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This article introduces a novel quantile approach to harness the high-frequency information and improve the daily conditional
quantile estimation. Specifically, we model the conditional standard deviation as a realized generalized autoregressive con-
ditional heteroskedasticity (GARCH) model and employ conditional standard deviation, realized volatility, realized quantile,
and absolute overnight return as innovations in the proposed dynamic quantile models. We devise a two-step estimation proce-
dure to estimate the conditional quantile parameters. The first step applies a quasi-maximum likelihood estimation procedure,
with the realized volatility as a proxy for the volatility proxy, to estimate the conditional standard deviation parameters. The
second step utilizes a quantile regression estimation procedure with the estimated conditional standard deviation in the first
step. Asymptotic theory is established for the proposed estimation methods, and a simulation study is conducted to check their
finite-sample performance. Finally, we apply the proposed methodology to calculate the value at risk of 20 individual assets
and compare its performance with existing competitors.
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1. INTRODUCTION

Summary statistics such as realized volatility and quantile play a pivotal role in modern risk management. Gener-
alized autoregressive conditional heteroskedasticity (GARCH) models (Engle, 1982; Bollerslev, 1986) are widely
used to study low-frequency volatility dynamics. GARCH models adopt squared daily log returns as innovations in
the conditional volatilities. When the volatility changes rapidly, it is often difficult to catch up with the change by
using only the daily log returns as the innovations (Andersen et al., 2003). On the other hand, high-frequency finan-
cial data are available to construct the so-called realized volatility for estimating daily integrated volatility (Zhang
et al., 2005; Zhang, 2006; Barndorff-Nielsen et al., 2008; Jacod et al., 2009; Aït-Sahalia et al., 2010; Xiu, 2010;
Fan and Kim, 2018; Shin et al., 2021). Several conditional volatility models have been developed to draw combined
inference based on the low-frequency structure with high-frequency data and enhance volatility estimation and
predication. Examples include the heterogeneous auto-regressive (HAR) models (Corsi, 2009), high-frequency
based volatility (HEAVY) models (Shephard and Sheppard, 2010), realized GARCH models (Hansen et al., 2012),
GARCH-Itô models (Kim, 2016; Kim and Wang, 2016; Kim and Fan, 2019; Song et al., 2021), and overnight
GARCH-Itô models (Kim and Wang, 2021). Their empirical studies show that incorporating the realized volatil-
ity as the new innovation into the models improves volatility modeling and provides better explanation of the
volatility dynamics in the financial market.
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Conditional quantile is an essential ingredient along with the conditional volatility for the study of risk mea-
sures such as conditional value at risk (VaR). We often assume that the log return follows a conditionally normal
distribution or some known heavy-tailed symmetric distribution such as the t-distribution. Under the distribution
assumption, the conditional quantile estimation is reduced to the conditional volatility estimation. However, it is
often empirically observed that the log return has negative skewness and excess kurtosis, which violates the dis-
tribution assumption. Thus, to obtain more robust estimation of conditional quantile, quantile regression for time
series has been introduced. Koenker and Zhao (1996) extended quantile regression to linear ARCH models for esti-
mating conditional quantiles of log returns. Engle and Manganelli (2004) suggested a nonlinear dynamic quantile
model with an autoregressive (AR) structure for conditional quantiles. Xiao and Koenker (2009) further proposed
the two-step conditional quantile estimation for GARCH models. These quantile regression based models are
based on low-frequency data to capture the market dynamics. On the other hand, Žikeš and Baruník (2015) har-
nessed the quantile autoregressions with realized volatility and found the benefits of incorporating high-frequency
information. See also Giot and Laurent (2004) and Louzis et al. (2014). To account for the AR structure of the
conditional quantile, we often employ CAViaR model (Engle and Manganelli, 2004) with the realized volatility
(Žikeš and Baruník, 2015). This AR structure helps to obtain the parsimonious property, but in terms of estimating
the model parameter, the realized CAViaR (Žikeš and Baruník, 2015) uses computationally intensive estimation
methods. Thus, in this article, we link the realized GARCH models with the realized CAViaR structure and propose
a two-step estimation procedure to reduce the estimation complexity.

Specifically, we assume that the conditional standard deviation follows a realized GARCH model with the square
root of open-to-close integrated volatility and absolute of the overnight return as the innovations. The modeling
allows to derive an AR structure such as the quantile regression models in Engle and Manganelli (2004) and Xiao
and Koenker (2009). To reduce the complexity of estimating model parameters, we rewrite the model as some
quantile regression of the previous conditional standard deviation, square root of open-to-close integrated volatil-
ity, and absolute of the overnight return. We call this model the realized GARCH quantile regression model. On
the other hand, we impose some self-similarity condition on the high-frequency data to utilize the realized quantile
information. The proposed quantile regression model has the open-to-close realized quantile (Dimitriadis and Hal-
bleib, 2021) as the innovation instead of the realized volatility. We call this model the realized quantile and realized
GARCH quantile regression (real-realized GARCH quantile regression) model. To estimate the model parameter,
we suggest a two-step estimation procedure under a location-scale assumption, which helps to simplify estima-
tion procedures. In the first step, to estimate the conditional standard deviation, we harness the high-frequency
information. We employ a quasi maximum likelihood estimation procedure with the realized volatility as the
open-to-close conditional volatility proxy and squared overnight return as the close-to-open conditional volatility
proxy. In the second step, we apply the quantile regression estimation procedure with the estimated conditional
standard deviation in the first step. The proposed two-step estimation procedure is relatively easy to implement,
and as shown in Kim and Wang (2016), employing the high-frequency information helps to obtain more accurate
parameter estimator. We show the asymptotic theory for the two-step estimator in the presence of the measurement
(discretization) error associated with realized volatility.

The rest of the article is organized as follows. Section 2 proposes the dynamic quantile models. Section 3
proposes the two-step estimation procedure and derives its asymptotic properties. In Section 4, a simulation study
is conducted to check the finite sample performance of the proposed estimator. Section 5 applies the proposed
method to the conditional VaR predication for individual assets. All the technical proofs are collected in Section 7.

2. DYNAMIC REALIZED QUANTILE REGRESSION MODELS

2.1. Realized GARCH Models

In the high-frequency finance, we often assume that the log stock price satisfies the following diffusion process,

dXt = 𝜇tdt + 𝜎tdBt,

J. Time Ser. Anal. 43: 640–665 (2022) © 2021 John Wiley & Sons Ltd wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12633



642 D. KIM, M. OH AND Y. WANG

where Bt is a standard Brownian motion, and 𝜇t and 𝜎t are the drift and instantaneous volatility processes, respec-
tively, that is adapted to t. With the high-frequency financial data, there are several well-performed realized
volatility estimators, for example, multi-scale realized volatility (MSRV) (Zhang, 2006, 2011), pre-averaging
realized volatility (PRV) (Jacod et al., 2009; Christensen et al., 2010), kernel realized volatility (KRV)
(Barndorff-Nielsen et al., 2008, 2011), quasi-maximum likelihood estimator (QMLE) (Aït-Sahalia et al., 2010;
Xiu, 2010), local method of moments (Bibinger et al., 2014), and robust pre-averaging realized volatility (Fan
and Kim, 2018; Shin et al., 2021). With these realized volatility estimators as the new innovation in the GARCH
model, Hansen et al. (2012) introduced the realized GARCH models, and Kim and Wang (2016) proposed a uni-
fied GARCH-Itô model. Recently, Kim and Wang (2021) further employed the squared overnight log return as the
overnight risk innovation. Their empirical studies show that incorporating the realized volatility and overnight log
return helps to explain market dynamics. In the similar spirit, we assume that the daily close-to-close log-return
Yn has the following realized GARCH models

Yn = hn(𝜃)𝜖n,

hn(𝜃) = 𝜔 + 𝛾hn−1(𝜃) + 𝛼
√

IVn−1 + 𝛽
√

OVn−1,

∫
n

n−1
𝜎2

t dt = hn(𝜃)2 + Dn, (2.1)

where the open-to-close integrated volatility IVn−1 = ∫ n−1
n−1−𝜆 𝜎

2
t dt, overnight volatility OVn−1 = (Xn−1−𝜆 −Xn−2)2, 𝜆

is the open-to-close trading hours, Dn is a martingale difference, and for given n−1, 𝜖n’s are i.i.d. random variables
with mean zero. The conditional standard deviation hn(𝜃) has some overnight GARCH-Itô (OGI) (Kim and Wang,
2021) form with the two innovations terms; the square root of the open-to-close integrated volatility and squared
overnight return. That is, the market volatility dynamics are explained by the open-to-close integrated volatility
and squared close-to-open log returns, which represent volatilities for the open-to-close and close-to-open periods
respectively.

Remark 1. As studied in Kim and Wang (2021) and Song et al. (2021), we can find some Itô diffusion process
which satisfies the realized GARCH model in (2.1) and the integrated volatility has the following relationship

∫
n

n−1
𝜎2

t dt = hn(𝜃)2 + Dn.

With this relationship, we can employ the non-parametric realized volatility estimators to estimate the GARCH
parameter and study asymptotic properties. One possible instantaneous volatility process is the step function.
Specifically, the instantaneous volatility satisfies, for t ∈ [n − 1, n),

𝜎2
t = hn(𝜃)2 + Dn.

There may exist more realistic diffusion processes as in Kim and Wang (2021) and Song et al. (2021). However, the
main purpose of this article is to develop some low-frequency time series model which can account for conditional
quantile dynamics of log returns. Thus, we leave developing diffusion processes for future study.

Given the current information n−1, the one-day ahead conditional quantile value of Yn is

Q𝜏,n(𝜃) = hn(𝜃)q𝜏 ,

where q𝜏 is the 𝜏-quantile value of 𝜖n. We can rewrite the above conditional quantile value as follows:

Q𝜏,n(𝜃) = 𝜔𝜏 + 𝛾Q𝜏,n−1(𝜃) + 𝛼𝜏
√

IVn−1 + 𝛽𝜏
√

OVn−1,
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where 𝜔𝜏 = 𝜔q𝜏 , 𝛼𝜏 = 𝛼q𝜏 , and 𝛽𝜏 = 𝛽q𝜏 . The conditional quantile value has the auto-regression form with the
square root of the open-to-close integrated volatility and squared overnight return. That is, it has the conditional
autoregressive VaR (CAViaR) structure proposed by Engle and Manganelli (2004) and Žikeš and Baruník (2015).
Thus, the proposed model can be considered as the special case of CAViaR models. On the other hand, under the
realized GARCH volatility structure (2.1), the conditional quantile can be rewritten as follows:

Q𝜏,n(𝜃) = 𝜔𝜏 + 𝛾𝜏hn−1(𝜃) + 𝛼𝜏
√

IVn−1 + 𝛽𝜏
√

OVn−1, (2.2)

where 𝛾𝜏 = 𝛾q𝜏 . The quantile regression has three explanatory variables; the previous conditional standard devia-
tion, square root of the open-to-close integrated volatility, and absolute value of overnight return. The conditional
standard deviation hi−1(𝜃) has the realized GARCH form, which helps the quantile regression model to parsimo-
niously capture the persistent influence of long-past shocks. Unlike the CAViaR form, the regression form in (2.2)
is a linear form when we consider hi−1(𝜃) as one variable. This property reduces the model complexity and makes
it easy to make inferences. We call this model the realized GARCH quantile regression. This structure is simi-
lar to the GARCH-based quantile regression model proposed by Xiao and Koenker (2009). However, while they
employ only the low-frequency information, in this article, we study how to incorporate the high-frequency data
in both quantile regression modeling and parameter inferences.

2.2. Realized Quantile

Recently, under the self-similarity condition, Dimitriadis and Halbleib (2021) suggested the realized quantile. For
example, for some H ∈ (0, 1), the stochastic process Xt satisfies

Xt+cΔ − Xt

d
= cH

[
Xt+Δ − Xt

]
, (2.3)

where
d
= denotes equality in distribution. If the instantaneous process is a step function as discussed in Remark

1 and 𝜇t = 0, the self-similarity condition is satisfied and H = 0.5. The realized quantile satisfies the following
scale relationship

RQ𝜏(Xn − Xn−𝜆) =
1√
Δ

RQ𝜏(Xtn,i
− Xtn,i−1

),

where RQ𝜏(X) is the quantile of X at the probability 𝜏 and tn,i = n − 1 + Δi for i = 0, 1,… ,Δ−1. Then, using
the high-frequency return data, we can estimate the realized quantile of the open-to-close return, Xn − Xn−𝜆 =
∫ n

n−𝜆 𝜎tdBt. Specifically, we calculate the sample quantile using the high-frequency return data, Xtn,i
−Xtn,i−1

, then by

multiplying 1√
Δ

, we can estimate the realized quantile of the open-to-close return. The realized quantile harnesses

the high-frequency information in estimating the quantile, thus it has the quanitle dynamics information directly.
Furthermore, the conditional realized quantile of the open-to-close return, Xn − Xn−𝜆 = ∫ n

n−𝜆 𝜎tdBt, is

RQ𝜏(Xn − Xn−𝜆) = z𝜏

√
∫

n

n−𝜆
𝜎2

t dt,

where z𝜏 is the 𝜏-quantile of 1√
𝜆
∫ n

n−𝜆 dBt. Then the realized GARCH quanitle regression model (2.2) becomes

Q𝜏,n(𝜃) = 𝜔𝜏 + 𝛾𝜏hn−1(𝜃) + 𝛼′
𝜏
RQ𝜏,n−1 + 𝛽𝜏

√
OVn−1, (2.4)
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where RQ𝜏,n = RQ𝜏(Xn − Xn−𝜆) and 𝛼′
𝜏
= 𝛼q𝜏∕z𝜏 . Unlike (2.2), the dynamic quantile regression model has the

realized quantile instead of the integrated volatility as the explanatory variable. We call this model the realized
quantile and realized GARCH quantile regression (real-realized GARCH quantile regression) models. Since the
realized quantile contains the quantile information directly, the real-realized GARCH quantile regression may
capture the quantile dynamics well. Unfortunately, to hold the above relationship, we need the step function con-
dition of volatility over each day, which is often violated in the real data analysis. However, as the new innovation
information, the realized quantile may be helpful to explain the quantile dynamics.

Remark 2. The realized GARCH quantile regression and real-realized GARCH quantile regression models are
based on the realized GARCH structure to capture the volatility dynamics. Thus, they can account for the volatility
clustering. The difference between them is the source of explanatory variables for the quantile dynamics. Specifi-
cally, the real-realized GARCH quantile regression incorporates the realized quantile, while the realized GARCH
quantile regression employs the realized volatility. If the self-similarity condition is satisfied, since the real-realized
GARCH quantile regression contains the quantile information directly, it may be able to capture the quantile
dynamics well. However, it is hard to satisfy the self-similarity condition. In contrast, the realized GARCH quan-
tile regression does not need the self-similarity condition, and, so, it is relatively robust to the volatility structure.
However, the realized GARCH quantile regression model relies on the volatility dynamic structure, thus, it is hard
to explain other source of the quantile dynamics.

3. ESTIMATION PROCEDURE

3.1. Two-step Estimation Procedure for the Realized GARCH Quantile Regression Model

We recall that the conditional quantile in (2.2) can be considered as the linear equation with explanatory variables
such as square root of integrated volatility, absolute value of overnight return, and conditional standard deviation
as follows:

Q𝜏,n(𝜃) = 𝜔𝜏 + 𝛾𝜏hn−1(𝜃) + 𝛼𝜏
√

IVn−1 + 𝛽𝜏
√

OVn−1.

That is, the conditional quantile is explained by hn−1(𝜃),
√

IVn−1, and
√

OVn−1. In the first stage, we estimate these
explanatory variables. The open-to-close integrated volatility IVn is not observed, so we need to estimate it. For
example, we calculate the realized volatility (RV) estimator as follows:

RVn =
m∑

i=1

(
Xtn,i

− Xtn,i−1

)2
,

where m is the number of high-frequency observations for the open-to-close period. Then the realized volatility
estimator converges to the integrated volatility with the convergence rate m1∕2.

To evaluate the conditional standard deviation hn(𝜃), we employ the high-frequency observations. Specifically,
under the realized GARCH model (2.1), the integrated volatility is a good proxy of the conditional standard
deviation as follows:

∫
n

n−1
𝜎2

t dt = hn(𝜃)2 + Dn.

For the open-to-close period, we can use the non-parametric realized volatility RVn as the estimator of the
open-to-close integrated volatility. However, for the close-to-open period, we cannot observe the high-frequency
data, thus we use the squared overnight return as the proxy. By Itô’s lemma, we have

OVn = ∫
n−𝜆

n−1
𝜎2

t dt + 2∫
n−𝜆

n−1

(
Xt − Xn−1

)
dXt a.s.
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Therefore, we obtain

IVn + OVn = ∫
n

n−1
𝜎2

t dt + 2∫
n−𝜆

n−1
(Xt − Xn−1)dXt = hn(𝜃)2 + DL

n ,

where DL
n = Dn + 2 ∫ n−𝜆

n−1 (Xt − Xn−1)dXt is a martingale difference. Based on this relationship, we employ the
realized volatility and squared overnight return as the proxy of the quasi maximum likelihood estimation to get an
estimator of 𝜃 as follows:

𝜃 = arg max
𝜃∈Θ

L̂n,m(𝜃),

where

L̂n,m(𝜃) = −1
n

n∑
i=1

log ĥ2
i (𝜃) +

RVi + OVi

ĥ2
i (𝜃)

,

ĥi(𝜃) = 𝜔 + 𝛾 ĥi−1(𝜃) + 𝛼
√

RVi−1 + 𝛽
√

OVi−1.

That is, the non-parametric volatility estimator RVi+OVi is employed as the proxy of conditional GARCH volatil-
ity, and in the Gaussian quasi likelihood sense, we use the non-parametric volatility estimator instead of the squared
daily log return. As shown in Kim and Wang (2016), adopting realized volatility as the proxy in the quasi maxi-
mum likelihood estimation improves the accuracy of estimating parameters comparing with the QMLE procedure
with the squared log return as the proxy. We also enjoy the same benefit by harnessing the high-frequency data.
Then, with the QMLE estimator 𝜃, we estimate the conditional standard deviation as follows:

ĥn(𝜃) = 𝜔̂ + 𝛾̂ ĥn−1(𝜃) + 𝛼
√

RVn−1 + 𝛽
√

OVn−1.

In the second stage, with the estimated explanatory variables in the first stage, we apply the quantile regression
to estimating the true quantile parameters, 𝜃𝜏0 = (𝜔𝜏0, 𝛽𝜏0, 𝛾𝜏0), as follows:

𝜃RG
𝜏

= arg min
𝜃𝜏

n∑
i=2

𝜌𝜏

(
Yi − 𝜔𝜏 − 𝛾𝜏 ĥi−1(𝜃) − 𝛼𝜏

√
RVi−1 − 𝛽𝜏

√
OVi−1

)
,

where 𝜃 is the QMLE result in the first stage, 𝜌𝜏(x) = x(𝜏 − I(x < 0)), and I(⋅) is an indicator function.
To study the first step estimation procedure, we need the following assumptions.

Assumption 1.

(a) Let

Θ = {(𝜔, 𝛾, 𝛼, 𝛽) ∶ 𝜔l < 𝜔 < 𝜔u, 𝛾l < 𝛾 < 𝛾u, 𝛼l < 𝛼 < 𝛼u, 𝛽l < 𝛽 < 𝛽u, 𝛾 + 𝛼 + 𝛽 < 1},

where 𝜔l, 𝜔u, 𝛾l, 𝛾u, 𝛼l, 𝛼u, 𝛽l, 𝛽u are known positive constants.
(b) One of the following conditions is satisfied.

(b1) There exists a positive constant 𝛿 such that E

[(
Y2

i

h2
i (𝜃0)

)2+𝛿
]
≤ C for any i ∈ ℕ.

(b2)
E[Y4

i |i−1]
h4

i (𝜃0)
≤ C a.s. for any i ∈ ℕ.

(c) We have maxt∈ℝ+
E
{
𝜎4

t

}
< ∞ .
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(d) supi∈ℕ E
[
(RVi − IVi)2

] ≤ Cm−1.
(e) For any i ∈ ℕ, E

[
RVi|i−1

] ≤ C E
[
IVi|i−1

]
+ C a.s.

(f)
(
DL

i , IVi,OVi,Y
2
i

)
is a non-degenerating strictly stationary ergodic process.

Remark 3. We study the second moment related parameters, thus, the fourth moment conditions such as
Assumption 1(b) and (c) are required. Under some mild moment condition, we can show Assumption 1(d) and
(e). For example, under the finite fourth moment condition, Kim et al. (2016) showed that the realized volatility
estimators satisfy Assumption 1(d). The moment condition of the realized volatility estimator is often required to
investigate the double-asymptotics of letting both n and m go to infinity (see Corradi et al., 2011, 2012). Finally,
to establish the asymptotic normality, we need Assumption 1(f).

Theorem 1 establishes asymptotic properties of the QMLE method in the first step.

Theorem 1. Under the model (2.1), Assumption 1(a)–(e) are met. Then we have

√
n(𝜃 − 𝜃0) =

B−1
1√
n

n∑
i=1

DL
i

h4
i (𝜃0)

𝜕h2
i (𝜃)
𝜕𝜃

|||||𝜃=𝜃0

+ Op(n1∕2m−1∕2) + op(1), (3.1)

where 𝜃0 = (𝜔0, 𝛽0, 𝛾0) is the true parameter, and

B1 = E

[
1

h4
1(𝜃0)

𝜕h2
1(𝜃)
𝜕𝜃

𝜕h2
1(𝜃)
𝜕𝜃⊤

|||||𝜃=𝜃0

]
.

Furthermore, Assum ption 1 is satisfied and suppose that nm−1 → 0. Then we have

√
n(𝜃 − 𝜃0)

d
→ N(0,B−1

1 B2B−1
1 ), (3.2)

where

B2 = E

[
(DL

1)
2

h8
1(𝜃0)

𝜕h2
1(𝜃)
𝜕𝜃

𝜕h2
1(𝜃)
𝜕𝜃⊤

|||||𝜃=𝜃0

]
.

Remark 4. Theorem 1 shows that the convergence rate is n−1∕2 and m−1∕2. The n−1∕2 term is the usual optimal
convergence rate, and the m−1∕2 term is coming from estimating the realized volatility. To obtain the asymptotic
normality, we need to mitigate the noise coming from the high-frequency observations. Thus, we additionally
need the condition nm−1 → 0, which makes the noises from the realized volatility estimator negligible. Under this
condition, we derive the asymptotic normality.

In the first step, we adopt the high-frequency data, which reduces the asymptotic variance. For example, by the
Itô’s lemma, the squared log return is

Y2
n = ∫

n

n−1
𝜎2

t dt + 2∫
n

n−1
(Xt − Xn)dXt = hn(𝜃)2 + Dn + 2∫

n

n−1
(Xt − Xn)dXt.

When employing the squared daily log return as the proxy in the QMLE procedure, we have the martingale differ-
ence term Dn + 2 ∫ n

n−1(Xt −Xn)dXt. The term Dn + 2 ∫ n

n−1(Xt −Xn)dXt has higher variance than DL
n , which increases
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the asymptotic variance term B2. That is, as harnessing the high-frequency information in the first step, we are
able to increase the accuracy of the estimation procedure.

To investigate the two-step estimation procedure, we need the following additional technical conditions.

Assumption 2.

(a) Denote the conditional distribution function P
(
Yn < ⋅|n−1

)
by FY|X(⋅). Its derivative fY|X(⋅) is continuously

differentiable, and 0 < fY|X(⋅) < ∞ on its support.
(b) The distribution function of 𝜖i, F𝜖(⋅), has a continuous density f𝜖(⋅) with 0 < f𝜖(F−1

𝜖
(𝜏)) < ∞.

(c) There exists positive constant 𝛿1 > 0 and 𝛿2 > 0 such that

P(max
1≤t≤n

Y2
t > n𝛿1) ≤ exp(−n𝛿2 ).

(d) E
[

Ai(𝜃0)Ai(𝜃0)⊤

hi(𝜃0)

]
has a full rank, where Ai(𝜃) = (1, hi−1(𝜃),

√
IVi−1,

√
OVi−1)⊤.

Remark 5. Assumption 2 is usually required to analyze the quantile regression and two-step estimation
procedure (see Xiao and Koenker, 2009).

Theorem 2 establishes the asymptotic properties of the two-step estimator 𝜃𝜏 .

Theorem 2. Under the models (2.1) and (2.2), assumptions in Theorem 1 and Assumption 2 are met. Then we
have

√
n(𝜃RG

𝜏
− 𝜃𝜏0) =

1
f𝜖(F−1

𝜖
(𝜏))

Γ−1
1

1√
n

n∑
i=2

{
𝜏 − I(Yi < 𝜃⊤

𝜏0Ai(𝜃0))
}

Ai(𝜃0)

− Γ−1
1 Γ2

√
n(𝜃 − 𝜃0) + op(1), (3.3)

where Γ1 = E
[

Ai(𝜃0)Ai(𝜃0)⊤

hi(𝜃0)

]
, Γ2 = E

[
Ai(𝜃0)
hi(𝜃0)

𝜕𝜃⊤
𝜏0Ai(𝜃)
𝜕𝜃⊤

|||𝜃=𝜃0

]
. The limiting distribution is

√
n(𝜃RG

𝜏
− 𝜃𝜏0)

d
→ N(0,Γ−1

1 MΓ−1
1 ),

where

M = 𝜏(1 − 𝜏)
f 2
𝜖
(F−1

𝜖
(𝜏))

E
[
Ai(𝜃0)Ai(𝜃0)⊤

]
+ Γ2B−1

1 B2B−1
1 Γ⊤

2

+ 1
f𝜖(F−1

𝜖
(𝜏))

E

[ {
𝜏 − I(Yi < 𝜃⊤

𝜏0Ai(𝜃0))
} DL

i

h4
i (𝜃0)

×
{

Ai(𝜃0)
𝜕h2

i (𝜃)
𝜕𝜃⊤

|||𝜃=𝜃0

B−1
1 Γ⊤

2 + Γ2B−1
1

𝜕h2
i (𝜃)
𝜕𝜃

|||𝜃=𝜃0

Ai(𝜃0)⊤
}]

.

Remark 6. Theorem 2 shows the asymptotic normality of the two-step estimator 𝜃RG
𝜏

. Since it utilizes the QMLE

estimator in the first step, the effect of 𝜃 remains as in (3.3). Specifically, the remaining term is Γ−1
1 Γ2

√
n(𝜃 − 𝜃0).

As we discussed, thanks to using the high-frequency observations, we can reduce the asymptotic variance of√
n(𝜃 − 𝜃0), thus the two-step estimator 𝜃𝜏 also has smaller asymptotic variance comparing with the estimation

procedure which harnesses only the low-frequency information.
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3.2. Two-step Estimation Procedure for the Real-realized Quantile Regression Model

For the real-realized quantile regression, we employ the first step estimator in Section 3.1. To evaluate the
real-realized quantile regression, we need to estimate the realized quantile RG𝜏,n. For example, we calculate the
the quantile of the high-frequency return as follows:

Q̂𝜏,n = arg min
b

m∑
i=2

𝜌𝜏

(
Xtn,i

− Xtn,i−1
− b

)
.

Then, under the self-similarity condition, to obtain the quantile for the open-to-close return, we scale up as follows:

R̂Q𝜏,i−1 =
1√
Δ

Q̂𝜏,n.

With the QMLE estimator in the first step and the realized quantile estimator, we estimate the real-realized quantile
regression parameter as follows:

𝜃RR
𝜏

= arg min
𝜃𝜏

n∑
i=2

𝜌𝜏

(
Yi − 𝜔𝜏 − 𝛾𝜏 ĥi−1(𝜃) − 𝛼𝜏 R̂Q𝜏,i−1 − 𝛽𝜏

√
OVi−1

)
.

To estimate its asymptotic properties, we need the following additional conditions.

Assumption 3.

(a) We have supi |R̂Q𝜏,i − RQ𝜏,i| = Op(m−1∕2).

(b) E
[

ARR
i (𝜃0)ARR

i (𝜃0)⊤

hi(𝜃0)

]
has a full rank, where ARR

i (𝜃) = (1, hi−1(𝜃),RQ𝜏,i−1,
√

OVi−1)⊤.

(c)
(
DL

i , IVi,OVi,Y
2
i ,RQ𝜏,i

)
is a non-degenerating strictly stationary ergodic process.

Remark 7. The consistency assumption Assumption 3(a) can be obtained under some self-similarity condi-
tion and some stationary condition. For example, the self-similarity condition (2.3) with H = 0.5 is satisfied,
the log-returns are 𝛼-mixing, and their distribution is absolutely continuous with strictly positive and continuous
density. Details can be found in Theorem 2.1 (Dimitriadis and Halbleib, 2021). Assumption 3(c) is required to
establish the asymptotic normality.

The following theorem studies the asymptotic properties of 𝜃RR
𝜏

.

Theorem 3. Under the models (2.1) and (2.4), assumptions in Theorems 1 and 2 and Assumption 3 are met.
Then we have

√
n(𝜃RR

𝜏
− 𝜃𝜏0) =

1
f𝜖(F−1

𝜖
(𝜏))

ΓRR−1
1

1√
n

n∑
i=2

{
𝜏 − I(Yi < 𝜃⊤

𝜏0ARR
i (𝜃0))

}
ARR

i (𝜃0)

− ΓRR−1
1 ΓRR

2

√
n(𝜃 − 𝜃0) + op(1),

where ΓRR
1 = E

[
ARR

i (𝜃0)ARR
i (𝜃0)⊤

hi(𝜃0)

]
, ΓRR

2 = E

[
ARR

i (𝜃0)
hi(𝜃0)

𝜕𝜃⊤
𝜏0ARR

i (𝜃)
𝜕𝜃⊤

|||𝜃=𝜃0

]
. The limiting distribution is

√
n(𝜃RR

𝜏
− 𝜃𝜏0)

d
→ N(0,ΓRR−1

1 MRRΓRR−1
1 ),
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where

MRR = 𝜏(1 − 𝜏)
f 2
𝜖
(F−1

𝜖
(𝜏))

E
[
ARR

i (𝜃0)ARR
i (𝜃0)⊤

]
+ ΓRR

2 B−1
1 B2B−1

1 ΓRR⊤
2

+ 1
f𝜖(F−1

𝜖
(𝜏))

E

[ {
𝜏 − I(Yi < 𝜃⊤

𝜏0ARR
i (𝜃0))

} DL
i

h4
i (𝜃0)

×
{

Ai(𝜃0)
𝜕h2

i (𝜃)
𝜕𝜃⊤

|||𝜃=𝜃0

B−1
1 ΓRR⊤

2 + ΓRR
2 B−1

1

𝜕h2
i (𝜃)
𝜕𝜃

|||𝜃=𝜃0

ARR
i (𝜃0)⊤

}]
.

Remark 8. Similar to Theorem 2, Theorem 3 obtains the asymptotic normality of the two-step estimator 𝜃RR
𝜏

.

4. A SIMULATION STUDY

We conducted simulations to check finite sample performances of the proposed estimation procedures and compare
them with existing methods. We generated the log-prices Xti,j

for n days with frequency 1∕m for each day and let

ti,j = i − 𝜆 + 𝜆

m
j, where i = 1,… , n, j = 0,… ,m, and the open-to-close trading hours 𝜆 = 6.5∕24. The underline

true log stock prices follow the diffusion process

dXt = 𝜎tdBt,

𝜎2
t =

{
w

𝜆
h2

i (𝜃) (1 + di) if t ∈ [[t] + 1 − 𝜆, [t] + 1)
1−w

1−𝜆
h2

i (𝜃) (1 + di) if t ∈ [[t], [t] + 1 − 𝜆),

where hi(𝜃) = 𝜔+𝛾hi−1(𝜃)+𝛼
√

IVi−1 +𝛽
√

OVi−1, and di +0.1 is generated by noncentral chi-squared distribution
with mean 0.1. To adjust the scale of the open-to-close integrated volatility IVi and the overnight volatility OVi,
we set the weight w as 0.75. Then the conditional standard deviation of the diffusion process satisfies

hi(𝜃) = 𝜔 + 𝛾hi−1(𝜃) + 𝛼
√

IVi−1 + 𝛽
√

OVi−1,

∫
i

i−1
𝜎2

t dt = h2
i (𝜃)

(
1 + di

)
= h2

i (𝜃) + Di,

Yi = hi(𝜃)𝜖i,

where Di = h2
i (𝜃)di, i = 1,… , n, are martingale differences, 𝜖i’s are i.i.d. random variables, which have the

same distribution as that of Zi

√
1 + di, where Zi’s are i.i.d. standard normal random variables, and the true model

parameter (𝜔, 𝛾, 𝛼, 𝛽) = (1, 0.1, 0.5, 0.2). We varied n from 500 to 2000 and m from 100 to 1000. The whole
simulation procedure was repeated 1000 times.

Figure 1 depicts the estimated mean absolute errors (MAE) of the first step estimates with n = 500, 1000, 2000
and m = 100, 500, 1000. Figures 2 and 3 draw the MAEs for the realized GARCH and real-realized GARCH
quantile regression two-step estimates with n = 500, 1000, 2000, m = 100, 500, 1000 and 𝜏 = 0.05, 0.1, 0.15.
Figures 1–3 show that the MAEs usually decrease as the number of high-frequency observations or low-frequency
observations increases. We note that there is a little effect of increasing the number of high-frequency observations
in case of 𝛽RG, 𝛽RR, 𝜔̂RG, and 𝜔̂RR which are the coefficients of OV and the intercept term in the quantile regres-
sion. This may be because the quanitle regression is based on the low-frequency observations, so high-frequency
observations have relatively little effect on the estimation accuracy. From Figures 2 and 3, we find that the MAEs
decrease as 𝜏 increases except 𝛼RR

𝜏
. This is because while the other quantile regression parameters decrease in pro-

portion to the decrease of q𝜏 , 𝛼
RR
𝜏

= 𝛼q𝜏∕z𝜏 does not decrease as 𝜏 increases. These results support the theoretical
findings in Section 3.
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Figure 1. MAEs for the first step estimation with n = 500, 1000, 2000 and m = 100, 500, 1000

Our main goal in this article is to predict the conditional quantile. We therefore investigated the out-of-sample
performance of estimating the one-day-ahead conditional quantile. To predict the one-day-ahead conditional
quantile, we employed the proposed two-step estimators, and the conditional quantile can be calculated as follows:

Q̂RG
𝜏,n+1 = 𝜔̂RG

𝜏
+ 𝛾̂RG

𝜏
ĥn(𝜃) + 𝛼RG

𝜏

√
RVn + 𝛽RG

𝜏

√
OVn,

Q̂RR
𝜏,n+1 = 𝜔̂RR

𝜏
+ 𝛾̂RR

𝜏
ĥn(𝜃) + 𝛼RR

𝜏
R̂Q𝜏,n + 𝛽RR

𝜏

√
OVn.

The true conditional quantile is hn+1(𝜃)q𝜏 , where q𝜏 is the 𝜏-quantile value of 𝜖n. We calculated the value of q𝜏

by Monte Carlo method. For comparisons, we consider the QGARCH (Xiao and Koenker, 2009) and the real-
ized CAViaR (Žikeš and Baruník, 2015), which are the two-step estimation using low-frequency observations for
the quantile regression based on the GARCH model and the conditional autoregressive quantile regression using
high-frequency observations respectively. Specifically, we chose the GARCH(1,1) with the absolute value of daily
returns as the innovation for the QGARCH, and the square root of realized volatilities and the absolute value of
daily returns were utilized for the realized CAViaR.

Figure 4 depicts the estimated MAEs of the 1-day-ahead conditional quantile with the realized GARCH quan-
tile regression (RG), real-realized GARCH quantile regression (RR), realized CAViaR (RCAViaR), and QGARCH
two-step estimators with n = 500, 1000, 2000, m = 100, 500, 1000, and 𝜏 = 0.05, 0.1, 0.15. From Figure 4, we
observe that the MAEs in the RG, RR, and RCAViaR cases decrease as the number of low-frequency observations
or high-frequency observations increases. The RG and RR models exhibit better performance than RCAViaR and
QGARCH, and when n is large, the QGARCH shows the worst performance. One of the possible explanations
is that the QGARCH does not include the high-frequency information, so it cannot explain the volatility dynam-
ics well. On the other hand, since the RCAViaR includes the high-frequency information, the RCAViaR is able
to capture the volatility dynamics. However, its estimation procedure is relatively complicated compared to the
proposed two step estimation method, which may cause some estimation errors. When comparing the RG and RR
models, the RG model shows slightly better performance.

5. AN EMPIRICAL STUDY

We applied the proposed realized GARCH quantile regression model and the real-realized GARCH quantile
regression model to measuring the conditional quantile of the real high-frequency trading data. We selected the
top 20 large trading volume stocks among the S&P 500 compositions. To minimize the effect of the microstructure
noise, we used the 5 minutes intraday trading data for the selected stocks from January 2010 to December 2016,
1758 trading days in total. We obtained the data from Wharton Data Service (WRDS) system. We defined the
open-to-close period from 9:30 to 16:00, the close-to-open period from 16:00 to the following-day 9:30, and the
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Figure 2. MAEs for the proposed realized GARCH quantile regression two-step estimator 𝜃RG
𝜏

with n = 500, 1000, 2000,
m = 100, 500, 1000, and 𝜏 = 0.05, 0.1, 0.15
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Figure 3. MAEs for the proposed real-realized GARCH quantile regression two-step estimator 𝜃RR
𝜏

with n = 500, 1000, 2000,
m = 100, 500, 1000, and 𝜏 = 0.05, 0.1, 0.15
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Figure 4. MAEs for the conditional quantile with RG, RR, RCAViaR, and QGARCH two-step estimators with n =
500, 1000, 2000, m = 100, 500, 1000, and 𝜏 = 0.05, 0.1, 0.15

one-day unit period as the close-to-close period. We utilized the log-prices for estimating the conditional quantile
of the daily log-returns.

To predict one-day-ahead conditional quantile, we used the RG, RR, RCAViaR, and QGARCH models defined
in Section 4, and non-parametric sample quantile (SQ). We set the in-sample period as 500 days, and using the
rolling window scheme, we predicted the one-day-ahead conditional quantile for the last 1258 days with 𝜏 =
0.01, 0.03, 0.05, 0.1, and 0.15. For relative comparisons of the models, we used the quantile loss function (Koenker
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Figure 5. Box plots for the relative losses with the RG, RR, RCAViaR, and QGARCH models and SQ for the 20 individual
stocks against varying 𝜏 = 0.01, 0.03, 0.05, 0.1, 0.15

Table I. Average rank of relative losses for the RG, RR, RCAViaR, and QGARCH models and SQ over the 20 individual stocks
against varying 𝜏 = 0.01, 0.03, 0.05, 0.1, 0.15

𝜏 RG RR RCAViaR QGARCH SQ

0.01 2.65 (8) 2.80 (1) 2.70 (5) 3.15 (2) 3.70 (4)
0.03 1.90 (9) 1.80 (6) 2.95 (3) 3.90 (2) 4.45 (0)
0.05 1.60 (12) 2.40 (5) 2.85 (2) 3.80 (1) 4.35 (0)
0.1 2.20 (5) 1.65 (9) 2.50 (4) 4.20 (1) 4.45 (1)
0.15 1.80 (7) 2.25 (11) 3.00 (1) 3.50 (1) 4.45 (0)

Note: In the parenthesis, we report the number of the first rank of relative losses among competitors.

and Bassett, 1978) as follows

L(Y, Q̂𝜏) =
1
n

n∑
i=1

𝜌𝜏(e𝜏,i) =
1
n

n∑
i=1

e𝜏,i(𝜏 − I(e𝜏,i < 0)),

where Y = (Y1,… ,Yn)⊤ are close-to-close log-returns, Q̂𝜏 = (Q̂𝜏,1,… , Q̂𝜏,n)⊤ are estimated conditional quantiles,

and e𝜏,i = Yi − Q̂𝜏,i. For each individual stock and quantile level 𝜏, we calculated the quanitle loss for each model,
and divided the loss by the loss of the RG model to check relative performance. We call this the relative loss. We
note that the relative loss of the RG model is 1.

Figure 5 draws boxplots for the relative losses with the RG, RR, RCAViaR, and QGARCH models and SQ
over the 20 individual stocks against varying 𝜏 = 0.01, 0.03, 0.05, 0.1, and 0.15. The horizontal red dot lines in
Figure 5 indicate the relative loss 1, so the model having the box over the red dot line performs worse than the RG
model. Table I reports the average rank and the number of first rank of the relative loss for the RG, RR, RCAViaR,
and QGARCH models and sample quantile over the 20 individual stocks. From Figure 5 and Table I, we find
that the parametric models show perform better than the non-parametric sample quantile. Moreover, the RG, RR,
and RCAViaR models that utilize high-frequency information show better performance than QGARCH model
which uses only low-frequency information. When comparing the models using high-frequency information, the
proposed RG and RR model show the best performance for 𝜏 = 0.01, 0.03, 0.05 and 𝜏 = 0.1, 0.15 respectively.
From this result, we can conjecture that the proposed model can account for the market quantile dynamics via
incorporating the high-frequency information and the simple two step estimation procedure reduces the estimation
errors.
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Figure 6. p-Values of the LRuc, LRcc, and DQ tests with the RG, RR, RCAViaR, and QGARCH models and SQ for 20
individual stocks against varying 𝜏 = 0.01, 0.03, 0.05, 0.1, 0.15

To backtest the estimated conditional quantile, we conducted hypothesis tests as follows. We first calculated
Ii = 𝟙(Yi − Yi−1 < Q̂𝜏,i), where 𝟙(⋅) is an indicator function and Q̂𝜏,i is predicted conditional quantile with quantile
level 𝜏. Then we conducted hypothesis tests based on the assumptions that Ii − 𝜏 has mean 0 and is a martingale
difference sequence. For example, the following three test statistics are calculated to carry out the hypothesis tests.
The first one is the likelihood ratio unconditional coverage (LRuc) test proposed by Kupiec (1995):

LRuc = −2 log

(
𝜏x(1 − 𝜏)n−x

(1 − x∕n)n−x (x∕n)x

)
,

where n is the number of predicted conditional quantiles and x =
∑n

i=1 Ii. The LRuc is based on the independent
assumption of Ii’s, thus, it cannot explain the dynamic structure. The second one is the likelihood ratio conditional
coverage (LRcc) test proposed by Christoffersen (1998):

LRcc = −2 log

(
𝜏x(1 − 𝜏)n−x

L(Π̂; I1,… , In)

)
,

where L(Π; I1,… , In) = 𝜋
n01

01 (1 − 𝜋01)n00𝜋
n11

11 (1 − 𝜋11)n10 , 𝜋ij = P(Id+1 = j|Id = i), nij is the number of j outcomes

after i outcome, and Π̂ is the maximum likelihood estimator. The LRcc test considers the one lagged relationship.
The third one is the dynamic quantile (DQ) test, proposed by Engle and Manganelli (2004), with the first L lagged
Ii’s and the VaR forecast. The DQ test considers some dynamic structure for L lagged variables. In this article, we
chose L = 4. Details of the test statistic can be found in Engle and Manganelli (2004). We conducted hypothesis
tests with 20 individual stocks.

Figure 6 draws p-value scatter plots of the LRuc, LRcc, and DQ tests with the RG, RR, RCAViaR, and
QGARCH models and sample quantiles for 20 individual stocks against varying 𝜏 = 0.01, 0.03, 0.05, 0.1, and 0.15.
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Table II. The number of individual stocks whose p-values are below 0.05

𝜏 RG RR RCAViaR QGARCH SQ

LRuc 0.01 0 0 3 0 0
0.03 0 0 1 1 1
0.05 0 0 0 0 4
0.1 0 0 1 0 8
0.15 0 0 0 3 8

LRcc 0.01 4 5 7 2 6
0.03 2 4 3 2 12
0.05 2 1 2 6 12
0.1 2 2 4 2 15
0.15 1 0 1 5 16

DQ 0.01 9 12 15 14 12
0.03 11 11 11 14 18
0.05 10 8 13 17 20
0.1 10 10 11 14 19
0.15 11 13 13 17 20

When several points are overlapped, they are displayed in dark. The horizontal red dot lines in Figure 6 indi-
cate the p-value 0.05. Therefore, the model having many points under the red dot line fails to predict conditional
quantile. Table II reports the number of individual stocks whose p-values are below 0.05. From Figure 6
and Table II, we find that the parametric models show better performance than the non-parametric sample
quantile. It may be because the quantile has some time series dynamic structure. When comparing the para-
metric models, the proposed RG and RR models show slightly better performance than others. For the DQ
test, the RG, RR, and RCAViaR models that utilize high-frequency information show better performance than
QGARCH model that uses only low-frequency information. From these results, we may conjecture that incor-
porating the realized quantities such as realized volatility and realized quantile helps to capture the quanitle
dynamics.

6. CONCLUSION

In this article, we propose quantile regression models with the realized quantities such as realized volatility and
realized quantile, based on the realized GARCH models. For example, the realized GARCH quantile regression
is based the overnight GARCH-Itô model and incorporates the past conditional GARCH volatility, open-to-close
realized volatility, and overnight return as the explanatory variables. In contrast, under the self-similarity con-
dition, we propose the real-realized GARCH quantile regression model, which employs the realized quantile
estimator as the explanatory variables. To reduce the complexity of estimation procedure, we introduce the
two-step estimation procedure and show its asymptotic properties. From the empirical study, we find that incor-
porating the realized quantities such as realized volatility and realized quantile helps to capture the quantile
dynamics.

To incorporate the realized quantile (Dimitriadis and Halbleib, 2021), we assume the self-similarity condition,
which is often violated in the real data analysis. Thus, it is interesting to develop an estimation procedure of the
realized quantile, which is robust to the self-similarity condition. Furthermore, in the financial data analysis, we
often observe the leverage effect, and several empirical studies with the realized volatility showed that consider
the leverage effect helps account for market dynamics (Hansen and Huang, 2016; Chun and Kim, 2021). In this
point of view, incorporating the leverage effect in the quantile regression modeling may also help to explain the
quantile dynamics. We leave these interesting topics for future study.
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7. PROOFS

We first fix some notation. For any given vector b = (bi)i=1,…,k, we define ‖b‖max = maxi |bi| and ‖b‖a =
(
∑k

i=1 |bi|a)1∕a for some constant a > 0. Let C’s be positive generic constants whose values are independent of 𝜃,
n, and m and may change from occurrence to occurrence.

7.1. Proof of Theorem 1

Proof of Theorem 1. First, we consider (3.1). By the mean value theorem and Taylor expansion, there exists 𝜃

between 𝜃 and 𝜃0 such that

𝜕L̂n,m(𝜃)
𝜕𝜃

−
𝜕L̂n,m(𝜃0)

𝜕𝜃
=

𝜕2L̂n,m(𝜃)
𝜕𝜃𝜕𝜃⊤

(𝜃 − 𝜃0).

Similar to the proofs of Theorem 1 (Song et al., 2021), we can show

𝜕L̂n,m(𝜃0)
𝜕𝜃

= 1
n

n∑
i=1

DL
i

h4
i (𝜃0)

𝜕h2
i (𝜃0)
𝜕𝜃

+ Op(m−1∕2)

and

−
𝜕2L̂n,m(𝜃)
𝜕𝜃𝜕𝜃⊤

p
→ B1.

Thus, we have

√
n(𝜃 − 𝜃0) =

B−1
1√
n

n∑
i=1

DL
i

h4
i (𝜃0)

𝜕h2
i (𝜃0)
𝜕𝜃

+ Op(n1∕2m−1∕2) + op(1).

The result of (3.1), the martingale central limit theorem and Cramér-Wold device imply the statement (3.2)
immediately. ■

7.2. Proof of Theorem 2

Proof of Theorem 2. To easy the notation, we denote 𝜃RG
𝜏

by 𝜃𝜏 . We define

ĥn(𝜃, a0) = 𝜔 + 𝛾 ĥi−1(𝜃, a0) + 𝛼
√

RVn−1 + 𝛽
√

OVn−1,

hn(𝜃, a0) = 𝜔 + 𝛾hi−1(𝜃, a0) + 𝛼
√

IVn−1 + 𝛽
√

OVn−1,

where ĥ1(𝜃) = a0 and h1(𝜃) = a0. Denote the true initial value h1(𝜃0) by h0. Let

Ĝn,m(𝜃𝜏 , 𝜃, a0) =
1

n − 1

n∑
i=2

{
𝜏 − I(Yi < 𝜃⊤

𝜏
Âm,i(𝜃, a0))

}
Âm,i(𝜃, a0),

Gn(𝜃𝜏 , 𝜃) =
1

n − 1

n∑
i=2

{
𝜏 − I(Yi < 𝜃⊤

𝜏
Ai(𝜃))

}
Ai(𝜃),

G(𝜃𝜏 , 𝜃) = E
[{
𝜏 − FY|X(𝜃⊤𝜏 Ai(𝜃))

}
Ai(𝜃)

]
,
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where Âm,i(𝜃, a0) = (1, ĥi−1(𝜃, a0),
√

RVi−1,
√

OVi−1)⊤, Ai(𝜃) = (1, hi−1(𝜃, h0),
√

IVi−1,
√

OVi−1)⊤. Then the quantile

regression estimator 𝜃𝜏 is the same as

𝜃𝜏 = arg min
𝜃𝜏

‖Ĝn,m(𝜃𝜏, 𝜃, a0)‖2,

and the true parameter is

𝜃𝜏0 = arg min
𝜃𝜏

‖G(𝜃𝜏 , 𝜃0)‖2.

We note that G(𝜃𝜏0, 𝜃0) = 0.
First, we show the consistency of 𝜃𝜏 . Since 𝜃 is the consistent estimator of 𝜃0, it is enough to show the statement

under ‖𝜃 − 𝜃0‖1 ≤ 𝛿n, where 𝛿n = o(1). We have

‖Ĝn,m(𝜃𝜏 , 𝜃, a0) − Gn(𝜃𝜏, 𝜃)‖1 ≤ 1
n − 1

n∑
i=2

‖Âm,i(𝜃, a0) − Ai(𝜃)‖1

+ 1
n − 1

‖‖‖‖‖
n∑

i=2

{
I(Yi < 𝜃⊤

𝜏
Ai(𝜃)) − I(Yi < 𝜃⊤

𝜏
Âm,i(𝜃, a0))

}
Ai(𝜃)

‖‖‖‖‖1

.

We have

sup
𝜃

‖Âm,i(𝜃, a0) − Ai(𝜃)‖1

≤ sup
𝜃

|ĥi−1(𝜃, a0) − hi−1(𝜃)| + |√RVi−1 −
√

IVi−1|
≤ C

i−2∑
j=1

𝛾 j−1
u |√RVi−1−j −

√
IVi−1−j| + 𝛾 i−2

u |a0 − h0| + |√RVi−1 −
√

IVi−1|
= Op(m−1∕2) + 𝛾 i−2

u |a0 − h0|. (7.1)

Thus, we have

sup
𝜃

1
n − 1

n∑
i=2

‖Âm,i(𝜃, a0) − Ai(𝜃)‖1 = Op(m−1∕2 + n−1). (7.2)

We have

I(Yi < 𝜃⊤
𝜏

Ai(𝜃)) = I(Yi < 𝜃⊤
𝜏

Ai(𝜃0) + 𝜃⊤
𝜏
(Ai(𝜃) − Ai(𝜃0)))

= I(𝜖i < 𝜃⊤
𝜏

Ai(𝜃0)∕hi(𝜃0) + 𝜃⊤
𝜏
(Ai(𝜃) − Ai(𝜃0))∕hi(𝜃0))

and

I(Yi < 𝜃⊤
𝜏

Âm,i(𝜃, a0)) = I(Yi < 𝜃⊤
𝜏

Ai(𝜃0) + 𝜃⊤
𝜏
(Âm,i(𝜃, a0) − Ai(𝜃0))))

= I(𝜖i < 𝜃⊤
𝜏

Ai(𝜃0)∕hi(𝜃0) + 𝜃⊤
𝜏
(Âm,i(𝜃, a0) − Ai(𝜃0)))∕hi(𝜃0)).

Thus, we have

sup‖𝜃−𝜃0‖1≤𝛿n

|I(Yi < 𝜃⊤
𝜏

Ai(𝜃)) − I(Yi < 𝜃⊤
𝜏

Âm,i(𝜃, a0))|
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DOI: 10.1111/jtsa.12633



CONDITIONAL QUANTILE FOR REALIZED GARCH 659

≤ sup‖𝜃−𝜃0‖1≤𝛿n

I

(|||||𝜖i −
𝜃⊤
𝜏

Ai(𝜃0)
hi(𝜃0)

||||| <
|𝜃⊤

𝜏
(Ai(𝜃) − Ai(𝜃0))| ∨ |𝜃⊤

𝜏
(Âm,i(𝜃, a0) − Ai(𝜃0))|

hi(𝜃0)

)
. (7.3)

By (7.1), for i ≥ C log n, we have sup‖𝜃−𝜃0‖1≤𝛿n
max(|𝜃⊤

𝜏
(Ai(𝜃) − Ai(𝜃0))|, |𝜃⊤𝜏 (Âm,i(𝜃, a0) − Ai(𝜃0))|)∕𝜃⊤0 Ai(𝜃0) =

op(1), so we have

E

[
sup‖𝜃−𝜃0‖1≤𝛿n

|I(Yi < 𝜃⊤
𝜏

Ai(𝜃)) − I(Yi < 𝜃⊤
𝜏

Âm,i(𝜃, a0))|]

≤ E

[
sup‖𝜃−𝜃0‖1≤𝛿n

I

(|||||𝜖i −
𝜃⊤
𝜏

Ai(𝜃0)
hi(𝜃0)

||||| <
|𝜃⊤

𝜏
(Ai(𝜃) − Ai(𝜃0))| ∨ |𝜃⊤

𝜏
(Âm,i(𝜃, a0) − Ai(𝜃0))|

hi(𝜃0)

)]

≤ sup‖𝜃−𝜃0‖1≤𝛿n

E

[
I

(|||||𝜖i −
𝜃⊤
𝜏

Ai(𝜃0)
hi(𝜃0)

||||| <
|𝜃⊤

𝜏
(Ai(𝜃) − Ai(𝜃0))| ∨ |𝜃⊤

𝜏
(Âm,i(𝜃, a0) − Ai(𝜃0))|

hi(𝜃0)

)]
≤ o(1),

where the second inequality is by the fact that I
(|||𝜖i −

𝜃⊤𝜏 Ai(𝜃0)
hi(𝜃0)

||| ≤ ⋅
)

is a momotone function. Thus, we have

sup‖𝜃−𝜃0‖1≤𝛿n

1
n − 1

‖‖‖‖‖
n∑

i=2

{
I(Yi < 𝜃⊤

𝜏
Ai(𝜃)) − I(Yi < 𝜃⊤

𝜏
Âm,i(𝜃, a0))

}
Ai(𝜃)

‖‖‖‖‖1

= op(1) + Op

(
log n

n

)
= op(1)

and together with (7.2),

sup‖𝜃−𝜃0‖1≤𝛿n

‖Ĝn,m(𝜃𝜏 , 𝜃, a0) − Gn(𝜃𝜏 , 𝜃)‖1 = op(1). (7.4)

Consider ‖Gn(𝜃𝜏 , 𝜃) − G(𝜃𝜏 , 𝜃)‖2. For any given 𝜃𝜏 and 𝜃, we can show

‖Gn(𝜃𝜏, 𝜃) − G(𝜃𝜏 , 𝜃)‖2 = Op(n−1∕2).

Now, it is enough that Gn(𝜃𝜏 , 𝜃) is stochastically equicontinuous under ‖𝜃 − 𝜃0‖1 ≤ 𝛿n. Let

mj(Ai, 𝜃𝜏 , 𝜃) =
{

I(Yi < 𝜃⊤
𝜏

Ai(𝜃)) − 𝜏
}

Aji(𝜃),

where Aji(𝜃) is the jth element of Ai(𝜃). We have

E

[
sup

𝜃′ ,𝜃∶‖𝜃−𝜃0‖1≤𝛿n

|mj(Ai, 𝜃𝜏 , 𝜃
′) − mj(Ai, 𝜃𝜏 , 𝜃)|]

≤ E

[
sup

𝜃′ ,𝜃∶‖𝜃−𝜃0‖1≤𝛿n

|Aji(𝜃′) − Aji(𝜃)|]
+ E

[
sup

𝜃′,𝜃∶‖𝜃−𝜃0‖1≤𝛿n

||I(Yi < 𝜃⊤
𝜏

Ai(𝜃′)) − I(Yi < 𝜃⊤
𝜏

Ai(𝜃))|| |Aji(𝜃)|]
≤ C𝛿n + CE

[
sup

𝜃′,𝜃∶‖𝜃−𝜃0‖1≤𝛿n

||I(Yi < 𝜃⊤
𝜏

Ai(𝜃′)) − I(Yi < 𝜃⊤
𝜏

Ai(𝜃))||]
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≤ CE
[|||FY|X(𝜃⊤𝜏 Ai(𝜃0 + 𝛿n)) − FY|X(𝜃⊤𝜏 Ai(𝜃0 − 𝛿n))

|||] + C𝛿n

≤ C𝛿n, (7.5)

where the third inequality is by the fact that I(Yt < ⋅) is a monotone function, and the last inequality is due to
Assumption 2(a). Thus, Gn(𝜃𝜏 , 𝜃) is stochastically equicontinuous. Therefore, by Theorem 1 (Andrews, 1992), we
have

sup‖𝜃−𝜃0‖1≤𝛿n

‖Gn(𝜃𝜏 , 𝜃) − G(𝜃𝜏 , 𝜃)‖2 = op(1),

and, by (7.4), we have, for any given 𝜃𝜏 ,

sup‖𝜃−𝜃0‖1≤𝛿n

‖Ĝn,m(𝜃𝜏 , 𝜃, a0) − G(𝜃𝜏 , 𝜃)‖2 = op(1). (7.6)

Now, we show

sup
𝜃𝜏∈Θ𝜏 ,‖𝜃−𝜃0‖1≤𝛿n

‖Ĝn,m(𝜃𝜏 , 𝜃, a0) − G(𝜃𝜏 , 𝜃)‖2 = op(1),

where Θ𝜏 is the sample space of 𝜃𝜏 . Since Θ𝜏 is a compact set, without loss of generality, we show the statement
under ‖𝜃𝜏‖1 ≤ M for some positive M. Decompose {‖Δ‖1 ≤ M} into cubes based on the grid (j1dM,… , jkdM),
where ji = 0,±1,… ,±[1∕d] + 1, and d is a fixed positive number, and denote the lower vertex of the cube that
contain 𝜃𝜏 by L(𝜃𝜏). Let T(𝜃𝜏 , 𝜃) = Ĝn,m(𝜃𝜏 , 𝜃, a0) − G(𝜃𝜏 , 𝜃). Then we have

sup‖𝜃𝜏‖1≤M,‖𝜃−𝜃0‖1≤𝛿n

‖T(𝜃𝜏 , 𝜃)‖2

≤ sup‖𝜃𝜏‖1≤M,‖𝜃−𝜃0‖1≤𝛿n

‖T(L(𝜃𝜏), 𝜃)‖2 + sup‖𝜃𝜏‖1≤M,‖𝜃−𝜃0‖1≤𝛿n

‖T(L(𝜃𝜏), 𝜃) − T(𝜃𝜏 , 𝜃)‖2.

By (7.6), sup‖𝜃𝜏‖1≤M,‖𝜃−𝜃0‖1≤𝛿n
‖T(L(𝜃𝜏), 𝜃)‖2 is the maximum of finite number of op(1). Thus, we have

sup‖𝜃𝜏‖1≤M,‖𝜃−𝜃0‖1≤𝛿n

‖T(L(𝜃𝜏), 𝜃)‖2 = op(1).

By Assumption 2, we have

sup‖𝜃𝜏‖1≤M,‖𝜃−𝜃0‖1≤𝛿n

‖G(L(𝜃𝜏), 𝜃) − G(𝜃𝜏 , 𝜃)‖2 ≤ Cd + op(1).

We have

‖Ĝn,m(L(𝜃𝜏), 𝜃) − Ĝn,m(𝜃𝜏 , 𝜃)‖2

≤ ‖‖‖‖‖ 1
n − 1

n∑
i=2

{
I(Yi < L(𝜃𝜏)⊤Âm,i(𝜃, a0)) − I(Yi < 𝜃⊤

𝜏
Âm,i(𝜃, a0))

}
Âm,i(𝜃, a0)

‖‖‖‖‖2

≤ ‖‖‖‖‖ 1
n − 1

n∑
i=2

{
I(Yi < L(𝜃𝜏)⊤Âm,i(𝜃, a0)) − I(Yi < (L(𝜃𝜏) + dM14)⊤Âm,i(𝜃, a0))

}
× Âm,i(𝜃, a0)

‖‖‖‖‖2

,
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where the second inequality is due to I(Yi < ⋅) is a monotone function and 14 is the 4 × 1 vector of all 1’s. Thus,
we have

sup‖𝜃𝜏‖1≤M,‖𝜃−𝜃0‖1≤𝛿n

‖Ĝn,m(L(𝜃𝜏), 𝜃) − Ĝn,m(𝜃𝜏 , 𝜃)‖2

≤ sup‖𝜃𝜏‖1≤M,‖𝜃−𝜃0‖1≤𝛿n

‖T(L(𝜃𝜏), 𝜃) − T(L(𝜃𝜏) + dM14, 𝜃)‖2 + Op(d)

≤ Op(d) + op(1),

and

sup
𝜃𝜏∈Θ𝜏 ,‖𝜃−𝜃0‖1≤𝛿n

‖Ĝn,m(𝜃𝜏 , 𝜃, a0) − G(𝜃𝜏 , 𝜃)‖2 = Op(d) + op(1).

Since d is arbitrarily small, we can show

sup
𝜃𝜏∈Θ𝜏 ,‖𝜃−𝜃0‖1≤𝛿n

‖Ĝn,m(𝜃𝜏 , 𝜃, a0) − G(𝜃𝜏 , 𝜃)‖2 = op(1).

Since G is a continuous function and 𝜃𝜏0 is a unique solution, by Theorem 1 in (Chen et al., 2003), we can show
the consistency of 𝜃𝜏 .

Now, we investigate the convergence rate of 𝜃𝜏 . We have

G(𝜃𝜏 , 𝜃0) = G(𝜃𝜏0, 𝜃0) +
𝜕G(𝜃𝜏0, 𝜃0)

𝜕𝜃𝜏
(𝜃𝜏 − 𝜃𝜏0) + Op(‖𝜃𝜏 − 𝜃𝜏0‖2

2)

=
𝜕G(𝜃𝜏0, 𝜃0)

𝜕𝜃𝜏
(𝜃𝜏 − 𝜃𝜏0) + Op(‖𝜃𝜏 − 𝜃𝜏0‖2

2).

Thus, the convergence rate of 𝜃𝜏 is the same as that of G(𝜃𝜏 , 𝜃0). We have

‖G(𝜃𝜏 , 𝜃0)‖2 ≤ ‖G(𝜃𝜏 , 𝜃0) − G(𝜃𝜏 , 𝜃)‖2 + ‖G(𝜃𝜏 , 𝜃) − Gn(𝜃𝜏 , 𝜃) + Gn(𝜃𝜏0, 𝜃0)‖2

+ ‖Gn(𝜃𝜏0, 𝜃0)‖2 + ‖Gn(𝜃𝜏, 𝜃)‖2.

First, consider ‖G(𝜃𝜏 , 𝜃0) − G(𝜃𝜏 , 𝜃)‖2. By Taylor’s expansion and Theorem 1, we have

G(𝜃𝜏 , 𝜃0) − G(𝜃𝜏 , 𝜃) =
𝜕G(𝜃𝜏 , 𝜃0)

𝜕𝜃⊤
(𝜃0 − 𝜃) + Op(n−1)

=
𝜕G(𝜃𝜏0, 𝜃0)

𝜕𝜃⊤
(𝜃0 − 𝜃) + Op(n−1 + n−1∕2‖𝜃𝜏 − 𝜃𝜏0‖2).

Thus, we have

‖G(𝜃𝜏 , 𝜃0) − G(𝜃𝜏 , 𝜃)‖2 = Op(n−1∕2). (7.7)

Consider ‖Gn(𝜃𝜏0, 𝜃0)‖2. We have

−Gn(𝜃𝜏0, 𝜃0) =
1

n − 1

n∑
i=2

{
I(Yi < 𝜃⊤

𝜏0Ai(𝜃0)) − 𝜏
}

Ai(𝜃0).
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Thus, by the martingale convergence theorem, we have

‖Gn(𝜃𝜏0, 𝜃0)‖2 = Op(n−1∕2). (7.8)

Consider ‖G(𝜃𝜏 , 𝜃) − Gn(𝜃𝜏, 𝜃) + Gn(𝜃𝜏0, 𝜃0)‖2. Similar to (7.5), we can show, for some r > 2,

E

[
sup

(𝜃′𝜏 ,𝜃′)∶‖𝜃′𝜏−𝜃𝜏‖2≤𝛿,‖𝜃′−𝜃‖2≤𝛿
|mj(Ai, 𝜃

′
𝜏
, 𝜃′) − mj(Ai, 𝜃𝜏 , 𝜃)|r

]

≤ CE

[
sup

(𝜃′𝜏 ,𝜃′)∶‖𝜃′𝜏−𝜃𝜏‖2≤𝛿,‖𝜃′−𝜃‖2≤𝛿
||I(Yi < 𝜃′⊤

𝜏
Ai(𝜃′)) − I(Yi < 𝜃⊤

𝜏
Ai(𝜃))||

]
+ C𝛿r

≤ C sup
(𝜃′𝜏 ,𝜃′)∶‖𝜃′𝜏−𝜃𝜏‖2≤𝛿,‖𝜃′−𝜃‖2≤𝛿

E
[
FY|X(𝜃′⊤𝜏 Ai(𝜃′)) − FY|X(𝜃⊤𝜏 Ai(𝜃))

]
+ C𝛿r

≤ C𝛿. (7.9)

Then, since
(
IVi,OVi,Y

2
i

)
has exponentially decaying 𝛽-mixing, by Lemma 4.2 (Chen, 2007), we have

sup‖𝜃𝜏−𝜃𝜏0‖2≤𝛿,‖𝜃−𝜃0‖2≤𝛿

√
n‖G(𝜃𝜏 , 𝜃) − Gn(𝜃𝜏, 𝜃) + Gn(𝜃𝜏0, 𝜃0)‖2

1 +
√

n{‖Gn(𝜃𝜏, 𝜃)‖2 + ‖G(𝜃𝜏 , 𝜃)‖2}
= op(1).

Thus, we have

‖G(𝜃𝜏 , 𝜃) − Gn(𝜃𝜏 , 𝜃) + Gn(𝜃𝜏0, 𝜃0)‖2

≤ op(1){‖Gn(𝜃𝜏, 𝜃)‖2 + ‖G(𝜃𝜏 , 𝜃)‖2} + op(n−1∕2)

= op(n−1∕2 + ‖𝜃𝜏 − 𝜃𝜏0‖2), (7.10)

where the last equality is due to (7.11) and (7.12). Similar to (7.9), we can show

‖Gn(𝜃𝜏, 𝜃)‖2 ≤ ‖Gn(𝜃𝜏0, 𝜃0)‖2 + ‖Gn(𝜃𝜏 , 𝜃) − Gn(𝜃𝜏0, 𝜃0)‖2

≤ ‖Gn(𝜃𝜏0, 𝜃0)‖2 + Op(‖𝜃𝜏 − 𝜃𝜏0‖2 + ‖𝜃 − 𝜃0‖2)

= Op(n−1∕2 + ‖𝜃𝜏 − 𝜃𝜏0‖2), (7.11)

where the last equality is due to Theorem 1. By Theorem 1, we have

‖G(𝜃𝜏 , 𝜃)‖2 ≤ ‖G(𝜃𝜏0, 𝜃0)‖2 + Op(n−1∕2 + ‖𝜃𝜏 − 𝜃𝜏0‖2)

= Op(n−1∕2 + ‖𝜃𝜏 − 𝜃𝜏0‖2). (7.12)

Finally, consider ‖Gn(𝜃𝜏 , 𝜃)‖2. Similar to proofs of (7.4), we can show

‖Gn(𝜃𝜏 , 𝜃)‖2

≤ ‖Gn(𝜃𝜏 , 𝜃) − Ĝn,m(𝜃𝜏 , 𝜃, a0)‖2

≤ ‖‖‖ 1
n − 1

n∑
i=2

I
(|Yi − 𝜃⊤

𝜏
Ai(𝜃)| < C‖Ai(𝜃) − Âm,i(𝜃, h0)‖1 + o(n−1∕2)

)
Ai(𝜃)

‖‖‖2
+ op(n−1∕2).
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Since sup𝜃,i ‖Ai(𝜃) − Âm,i(𝜃, h0)‖1 = Op(m−1∕2), it is enough to show the statement under ‖Ai(𝜃) − Âm,i(𝜃, h0)‖1 ≤
Cm−1∕2. Let

G′
n(𝜃𝜏 , 𝜃) =

1
n − 1

n∑
i=2

{I
(|Yi − 𝜃⊤

𝜏
Ai(𝜃)| < C(m−1∕2 + n−c)

)
− 𝜏 ′}Ai(𝜃),

G′(𝜃𝜏 , 𝜃) = E
[
{FY|X(𝜃⊤𝜏 Ai(𝜃) + C(m−1∕2 + n−c)) − FY|X(𝜃⊤𝜏 Ai(𝜃) − C(m−1∕2 + n−c)) − 𝜏 ′}Ai(𝜃)

]
,

where c > 1∕2 and 𝜏 ′ = E
[
I
(|Yi − 𝜃⊤

𝜏0
Ai(𝜃0)| < C(m−1∕2 + n−c)

)]
. Then, similar to the proofs of (7.10), we have

‖G′(𝜃𝜏, 𝜃) − G′
n(𝜃𝜏 , 𝜃) + G′

n(𝜃𝜏0, 𝜃0)‖2 = op(n−1∕2 + ‖𝜃𝜏 − 𝜃𝜏0‖2).

Furthermore, we have

E
[
G′

n(𝜃𝜏0, 𝜃0)
] ≤ C(m−1∕2 + n−c),

G′(𝜃𝜏 , 𝜃) = O(m−1∕2 + n−c),
𝜏 ′ = O(m−1∕2 + n−c).

Thus, we have

‖G′
n(𝜃𝜏 , 𝜃)‖2 = op(n−1∕2 + ‖𝜃𝜏 − 𝜃𝜏0‖2). (7.13)

Therefore, by (7.7), (7.8), (7.10), and (7.13), we have

‖𝜃𝜏 − 𝜃𝜏0‖2 = Op(n−1∕2).

Now, we investigate the asymptotic normality. By (7.7), (7.8), (7.10), and (7.13), we have

√
n(𝜃𝜏 − 𝜃𝜏0)

=
𝜕G(𝜃𝜏0, 𝜃0)

𝜕𝜃⊤
𝜏

−1√
nG(𝜃𝜏 , 𝜃0) + op(1)

=
𝜕G(𝜃𝜏0, 𝜃0)

𝜕𝜃⊤
𝜏

−1
[

1√
n

n∑
i=2

{
I(Yi < 𝜃⊤

𝜏0Ai(𝜃0)) − 𝜏
}

Ai(𝜃0) +
𝜕G(𝜃𝜏0, 𝜃0)

𝜕𝜃⊤

√
n(𝜃0 − 𝜃)

]
+ op(1)

= 1
f𝜖(F−1

𝜖
(𝜏))

Γ−1
1

1√
n

n∑
i=2

{
𝜏 − I(Yi < 𝜃⊤

𝜏0Ai(𝜃0))
}

Ai(𝜃0) − Γ−1
1 Γ2

√
n(𝜃 − 𝜃0) + op(1).

The statement (3.3) is showed. The asymptotic normality is immediately showed by the martingale central limit
theorem. ■

7.3. Proof of Theorem 3

The proof of Theorem 3 is the same as the proof of Theorem 2. Thus, we omit the proof.
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