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Event-Based Signal Temporal Logic Tasks:
Execution and Feedback in Complex Environments

David Gundana and Hadas Kress-Gazit

Abstract—In this work, we synthesize control for high-level,
reactive robot tasks that include timing constraints and choices
over goals and constraints. We enrich Event-based Signal Tem-
poral Logic by adding disjunctions, and propose a framework for
synthesizing controllers that satisfy such specifications. If there
are multiple ways to satisfy a specification, we choose, at run-
time, a controller that instantaneously maximizes robustness.
During execution, we automatically generate feedback in the
form of pre-failure warnings that give users insight as to why
a specification may be violated in the future. We demonstrate
our work through physical and simulated multi-robot systems
operating in complex environments.

Index Terms—Formal Methods in Robotics and Automation,
Hybrid Logical/Dynamical Planning and Verification, Multi-
Robot Systems

I. INTRODUCTION

ETTING robots to autonomously achieve complex tasks,

such as guiding people in an environment, reacting
to emergencies, or patrolling large areas, requires both the
ability to specify tasks and automatically synthesize control.
In this paper, we focus on satisfying high-level specifications
for single and multi-robot systems operating around static
and dynamic obstacles. High-level specifications, that can be
captured in formalisms such as as Linear Temporal Logic
(LTL) [1] and Signal Temporal Logic (STL) [2], have been
used to describe complex robotics tasks; there are several
approaches for creating controllers that satisfy them [3]-[9].

STL naturally describes tasks that include timing con-
straints [10]; several researchers [11]-[13] propose methods
for synthesizing control from STL specifications. In addition
to the usual Boolean semantics of temporal logic formulas
where a trace is either satisfying or violating a specification,
STL has quantitative (“robust”) semantics for describing the
extent to which a specification is satisfied; this has been used
for generating robust control [14].

Event-based STL [15] expands the expressivity of STL by
adding the ability to specify reactions to uncontrolled, discrete
events. This reactivity to events such as alarms or user inputs
allows one to describe a larger set of tasks than was previously
possible. While existing solutions to satisfying reactive STL
specifications exist, these events typically have assumptions on
their bounds and timing [16]. Our prior work [15] provides
a framework for automatically satisfying Event-based STL
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specifications and gives feedback on the feasibility of the tasks;
in this paper we enrich the expressivity of the logic and provide
more detailed feedback.

The syntax and semantics of Event-based STL in [15]
does not allow disjunction (the “or” Boolean operator) in the
description of the system’s required behavior (it was allowed
in the description of the uncontrolled events). This restricts the
expressivity of the formalism by limiting the types of tasks that
can be described; specifically, one could not capture choice in
behavior — e.g. “if you hear an alarm go to exit 1 or exit 2
within 10 seconds” — due to the underlying control synthesis
approach [13]. Here, we expand the expressive capabilities of
Event-based STL through the addition of disjunction in the
robot requirements. During execution, our control synthesis
algorithm finds an instantaneously robust solution that satisfies
such a specification, if possible.

Providing feedback to the user on the feasibility of a high-
level specification is one of the strengths of synthesis from
temporal logic specifications; it can be used to repair specifi-
cations that are unsatisfiable (e.g. [17]). Work in [18] describes
several methods for providing feedback for infeasible LTL
specifications. Other work [19]-[21] propose methods for
repairing infeasible specifications by strengthening assump-
tions about the environment or relaxing assumptions about the
system. All these approaches provide feedback offline - before
execution. In this work, we provide feedback to the user,
during execution, regarding not only specification violation
but also future possible violation, i.e. pre-failure warnings,
essentially alerting the user to possible problems down the
line. From these pre-failure warnings, we provide suggestions
that would reduce the possibility of a specification becoming
unsatisfiable in the future.

In this paper we consider complex workspaces — areas the
robots operate in that include static and dynamic obstacles.
Similar work [13], [15], [22], [23] on synthesis for STL
and Event-based STL specifications using efficient control
barrier functions focused on open workspaces that do not
contain static obstacles. Others [12], [14] do consider static
obstacles — they use mixed-integer linear programs to find a
trajectory that avoids walls and obstacles to satisfy an STL
task. However, the computational complexity associated with
solving such programs makes it difficult to run in real-time in
the presence of external disturbances and uncontrolled events.
In this paper we provide a framework to satisfy an Event-
based STL specification, in which the robot is reactive to
external events, in a computationally efficient manner such
that a trajectory can be found through complex environments.

Assumptions:  Environment: We assume the map con-
taining static obstacles such as walls is known. Robots: All
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controlled robots are holonomic with linear dynamics and
have knowledge of the state of all other controlled robots,
but not their task (goals, safety constraints). Initial state: We
assume that the Event-based STL specification is not trivially
violated by all trajectory starting at the given initial robots’
and environment states.

Contributions: Expanding on [15], we increase the ex-
pressive capabilities of Event-based STL and allow for the
satisfaction of tasks in complex environments. At runtime,
we provide feedback on the feasibility and status of an
execution. We present three main contributions: 1) an enriched
definition of Event-based STL to describe tasks that include
disjunction, 2) a control synthesis framework for Event-based
STL specifications with disjunctions in a complex environment
that leverages the robust semantics of STL to find a robust
execution, and 3) pre-failure warnings and suggestions given to
a user at runtime on the feasibility and status of the satisfaction
of an Event-based STL specification. We demonstrate our
control synthesis and pre-failure warnings through physical
and simulated multi-robots systems.

IT. PRELIMINARIES
A. System Model

We consider a discrete time dynamical system representing
the position of a robotic system at time ¢:

Xp1 = f(Xe) + g(x¢)ue, (1)
where f : R” — R™ and g : R” — R™ ™ are locally
Lipschitz continuous functions, x; € R" is the state of the
system, and u, € U C R™ is the bounded input.

B. Environment Representation

We consider satisfying specifications in a complex envi-
ronment which include static and dynamic obstacles. Static
obstacles such as walls are obstacles whose positions do not
change during execution. Dynamic obstacles such as humans
and other robots are obstacles whose positions are known
and can change during execution. The positions of static
obstacles (collection of line segments) M, and a roadmap
G = (V,E) [24] of the workspace connecting all areas of
the map are given a priori.

We define the positions of dynamic obstacles in the environ-
ment as Xqyn € R* and denote X; = (x;, Xdyn,t) for brevity in
the following. We assume all robots know xg,,, at all times,
but cannot control them. In addition, we capture task-relevant
uncontrolled discrete environment events such as alarms or
other external environment signals.

C. Control Barrier Functions for STL

Control Barrier Functions (CBFs) were first proposed in
[25] to define safe-sets for a system and ensure that the set is
forward invariant without having to find the entire reachable
set. A set is forward invariant if a trajectory can be found
which keeps the system inside the set if the system starts inside
of the set and outside of the set if the system starts outside of
the set [26], [27].

Work in [13] leveraged the properties of these forward
invariant safe-sets to generate control for robots satisfying a
subset of Signal Temporal Logic (STL) tasks; they use time-
varying CBFs to ensure an STL specification is satisfied in the

given time constraints. To satisfy a specification, [13] describes
how to create a valid CBF cbf for each predicate p and its
corresponding predicate function h(X;) (discussed further in
Sec. III). Leveraging [13], and similar to [15], in this paper
we create CBFs for individual predicates and for conjunctions
of predicates, based on Lemma 2 in [13].

D. Linear Temporal Logic and Biichi Automata

An LTL formula ~ [1] is constructed from Boolean propo-
sitions m € AP where AP is a set of atomic propositions.
The syntax of LTL is as follows:

yi=7 oy [ Ve [ Xy [ nUre, 2)
where — (“not”) is negation, V (“or”) is disjunction, X is
the temporal operator “Next”, and U is the temporal operator
“Until”. We define conjunction (“and”) as 71 Ays = =(—71 V
—2) and implication (“if”) as y1 = v2 = =1 V v2. From U
we can create “Eventually” (Fy = TrueU-~) and “Always”
(Gy = =~ F—v). The semantics of LTL are defined over an
infinite sequence o = 01,03, ... where o; is the set of atomic
propositions that are True at position i, 0; C AP. The full
semantics of LTL can be found in [1].

A non deterministic Biichi automata is a tuple B =
(S, s0,%,0, F) where S is a finite set of states, s € S is the
initial state, Y is a finite input alphabet, 6 : S x ¥ — 29
is the transition function, and F© C S is a set of accept-
ing states. An execution of B on an infinite input word
W = wi,wy,...,w; € X is an infinite sequence of states
50, 81,52, ., St. Vj > 1,8; € d(sj_1,w;). A run of B is
accepting if and only if inf(w) N F # @ where inf(w) is the
set of states that are visited infinitely often on the input word
w. Given an LTL formula v over AP, we can create a Biichi
automata, B, that accepts a run if and only if it satisfies
[28]. The transitions of B, are typically labeled with subsets
of AP but they can also be viewed as Boolean formulas o, s,
over the set AP.

III. EVENT-BASED STL WITH DISJTUNCTION
Event-based STL [15] is defined over predicates u €
{True, False} whose truth value are defined by the evaluation
of predicate functions h(X;).

- {False = h(X,) <0 )
True = h(X;)>0.
In this paper, building on [15], we increase the expressivity
of Event-based STL through the addition of disjunction in ¢,
thus enabling choice in the control decisions of the robots.

Syntax: The new definition of Event-based STL is:

pu=p| | er Az | o1V, 4)

an=m | na | o Aas, 5)

U =Glapy @ | Flap @ | ¢1 Uay) 92 |

G(aé \I/) | \Ill/\\I/g | \Ijl\/\Ijg,

where U is an Event-based STL specification, ¢ is a
Boolean, negation normal form formula over predicates, «
represents Boolean formulas over uncontrolled external en-
vironment propositions 7 € AP, G is shorthand for G[O,oo]v
and {a,b} € R" are timing bounds of a formula. Though
we consider the interval [a, b] to be in continuous time, during

(6)
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simulation and physical demonstrations we evaluate the system
X; and environment events « at a set sampling rate. To ensure
environments events are captured, we assume that environment
events last longer than the sampling rate.

This syntax allows for disjunction in predicates ¢ as well as

in temporal operators. For example, the specification G(c; —
(Glap101 V Flap) (92 V 3))) is now a valid Event-based STL
specification using the new syntax.
Semantics: The semantics of Event-based STL, presented in
Table 1, are defined over (X;, o). X; represents the state of
the system x; and dynamic obstacles Xqy, ¢ at time ¢, and
o represents the set of propositions in AP that are True
at time t. We use the semantics of U,y from [15] where
p1 must be True Vt; € [t + a,t2]. This differs from the
definition of Until in [2] where ¢q is True Vt; € [t, ta].
The Until operator from [2] is equivalent to the formula
©1Ua,p102 N Glo,q)p1 in our formulation. While we allow
—, in practice we replace all such occurrences with a new
predicate fi such that h(X;) = —h(X}). In the following, we
assume no negation on predicates.

(Xtao-t) E 12 <~ h(Xt) Z 0

Xy, 00) E g = h(X,) <0

(Xt,O't) = ©1 A ©2 = (Xth) E ©v1 and (Xt,Jt) = ©p2
(Xt,O't) FoiVys & (Xt70't) F @1 or (Xt,O't) E @2
(Xt,00) B ST E oy

(X¢,0¢) F < (Xt 00 Ea

(Xt,O't) Eal Aas <~ (Xt,Ut) F a7 and (Xt,O't) E ag
(Xt, O't) E F[a7b]$0 <~ Eltl S [t+a,t+b]st (Xt170t1) E v2)
(Xt,00) F G[a,b](p eVt elttat+b], Xy,00)Fe
(Xt70t) E ¢1Ua,b]@2<:> 3?‘)2 S [t + G,,t + b]St (Xt270t2) =

o and Vit € [t—i—a,tg], (th,atl) E ©1
(Xt,()'t) E G(O[ = \II)@ Vt, (Xtao't) ¥« or (XuUt) Ew
(Xt,O't) EU AT, & (Xt,at) FE ¥, and (Xt,at) E U,
(Xe,00) E UV Uy & (Xp,00) E Uy or (Xp,00) F Uy

TABLE I: Semantics of Event-based STL

Example 1. Consider a restaurant-like environment, shown
in Fig 1. The task is for a team composed of three different
types of robots to assist in running a restaurant. The “Host”
robot (x1), upon sensing lead, is to go to a customer within
25 seconds and remain close to them until they eventually
reach the dining area entrance within 60 seconds. The external
environment event lead signifies that a customer is sensed as
waiting in the waiting area. The “Cleaning” robots (x2,x3)
and “Server” robots (x4,X5) respond to requesty of cus-
tomers seated in the restaurant. When request is sensed, one
Cleaning and one Server robot must go to the location of the
customer within 20 seconds. The position of the customers are
known fo all robots and denoted as X cspmr = [Testmr, Yestmer -
In simulation demonstrations, we vary the number of cus-
tomers and requests the robots must respond to. During
execution all robots must avoid collision with each other and
all walls in the environment at all time.

We encode this task as an Event-based STL specification
U= \I/host A \Ilrequestk A l:[/collisionij A \I}wallAvoidi N

° \Ilhost = G(lead = (F[0725](|| xl’t —xcstmr’l’t | < ].) A\ (”
X1,t — Xestmr,1,t < 1)U[25,60](|| X1t — [1.75,—1] [|< 1))

U \Ilrequestk = G(TequeStk = F[O,QO}(((” X2t —Xestmr,k,t ||<
1) V (” X3,t — Xestmor,k,t ||< 1)) A ((” X4t — Xestmr,k,t ||<
DV ([l x5, — Xcstmr ke [1< 1))))

o Yeontision = G[O,oo](“ Xit —Xjt ||> 005) ,V’L ?é]

. \ijallAvoidi = G[opo](mzn(H Xit — M ||) > 01) 1=
(1,2,...,5)
where x;; = [x;4,Yi] for robot i, the dynamics of each

robot is described by (1), and point [1.75, —1] represents the

entrance to the dining area.

Fig. 1: Workspace for Example 1. The black lines are walls,
black rectangles are tables. The robots: Host (red circle),
Cleaning (blue triangles), and Server (green squares).

IV. PROBLEM FORMULATION

Given an Event-based STL specification ¥, a system in the
form of (1), discrete environment events w € AP, continuous
environment state Xgy,, and a complex environment M with a
roadmap G, we find a control strategy u such that the system
satisfies ¥ while taking into account robustness. Here, we do
not use the STL robustness from [14], but rather define an
instantaneous robustness metric, which measures how robustly
a specification is satisfied at a given time step.

The specification may require the system to react to uncon-
trolled environment events and signals (AP, Xgy,), thus the
system may not be able to complete its task. In such cases,
a prioritization scheme to schedule the satisfaction of tasks
based on the robustness of the Event-based STL formula is
needed. If a task cannot be completed as required, feedback
to the user may give insight to potential problems. In the
following sections we provide a prioritization scheme and
methods of notifying users of potential future violations during
an execution before a specification is violated.

V. CONTROL SYNTHESIS

Control synthesis from an Event-based STL specification is
described in Fig. 2. The contributions of this paper are Sections
V-A, V-B, V-D, and VI. Given Vg7, we first abstract it as
an LTL formula « and create a Biichi Automaton B, (Sec.
V-A). Based on the transitions in B, we choose a trace that
leads to an accepting state that can be visited infinitely often
(Sec. V-B). Given this transition, we activate CBFs associated
with the labels on the chosen transition using CBF templates.
We use the activated CBFs to find a controller for each robot
(Sec. V-C). During execution, we provide pre-failure warnings
(Sec. VI).

A. Abstracting Vgrp to vy

Given Ygpy, we abstract it as an LTL formula v (Algo.
1) over AP U1I,, where AP is the same as for Wgpy,
and II, is a set of propositions corresponding to abstractions
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Environment
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v+ 1

A-priori
feedback

P‘:'e;rf:‘i:‘ure>‘_ Compute Control for
ings each robot

Failure - Control can not be found given velocity bounds T

Success Output
Robot Control

Fig. 2: Synthesis framework for Event-Based STL specifications. This paper’s contributions are the shaded boxes.

of predicates in Wgpy, as defined below. The propositions
T i Ja,bl,cvioun: € 1L contain information about the predicate
that they abstract, its timing constraints, and dependence on
other propositions, to be used in the construction of the CBFs
(Sec. V-C). To create the proposition, we build a parse tree
from Wgpy, with the leaves being predicates p; and the
parents being the temporal operators and external environment
events, and use its structure to abstract p;.

Algorithm 1: Abstracting predicates p;

Input : Ugpp

Output: II,,
1 for Wi € Ygrr do
Ount = searchUntil(u;, Ysrr);
if Yunt # () then

| [a,b] = timingFromRight (p:, Ys7L);
else

| [a,b] = timingFromLeft(u;, VsrL);
end
a; = findEvents(u;, Ysrr);
Wpi,[a,b],ai,apum = makePTOp(Mia [a7 b]7 Qg (Punt);
10| = Ty fa,b], 06, 0une U 1L
11 end

e N s W N

searchUntil (Line 2): The Until operator, p1Uq 402, iS
special in that the timing constraints of (; depend on another
formula (o, therefore to ensure correct execution of 1,
we must capture this dependence. Here, for each predicate
wi € VYgrp, we first determine if the parent of pu; is the
temporal operator U and if it precedes the U in Ugry, that
is, if p; exists in ;. From the semantics of Event-based STL,
©1U[q,5)4p2 is satisfied if @y is True Vt; € [t+a,to], where t5
is the time @9 becomes T'rue. To capture the dependence of
on @, we denote ©,,,+ = 2 for all propositions abstracting a
predicate p; € 1. During execution, we use the truth value of
©unt to update the timing bounds of p;, [t+a, ta]. If p; is in ¢
or 2 in formulas of the form G, 59, Fla,p%> OF ©1U[q 592,
then @,,: isS empty.

timingFromRight (Line 4): If ,,,,; is not empty, the timing
bounds [a,b] is from the first U immediately to the right of
w; in Ugpp,. For example, in ¥4, when abstracting || x; ; —
Xestmr,1,¢ ||< 1 in the Until, [a,b] = [25, 60].

timingFromLeft (Line 6): If ¢,,; is empty, the timing
bounds [a, b] are from the first temporal operator immediately
to the left of w;. For example, in W;,s, when abstracting
F[0,25}(H X1,t — Xestmer,1,t H< ]-), [a7b] = [07 25]

findEvents (Line 8): The timing bounds of a predicate may
depend on the timing of external environment events. While
abstracting p; we capture the label of these events so that
during execution their timings can be used to construct the

appropriate time bounds of the CBF. The variable «; represents
the external environment events associated with a predicate ;.
Due to the formula structure, one can abstract a single formula
over the truth values of all external events in a subformula
G(a; = V). This formula is a conjunction of all « that appear
in the (possibly nested) subformula.

For example, in G(A = G(B = (1 V ¢2))), we choose
a; = A AB for all predicates p; in ¢; and @s.

makeProp (Line 9): Given the timing bounds of u; and
other information relevant to the timing bounds such as «; and
©Punt, We create the abstracted proposition 7, [a.5],a:,0un: a0d
add it to the set II,,.

To create v we replace all instances of u; with their
abstracted proposition 7, [a.b],a;,pun.- WE then replace the
temporal operators Fj, ;) with F', G|, 3 with G and U|, p) with
U. The result is an abstraction of Wgpy, as an LTL formula v
with propositions that capture the required timing and triggers.
In Example 1, ¥;,,4; is abstracted as:

Yhost = G(lead = T 11,[0,25],lead A 7
Tpuz,[25,60],lead, @, Uﬂu3,[25,6()] ,lead)'

Where M1 = M2 = (H X1,t — Xestmr,1,t H< 1) and M3 = (H

X1 — [1.75,—1] [|< 1).

B. Choosing a Transition in the Biichi Automaton

From ~ we create a Biichi automata B, (Sec. II-D) using
Spot [28]. We represent the label of a transition in B, from
state s; t0 Sj, O, s;, as a Boolean formula in disjunctive
normal form over II, U AP. We separate 0y, s, by the
disjunction operators resulting in Boolean formulas osep s, s,
S.t. \/ Osep,s;,s; = Os,s;- If any formula 0sep s, s, is True,
the transition from s; to s; is enabled.
Example 2. Consider a simplified version of V,cqyest, from
Example 1 where (8) is the Event-based STL formula and (9) is
the abstracted LTL formula. Fig. 3 shows the Biichi automaton
B, corresponding to (9).

req & !, (0,20]req® ! Ty 0,20, req
T41,10,20]req Tz (0,201 req a
treq| my, fo.20)req| Tz 0201 req M 0,20 req® | Ty 0201 req
Fig. 3: Biichi automaton for (9). State 0 is an accepting state.
Wreq = G(req = Fio 20 ((([| X1, = [1,1] |< 1)
V([ x2, — [1,1] < 1)))),
Yreq = G(req = F (T, [0.20),req V Tps,0,20],req))- ()

®)

When executing, at each time step we choose a trace in B,
to an accepting state in F. There may exist multiple traces
to an accepting state and the synthesis algorithm must decide
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Algorithm 2: Choosing a transition in a B,
Imput : 0, Xy, By, hi(Xy), prevS
Output: II,, ., currS
1 possCurrS=updateS(prevS, hi(Xy), X¢, 04, B);
2 Freqen = reachableAccepting(B.y, o, possCurrS);
3 for s € possCurrS do
4 paths = findAllPaths(s, Freach, 0t);
5 allPaths = paths U all Paths;
¢ end
7 Xtirser = findPotTransitions(all Paths);
8 (II,,,,,currS) = selectTrans(X ¢irsir, hi(Xe));

which transition to choose and which predicates to activate.
This process is described in Algo. 2.

updateS (line 1): At each time step, given the previous state
in By, prevS, the state of the controlled and uncontrolled
parts of the system, X; and o;, and the transition labels
Osep,s;,s;» We determine the set of possible states the system
is in, possCurrS C S by evaluating which formulas leading
out of prevS are currently T'rue. In Example 2, from state
0, if req is True while 7, 0,20],req a0d T, [0,20],req aTE
False (neither robot 1 or 2 are within 1 unit of [1,1]), then
possCurrS = {1}. This means that the system must be in
state 1 as it cannot remain in state 0.

reachableAccepting (line 2): Next, we find the set of
accepting states,Fy.cqcn, C F), that can be reached and visited
infinitely often from s € possCurrS, assuming o; does not
change. That is, there exists a path in B, from s € possCurrS
to Flcqch that is labeled with o;. In Example 2, Freqcn, = {0}
as state O is the only state that can be reached from state 1
and is an accepting state.

findAllPaths (line 4-5): We then find the set of paths,
all Paths, from states in possCurrS to states in Fj..qcp (line
4-5). The set allPaths represents all traces through B, that
lead to F' € F.cqcn- To reduce the number of paths evaluated,
we only consider simple paths. That is, paths where each
state is visited no more than once. From state 1 in Fig. 3,
allPaths = {{1,0}} as there is only one path to the accepting
state 0 ignoring repeating states.

findPotTransitions (line 7): We determine the set of all
possible first transitions X ;.o for each path € allPaths
(line 7). For Example 2, there is only one path € allPaths
which contains two formulas that lead to a transition. There-
fore Z:f’i'r‘stT = {71-;1,17[0,20]77‘eq771-/,1,2,[0720]77‘eq}'

selectTrans (line 8): For each possible transition formula
Osep, firstT € XfirstT, We create the set Ilg 7pye C 11,
which is the set of propositions in II,, that must be True
for the transition Ogep, firste7 to occur. These propositions
capture which CBFs need to be activated, as described next. In
addition to the propositions labeling the transition, we examine
propositions in Ils 7 that appear on the right hand side of
an Until operator in Wgrr. The LTL semantics of ¢1Upq
require ; to be True until ¢y becomes T'rue but does not
require both to be True at the same time. Since the semantics
of the Biichi automaton assume instantaneous transitions, we
need to take special care when executing transitions where
w2 is True — since in our framework transitions are not
instantaneous (they require activation of CBFs), we need to

ensure ¢; remains True until the transition is complete. We
do that by adding to Il 7. all propositions T Jasbl, s unt
where ¢yn: € Ilg 7rue. This ensures that ¢; remains T'rue
for specifications of the form ¢;Uys. For example, for the
until subformula in Wy, if a transition has 7., [25,60],1cad €
HU,TTue, then 71-/,1,2,[25,60],16(1(1,(,0“3 is added to HU,TTue~
Instantaneous robustness: We choose the next transition the
system should take, based on Oep firstt € XZfirser and
an instantaneous robustness score p : II, — R, indicating
how robustly the system can currently satisfy a proposition
in Il 7pye. This is different from the robust semantics of
STL [14] which is defined over a complete execution, wrt the
entire formula.

We compute p only for propositions in Ilg 7yye, 1.€. propo-
sitions that must be T'rue for the transition to occur; since we
replace predicates y that appears in negation in Wgry, with i
such that h(X;) = —h(X;), the STL formula does not contain
predicates that must be F'alse. This means that propositions in
Osep, firstT that are False are not required to remain False
to satisfy the specification; therefore their robustness will not
influence task success and we do not calculate a robustness
score for those propositions.

We compute p for each proposition 7, (4.t),0i,0un: €
s 7rue. Essentially, p captures how close we are to satisfying
or violating fu;:

_{h(Xt)if T s by spune = 1 TUE (10)

(T fa,b] i pune) = :
trem lf ﬂ—:u‘i > [avb] s 74Fu,nt,:False

For propositions that are currently T'rue, we define p as
the distance to violating the predicate. For propositions that are
currently F'alse, but need to become T'rue before the systems
completes the transition, we define p as the minimum time
remaining t,.,, for the predicate to become True given the
control bounds U. We estimate this time using the distance
D to the safe-set. We assume that the robot will travel at its
maximum velocity u. Here, t. is the time at which «; becomes
True. If no «; exists, t, = 0.

trem = (te+b—1)— D/|| u| . (11)

Given p for each proposition i Jabl i pune € s Trues
we create a tuple P(Ilgrrye) = (p1,...,pr) for each
Osep, firstT € 2 firstT, Where k = |Ilg 7ryel, is the number of
predicates that must be T'rue for the transition to occur. When
choosing the transition in B,, to execute next, we first consider
transitions with minimal k. By doing this we prioritize choos-
ing transitions with the least number of CBFs that need to be
activated. If multiple transitions have the same k, we compare
the smallest p in each P (the least robust predicate) and choose
the transition that has the maximum value, i.e. we maximize
the minimal robustness of the transition. If there are multiple
transitions with the same maximal minimum p, we look at
the next smallest p until a single transition is chosen (line 8).
If all robustness scores are equal for multiple transitions, we
arbitrarily choose the first transition in the set.

Given the chosen transition, we define 11, , = ¢ 7rye-
This represents the propositions that are True in the
transition that maximizes robustness, and indicates which
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CBFs should be activated. The state from which the cho-
sen transition originates, s; € possCurrS is labeled as
currS and used as an input to Algo. 2 in the next
time step (labeled prevS). In Example 2, when in state
1, z‘firstT = {71-;11,[(),20],reqa77#2,[0,20},7”6(1}’ = {0—170—2}’
HU],True = 1Tuy,[0,20],req S > = {7r,u2,[0,20],req}' If
robot 1 is at [0, 0] and robot 2 is at [3, 3], assuming no static
obstacles, || u ||= 1, t, = 0, and ¢t = 5, then P, = {13.59}
and P, = {11.17} and we activate the CBF for robot 1.

o, True

C. Generating Control

Based on [13], we create controllers to satisfy propositions
that must become True T, [a.b),ai,0un; € Huger Similar
to [15], and included here for completeness, for each propo-
sition, we create a CBF template, cbf,,,:

t—te—a hL X

b (X)) = 6b_)a )
If Qyunt is NOt eMpPty in 7, [q,5],0i,0un:> P 15 €qual to the time
at which ¢,,,,; becomes True. If it is empty, b is equal to the
timing bound from [a, b] in 7, [4.5],04,pun: -

Our CBF template (12) is a valid CBF for our system and
predicates; it may not be valid for other systems or predicates.
For (12), at t = t. + a, ¢bf,,(X¢) = 0. At t = t. + b,
cbf,. (Xy) = hi(X;). The CBF value changes linearly with
time such that, at the end of the time bound, the safe-set
associated with the CBF is equal to the safe-set associated
with the predicate 1;. We find a control strategy for each robot
using (13).

— hi(Xe,) + hi(Xe). (12)

min || u; —a; || s.t.

u; €U;
dcbfy,(Xy)T Ocbfy, (X
7f‘15)£ ) (f(x) + g(xp)u;) + 7f;§5( ) > (a3
—v(ebfu,(Xt)),
where v : R>g — Ry is a locally Lipschitz continuous

class K function, 7 is the index of the robot, @; is a nominal
controller, and cbfg, is an approximation of the minimum
cbf; for all propositions 7 that are activated for the current
transition. Eqn. (13) finds at each timestep, and for each robot,
the closest controller to the nominal controller that ensures the
specification is satisfied.

D. Choosing a Nominal Controller

We design our nominal controller such that it is more
likely to avoid deadlocks; a deadlock can occur when static or
dynamic obstacles are present on the path of the robot to its
goal. For each robot we choose a nominal controller at each
time step based on the set of its activated propositions and
whether they may result in a conflict.

1) Non-conflicting propositions: A set of activated propo-
sitions for a single robot is non-conflicting if their safe-sets
intersect and a solution to the control optimization problem
can be found. To determine the nominal controller @; when
activated propositions are non-conflicting, we first determine a
goal p within the intersection of the safe-set using the predicate
functions h;(X;). For simplicity, we choose goal p to be the
closest point to the current state of the robot. For example,
given the state of the system x; = [0, 0, 0] and the predicates
Yt > 2,24 > 3,0, > 5 we choose a goal point p = [3,2, T].

Here, p is the closest point at time ¢ that satisfies all predicates.
If static obstacles exist between p and x; we use the roadmap
G to find a path to p. We choose the nominal controller to be
in the direction of the path to p with magnitude equal to the
maximum control input.

2) Conflicting propositions: We consider propositions to be
conflicting if the safe-sets of their predicate h;(X;) are non-
intersecting but their time bounds tyouna;, = [a; + te, bj + te]
intersect. If activated propositions conflict for a single robot,
the specification may be violated. In such cases, we reduce
the chance of failure by choosing nominal controllers that
prioritize a robust ordering of propositions that are currently
False but must become True. Propositions that are True
and must remain 7True, for example safety requirements, are
automatically accounted for in the optimization (due to the
forward invariance of the CBF).

Robustness prioritization: For each transition that has con-
flicting propositions that are F'alse, we compute the robustness
scores for all orderings of satisfying these propositions. For
example, if a robot is to visit points ¢ and b during the
same time bounds, we compute two robustness tuples P. P;
represents the robustness of visiting a and then b and P»
represents the robustness of visiting b and then a. Essentially,
we change D to include the full path (current location to a
to b for P;) when calculating p. We then choose the nominal
controller based on the maximal robustness.

VI. PRE-FAILURE WARNINGS AND COMPLETENESS

During an execution, the timing of uncontrolled external
events, both discrete and continuous, may make the spec-
ification more difficult to satisfy. This can be caused by
conflicting safe-sets for individual tasks or changes in the state
of dynamic obstacles. One of the strengths of our approach is
that, at runtime, we provide pre-failure warnings to users that
indicate that a previously satisfiable specification may become
unsatisfiable. We distinguish between three types of pre-failure
warnings: warnings for tasks that must eventually be True
(liveness tasks), warnings for tasks that must always be True
(safety tasks), and potential violations of a specification if
environment events change.

Liveness Tasks: For goals that must eventually be reached
we examine all robustness scores p for the activated transition.
If any robustness score is negative, this means that there is not
enough time to satisfy all activated propositions and we give a
pre-failure warning to the user. We consider this a pre-failure
warning because the specification will not be violated until an
individual CBF is violated.

Safety tasks: For constraints that must always be True we
evaluate the value of the CBFs at each time step; for satisfying
the safety, all individual activated CBFs must be satisfied. We
give a pre-failure warning when any activated CBF falls below
a pre-determined threshold. This alerts the user when a robot
may not be able to remain within the safe-set because it is near
the boundary. If the safe-set moves or an obstacle disrupts the
robot, the robot may not be able to remain within the safe-set
and a violation could occur.

Environment changes: In addition to warnings due to the
current transition being executed, we evaluate the worst-case
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scenario of a change in p based on changes in the discrete
environment events 0. At each time step we evaluate all the
transitions out of the current state; if there exists a transition
with conflicting CBFs such that the robot cannot reach the
CBF safe-sets within the time bounds, from its current state,
we provide a pre-failure warning. If any p is negative this
means that there is not enough time for the specification to
be satisfied if the environment propositions change and this
transition is taken. In these cases we suggest changes in the
timing bounds of the potentially violating task that will result
in a positive p for the transition. In example 1 if lead is sensed
at t = 0 and at ¢ = 35 the Host robot has met the customer
and is guiding them to the Dining area. If lead is sensed
again at t = 35 the Host robot will have to guide the current
customer to the dining area and meet the new customer within
the same 25 seconds. Given the control bounds of the robot,
it may not be possible for it to accomplish both tasks. In this
case we give the pre-failure warning that if lead is sensed,
the task may not be satisfied, and we suggest how much extra
time would be required for the specification to be satisfied.
However, if the Host robot has made enough progress towards
the Dining area and there is enough time to respond to the a
new customer, no pre-failure warning is given.

Completeness: Our framework attempts to find a control
strategy that satisfies an Event-based STL specification with
disjunctions, in complex environments, under control bounds.
Our approach is sound, but not complete; there may be cases
where we can no longer satisfy a specification when a solution
may have existed had the controller made a different choice
in the prioritization scheme.

VII. SIMULATION DEMONSTRATION

We simulate Example 1 with varying parameters (number of
robots, number of customers the robots must respond to) to ex-
plore the scalability of our framework. We increase the number
of Cleaning robots (2-4), Server robots (2-4), and customers
(2-4). All simulations are run on a 2.3 GHz Quad-Core CPU
with 8 GB of RAM. Table II captures our results including
the number and types of robots, the number of predicates in
the specification, the time to prepare a specification, the size
of the Biichi automaton, and the time it takes to compute the
control for the robots in a transition.

Prep Time is the time it takes to prepare the specification
for execution; it is a one-time preprocessing step for a given
specification. It includes running Algo. 1 for each predicate,
creating a Biichi automaton from the LTL specification using
Spot [28], and parsing the Biichi automaton. Algo.1 typically
takes 0.7ms per predicate. Spot [28], which we use as an
off-the-shelf tool, took 28 seconds to generate the Biichi
automaton for our most complex specification. We parse the
Biichi Automaton so that its transitions can be evaluated as
True or False during execution. To reduce computation time
during execution, we parse all possible transitions in B, even
though they may not be evaluated during execution.

Computation time is the time it takes to choose a transition
(Algo. 2) and generate control inputs for all robots (13).
Table II captures the minimum and maximum computation
times for one time step in an execution. A large increase in

computation time can be seen when generating control with
pre-failure warnings for more complex specifications. This
is due to increase in possible combinations of uncontrolled
external events and transitions. For each combination of ex-
ternal events, we calculate a worst-case scenario robustness
which increases computation time. Computation also increases
with the complexity of the Biichi automaton. We measure the
complexity of a Biichi automaton by the number of conjunctive
formulas that result in a transition when T'rue.

VIII. PHYSICAL DEMONSTRATION

In the accompanying video we demonstrate our work using
Anki Vector robots. The physical demonstration is of Exam-
ple 1 with one Host robot, two Server robots, two Cleaning
robots, one customer in the waiting area, and two customers
that can requests robots. We use a teleoperated robot to repre-
sent the customer. We assume all robots are holonomic when
generating control and use feedback linearization to control
the nonlinear robots. The average computation time was 0.199
seconds with pre-failure warnings and 0.123 seconds without
pre-failure warnings. When lead is sensed, the Host robot
moves to the waiting area and then leads the customer to the
dining area. Because the Host robot is required to remain
close to the customer before it eventually reaches the dining
area, if the customer does not follow, as seen in the video,
the Host robot will have to wait. This can potentially lead
to a specification violation. During execution, we provide pre-
failure warnings, for example, while the Host robot is leading
the customer to the dining area, a pre-failure warning is given
that if another customer is sensed in the waiting area the robot
may not have enough time to satisfy the specification.

IX. DISCUSSION
Prep Time: The prep time increases with the number of
possible transitions in the Biichi automaton and predicates
in a specification. Note that this step is only needed for
each unique Biichi automaton, meaning that if the structure
of the specification does not change, prep time will not be
repeated. Changing parameters such as the initial positions
of the robots, the timing of external environment events, and
h(X}) of predicates do not require repeating this step.
Computation Time: Allowing disjunction in the specification
increases not only the number of accepting traces in B, but
also the number of combinations of predicates that, when
True, satisfy the transition label. This can be seen in Table
IT where the computation time for the same number of cos-
tumers (external events) increases with the number of robots
(disjunction in W,¢qyest, ). It is possible mitigate this increase
in computation time through decentralization of the control
process after the set of activated proposition are determined
so that each robot generates control on their own given the
propositions that are active.
STL synthesis: There are two main approaches to control
synthesis from STL specifications: (i) using model predictive
control with either mixed integer linear programs (e.g. [18],
[29]) or convex quadratic programs [22] and (ii) using CBFs
(e.g. [13], [15]). The former approach can provide guarantees,
assuming bounded uncontrolled signals and a finite horizon,
while the later is computationally more efficient.
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No. of Host Cleaning  Server Total No. of Prep Biichi No. of Min/Max Comp. Min/Max Comp.
Customers  Robots  Robots Robots Robots Predicates Time States Tsplit Time w/o Pre-F Time w/ Pre-F
2 2 5 22 5.378s 17 2434 0.024s/0.059s 0.039s/0.084s
2 1 3 3 7 36 5.424s 17 4422 0.037s/0.075s 0.067s/0.141s
4 4 9 53 5.776s 17 7090 0.057s/0.107s 0.119s/0.244s
2 2 5 26 7.926s 41 45,958 0.042s/.086s 0.102s/0.439s
3 1 3 3 7 42 15.61s 41 150,718 0.116s/0.322s 0.348s/1.898s
4 4 9 61 54.73s 41 398,950 0.321s/0.706s 0.859s/5.902s
4 1 2 2 5 30 48.25s 97 1,155,274 0.140s/0.398s 0.741s/6.256s
3 3 7 48 1,266s 97 7,361,046 1.024s/3.102s 5.386s/81.172s

TABLE II: Computational results for the simulated scenario.

In our work, we use CBFs ( [13]) due to their computational
efficiency and ability to handle long time horizon specifica-
tions. For example, if we were to use the BIuSTL [29] to
encode our 5 robot, 2 costumer example, we would need to
solve a mixed integer linear program with 7,150 constraints.
Choosing CBFs though, we lose the guarantees that [18] can
provide. We mitigate this by providing pre-failure warnings
and considering transition robustness.

Our work builds on and extends that of [13] by adding
reaction to external events, to static obstacles and adding
disjunction. Tasks expressible in the grammar of [13] are also
expressible in Event-based STL.

X. CONCLUSION

In this paper we enrich the definition of Event-based STL
to include disjunctions. By doing so we capture a larger sets
of tasks than before; specifically choice in robot behavior. To
satisfy tasks with disjunction, we propose a control synthesis
framework to find controllers that satisfy Event-based STL
specifications in a way that maximizes transition robustness.
In addition, we provide pre-failure warnings during execution
to notify a user of potential failures before they occur. This
feedback would allow the user to adjust the task if needed.
In future work we will provide methods for using pre-failure
warnings to modify a specification at run-time. We will
also create methods for allowing users to add new tasks to
a specification during execution. Our code is available at
https://github.com/davidgundana/Event-based-STL.
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