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Memory in three-dimensional cyclically driven granular material
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We perform experimental and numerical studies of a granular system under cyclic compression to investigate

reversibility and memory effects. We focus on the quasistatic forcing of dense systems, which is most relevant

to a wide range of geophysical, industrial, and astrophysical problems. We find that soft-sphere simulations with

proper stiffness and friction quantitatively reproduce both the translational and rotational displacements of the

grains. We then utilize these simulations to demonstrate that such systems are capable of storing the history of

previous compressions. While both mean translational and rotational displacements encode such memory, the

response is fundamentally different for translations compared to rotations. For translational displacements, this

memory of prior forcing depends on the coefficient of static interparticle friction, but rotational memory is not

altered by the level of friction.
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I. INTRODUCTION

The study of memory in materials is an extensive field

of research with implications for our understanding of biol-

ogy, condensed matter physics, and granular materials [1–4].

Memory in materials corresponds to storing information in

a material state. A familiar example of a state is the local

direction of magnetization, which enables magnetic informa-

tion storage [5]. Retrieving this memory requires knowing the

material state used to store the information, e.g., that hard

drives store information in magnetized regions of a certain

size.

Granular materials can also store information about their

past: It is possible to discern the direction [6] of prior re-

arrangements or the amplitude of prior shear [7]. However,

the material state that stores this information is not yet well

understood. It has been shown that systems with identi-

cal density and pressure, but different preparation history,

would diverge in their future evolution [8]. Therefore, it is

highly probable that, unlike in the case of magnetization,

memory in granular systems is not stored in macroscopic

quantities such as the density or pressure, but in a complex

state space involving particle positions, velocities, and contact

networks [9,10].

Previous simulations [9,10] and experiments [7,11] have

demonstrated that it is possible to retrieve granular memory

by measuring particle displacements in response to periodic

driving. The memory is extracted by conducting a sweep of

perturbation amplitudes, which measures the mean square

displacement (MSD) of the grains [9,12]. Specifically, mem-

ory of the prior driving emerges when the MSD transitions

from being reversible to irreversible. The majority of memory

studies on granular systems have focused on memory encoded

in the linear displacements of the grains [7,9], with only a few

works studying frictional dissipation [10,13]. Since friction is

present in most real-world materials, it is crucial to understand

how friction affects memory formation in granular materials.

Further, since friction drives rotations, it is important to dis-

cern whether memory can be encoded in individual rotations

of particles.

In this paper we study memory formation in a dense three-

dimensional packing of athermal frictional grains subject to

cyclic compression. Almost all granular matter is subject

to cyclic forcing in geological, astrophysical, or engineering

contexts. It has been shown that cyclically driven assemblies

of spheres exhibit either reversible or irreversible motion de-

pending on the perturbation applied [3,14–17]. Consequently,

these types of assemblies can act as a model system for explor-

ing the formation and origin of memory in granular materials.

We expand our study to measure all aspects that characterize

the system, including grain rotations and translations, and

their role in encoding memory. We do this numerically using

soft-sphere discrete element method (DEM) simulations that

we calibrate using experimental data. Finally, we demonstrate

that memory does form in our assembly of spheres by mea-

suring the displacements of our grains between cycles, and

we probe the effect frictional contacts have on the evolution

of our system.

II. METHODS

A. Experiments

The experimental system consists of a monodispersed mix-

ture of 20 000 acrylic, spherical grains with diameters of

0.5 cm, which possess a cylindrical cavity across their center
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TABLE I. Physical parameters used in the simulations.

�t kn Cn Ct μS μR μT β

25 μs 4 × 106 g/s2 0.2 0.5 0.2 0.01 0.001 0.5

that is used to track the rotations of the particles. The grains

reside in a square-based container with a side length of 15 cm

up to a height of approximately 10 cm and are immersed in

an index-matching solution (Triton X-100, n = 1.49), which

allows us to track the translations of the particles as well as

their rotations. A free weight of 1 kg is placed on top to

achieve a constant external pressure. The system is sheared

by compressing a lateral wall horizontally along a single axis

by an amplitude A and a whole cycle is completed when the

wall compresses and then fully decompresses the system. We

consider the response of the system to repeated compression

cycles. Additional information on the experimental setup can

be found in Refs. [15,18].

B. Simulations

Our numerical model consists of soft-sphere DEM sim-

ulations using an in-house software package [19]. A linear

spring is used to calculate the forces between grains, with a

spring constant chosen to maintain much less than 1% overlap

between grains. A friction model is included consisting of

static, rolling, and twisting friction (see [19]). Material and

simulation parameters are provided in Table I. The simula-

tion mimics our experiment with 20 000 soft spheres that are

dropped into a square container of length 15 cm and a free

weight placed on top [see Fig. 1(b)].

In the experiments, rotational displacement is calculated as

the change in the orientation of the cylindrical cavity located

within the grain. The angle is then multiplied by the radius

of the bead to compare with linear displacements. Measuring

only a single axis for the rotations means that we are only

capturing two of the three rotational degrees of freedom:

Rotations around the axis of the cylindrical cavity remain

undetected. In contrast, the simulations allow us to fully track

the rotations of the particles. Therefore, when comparing our

simulations to the experiments, we calculate the rotational

motion using only a single tracked axis (see Appendix B).

III. RESULTS AND DISCUSSION

A. Verifying the numerical model

Figure 1 shows a projection in the yz plane of each grain’s

position in both the experiments (left) and simulations (right)

after 400 cycles of compression with an amplitude of A =

0.15 cm (1% of the container size). The color corresponds to

the displacements of the grains when fully compressed. The

results show excellent agreement for both the translational

and rotational motion between the simulations and the exper-

iments. We see shear zones in the translations at an angle to

the compression wall which are not observed in the rotations.

The shear zones indicate that the displacements at maximum

compression are highly coupled to each other within each

band, whereas the rotations appear to be randomly distributed

and uncorrelated with translations. In other work [20] we

found the rotations to be correlated with the spatial gradient

of linear displacements.

Since rotations are driven by friction between contacts, we

expect our simulations to match our experiments at a unique

friction coefficient. Figure 2(a) shows probability density

functions (PDFs) of the end-of-cycle translational displace-

ment for three values of friction for our simulations. In all

cases, the system is compressed at an amplitude of 1% for

400 cycles; then the PDFs are generated using data from

ten consecutive cycles. We see a large difference in grain

displacements as the friction is varied. Specifically, it appears

the system systematically gets more reversible as the friction

is reduced. That is, the total displacement after a completed

cycle is lower for lower friction. By adjusting the friction

coefficient, we match our experiments to our simulations

nearly perfectly for a static friction coefficient of μS = 0.2.

FIG. 1. Spatial distribution of displacements (top row) and rotations (bottom row) for the simulations (left) and experiments (right) at full

compression. Color indicates the magnitude of motion, with red and blue being large and small displacements, respectively; both the simulation

and the experiment are on the same scale. The compression amplitude is 1.0% of the container size. The schematic shows a snapshot of the

simulation setup. The pattern on the beads is a visual aid to observe the orientation. The compression wall is in red and compresses along the

y axis.
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FIG. 2. (a) PDFs of the amplitude of translational displacement

after a whole cycle. Colors indicate the static friction coefficient

between grains. Closed circles correspond to experimental results.

(b) Comparison with experimental observations of both the rotational

(open circles) and translational (closed circles) displacement. The

rotations correspond to the angle between a single-tracked axis in

both the experiments and simulations.

Figure 2(b) shows the results for μS = 0.2 alongside the

experiments for both the rotational and translational displace-

ment of the grains. In the experimental setup, the rotations

are affected due to the cylindrical cavity hole locking in

place with other grains (see [15] for details). To negate this

effect, we restrict our analysis of rotations in experimental

data to the grains that do not contact through the hole. The

translations are unaffected by the hole contact. Furthermore,

Fig. 2(b) shows that the value of friction that best matches the

translational displacements predicts the rotational motion as

well. We observe a wider distribution for the rotations when

compared to the translations and the grains appear to rotate a

larger distance than they translate over an entire cycle. This

stems from the irreversibility of rotations compared to the

translations [15].

As the system is compressed, we expect it to evolve asymp-

totically towards some unknown steady state as it forms a

memory of its input [10]. Accordingly, we present in Fig. 3

the mean displacements of the grains, between each cycle, as

a function of the cycle number. We subtract the final steady-

state value, which is the average of the motion for the final 20

cycles, to reveal a power-law evolution, similar to what is done

in Ref. [10], for both translations and rotations with exponents

of ∼0.7 and ∼0.6, respectively. The difference in the initial

number of translations in the simulations indicates that the

initial configuration of the experimental system, produced by

stirring and deposition of a top weight, is not fully captured

in the simulated initial conditions. We note that both experi-

FIG. 3. Mean displacement as a function of the cycle number for

the experiments (circles) and the simulations (crosses). The theoreti-

cal steady-state displacement is subtracted from both curves to reveal

a power-law behavior. Dashed lines correspond to the fitted curve,

with exponents of approximately 0.7 and 0.6 for the translations and

rotations, respectively.

ments and simulations evolve following the same power-law

exponent and converge to the same system state (Fig. 3).

B. Encoding and reading memory

For the rest of this paper we will use the simulations to ex-

plore memory formation in a cyclically compressed granular

system. Using the simulations allows us to perform a parallel

readout of the memory commonly used in these types of

studies [7,9,12]. The training protocol takes a trained configu-

ration (i.e., the positions, forces, and orientations) of a system

and conducts a parallel sweep by conducting a full compres-

sion cycle 0 → A′ → 0 with a variable A′. The displacements

are calculated by taking the position after each cycle. In our

case, we perform an initial training at a compression am-

plitude A = 1% (0.15 cm) and then use that configuration

of grains and interparticle forces repeatedly in a sweep of

compressions A′ = 0.05%–2.5%. Figure 4 shows the readout

results for our simulations as a function of both the friction

and the number of training cycles. We consider motion up to

400 cycles; in this regime, several macroscopic parameters,

including the packing fraction and compression force on the

wall, remain unchanged from cycle to cycle. Thus, we argue

that the system has reached a sufficiently steady state up to the

resolution of our measurements.

Memory of the compression amplitude is apparent in the

translations as a dip in the mean displacement of the grains

and subsequent increase beyond the 1% marker. Moreover,
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FIG. 4. Parallel memory readout protocol for (a)–(c) translations and (d)–(f) rotations. Static friction is varied, with (a) and (d) μS = 0.05,

(b) and (e) μS = 0.2, and (c) and (f) μS = 0.5. Colors indicate the number of training cycles performed before the readout. The dashed line

indicates the amplitude at which the system was trained. A dip at the training amplitude appears for translations. Two distinct power laws

emerge in the rotations.

we see that the memory formation appears to be stronger the

more cycles the system has experienced. However, for the

high-friction case, the material reaches a steady state after 100

cycles in which the change in the memory effects is not dis-

cernible anymore. The dip at 1% appears less pronounced for

the high-friction case [Fig. 4(c)], suggesting that the motion is

not periodic in the same way as for low friction [Figs. 4(a)

and 4(b)]. It is important to note that at low friction, the

system presents identical mean displacements for different

perturbation amplitudes around the dip. This implies that it is

not possible to determine the state of the system from a single

perturbation.

Since the rotations also have a similar power-law evolution

in the average displacements as a function of cycle number,

we expect the memory readout to be similar to that of the

translations. Figures 4(d)–4(f) show the readout of the mean

rotations for static frictions of 0.05, 0.2, and 0.5, respectively.

Immediately, we observe that the rotations appear not to have

a similar memory signature in their displacements. How-

ever, there is a distinct power-law behavior that undergoes

a slope change as the amplitude is increased that gets more

pronounced as the system experiences more training cycles.

Specifically, after 400 cycles, we find an exponent of ∼0.7 for

small amplitudes and then ∼1.4 for large amplitudes, 2 times

the small-amplitude exponent. One might suspect that the

change in behavior of rotations is caused by the change in the

translational motion. However, it appears that the rotational

memory behaves similarly for all friction values, which is not

the case for translational displacement. Even with the change

in the power law, it appears that the memory of the drive does

not seem to be present in the average rotational motion of the

grains; however, the evolution or formation of the memory

could be present in collective rotations [21,22] at longer length

scales, which is a topic left for future work.

Figure 5 shows how the reversibility is affected by dif-

ferent preparation amplitudes. We have three systems that

were compressed at 0.5%, 1%, and 2% and performed the

same parallel readout to quantify the reversibility. We did

this for μS = 0.2, the friction that best corresponds to the

experiments. Clearly, the reversibility relies heavily on the

prepared amplitude (hence the dip in the curves). Addition-

ally, it appears that the system gets more irreversible at higher

compression amplitudes and we see a very pronounced min-

imum for higher amplitudes. This makes sense as the sample

gets less reversible for higher amplitudes. However, looking at

the rotations, we see that the power-law increase has a similar

exponent for amplitudes higher than the prepared amplitudes

for all three curves (∼1.4).

The memory we observe here is distinct from previous

interpretations such as return point memory [23]. Instead,

this phenomenon appears more like novelty detection [24]. It

appears that the reversible steady state depends on the entire

trajectory (0 → A′ → 0). That is, each grain has a unique tra-

jectory that it will respond to at amplitude A and any deviation

from this amplitude will form a new, different trajectory. This

is clear in Fig. 8, where we plot trajectories within a cycle

FIG. 5. Parallel memory readout protocol for (a) translations and

(b) rotations for static friction μS = 0.2. The colors indicate the

amplitude the state was prepared at.
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for three consecutive cycles for all the friction values. We see

that the paths overlap most for the lowest friction case. This is

also the friction that has the most pronounced dip in Fig. 4(a).

These repeated trajectories go away for higher friction values.

Moreover, the area within the trajectories goes down for the

highest friction. This could directly correlate with the absence

of the dip in the μS = 0.5. This phenomenon is similar but

not equivalent to the return point memory interpretation. For

the rotations, we do not see any structure in the trajectories

(see Fig. 9). Instead, we see that the higher-friction cases of

0.2 and 0.5 have trajectories that appear uncorrelated with the

wall compression.

IV. CONCLUSION

We have demonstrated that soft-sphere collisional simula-

tions successfully capture the quasistatic rearrangements and

rotations of a jammed granular system. We have shown that

three-dimensional dense frictional grains exhibit a memory

effect when subject to boundary-driven periodic forcing. We

verified that the rotational displacements do not encode mem-

ory in the same way as the translations, which could be due to

the lower overall reversibility of rotations compared to trans-

lations; however, we did see a difference in mean rotational

irreversibility both below and above the training amplitude

in the form of a power law. Moreover, we have found that

at low- and intermediate-friction values, the translations ap-

pear to be most reversible at the prepared amplitude. Our

work further probes the reversibility of granular rotations in

jammed materials. Specifically, we emphasize that irreversible

motion still has some kind of memory signature embedded

in the rotational displacements that is fundamentally different

from translations, whose memory can be read out by prob-

ing reversibility. Moreover, our observation of memory in a

quasistatic system poses the challenge of how to extract this

memory from measurements on the static particle configura-

tion alone, e.g., by using machine learning [25].
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APPENDIX A: SIMULATION PARAMETERS

The simulation parameters are given in Table I. The sim-

ulations are performed using a soft-sphere model, where a

linear repulsion force is proportional to the amount of overlap

between grains and the torque is a linear spring force propor-

tional to the deviation from the initial point of contact between

two grains. In Table I, �t and kn correspond to the time step

and normal spring constant, respectively. We use a spring

constant and time step such that grains maintain an overlap

much less than 1% of their radius. Although in practice the

acrylic beads used in the experiments are orders of magnitude

FIG. 6. PDF of the full cycle rotation using one axis (closed

circles) or two axes (open circles) when computing the magnitude.

more stiff, we see this as a fair approximation that effectively

reproduces the translational and rotational motions observed

in the experiment.

The tangential spring constant is defined as 5
7
kn. In addi-

tion, Cn and Ct are the restitution coefficients. Given that our

simulations are quasistatic, we do not expect the restitution

to play much of a role in the dynamics. The static, rolling,

and twisting friction values are labeled as μS , μR, and μT ,

respectively. Further, β is the rotation dashpot model’s shape

parameter (see Ref. [19] for further information on these

parameters).

APPENDIX B: CALCULATING GRANULAR ROTATIONS

Figure 6 shows a probability distribution function for ro-

tational displacements after a completed cycle using both

axes or a single axis to compute the magnitude from the

simulation data. Note that the single-axis curve can be ef-

fectively rescaled to the two-axis calculation by a division of

the rotation amplitude, consistent with a measure of Euclidian

distances of a single or two random variables. Rotation about

a single axis is given by the following equation:

sin θ = |â1 × â2|. (B1)

Here â1 and â2 are the initial and final orientations of the

grain, respectively, and θ is the angle between them. For

the simulations, this calculation is done by tracking a single

principal axis in time that is rotated based on the torques

calculated. Note here that the rotation is limited to 90◦ due

to the symmetry of a rotation about a single axis.

For the rest of paper, the simulated rotation is calculated by

a rotation matrix defined as

RP1 = P2. (B2)

Now P1 and P2 are a 3 × 3 matrix containing three tracked

principal axes of the each of the spheres. The rotation matrix

R maps the initial principal axis to the final. The angle is

calculated as follows:

2 cos θ = Tr(R) − 1. (B3)

Here the rotations are limited by 180◦ since all principal axes

are labeled and tracked throughout the simulation.
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FIG. 7. Memory readout using a symmetric drive (0 → A/2 → A/2 → 0) for different friction values. The color indicates the amount of

training cycles performed. The top row is the displacements, and the bottom row is the rotations.

APPENDIX C: SYMMETRIC DRIVE

In the main text, the shear moves the lateral wall from

position y = 0 to an amplitude A and then back to 0. This drive

is purely asymmetric. Other work on memory also probes

symmetric drives, where the compression moves the wall as

0 → A/2 → A/2 → 0. In Fig. 7 we show what our memory

signature looks like for symmetric drives. The main difference

is the absent peak around the trained amplitude. Moreover, the

system seems to take much longer (more cycles) to encode

the compression amplitude when compared to the asymmetric

drive in the paper. The rotations also do not appear to have any

memory signature for this drive.

APPENDIX D: TRAJECTORIES

Figure 8 plots trajectories of a single grain for three con-

secutive cycles, for all the friction values. The grains that were

selected are within the shear zone of the material (see Fig. 1

for reference). The plot is a projection into the yz plane for

visualization. There is a clear distinction between the three

friction values. For the low friction, the trajectories overlap

cycle to cycle with a hysteretic loop. As friction is increased,

there are two things to notice: (i) The area within the loop

decreases and (ii) the trajectories do not appear to overlap

from cycle to cycle. This difference could be the reason why

we see a dip in the memory sweep (Fig. 4) for μS = 0.5 and

0.2, whereas it is absent for 0.5.

Figure 9 presents the trajectories of the orientations of a

single grain within the sample. These grains are also taken

within the shear zone of the material. We notice no such struc-

ture in the rotations that we see in the translations. Moreover,

it appears that the rotations appear diffusive for the higher

frictions. That is, they seem to trace out random trajectories.

For the low friction, we see almost no rotation for many of

the grains. This could be caused by the low frictional force

between the grains.

FIG. 8. The yz projection of the average displacement of a small group of grains for three consecutive cycles. The color (blue to red)

corresponds to the beginning of the first cycle (blue) to the end of the third tracked cycle (red). The curves correspond to the different friction

values. The first cycle tracked here begins after 400 completed compression cycles.
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FIG. 9. Orientation trajectory of a grain for three consecutive cycles. The colors (blue to red) correspond to the beginning of the first

cycle (blue) to the end of the third cycle (red). The three spheres are the different friction values. The first cycle tracked here begins after 400

completed compression cycles.
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