assume m̃0 ¼ 0. Furthermore, using
the second relation in Eq. (3.30) with m̃0 ¼ 0, the boundary
condition in Eq. (3.47) implies l̃ð0ÞðziÞ ¼ 0. Hence there are
no massless states in this sector either. However, the states
in this sector are not paired with any others through the
SUSY relations.
The presence of the ϕ0

0 in the denominator of Eq. (3.50)
is reassuring, as it implies that the relation to the RS model
(in which there is a massless state) is nontrivial.
In particular, in the limit ϕ0

0 → 0,8

8More precisely, the second and third derivatives of ϕ0 must go
to zero faster than ϕ0

0 for the limit to exist.
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H̃ ¼ ϕ0
0D̄

1

ϕ02
0

D̄†ϕ0
0 þ

1

6
ϕ02
0 → D̄D̄†; ð3:51Þ

and the lightest state in the K̃ðnÞ sector, r̂ð0Þ, becomes the
radion (r̂) of the Randall-Sundrum model described in
Eq. (2.29). Its mass will be parametrically smaller than
those of the other GW scalars for small ϕ0

0. As shown in
[19], in the ϕ0

0 → 0 limit the GW states r̂ðnÞ for n ≥ 1

decouple the gravitational “Goldstone” sector and couple as
ordinary scalar fields.
To summarize, for nonzero ϕ0

0 there is no massless
spin-0 mode in the GW model—as expected physically,
since the size of the extra dimension is fixed by the
dynamics.9

E. Diffeomorphism invariance and gauge fixing

The analysis of diffeomorphism invariance in the GW
model follows closely along the discussion given for the RS
model above and in [14]. Starting from the transformations
encoded in Eq. (2.33), one expands the transformation
parameters ξμ and ξ5 using the eigenfunctions fðnÞ and gðnÞ,
into modes ξðnÞμ ðxαÞ and θðnÞðxαÞ precisely as in Eq. (2.39).
The form of the linearized transformations of the
gravity sector is the same as in Eqs. (2.34)–(2.37),
augmented by the transformations of the GW scalar field
fluctuations

ϕ̂ ↦ ϕ̂ − ξ5ϕ0
0: ð3:52Þ

Under these transformations, the spin-2 and spin-1 sectors
transform as previously shown in Eqs. (2.40) and (2.41),
while the scalar sector becomes

π̂ðnÞ ↦ π̂ðnÞ −
ffiffiffi
6

p
mnθ

ðnÞ; ð3:53Þ

r̂ðnÞ ↦ r̂ðnÞ; ð3:54Þ

hence we see that the mode expansion has correctly
separated the spin-0 Goldstone states π̂ðnÞ from the tower
of physical scalars r̂ðnÞ. Unitary gauge can be achieved as
before, per Eqs. (2.44) and (2.45), and we find the same
diffeomorphism-invariant spin-2 state

h̃ðnÞμν ¼ ĥðnÞμν −
1ffiffiffi
2

p
mn

�
∂μÂ

ðnÞ
ν þ ∂νÂ

ðnÞ
μ þ

ffiffiffi
2

3

r
1

mn
∂μ∂νπ̂

ðnÞ
�

þ 1ffiffiffi
6

p ημνπ̂
ðnÞ; n ≥ 1: ð2:46 revisitedÞ

Since both h̃ðnÞμν and r̂ðnÞ are invariant under five-
dimensional coordinate transformations, modulo four-
dimensional diffeomorphisms, they are the physical
degrees of freedom. Again, the massless gravtion ĥð0Þ is

not invariant under the diffeomorphisms ξð0Þμ which are the
unbroken 4D diffeomorphisms.
5D ’t Hooft-Feynman gauge can again be achieved using

the gauge-fixing term in Eq. (2.47)

LGF ¼ FμFμ − F5F5; ð3:55Þ

where Fμ has precisely the same form as Eq. (2.48) and

F5 ¼ −
�
1

2
∂zĥ

μ
μ −

1ffiffiffi
2

p ∂μÂ
μ þ

ffiffiffi
3

2

r
ðD̄†Ψ̂Þ1

�
: ð3:56Þ

In ’t Hooft-Feynman gauge, the kinetic terms of the fields
are given by

S ¼
Z

d4x
X
n

�
1

2
ĥðnÞμν

�
1

2
ðημρηνσ þ ημσηνρ − ημνηρσÞð−□ −m2

nÞ
�
ĥðnÞρσ þ 1

2
ÂðnÞ
μ ½−ημνð−□ −m2

nÞ�ÂðnÞ
ν

þ 1

2
π̂ð−□ −m2

nÞπ̂ þ 1

2
r̂ðnÞð−□ − m̃2

nÞr̂ðnÞ
�
; ð3:57Þ

and include the entire tower of GW states r̂ðnÞ.

IV. RADION AND SCALAR COUPLING
SUM RULES

The hidden supersymmetry relations in the Randall-
Sundrum and Goldberger-Wise models connect the proper-
ties of the scalar mode wave functions to the wave functions

of the spin-2 and spin-1 modes. As we now show, these
relationships allow us to derive sum rules relating the
couplings of the physical scalar modes (the massless radion
in the RS model, and the tower of scalars in the GW
model). The relations derived are precisely those needed
[19,26–28] to show that the radion or GW-scalar couplings
ensure both that all Oðs3Þ and Oðs2Þ growth in the
scattering of helicity-0 massive spin-2 KK states cancels,
and that the overall amplitude grows only as fast as OðsÞ.
In the next subsection we briefly show how the couplings

defined in our previous work are related to overlap integrals

9The only massless mode in the GW model is the spin-2
graviton, corresponding to the mode fð0Þ with boundary condition
Dfð0Þ ¼ 0.
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in terms of the mode wave functions used here. In the first
section we describe the physical fields in unitary gauge,
examine the normalization and completeness of the corre-
sponding modes, and define the couplings between the
states of the model needed to compute scattering ampli-
tudes. The second subsection derives the radion sum rule in
the (unstabilized) RS model. The final subsection shows
how the computation generalizes in the GW model.

A. Unitary-gauge fields and mode coupling definitions

In unitary gauge, π̂ðnÞ ¼ ÂðnÞ
μ ¼ 0. The physical states

include the spin-2 fields in

ĥμνðxα; zÞ ¼
X∞
n¼0

ĥðnÞμν ðxαÞfðnÞðzÞ; ð3:31 revisitedÞ

in both the RS and GW models. In the case of the RS
model, the only remaining scalar field in unitary gauge is
the massless radion r̂ðxÞ, associated with wave func-
tion kð0ÞðzÞ.
In the GW model, in unitary gauge the scalar fields

become

Ψ̂ðxα; zÞ ¼
�
φ̂ðxα; zÞ
ϕ̂ðxα; zÞ

�
¼ Ψ̂ðx; zÞ ¼

X∞
n¼0

r̂ðnÞðxÞK̃ðnÞðzÞ:

ð4:1Þ

Since the components of K̃ðnÞ satisfy the relations in
Eq. (3.30), we see that in unitary gauge the scalar fields
satisfy the relation

ðD̄†Ψ̂Þ1 ¼ D̄†φ̂ðxα; zÞ þ 1ffiffiffi
6

p ϕ0
0ðzÞϕ̂ðxα; zÞ ¼ 0: ð4:2Þ

This is (in conformal coordinates) equivalent to the gauge
conditions imposed in the analyses in [17–19]. Using this
expression, we can eliminate the field ϕ̂ associated with the
bulk scalar in terms of the gravitational sector scalar field φ̂.
In the case of the fields r̂ðnÞ this allows us to rewrite the
lower components of Ψ̂ in terms of the upper ones. In this
case, we use the relation

−ð∂z þ 2A0Þk̃ðnÞ þ 1ffiffiffi
6

p ϕ0
0 l̃

ðnÞ ¼ 0 ð4:3Þ

to eliminate l̃ðnÞ

l̃ðnÞ ¼
ffiffiffi
6

p

ϕ0
0

ð∂z þ 2A0Þk̃ðnÞ; ð4:4Þ

and associate the field r̂ðnÞ in unitary gauge entirely with the
wave functions k̃ðnÞ.

In any Kaluza-Klein theory, the couplings between the
4D fields are proportional to overlap integrals of the
corresponding mode functions. In computing the scattering

amplitudes of massive spin-2 fields ĥðnÞμν we are interested in
their couplings with themselves, as well as the radion field r̂
in the RS model and the tower of scalars r̂ðmÞ in the GW
model. Hence we must consider overlap integrals associ-
ated with the modes fðnÞ with the kð0Þ in the RS model, and
with the modes k̃ðmÞ in the GW model.
The normalization of the mode functions, and hence of

all the relevant couplings, are fixed by the requirement that
they have canonically normalized kinetic-energy terms. For
the spin-2 KK modes and the radion of the RS model, this
requirement is straightforward—and follows directly from
the normalizations previously imposed: hfðnÞfðmÞi ¼ δnm
and hðkð0ÞÞ2i ¼ 1. The situation is different for the GW
scalars and the mode function k̃ðnÞ; however, as here the
normalization is based on the normalization condition

hK̃ðnÞ · K̃ðmÞi ¼
Z

z2

z1

dze3Aðk̃ðnÞk̃ðmÞ þ l̃ðnÞ l̃ðmÞÞ ¼ δnm:

ð4:5Þ

Using Eq. (4.4), we find the k̃ðnÞ normalization conditions

Z
z2

z1

e3A
�
k̃ðnÞk̃ðmÞ þ 6

ðϕ0
0Þ2

½ð∂z þ 2A0Þk̃ðnÞ� · ½ð∂z þ 2A0Þk̃ðmÞ�
�
¼ δnm: ð4:6Þ

This is, in conformal coordinates, the form of the uncon-
ventional normalization conditions found necessary in
[17–19].
Due to the Lorentz invariance of the background metric

in Eq. (2.2) at fixed z, the form of the self-couplings
between the spin-2 modes or between these modes and the
scalars can be written in a form that involves either two 4D
space-time derivatives ∂μ or two extra-dimensional deriv-
atives ∂z acting on the spin-2 field. Translating the results of
[19,26,27,27,29] to conformal coordinates, therefore, we
find the spin-2 self-couplings are related to the following
overlap integrals

aijk ¼ hfðiÞfðjÞfðkÞi; ð4:7Þ

aijkl ¼ hfðiÞfðjÞfðkÞfðlÞi; ð4:8Þ

bijk ¼hð∂zfðiÞÞð∂zfðjÞÞfðkÞi ¼ mimjhgðiÞgðjÞfðkÞi; ð4:9Þ

where we have used Eq. (2.23), and with

hψ1ψ2 � � �i≡
Z

dze3AðzÞψ1ðzÞψ2ðzÞ � � � : ð4:10Þ
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In addition, the scattering amplitudes of massive spin-2
particles involve couplings between these particles with the
scalars, and require the scalar-coupling overlap integrals

bijr ¼ hð∂zfðiÞÞð∂zfðjÞÞkð0Þi ¼ mimjhgðiÞgðjÞkð0Þi; ð4:11Þ

am0n0ðiÞ ¼hð∂zfðmÞÞð∂zfðnÞÞk̃ðiÞi¼mimjhgðiÞgðjÞk̃ðiÞi ð4:12Þ

for the RS model (first line) and the GW model (sec-
ond line).
Note that the wave functions ffðnÞg, fgðnÞg form

complete basis for functions ψðzÞ with corresponding
boundary conditions at z ¼ z1; z2,

ψðz0Þ ¼
X
n

fðnÞðz0ÞhfðnÞψi if ∂zψðziÞ ¼ DψðziÞ ¼ 0;

ð4:13Þ

ψðz0Þ ¼
X
n

gðnÞðz0ÞhgðnÞψi if ψðziÞ ¼ 0: ð4:14Þ

In the RS model, the scalar wave functions fkðnÞg also form
a set of complete basis,

ψðz0Þ ¼
X
n

kðnÞðz0ÞhkðnÞψi

if ð∂z þ 2A0ÞψðziÞ ¼ D̄†ψðziÞ ¼ 0; ð4:15Þ

while in the GW model, the completeness of the scalar
wave functions fKðnÞ; K̃ðnÞg reads

Ψðz0Þ ¼
X
n

½KðnÞðz0ÞhKðnÞ · Ψi þ K̃ðnÞðz0ÞhK̃ðnÞ · Ψi�

if D̄†ΨðziÞ þ BiΨðziÞ ¼ 0: ð4:16Þ

Even though we work in unitary gauge, we will see that the
completeness relations involving the Goldstone mode
functions kðnÞðzÞ in the RS model, and involving both
the Goldstone mode functions KðnÞðzÞ and the scalar mode
functions K̃ðnÞðzÞ in the GW model, will be essential in
deriving the sum rule relations we seek.
Using completeness and integration by parts [28], the

couplings satisfy the following relations:

bnnj ¼
�
m2

n −
1

2
m2

j

�
annj; ð4:17Þ

X∞
j¼0

a2nnj ¼ annnn; ð4:18Þ

X∞
j¼0

annjbnnj ¼
1

3
m2

nannnn: ð4:19Þ

From Eqs. (4.17)–(4.19) and using completeness, one can
show that

m4
nhgðnÞgðnÞgðnÞgðnÞi ¼

X∞
j¼0

ðm2
nhgðnÞgðnÞfðjÞiÞ2 ð4:20Þ

¼
X∞
j¼0

b2nnj ¼
1

4

X∞
j¼0

m4
ja

2
nnj −

1

3
m4

nannnn: ð4:21Þ

B. Radion sum rules in the RS model

It is known [26–29] that the couplings in the RS model
must satisfy certain sum rules to result in OðsÞ dependence
of the scattering amplitudes of massive gravitons. In
particular, in the case of elastic scattering of level-n KK
gravitons (nn → nn), the radion coupling to KK gravitons
(bnnr) is related to the KK-graviton three- and four-point
self-couplings (annj, where j refers to the KK level of the
intermediate state, and annnn) by

5

4

X∞
j¼0

m4
ja

2
nnj −

4

3
m4

nannnn ¼ 9b2nnr −m4
na2nn0: ð4:22Þ

The above radion sum rule relates the couplings of the KK
gravitons to that of the radion, and has been verified
numerically [28], but so far not proved analytically. In
this subsection, we will prove the radion sum rule analyti-
cally, using the SUSY relations among the spin-2, spin-1,
and spin-0 wave functions and their completeness.
By combining the SUSY relations

(
−ð∂z þ 3A0ÞgðjÞ ¼ mjfðjÞ

ð∂z þ A0ÞgðjÞ ¼ mjkðjÞ
; ð4:23Þ

one gets

kðjÞ ¼ −fðjÞ −
2A0

mj
gðjÞ for j ≠ 0: ð4:24Þ

Thus, for j > 0,

m2
nhgðnÞgðnÞkðjÞi ¼ −m2

nhgðnÞgðnÞfðjÞi−
2m2

n

mj
hA0gðnÞgðnÞgðjÞi:

ð4:25Þ

Since the wave functions gðnÞ vanish at the boundaries, the
following surface integrals vanish:
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Z
z2

z1

dz½∂zðe3AfðnÞfðnÞgðjÞÞ�

¼
Z

z2

z1

dz½∂zðe3AgðnÞgðnÞgðjÞÞ� ¼ 0: ð4:26Þ

Using the SUSY relations in Eq. (2.23), one gets

hA0gðnÞgðnÞgðjÞi ¼ −
mj

6
ðhfðnÞfðnÞfðjÞi þ hgðnÞgðnÞfðjÞiÞ:

ð4:27Þ

Hence

m2
nhgðnÞgðnÞkðjÞi ¼ −

2m2
n

3
hgðnÞgðnÞfðjÞi þm2

n

3
hfðnÞfðnÞfðjÞi

ð4:28Þ

¼ −
2

3
bnnj þ

m2
n

3
annj ðfor j > 0Þ: ð4:29Þ

Note that Eq. (4.29) involves the couplings of the spin-2
modes to the unphysical Goldstone boson fields π̂ðjÞ in
Eq. (2.32). However, since gðnÞðziÞ ¼ 0, it follows that
D̄†½gðnÞ�2ðziÞ ¼ 0. We can then use kðjÞ completeness in
combination with Eq. (4.29), along with Eqs. (4.17)–(4.19)
to find

m4
nhgðnÞgðnÞgðnÞgðnÞi ¼

X∞
j¼0

ðm2
nhgðnÞgðnÞkðjÞiÞ2 ð4:30Þ

¼ ðm2
nhgðnÞgðnÞkð0ÞiÞ2 þ

X∞
j¼1

ðm2
nhgðnÞgðnÞkðjÞiÞ2 ð4:31Þ

¼ b2nnr þ
X∞
j¼1

�
−
2

3
bnnj þ

m2
n

3
annj

�
2

ð4:32Þ

¼b2nnr−
�
−
2

3
bnn0þ

m2
n

3
ann0

�
2

þ
X∞
j¼0

�
−
2

3
bnnjþ

m2
n

3
annj

�
2

ð4:33Þ

¼ b2nnr þ
1

9

X∞
j¼0

m4
ja

2
nnj −

5

27
m4

nannnn −
1

9
m4

na2nn0: ð4:34Þ

Equating Eqs. (4.21) and (4.34) one derives Eq. (4.22).

C. Radion sum rules in the GW model

In the case of the GW model, the radion sum rule of the
RS model generalizes to [19,20]

5

4

X∞
j¼0

m4
ja

2
nnj−

4

3
m4

nannnn¼9
X∞
i¼0

a2n0n0ðiÞ−m4
na2nn0; ð4:35Þ

where the radion coupling in Eq. (4.22) generalizes to a
sum of the couplings-squared of the couplings of the GW
scalars to the spin-2 fields, where a and b are defined by the
overlap integrals in Eqs. (4.7)–(4.9) and (4.12). We show
now that the N ¼ 2 SUSY structure we have uncovered in
the GW model allows us to prove this sum rule in a manner
analogous to the discussion in the RS model given above.
In the case of the GW mechanism, the completeness

relation for the scalar wave functions in Eq. (4.16) can be
written

Ψðz0Þ ¼
X
n

KðnÞðz0ÞhKðnÞ · Ψi þ K̃ðnÞðz0ÞhK̃ðnÞ · Ψi

if D̄†Ψþ BiΨ ¼ 0 at z ¼ z1; z2: ð4:36Þ

Consider a wave function of the form ΞðzÞ ¼ ðξðzÞ; 0ÞT .
To be consistent with the boundary conditions D̄†ΞðziÞþ
BiΞðziÞ ¼ 0, the functions ξðzÞ must satisfy

D̄†ξðziÞ ¼ ξðziÞ ¼ 0 ð4:37Þ

for zi ¼ z1; z2. For a function satisfying these constraints

ξðz0Þ ¼
X∞
n¼1

kðnÞðz0ÞhkðnÞξi þ
X∞
n¼0

k̃ðnÞðz0Þhk̃ðnÞξi; ð4:38Þ

where kð0Þ has been excluded from the summation since the
massless mode does not exist.
Noting that the function ξðzÞ ¼ ðgðnÞðzÞÞ2 satisfies both

boundary conditions in Eq. (4.37) since gðnÞðziÞ ¼ 0, we
can use Eq. (4.38) to write

m4
nhgðnÞgðnÞgðnÞgðnÞi ¼

X∞
j¼1

ðm2
nhgðnÞgðnÞkðjÞiÞ2

þ
X∞
j¼0

ðm2
nhgðnÞgðnÞk̃ðjÞiÞ2 ð4:39Þ

¼
X∞
j¼0

ðm2
nhgðnÞgðnÞkðjÞiÞ2 þ

X∞
j¼1

a2n0n0ðjÞ: ð4:40Þ

Furthermore, from Eq. (3.29) we see that Eq. (4.24) and
hence Eq. (4.29) also holds in the GW model. Hence we
find a direct generalization of Eq. (4.34),

m4
nhgðnÞgðnÞgðnÞgðnÞi ¼

X∞
j¼0

a2n0n0ðjÞ þ
1

9

X∞
j¼0

m4
ja

2
nnj

−
5

27
m4

nannnn −
1

9
m4

na2nn0; ð4:41Þ

SUPERSYMMETRY AND SUM RULES IN THE GOLDBERGER- … PHYS. REV. D 106, 035026 (2022)

035026-13



holds in the GW model. Equating Eqs. (4.21) and (4.41)
one derives Eq. (4.35).

V. CONCLUSIONS

The analysis given here illustrates how the mixing of the
scalar and gravitational sectors in the GW model general-
izes the properties seen in gauge symmetry breaking in the
presence of multiple “Higgs” fields. In the multiple-Higgs
case, only one “direction” in field space actually gets a
vacuum expectation value (vev). This direction is projected
onto different mass eigenstate Higgs fields, giving rise to
the diverse couplings and phenomenology of such models;
the “eaten” Goldstone bosons are defined by looking at the
directions connected to the vev via (broken) symmetry
transformations. Similarly in the GW model, in which the
position-dependent background scalar field induces mixing
between the bulk scalar field and modes in the five-
dimensional metric, using the dual N ¼ 2 SUSY structure
of the GW model discovered here lets us precisely identify
which combinations correspond to the Goldstone modes
(π̂ðnÞ) and which correspond to physical scalar fields (r̂ðnÞ).
This ability to cleanly separate these modes allows us
to understand the unconventional forms of the mode
equations and normalization conditions found previously
[17–20], and understand how the scalar-field boundary
conditions are consistent with five-dimensional diffeomor-
phism invariance.
In this paper we have demonstrated that the mixed

gravitational and scalar sectors of the five-dimensional
Goldberger-Wise model, in which the size of a warped
extra dimension is dynamically determined, has a “hidden”
dual N ¼ 2 SUSY structure. Generalizing the result found
for the unstabilized Randall-Sundrum model [14], we see
that these symmetries are the result of the spontaneously
broken five-dimensional diffeomorphism invariance of the
underlying gravitational theory. The supersymmetries
allow us to relate the couplings and masses of the massive
spin-2 states to those of the radion of the RS model and the
tower of physical spin-0 states of the GW model, and to
analytically prove the heretofore unproven sum rule rela-
tion which must hold in order for the tree-level scattering
amplitudes of the massive spin-2 states to grow no faster
than OðsÞ.
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APPENDIX: COMPARING COORDINATE AND
FIELD DEFINITIONS

In this appendix, we explain how the results derived here,
using conformal coordinates to uncover the N ¼ 2 SUSY
structure of the RS and GWmodels, compares to that given

in previous work [17–19,26–29] using a nonconformal
coordinate system.

1. Coordinates

In our previous work [19,26–29] we analyzed warped
extra-dimensional theories using coordinates ðxμ; yÞ corre-
sponding to the metric

ds2 ¼ e−2ÃðyÞημνdxμdxν − dy2; ðA1Þ

where ÃðyÞ ¼ ky in the case of (unstabilized) RS1, with
0 ≤ y ≤ πrc.

10 In this paper, we use conformal coordinates

ds2 ¼ eþ2AðzÞðημνdxμdxν − dz2Þ; ðA2Þ

as defined in [14]. Here, for RS1,

AðzÞ ¼ − ln ðkzÞ ⇒ e2AðzÞ ¼
�
1

kz

�
2

¼
�
z1
z

�
2

ðA3Þ

on the interval z1 ≤ z ≤ z2. The coordinate transformation
between these systems is given by

kz ¼ eky ðA4Þ

with, therefore, z1 ¼ 1=k and z2 ¼ ekπrc=k.

2. Fields and mode equations

a. Spin-2 fields

In this paper, we have

GMN ¼ e2AðzÞ

0
B@

e−κφ̂=
ffiffi
6

p
ðημν þ κĥμνÞ 1ffiffi

2
p Âμ

1ffiffi
2

p Âμ −
�
1þ 1ffiffi

6
p φ̂

�
2

1
CA
ðA5Þ

for the coordinates ðxμ; zÞ while in our previous work we
used

½GMN � ¼
�
wgμν 0

0 −v2

�
ðA6Þ

where (taking our parametrization from [35])

w ¼ e−2½ÃðyÞþûðx;yÞ�; v ¼ 1þ 2ûðx; yÞ; ðA7Þ

gμν ¼ ημν þ κĥμνðx; yÞ; û ¼ e2ÃðyÞ

2
ffiffiffi
6

p κr̂ðx; yÞ; ðA8Þ

10More precisely, we considered the interval −πrc ≤ y ≤ πrc
with an orbifold identification y≡ −y.
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for coordinates ðxμ; yÞ. In the weak field, approximation,
therefore, we see that

ĥμνðx; zÞ → ĥμνðx; yÞ; ðA9Þ

and we compare the spin-2 mode eigenfunctions directly.
Hence, the spin-2 equation described here

ð∂z þ 3A0Þ∂zfðnÞ ¼ e−3A∂zðe3A∂zfðnÞÞ ¼ −m2
nfðnÞ ðA10Þ

becomes, using the coordinate transformations above,

∂yðe−4Ã∂yfðnÞÞ ¼ −m2
ne−2ÃfðnÞ ðA11Þ

in agreement with previous analyses.

b. Spin-0 sector

In the weak-field approximation, comparing the defini-
tions of the metric in the two coordinate system, we see the
relation between the spin-0 metric fields are

φ̂ðx; zÞ → e2ÃðyÞr̂ðx; yÞ; ðA12Þ

where we in [19,26–29] defined the mode wave functions
γðnÞðyÞ to expand r̂ðx; yÞ. The mode wave functions for the
physical scalar component in φ̂ðzÞ in the current conformal-
coordinate analysis are given by k̃ðnÞðzÞ; however, the mode
equation in conformal coordinates is most easily written in
terms of g̃ðnÞðzÞ, where�
−ϕ0

0ð∂z þ A0Þ 1

ϕ02
0

ð∂z þ 2A0Þϕ0
0 þ

1

6
ϕ02
0

�
g̃ðnÞ ¼ m̃2

ng̃ðnÞ:

ðA13Þ

Furthermore, from

−
1ffiffiffi
6

p ϕ0
0g̃

ðnÞ ¼ m̃nk̃
ðnÞ; ðA14Þ

hence [recalling that AðzÞ ↔ −ÃðyÞ] we find the relation-
ship between the two mode functions is given by

m̃nγ
ðnÞðyÞ → −

1ffiffiffi
6

p ϕ0
0ðzÞe2AðzÞg̃ðnÞðzÞ: ðA15Þ

Rewriting Eq. (A13) as

e−A∂z

�
e−A

ðϕ0
0Þ2

∂zðe2Aϕ0
0g̃

ðnÞÞ
�
−
e−2A

6
ðe2Aϕ0

0g̃
ðnÞÞ

¼ −m̃2
n
e−2A

ðϕ0
0Þ2

ðe2Aϕ0
0g̃

ðnÞÞ; ðA16Þ

and applying our change of coordinates [remembering that
ϕ0
0ðzÞ ¼ e−ÃðyÞ∂yϕ0], we find the mode equation becomes

rather unconventional,

∂y

�
e2Ã

ð∂yϕ0Þ2
∂yγ

ðnÞ
�
−
e2Ã

6
γðnÞ ¼ −m̃2

n
e4Ã

ð∂yϕ0Þ2
γðnÞ; ðA17Þ

in agreement with previous results [17–20].
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