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Supersymmetry and sum rules in the Goldberger-Wise model
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In this work we demonstrate that the mixed gravitational and scalar sectors of the five-dimensional
Goldberger-Wise (GW) model, in which the size of a warped extra dimension is dynamically determined,
has a “hidden” dual N = 2 supersymmetric structure. This symmetry structure, a generalization of one
found in the unstabilized Randall-Sundrum model, is a result of the spontaneously broken five-dimensional
diffeomorphism invariance of the underlying gravitational theory. The supersymmetries relate the
properties of the spin-1 and spin-0 modes “eaten” by the massive spin-2 Kaluza-Klein states of the
theory to the mode functions of the spin-2 modes. Because the symmetries relate the couplings and masses
of the massive spin-2 states to those of the tower of physical spin-0 states of the GW model, they enable us
to analytically prove the sum rule relations which ensure the tree-level scattering amplitudes of the massive
spin-2 states will grow no faster than O(s). The analysis given here also explains the unconventional forms
of the spin-0 mode equation, boundary condition(s), and normalization found in the GW model.
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I. INTRODUCTION

The possibility that there are extra dimensions of space
has been explored since the pioneering work of Kaluza and
Klein [1,2] almost a century ago.' Of particular interest
recently has been the possibility that extra-dimensional
models might be relevant to solving the hierarchy problem
[4-6]. In the context of the Randall-Sundrum (RS) model
[7,8], the hierarchy problem is recast in terms of the warped
geometry of a compact dimension. In particular, the extra
dimension is taken to be an interval with boundaries (or
“branes”) at each end; if the curvature and proper length of
the extra dimension are chosen correctly, the natural high-
energy scale at a brane located at one end of the extra
dimension can correspond to the Planck scale, while the
scale at the other brane (due to the warped geometry) can be
the TeV scale.

As originally formulated, however, the size of the extra
dimension in the RS model is arbitrary. While the RS model
could incorporate a hierarchy, the size of the hierarchy was
not determined by other physical parameters of the theory.
Furthermore, fluctuations of the five-dimensional metric in
the RS model which correspond to (locally) changing the
proper length of the compact dimension gave rise to a

For a review, see [3].
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phenomenologically unacceptable massless scalar particle
in the four-dimensional effective theory, the radion.?

Goldberger and Wise (GW) [9,10] introduced a model in
which the size of the extra dimension was dynamically
determined. In the GW model an additional five-dimen-
sional real scalar field is added with potential energy terms
on the branes and in the bulk. These potentials are chosen
such that the background scalar-field value is different on
the two branes, and hence the background scalar field has
an expectation value which depends on position in the extra
dimension. As shown by Goldberger and Wise, in this case
the competition between the expectation values of
kinetic and potential energy of this background field can
naturally fix the proper length of the extra dimension.
This stabilization of the size of the extra dimension then
implies that the mode corresponding to the radion becomes
massive [9-12].

In this paper we study the properties of the scalar and
gravitational sectors of the GW model and the mode
expansions which give rise to the massive spin-2
Kaluza-Klein (KK) gravitons and the tower of physical
scalar states. We show that these sectors have a hidden dual
N = 2 supersymmetry (SUSY) structure which relates the
mode expansions of the four-dimensional massive spin-2
fields to those of the spin-1 and spin-O fields which
are “eaten” due to the spontaneous breaking of five-
dimensional diffeomorphism invariance [13]. This dual
N = 2 SUSY structure of the GW model is a generalization
of one discovered by Lim et. al. [14,15] in the unstabilized

’In particular, in the RS model the radion has couplings
suppressed by the TeV scale, and is experimentally excluded.
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RS model, which is in turn a generalization of a hidden
N =2 SUSY structure uncovered in extra-dimensional
gauge theory [16].

The existence of this dual supersymmetry in the GW
model depends crucially on the consistency between the
eigenfunction equations of the modes and the equations of
motion satisfied by the background metric and scalar fields.
The symmetry analysis we present allows one to clearly
separate the unphysical eaten scalar modes from the
physical tower of GW scalars in the theory, and to under-
stand the unconventional forms of the mode equation,
boundary condition(s), and normalization of these modes
[17-20] in this model.”

Our findings have implications for the scattering ampli-
tudes of the massive spin-2 Kaluza-Klein states in the GW
model. In general, the scattering of the helicity-zero
massive spin-2 states grow as fast as O(s°), where s is
the center of mass scattering energy squared [22-25]. As
previously demonstrated [19,20,26—29],4 in a theory of
compactified extra-dimensional gravity the masses and
couplings of the massive spin-2 Kaluza-Klein states and
the radion (in the RS model) or the tower of GW scalar
states (in the GW model) satisfy a set of sum rule relations
which enforce cancellations such that the full amplitude
grows no faster than O(s). While the sum rules have all
been demonstrated numerically, the sum rules which have
been confirmed analytically were those which could be
rewritten to depend only on the properties of the wave
functions of the spin-2 modes. The single sum rule which
depends explicitly on the coupling of the massive spin-2
states to the scalar states (the radion or GW tower) has, so
far, resisted analytic proof.

The dual N = 2 supersymmetry uncovered here relates
the mode wave functions of the spin-2 states to those of the
spin-1 and spin-0 states, thereby relating the couplings
(which are computed in terms of overlap integrals of these
mode functions) and masses of these particles. Using the
results of the analysis here, we demonstrate that the
couplings of the spin-2 KK modes with one another and
with the radion or tower of GW scalar states, along with the
masses of these spin-2 and spin-O particles, obey the
additional so-far unproven sum rule. Our results here
complete the analytic demonstration that the scattering
amplitudes of the massive spin-2 states in the RS and GW
models grow no faster than O(s).

In the next section we review the dual N =2 SUSY
structure discovered in Ref. [14]. This allows us to set our
notational conventions, introduce the symmetry structure in
a simpler setting, and develop the machinery needed to
prove the sum rules in the unstabilized RS model [26-28].

3See also [21] for a discussion of the identification of the
radion in the RS model.

*See also [30,31] for related work on the sum rules in
unstabilized Ricci-flat extra-dimensional gravity models.

The third section shows how the dual N =2 SUSY
structure generalizes to the GW model—in particular,
allowing us to separate the physical and unphysical states
in the scalar sector. We show how 5D diffeomorphism
invariance and gauge-fixing proceeds in the GW model in a
manner entirely analogous to the RS model [14]. The fourth
section describes how the supersymmetries, along with the
completeness of the relevant mode expansions, can be
used to prove the remaining scalar sum rule found in
[19,20,26-28], which had previously only been demon-
strated numerically. The last section gives our conclusions,
and we include appendixes which connect our analysis
more directly to that given in [17-20,26-29].

II. SUSY IN THE RANDALL-SUNDRUM MODEL

We first review the dual N = 2 supersymmetric structure
[14] of the spectrum of the unstabilized Randall-
Sundrum model.

A. Geometry, field definitions, and quadratic
Lagrangian

The 5D Lagrangian in RS1 model [7,8] can be written as

L8 = Loy + Loc + AL, (2.1)

where Lgy is the five-dimensional Einstein-Hilbert
Lagrangian, Lcc includes the bulk and brane cosmological
constants, and AL includes total derivative terms needed to
create a well-defined variational principle for the action
[28,32]. We parametrize the RS metric in the conformal
coordinates (x*,z) as

ey +xhy)  SA,
GMN = ezA(Z) R 2 1,
%Aﬂ - <1 + %qo)

(2.2)

where the field }Az}w(x", z) is a four-dimensional spin-2 field,
Aﬂ (x%,z) and @(x“, z) are the four-dimensional spin-1 and
spin-0 fields, respectively, and k* = 4/M}, 51, defines the
five-dimensional gravitational constant. The extra dimen-
sion is taken to be the interval z; < z < z,, where we
associate z; as the location of the “Planck brane” and z, as
the location of the “TeV brane.” Finally, the warp factor

A(z) = —In(kz) (2.3)
satisfies the background geometry bulk Einstein equation

A" - (A")? =0, (2.4)

and the value of £ is set by the bulk and brane cosmological
constants.
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Using these definitions, we find the kinetic (quadratic)
terms of the fluctuating fields in the metric can be written as

S = /d4.XdZ€3A(Z) (‘Ch—h + ‘Ch—A

Ly + Laca+ Lay+Lyy)  (25)

with

.
Lin = hy {Z (0P + 7P P + P + P

1
=5 (P )
1
=3 (e e =20 p7) (O + D fD)} hye
(2.6)
L[ A
Lya=h, [\ﬁ (100" + o = 2P )D'T]Ap’ (27)
1 sl 4
tor=A[-L o -po]i 29
7 3 vt DT
Li-p = =huw |\[51*D"D" | § (29)
L _A”[\/ga”DT} (210)
Tl -~
Lpy=|~50+2DD" |9 (2.11)

In the expressions above we have defined [14] the
differential operators

_(az + 3A/)’

D=9, D=
D=0, +A, Di=-(0,+24). (2.12)

With respect to the inner product implicit in the action of
Eq. (2.5)

JF(z)G(z). (2.13)

(F(2)G(2)) = / dee

these operators form (as implied by the notation) two
Hermitian pairs

(F(DG)) = ((D'F)G), (2.14)

(F(DG))

= (DF)G), (2.15)

so long as F and G satisfy the boundary conditions

F(z,)G(z2) = F(z1)G(z;) = 0. (2.16)

B. Supersymmetric structure and mode expansions

It is reasonable, given the form of Eq. (2.6), to consider
expanding the field %,,(x%z) in terms of eigenmodes
f™(z) of the operator D'D on the interval [z;,z,].
Furthermore, given the form of Eq. (2.7), we see that it
would be convenient to expand the field A, (x%, z) in terms
of modes related to Df")(z). Motivated by N = 2 super-
symmetric quantum mechanics [33,34], we consider the
supersymmetric partner of the operator D'D. In particular,
the operator DD' will have the same nonzero eigenvalues

DIDf" = —(a, +3A")a.f") = m2f" (2.17)
DD¢g" = —0,(d, + 3A")g") = m2g™, (2.18)
where the SUSY structure implies that’
D - (n),
{ S =g (2.19)
Dig" = m, f"

relating the eigenfunctions of the two operators. We note,
however, that the SUSY relations are empty for a zero
mode, which we will need to discuss separately.

Next, from the form of Eq. (2.11), we see that we would
like to expand the modes of @(x% z) in terms of the
eigenmodes of the operator DD'. Remarkably, as noted
by [14] and of crucial importance in uncovering the
supersymmetry structure(s) of the mode equations for
the fluctuating fields, the Einstein equation (2.4) implies
[14] that

DD — DD' = 2(A")? —2A" = 0. (2.20)
Therefore the massive modes among the g") are automati-
cally eigenmodes of DD, the SUSY partner of the operator
DD', and we can write
DDy =

—(0, +2A")(9, + A")g") = myg™,  (2.21)

DDk = —(3, 4+ A")(9, + 24k = m2k™,  (2.22)
where the k) are the eigenmodes paired with ¢ through
this second supersymmetric structure. The corresponding

SUSY relations for the massive modes are

>The SUSY algebras are explicitly constructed in [14].
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Dg™ = m k™,
{ g = (2.23)

DTk = m, g™,

Next, we consider the boundary conditions that can be
imposed. We must find boundary conditions such that the
four operators D'D, DD, DD, and DD' are Hermitian
under the inner product defined in Eq. (2.13). Consider first
the mode equations for £ and k"): the most general
boundary conditions are of the form

B.Df"

(zi) + Cif ™ (z;) = 0, (2.24)

BDTk" + Clk™ (z;) = 0 (2.25)
fori = 1, 2. As noted in [14], however, these conditions are
in general not consistent with the SUSY relations in
Egs. (2.19) and (2.23), which impose (for all nonzero
eigenvalues) two separate and potentially conflicting con-
ditions for g (z;):

Bim%g(")(zﬂ + CiDT9<”>(Zi) =0, (2'26)
Bim2g™ (z;) + C;Dg™(z;) =0 =
(Bim2 —2A'(z;))g™ (z;) + CiDT g™ (z;) = 0, (2.27)

where in the last line we have used the relation
D = —D" —2A’. Equations (2.26) and (2.27), which both
specify boundary conditions for ¢\, are generally incon-
sistent given the differing dependence on m?2 and A’(z;).
The unique boundary conditions that are consistent with
SUSY [14] are then those with C; = C; = O and B;, B} # 0,
implying that

Df" =g =DMk =0, atz=1z,2. (2.28)

With these boundary conditions there exist massless
modes for both f(©) and k©, but not for ¢(©,
FO(z)=const, kO (z)=Ne 4@, ¢O0(z)=0. (2.29)
As we will see, the mode associated with (¥ is the usual
massless 4D graviton, while that associated with k(¥) is the
massless scalar radion of the RS model. The infinite tower
of massive modes, f (n) g<”), and k" for n > 0 have, due to
the SUSY relations, the same eigenvalues for their respec-
tive mode equations.

Inspired by this, and following [14], we perform the
following KK decomposition of the metric fluctuations:

9= 3 M),

n=0

(2.30)

CAY g ), (231)
P(x.2) = Px)k® i J(2).  (232)

where we choose the normalizations of the modes ") (z),
g™ (z), and k" (z) with respect to the inner product in
Eq. (2.13), (f"fm) =, and analogously for g and
k. As we see below, the massive KK gravitons /:LEZ)
(n > 0) acquire their masses by absorbing the KK
Goldstone modes Aff” and 2" with n # 0, as in the case
when the internal manifold is toroidal or flat [13,30,31].

C. 5D diffeomorphism invariance

The 5D Lagrangian is invariant under an infinitesimal
coordinate transformation,
M s M = xM 4 M

(2.33)

At linearized level, the induced transformation on the
metric and fields are

Gun +> Gy = GpaOnE = Ga0y = E40, Gy, (2.34)
By v By — 0,8, — 0,6, — 1, (0. + 3A")E, (2.35)
A, A, —V20.8,+ 0,8, (2.36)

P> =60, +A)E. (2.37)

Expanding the transformation parameters &, and & using

the eigenfunctions f") and ¢,
£, 2) =& ()" (2). (2.38)
n=0
0(x%,z) = &(x%,2) o (z),  (2.39)
n=0

the above transformations on the individual KK modes can
be written as

W) v b = 0,87 = 0,87 + mun,, 60, (2.40)
A s A = Vam, e 40,00, (2.41)
A s 20 — 6m, o (2.42)

P f (2.43)
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Note that 2" and A" transform as Goldstone bosons of
the spontaneously broken 5D diffeomorphism transforma-
tions parametrized by 5,(,") and 0 with n > 0 [13].

Unitary gauge, in which the “eaten” Goldstone fields
A and 2" with n > 1 are set to zero, can be achieved by
choosing

w1 fam 1
m, my
1
o0 — A nx>1 (2.45)
Vem, T

where these transformations fix all five-dimensional diffeo-
morphisms modulo residual four-dimensional ones (which

are generated by 5,(,())). Correspondingly, we can redefine
the KK graviton fields as

1 A0 5 A0 \F 1,55
9,A)" +0,A Z_—9,0,7n
\/§m11 < g + o + 3mn . v

(2.46)

71,%) _ fl!(;) _

LIPS

AN 2
V6

el

l\)l'—

Note that as a consequence of the SUSY conditions all of
the particles at each level n are degenerate, as expected in ’t
Hooft-Feynman gauge.

III. SUSY IN THE GOLDBERGER-WISE MODEL

We now show that the dual N =2 SUSY structures
uncovered in [14] for the (unstabilized) RS1 model general-
ize to the case in which the size of the extra dimension is
dynamically stabilized via the Goldberger-Wise mecha-
nism [9,10].

A. Fields and quadratic Lagrangian

The Goldberger:Wise mechanism [9,10] introduces a
bulk scalar field @ with the kinetic term and potential
terms

1 A .
Loo = \/5[5 GMNaMd)aNdJ}, (3.1)

~ ~o 1 1, .
5 A [ (-0 = )AL 4 (-0 = md)i }+5r<—m>r.

Since both 71,(5) and 7 are invariant under these five-
dimensional coordinate transformations (modulo four-
dimensional diffeomorphisms), they are the physical
degrees of freedom—the KK gravitons and the (massless)
radion respectively.

Alternatively, the gauge redundancy can be removed by
introducing the 5D ’t Hooft-Feynman gauge fixing term
[15,31]

Lgp = F,F* — F5Fs, (2.47)

where

R o i
F”——<dh 2aﬂh ﬁDTA,,>, (2.48)

1 4 | B 3.
Fs=—(=Dhl, ——0,A" D¢ |.
= ~(50h- 750 s ‘)

The gauge-fixed kinetic terms in 't Hooft-Feynman gauge
are then given by

(2.49)

[ (0" + o =) (=0 — m )]hfm)

(2.50)

4
Epot = + \/7‘/1
+ \/_ GV,

The potential terms are chosen such that the ground state
has a nonzero z-dependent expectation value for ®, and
such that minimizing the action fixes the proper length of
the extra dimension. The bulk scalar field ® can be
expanded around the background as

@[5, (z - z1)

(z = 2)]. (3.2)

A 1 N

D(x*,2) = —(do(2) + d(x*.2)). (3.3)
The form of the background metric remains as in Eq. (2.2),
and the background gravity and scalar field equations in the
bulk z; < z < z, are given by the Einstein equations and

. . 6
scalar equations of motion

SThe first equation, which is a convenient Einstein equation to
use since it is independent of the bulk potential V, follows from
the second two equations via the Bianchi identity.

035026-5
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AR = AT = (g (34)
12
1
AV = —6A” + 3 ()% (3.5)
4624V = ¢ + 3A'¢), (3.6)

where V is the functional derivative 8V /6¢p evaluated at the
background field configuration ¢,. As we discuss later, the
presence of the brane potential terms lead to nontrivial
boundary conditions for the scalar sector of the theory
[11,12,17,18,21]. Note that these equations depend only on
the derivative of the background scalar field configura-
tion, ¢y

The quadratic terms of the fluctuating fields can be
written as

S= /d4XdZe3A(Z) (‘Ch—h + ‘Ch—A + ‘Ch—qﬁ/(p

+Laa+Lapio T Lojo-glo)- (3.7)
where, due to symmetry, terms involving only the spin-2 or
spin-1 fields only involve the warp factor A and their form
is unchanged from that given in Egs. (2.6)—(2.8). In the
presence of a nontrivial background with ¢ # 0, there is
mixing between the gravitational and scalar fields of the
theory. The terms involving the combined scalar sector, the

fields ¢ and (27, are

n 3 A
Lhprp = —Mw {\éﬂ” ”D*(DT‘I’)J . (3.8)
La_grp = AV30/ (DY), (3.9)

N TS DS R [
Lojo-pio="T —§D+§DADT]‘P, (3.10)

where DT = —(d, + 3A’), as before. The linear operators D
and D' are defined as

Z_)_(aerA’ ~ L )
7ot~ (0240 )

_(az +2A/) %456
=t _ 6
D Ly H(0, + AL ) (3.11)
V6 10 0\¥z ¢6

acting on a two-component doublet

#9= (fes)

=)

is a constant matrix, and

(3.12)
Here

(3.13)

(D), = (—(az oy +\/i6¢6$) (3.14)

is the upper component of the doublet Dy,

Note that when ¢, # O there is mixing between ¢ and ¢,
and that the operators D and D' are Hermitian conjugate to
one another with respect to the two-component generali-
zation of the inner product in Eq. (2.13),

(1 - DE) = / ® dzeMA[Y(2) - DE()] = (DT - 5),
(3.15)

for two-component real vectors Y'(x%, z) and E(x%, z) such
that

T(z2) - E(z2) = Y(z1) - E(z;) = 0. (3.16)

B. Supersymmetric structure of the
Goldberger-Wise model

Since the quadratic terms involving only the spin-2 or
spin-1 fields are the same as those in Egs. (2.6)—(2.8), we
will expand these fields in terms of the eigenfunctions
defined by Eq. (2.18), where the operator is now defined in
the warp-factor A(z) satisfying Eq. (3.4). The scalar sector
of the GW model, however, is more complicated.

Based on the form of the scalar-sector kinetic energy
terms in Eq. (3.8), we should find the eigenfunctions and
eigenvalues of DAD?. Inspired by the SUSY structure of
the unstabilized model [14], we will begin our analysis of
the scalar sector by examining the operator D'D. We find
that it is diagonal:

035026-6



SUPERSYMMETRY AND SUM RULES IN THE GOLDBERGER- ...

PHYS. REV. D 106, 035026 (2022)

Furthermore, using the GW Einstein equation (3.4), we find
an immediate generalization of Eq. (2.20) to the stabilized
model

DD' = —0,(0, + 3A)

—(0, +24") (0, + A") +é¢’02 = (3.18)
Hence we immediately see that the operator H has the same
nonzero eigenmodes as the operator DD, and hence this
portion of the scalar sector has the same nonzero eigen-
values as the spin-2 and spin-1 sector.

Since DD is diagonal, the two-component eigenfunc-
tions may be written as

oo () = () e

where ¢ and §™ are the eigenfunctions of H and H,
respectively,

(1) — 2 g
Uigonigo, O
and, hence
DIDGM = m2G™, (3.21)
DIDGM = miG™ (3.22)

Note that, due to the relation in Eq. (3.18), the ¢)’s are
those given in the “f — ¢g” SUSY system of Eq. (2.19) and
§™ are the additional eigenfunctions of A which will be
needed to describe the GW scalar sector.

Based on the N = 2 SUSY form of the operator D™D, we
know that the operator DD will have exactly the same
eigenvalues (more precisely, only the nonzero eigenvalues
are shared, but the GW scalar sector will contain only
massive scalars). Hence we can construct two-component
eigenvectors of DD’

(3.23)

(3.24)

—¢aa-+Av¢awz+2A0¢a+é¢g>

(3.17)

|
which can be computed directly from the eigenvectors G

and G through the SUSY relations which are the analogs
of Eq. (2.23)
DG = m, KM,
DK™ = m,G",
2
DG =, KM, (3.25)

DR — i, G

Since the operators D and D' are Hermitian conjugate
with respect to the generalized inner product in

Eq. (3.15), we will choose the vectors K ) and K™ to be
normalized

(3.26)

(3.27)

We write the eigenfunctions of DD' in components as
K ) 7o)
KW (z) = ( @) > K0(z) = < @) ) (3.28)
10 (z) 1" (z)

In terms of these definitions we can explicitly compute the
components of these modes in terms of the eigenfunctions
g™ and §". In particular, Eqgs. (3.25) become

—(0, + 24"k

—ﬁ%w+¢&
(0, +A/)g(n) — mnk( n)

\/— ¢0 mng(n)

+ A ¢’i) =0

(3.29)

g = my 1),

L)

/\
+
[\
S
—
?\7‘2
+
o~
=

2
S
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The functions ¢\, which are associated with Eq. (2.18) are
normalized as before, and we also normalize §<”> such
that (53" = &,-

We then perform the following KK decomposition for
the fields in the GW model:

b9 = S A0, (331)
n=0
A =S A, (3

(3.33)

where the first two are precisely of the same form as in the
Randall-Sundrum model, as shown in Egs. (2.30)—(2.32)
where the operators are defined in terms of the GW model
warp-factor A(z).”

Computing DT and using the relations in Eq. (3.25), we
find

> m i (x)g " (2)
Dip(xe,z) = | " (3.34)
> g (x5 (2)
n=0
Using the orthogonality of the mode functions ¢ and "

we find that the terms W[DAD'|¥ simplify

/d4xdze3A(Z)‘i‘[Z_)AZ_)T]li‘ = Z[zmﬁ ()2 — @2 (300)2).

(3.35)

In total, the kinetic terms in the GW model involving the
scalar sector become

Eszﬂ Zhlﬂ/ |:\/' )177ﬂD:| <)’ (336)
oot =S "AVV3m,a" (3.37)

I o AT P

"Note that we have started the A" and 2" sums at n = 1
since, as we shall show, neither sector has a massless state. As we
will also show, the lightest ") will be massive as well, but is
parametrically lighter than the other scalar states in the ¢f, — 0
limit—in which case it corresponds to the massless radion 7 of the
RS model.

Ll = Zr {—— D+m2)]

Note that the scalar Goldstone bosons are given by the

fields #(")—the 7 fields will be the physical scalar states
in the model.

(3.39)

C. Boundary conditions and SUSY

Next we examine which boundary conditions respecting
the Hermiticity of the operator DADT, or equivalently DD’
by the arguments given above, are also consistent with the
dual N =2 SUSY structures of the mode equations. We
give the precise argument below, but the result is easy to
anticipate since the modes associated with the Goldstone
spin-0 modes are the two-component eigenfunctions K",
hence these are partnered with spin-1 modes ¢ in one
SUSY doublet, while the spin-1 modes ¢ are also
partnered with the spin-2 modes f") through the second
supersymmetry. Hence, the generalization of the consistent
SUSY boundary conditions in the RS model, Eq. (2.28),
will be

Df(”) — g(”) and Z_)TK(”) — G(”) — 0’ at 7 = 215 22-
(3.40)
The modes K™ (and their SUSY partners G™) on the

other hand, are decoupled from the gravitational sector in
the quadratic terms of the theory [see Eq. (3.36)], and will
be less constrained, as we now show.
The operator DD' is Hermitian if

D-hP(Xa, Z,’) + B[l{l(xll’ Z,') =0, at <i = 21,22 (341)
where B; is an arbitrary 2 x 2 real matrix, and Dirichlet
boundary conditions are obtained by taking entries of B to
infinity. In general, as discussed above in the Randall-
Sundrum model, the boundary conditions D f’ (n) = gn =0
and those in (3.41) are not compatible with the supersym-
metry relations given in Egs. (2.19) and (3.25). Since these
relations must hold for arbitrary fields #(") (x*) and 7" (x),
we can impose these conditions separately on the terms
involving K™ and K™ in the mode expansion for v,
Considering the terms proportional to K", and rewriting
them in terms of ¢\ using Eq. (3.29), we find the relation

Dg\"(z;)

(n) (. =
<mng (Zl)) + Bi 1 , My = 0.
0 \/-6—W¢o(zi)g(") (zi)

The argument now proceeds just as before: the combination
of the boundary conditions for the spin-2/spin-1 system,

Eq. (2.26), which involves D¢, is incompatible with the

(3.42)
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relation above unless ¢\ (z;) = 0. Imposing ¢ (z;) = 0,
we also see that the first column of 3; must also vanish
to eliminate the nonzero contributions proportional to
Dy (z)).

Using the SUSY relations, the modes ¢ (z) can be
derived either from Eq. (2.18) or (3.20), and the boundary
conditions g¢")(z;) =0. The SUSY conditions in
Egs. (3.29) then allow one to compute the individual
components of K, which satisfy the boundary conditions

{ DTk(z) =0, (3.43)

1M (z;) = 0.

Next, consider the terms in Eq. (3.41) proportional to
K. Using Eq. (3.30) we find

—\/-6;,;1”456(21')9(")(21')

D' (¢ () =0 (3.44)
s

( 0 )Hg
5" (z;) ’

From the argument above, we know that the first column of
B, is zero—now we see that the first row must be zero as
well. There are no other constraints imposed by SUSY,
however, and the fields associated with ) may have
arbitrary Robin boundary conditions. The general form of
B; is hence given by

0 0
Bi:< )
U

The modes 3 (z) are determined by the eigenvalue
equations for A in Eq. (3.20), with the boundary conditions
determined by Eq. (3.44) to be

n(/) (Zi)

(3.45)

BiD (93" (z:) = —iinadby(2:)" ().

Using the SUSY relations (3.30), the boundary conditions
on the components of K become

(3.46)

7.(n = 1 (z; J(n
—\/qu’;(’)(z,»)k( '(z) + ¢p(z))D %((Z.)) + 4" () =0,

DA™ (z;) + ﬁqﬁ{)(ziﬂ(”) (zi) =0.

~

(3.47)

The values of the boundary condition coefficients f;
depend on the brane potentials and the background field
values. Translating the analysis in [17-19] into conformal
coordinates and using our field definitions, we find
' HeD)
Bi =F 2"V (o (z) + 0

( 0( )) ¢6 ( Zi)
where V, are the second variational derivatives of the
brane potentials 6°V;/8¢> evaluated at the background

—A/(Zi), (348)

field value ¢y. The B; — oo in the “stiff wall limit,” in
which case the boundary conditions corresponding to §")
are D(¢3")(z;) = 0, with 1" (z;) = D'k (z;) = 0.

The analysis here demonstrates that, for the boundary
conditions given above, the operator DAD' is Hermitian.
Hence the mode equations determining the properties of the
scalar sector of the GW model are Sturm-Liouville equa-
tions, and the completeness of these eigenstates (which is
unclear in unitary gauge [12]) follows. Furthermore, since
the boundary conditions found here are consistent with
the dual N =2 SUSY structure of the GW model, they
are necessarily diffeomorphism invariant as well—as we
examine in Sec. III E.

D. Absence of massless scalar modes

We now show, using the SUSY relations, that the scalar
sector of the GW model has no massless modes. If there
were a massless spin-0 Goldstone boson fr(o), its wave
function would be constrained by Eq. (3.29), which
becomes for my =0

=(0, + 24K (2) + J= ()10 (2) = 0,

(Y (0) / N 19(z) (3.49)
~ LK (2) + ()0, + A) 2 =0,
or, equivalently, using Eq. (3.18)
10)(z)
d.(0, + 34’ ( > =0. 3.50

This equation has no nontrivial solution compatible with
the conditions DK (z;) = G'¥(z;) = 0, which we saw in
the last section is required to maintain the SUSY structure
of the mode equations, and which implies /(°)(z;) = 0. The
lowest eigenstate in this sector is therefore related to g(!)
and A", and is paired with the lowest mass spin-2
Kaluza-Klein state.

Precisely the same considerations apply to the scalar 7).
First, we get relations exactly analogous to Eq. (3.49) for
k™ 1% and g if we assume iy = 0. Furthermore, using
the second relation in Eq. (3.30) with 72y = 0, the boundary
condition in Eq. (3.47) implies 1) (z;) = 0. Hence there are
no massless states in this sector either. However, the states
in this sector are not paired with any others through the
SUSY relations.

The presence of the ¢, in the denominator of Eq. (3.50)
is reassuring, as it implies that the relation to the RS model
(in which there is a massless state) is nontrivial.
In particular, in the limit ¢{, — 0}

*More precisely, the second and third derivatives of ¢, must go
to zero faster than ¢, for the limit to exist.
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. N 1 _
A = ¢,D— D¢y + 8(1562 — DD",
0

(3.51)

and the lightest state in the K™ sector, 79, becomes the
radion (7*) of the Randall-Sundrum model described in
Eq. (2.29). Its mass will be parametrically smaller than
those of the other GW scalars for small ¢. As shown in
[19], in the ¢} — O limit the GW states #") for n > 1
decouple the gravitational “Goldstone” sector and couple as
ordinary scalar fields.

To summarize, for nonzero ¢y there is no massless
spin-0 mode in the GW model—as expected physically,
since the size of the extra dimension is fixed by the
dynamics.”’

E. Diffeomorphism invariance and gauge fixing

The analysis of diffeomorphism invariance in the GW
model follows closely along the discussion given for the RS
model above and in [14]. Starting from the transformations
encoded in Eq. (2.33), one expands the transformation
parameters £, and & using the eigenfunctions f (") and g(">,
into modes 51(4") (x%) and 8" (x%) precisely as in Eq. (2.39).
The form of the linearized transformations of the
gravity sector is the same as in Egs. (2.34)-(2.37),
augmented by the transformations of the GW scalar field
fluctuations

b b-E0 (3:2)
Under these transformations, the spin-2 and spin-1 sectors

transform as previously shown in Egs. (2.40) and (2.41),
while the scalar sector becomes

#  20) — \/6m,0m

/ d‘ch{

+ 1
/A
2

(3.53)
|

and include the entire tower of GW states 7).

IV. RADION AND SCALAR COUPLING
SUM RULES

The hidden supersymmetry relations in the Randall-
Sundrum and Goldberger-Wise models connect the proper-
ties of the scalar mode wave functions to the wave functions

The only massless mode in the GW model is the spin-2
grav1t0n correspondmg to the mode f(°) with boundary condition

Df©)

) s ) (3.54)

hence we see that the mode expansion has correctly
separated the spin-0 Goldstone states (") from the tower

of physical scalars #"). Unitary gauge can be achieved as
before, per Egs. (2.44) and (2.45), and we find the same
diffeomorphism-invariant spin-2 state

7(n) _ 7 (n) () 52 [2 1 ~(n
hy = ) — \/_m (aA +9,A, +\/;m—naﬂayﬂ< ))
1
+—n, 2", n>1. (2.46 revisited
N ( )
Since both A% and #" are invariant under five-

dimensional coordinate transformations, modulo four-
dimensional diffeomorphisms, they are the physical

degrees of freedom. Again, the massless gravtion " s

not invariant under the diffeomorphisms 5}(‘0) which are the
unbroken 4D diffeomorphisms.
5D ’t Hooft-Feynman gauge can again be achieved using
the gauge-fixing term in Eq. (2.47)
‘CGF:F,MFM_FSFS’ (355)

where F, has precisely the same form as Eq. (2.48) and

1.4 | BN 3 —n
Fs=—(=0.1,——0,A" (D), ). 3.56
o=~ (3ot~ o\ i) 69

In ’t Hooft-Feynman gauge, the kinetic terms of the fields
are given by

{ (e + pron? — pnee) (=0 — mn):|il/(’ o A [ (-0 = m2))AY

\S] |

(3.57)

of the spin-2 and spin-1 modes. As we now show, these
relationships allow us to derive sum rules relating the
couplings of the physical scalar modes (the massless radion
in the RS model, and the tower of scalars in the GW
model). The relations derived are precisely those needed
[19,26-28] to show that the radion or GW-scalar couplings
ensure both that all O(s*) and O(s?) growth in the
scattering of helicity-0 massive spin-2 KK states cancels,
and that the overall amplitude grows only as fast as O(s).

In the next subsection we briefly show how the couplings
defined in our previous work are related to overlap integrals
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in terms of the mode wave functions used here. In the first
section we describe the physical fields in unitary gauge,
examine the normalization and completeness of the corre-
sponding modes, and define the couplings between the
states of the model needed to compute scattering ampli-
tudes. The second subsection derives the radion sum rule in
the (unstabilized) RS model. The final subsection shows
how the computation generalizes in the GW model.

A. Unitary-gauge fields and mode coupling definitions

In unitary gauge, #(") = A,(,”) = 0. The physical states
include the spin-2 fields in

b (3. 2) = D I () ) (2),

n=0

(3.31 revisited)

in both the RS and GW models. In the case of the RS
model, the only remaining scalar field in unitary gauge is
the massless radion 7(x), associated with wave func-
tion k¥ (z).

In the GW model, in unitary gauge the scalar fields
become

2cha’Z)> =¥(x.2) = io: #) (x) KM (z).

n=0
(4.1)

Since the components of K" satisfy the relations in
Eq. (3.30), we see that in unitary gauge the scalar fields
satisfy the relation

S . 1 R
(D), = D'p(x".2) + = (2)(x%.2) = 0. (4.2)
V6
This is (in conformal coordinates) equivalent to the gauge
conditions imposed in the analyses in [17-19]. Using this

expression, we can eliminate the field ¢ associated with the
bulk scalar in terms of the gravitational sector scalar field ¢.

In the case of the fields 7" this allows us to rewrite the

lower components of ¥ in terms of the upper ones. In this
case, we use the relation

_ 1 .
—(0, 4 24k 4 — 1™ =0 4.3
( b4 ) \/6¢0 ( )
to eliminate 7
. 6 .
i = ;{6_ (9, + 24k, (4.4)

and associate the field 7" in unitary gauge entirely with the
wave functions k.

In any Kaluza-Klein theory, the couplings between the
4D fields are proportional to overlap integrals of the
corresponding mode functions. In computing the scattering
amplitudes of massive spin-2 fields lAa,(f,’,) we are interested in
their couplings with themselves, as well as the radion field 7
in the RS model and the tower of scalars 7" in the GW
model. Hence we must consider overlap integrals associ-
ated with the modes ") with the k() in the RS model, and
with the modes k™ in the GW model.

The normalization of the mode functions, and hence of
all the relevant couplings, are fixed by the requirement that
they have canonically normalized kinetic-energy terms. For
the spin-2 KK modes and the radion of the RS model, this
requirement is straightforward—and follows directly from
the normalizations previously imposed: (f)f(m)) =g, .
and ((k(9)2) = 1. The situation is different for the GW
scalars and the mode function k™; however, as here the
normalization is based on the normalization condition

(R0 . glmy = / 7 dzeA (R 4 Ty — 5,

4|

(4.5)

Using Eq. (4.4), we find the k") normalization conditions

2 {~<n>~<m> 6
A Fmgm 4O
/zl (00)*

[(0, + 24Nk - [(0, + 24Nk | = 8, (4.6)

This is, in conformal coordinates, the form of the uncon-
ventional normalization conditions found necessary in
[17-19].

Due to the Lorentz invariance of the background metric
in Eq. (2.2) at fixed z, the form of the self-couplings
between the spin-2 modes or between these modes and the
scalars can be written in a form that involves either two 4D
space-time derivatives d, or two extra-dimensional deriv-
atives 0, acting on the spin-2 field. Translating the results of
[19,26,27,27,29] to conformal coordinates, therefore, we
find the spin-2 self-couplings are related to the following
overlap integrals

Ajjk = <f(i)f(j>f(k)>’ (4.7)

ay = (FOF9FOf0), (4.8)

bijk :<(azf<i))(azf<j))f(k)> = mimj<9<i)9<j)f(k>>» (4-9)
where we have used Eq. (2.23), and with

(yips--) = / dze* Oy (Dy(z) -~ (4.10)
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In addition, the scattering amplitudes of massive spin-2
particles involve couplings between these particles with the
scalars, and require the scalar-coupling overlap integrals

bijr = (9SO (0 fI)KO) = mm; (g gV k@), (4.11)

Ap'n' (i) :<(azf<m>)(azf(n))];(l)> =m;m; <g(1)g(1)];(l)> (412)

for the RS model (first line) and the GW model (sec-
ond line).

Note that the wave functions {f"}, {¢™} form
complete basis for functions w(z) with corresponding
boundary conditions at 7 = 7, 25,

w(2) =D ) y) if oy(z;) = Dy(z;) =0,
(4.13)

w(@) =Y g (g"My) ify(z)=0.  (4.14)

In the RS model, the scalar wave functions {k(")} also form
a set of complete basis,

w(2) =D k() kmy)

if (0. +2AY(z;) = D'y(z;) =0,  (4.15)
while in the GW model, the completeness of the scalar

wave functions {K"), K("} reads

P() =D KWK ) + KO () K - )]
Even though we work in unitary gauge, we will see that the
completeness relations involving the Goldstone mode
functions k")(z) in the RS model, and involving both
the Goldstone mode functions K")(z) and the scalar mode
functions K" (z) in the GW model, will be essential in
deriving the sum rule relations we seek.

Using completeness and integration by parts [28], the
couplings satisfy the following relations:

1
Bonj = <m% - Emf) Ay (4.17)
Z ainj = annnm (418)
=0
© 1 ,
Z annjbnnj = gmnannnn- (419)

j=0

From Egs. (4.17)—(4.19) and using completeness, one can
show that

mi (g g g gy =" (m2(gMgW fi))? (4.20)
Jj=0

7°°b2710042 L, 421

- Z nnj szjannj _gmnanrmn' ( . )

B. Radion sum rules in the RS model

It is known [26-29] that the couplings in the RS model
must satisfy certain sum rules to result in O(s) dependence
of the scattering amplitudes of massive gravitons. In
particular, in the case of elastic scattering of level-n KK
gravitons (nn — nn), the radion coupling to KK gravitons
(b)) 1s related to the KK-graviton three- and four-point
self-couplings (a,,;, where j refers to the KK level of the
intermediate state, and a,,,,,) by

5 4
ZZ miaz,; — gmﬁannnn =9b2,, —mpat,,. (4.22)
=0

The above radion sum rule relates the couplings of the KK
gravitons to that of the radion, and has been verified
numerically [28], but so far not proved analytically. In
this subsection, we will prove the radion sum rule analyti-
cally, using the SUSY relations among the spin-2, spin-1,
and spin-0 wave functions and their completeness.

By combining the SUSY relations

—(0, + 3A/)g<j> = mjf(/) (423)
one gets
. .24
k) = —fU) —Z—¢U) for j #0. (4.24)
nj
Thus, for j > 0,
. o 2m2 4
m2 <g(n)g(n)k(1)> =—m? <g(n)g(n)f(1)> - <A'g<n)g(n)g(1)>_
J
(4.25)

Since the wave functions g") vanish at the boundaries, the
following surface integrals vanish:
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/ " 20, (M0 fg)]
21

Z .
:/ Cdz[o.(eMgmgmgi)] = 0. (4.26)

21

Using the SUSY relations in Eq. (2.23), one gets

(A'g\m g gli)y = _?j(<f(n)f(n>f(j)> + (g™ g fDY),
(4.27)
Hence
2m? . m?
m2 (g gmEl)y = — 3 (gtm glm £ )Y +?<f(n)f(n)f(1)>
(4.28)
m
= —=by,; +—"a,,; (forj>0). (4.29)

3 3

Note that Eq. (4.29) involves the couplings of the spin-2
modes to the unphysical Goldstone boson fields #\/) in
Eq. (2.32). However, since ¢\ (z;) =0, it follows that
D*[g"]?(z;) = 0. We can then use k/) completeness in
combination with Eq. (4.29), along with Eqgs. (4.17)—(4.19)
to find

mi (g g g gy =" (m2 (g g kD)) (4.30)
=0
= (m2 (g™ gMk®))2 + " (m2 (g™ gWkD))? (4.31)
=
2 2
b%mr + Z < nnj ann]) (432)

(4.33)

1

5 —mia’,,. (4.34)

nn0

— 2 E
bnnr_'_ m/ nnj

mnannnn -

Equating Eqs. (4.21) and (4.34) one derives Eq. (4.22).

C. Radion sum rules in the GW model

In the case of the GW model, the radion sum rule of the
RS model generalizes to [19,20]

5 o0
42’”?03”;] m,,an,m,, *92‘1 myaz,o,  (4.35)

J=0

where the radion coupling in Eq. (4.22) generalizes to a
sum of the couplings-squared of the couplings of the GW
scalars to the spin-2 fields, where a and b are defined by the
overlap integrals in Eqgs. (4.7)—(4.9) and (4.12). We show
now that the N = 2 SUSY structure we have uncovered in
the GW model allows us to prove this sum rule in a manner
analogous to the discussion in the RS model given above.

In the case of the GW mechanism, the completeness
relation for the scalar wave functions in Eq. (4.16) can be
written

W) + KOV (RO - )

ZK n

if D'V +BY =0 atz=z2. (4.36)

Consider a wave function of the form E(z) = (&(z),0)7.
To be consistent with the boundary conditions D'E(z;)+
B;E(z;) = 0, the functions &(z) must satisfy

DTé:(Zi) =&(z) = (4'37)

for z; = zy, zo. For a function satisfying these constraints

) = SN + 3R )R,

n=1 n=0

(4.38)

where k(©) has been excluded from the summation since the
massless mode does not exist.

Noting that the function &(z) = (¢ (z))? satisfies both
boundary conditions in Eq. (4.37) since ¢ (z;) = 0, we
can use Eq. (4.38) to write

j=1
+) (ma (g gmED))? (4.39)
Jj=0
_ Z; (m2 (g™ g kY2 4 Z @y (440)
J= J=

Furthermore, from Eq. (3.29) we see that Eq. (4.24) and
hence Eq. (4.29) also holds in the GW model. Hence we
find a direct generalization of Eq. (4.34),

Za
}’ln

4
— 57 M Apppn —

27

mig (gt gt

(4.41)
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holds in the GW model. Equating Eqgs. (4.21) and (4.41)
one derives Eq. (4.35).

V. CONCLUSIONS

The analysis given here illustrates how the mixing of the
scalar and gravitational sectors in the GW model general-
izes the properties seen in gauge symmetry breaking in the
presence of multiple “Higgs” fields. In the multiple-Higgs
case, only one “direction” in field space actually gets a
vacuum expectation value (vev). This direction is projected
onto different mass eigenstate Higgs fields, giving rise to
the diverse couplings and phenomenology of such models;
the “eaten” Goldstone bosons are defined by looking at the
directions connected to the vev via (broken) symmetry
transformations. Similarly in the GW model, in which the
position-dependent background scalar field induces mixing
between the bulk scalar field and modes in the five-
dimensional metric, using the dual N = 2 SUSY structure
of the GW model discovered here lets us precisely identify
which combinations correspond to the Goldstone modes
(#(")) and which correspond to physical scalar fields ().
This ability to cleanly separate these modes allows us
to understand the unconventional forms of the mode
equations and normalization conditions found previously
[17-20], and understand how the scalar-field boundary
conditions are consistent with five-dimensional diffeomor-
phism invariance.

In this paper we have demonstrated that the mixed
gravitational and scalar sectors of the five-dimensional
Goldberger-Wise model, in which the size of a warped
extra dimension is dynamically determined, has a “hidden”
dual N = 2 SUSY structure. Generalizing the result found
for the unstabilized Randall-Sundrum model [14], we see
that these symmetries are the result of the spontaneously
broken five-dimensional diffeomorphism invariance of the
underlying gravitational theory. The supersymmetries
allow us to relate the couplings and masses of the massive
spin-2 states to those of the radion of the RS model and the
tower of physical spin-0 states of the GW model, and to
analytically prove the heretofore unproven sum rule rela-
tion which must hold in order for the tree-level scattering
amplitudes of the massive spin-2 states to grow no faster
than O(s).
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APPENDIX: COMPARING COORDINATE AND
FIELD DEFINITIONS

In this appendix, we explain how the results derived here,
using conformal coordinates to uncover the N =2 SUSY
structure of the RS and GW models, compares to that given

in previous work [17-19,26-29] using a nonconformal
coordinate system.

1. Coordinates

In our previous work [19,26-29] we analyzed warped
extra-dimensional theories using coordinates (x*,y) corre-
sponding to the metric

ds> = e_ZA(y)iyﬂydx"dx” — dy?, (A1)

where A(y) = ky in the case of (unstabilized) RS1, with
0<y< zzrc.lo In this paper, we use conformal coordinates

ds? — e+2A(Z>(;7del‘dx’“ - dz?), (A2)

as defined in [14]. Here, for RS1,

A(2) = —In (kz) = 246) — (klz>2 _ (Z—l)z (A3)

Z

on the interval z; < z < z,. The coordinate transformation
between these systems is given by

kz = et (A4)

with, therefore, z; = 1/k and z, = " /k.

2. Fields and mode equations
a. Spin-2 fields

In this paper, we have

e_K(ij/\/g(r/m/ + Kh/w) Aﬂ
GMN = e2A(Z)

1

V2

1 A 1 - 2

ek —<1+%(p>
(“5)

for the coordinates (x*, z) while in our previous work we
used

Wg;w 0
[Gun] = 0 _2 (A6)
where (taking our parametrization from [35])
w = e 2AWFi(xy)] v=1+42a(x,y), (A7)
A R ezA(y) .
v :’7/4D+Kh/w(xvy)’ u= 2\/6 Kr(xvy)’ (AS)

""More precisely, we considered the interval —zr. <y < 77,
with an orbifold identification y = —y.
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for coordinates (x*,y). In the weak field, approximation,
therefore, we see that

Iy (%.2) = Iy (2, 7), (A9)

and we compare the spin-2 mode eigenfunctions directly.
Hence, the spin-2 equation described here

(0, + 3A)0,f0) = 0, (0, f) = —m2f")  (A10)

becomes, using the coordinate transformations above,

a‘(e—4f~tayf(n)) — _m%e—ZA (n)

\ (Al1)

in agreement with previous analyses.

b. Spin-0 sector

In the weak-field approximation, comparing the defini-
tions of the metric in the two coordinate system, we see the
relation between the spin-0 metric fields are
§x.2) = A O(x.y), (A12)
where we in [19,26-29] defined the mode wave functions
v (y) to expand 7(x, ). The mode wave functions for the
physical scalar component in ¢(z) in the current conformal-
coordinate analysis are given by K (z); however, the mode
equation in conformal coordinates is most easily written in

terms of §"(z), where

1 1
(=400 + 40 (04 20000 + . ) = gl
0

(A13)

Furthermore, from

b

Bog™ = i, k™,
NG

(A14)

hence [recalling that A(z) <> —A(y)] we find the relation-
ship between the two mode functions is given by

mMMW+—%%@wwww» (A15)

Rewriting Eq. (A13) as

A e 24 11 e 24 11
e "o, (¢/)26z(e ¢6g(n)) - 6 (e ¢6g(n))
0
€_2A
- _ﬁlz (¢/ )2 (62A¢6§<n>)’ (A16)
0

and applying our change of coordinates [remembering that

do(z) = e‘A@)a},(ﬁO], we find the mode equation becomes
rather unconventional,

2A €4A

a[ e 9 <n>] € m )
——— 0y | —— " = —in;,
y (ay(ﬁO)z Y 6 (ay¢0)

Sy, (A17)

in agreement with previous results [17-20].
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