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Abstract

Quantum computfing fis wfidely consfidered a frontfier of finterdfiscfiplfinary re-

search and finvolves fields rangfing from computer scfience to physfics and

from chemfistry to engfineerfing. On the one hand, the stochastfic essence of

quantum physfics results fin the random nature of quantum computfing; thus,

there fis an fimportant role for statfistfics to play fin the development of quan-

tum computfing. On the other hand, quantum computfing has great potentfial

to revolutfionfize computatfional statfistfics and data scfience. Thfis artficle pro-

vfides an overvfiew of the statfistfical aspect of quantum computfing. We revfiew

the basfic concepts of quantum computfing and fintroduce quantum research

topfics such as quantum annealfing and quantum machfine learnfing, whfich re-

qufire statfistfics to be understood.
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1. INTRODUCTION

Quantum finformatfion scfience finvestfigates the preparatfion and control of the quantum states

of physfical systems for the purposes of finformatfion transmfissfion and manfipulatfion. Thfis field

consfists of quantum communficatfion, quantum computatfion, and quantum finformatfion. There

fis a wfide belfief that quantum finformatfion scfience wfill lfikely lead to a new wave of technologfi-

cal finnovatfions fin communficatfion, computatfion, and finformatfion (see Wang 2012, Wang et al.

2016, and Wang & Song 2020 for detafils). As the crown jewel of quantum finformatfion scfi-

ence, quantum computfing fis gafinfing growfing finterest and tremendous attentfion fin fields rang-

fing from computer scfience to physfics and from chemfistry to engfineerfing. Theoretfically, fit has

been shown that quantum computatfional algorfithms can be much faster than the best or optfi-

mal classfical algorfithms for solvfing certafin tough computatfional problems. Experfimentally, the

Google Quantum AI group (where AI stands for artfificfial fintellfigence) desfigned a hard samplfing

problem for fits recently created quantum computer and successfully performed samplfing compu-

tatfions fin a computatfional space of dfimensfion 253≈1016, whfich fis practfically beyond the reach

of the fastest classfical supercomputers avafilable at present (see Sectfion 4.1, Arute et al. 2019, and

Zhong et al. 2020 for detafils). The medfia has frequently reported that a calculatfion that would

take a quantum computer 3 mfinutes and 20 seconds would take the most powerful supercom-

puter fin the world 10,000 years. Thfis fis an example of a concept often termed quantum (com-

putatfional) supremacy—a demonstratfion that quantum computers can surpass classfical ones—

and requfires a combfinatfion of hardware constructfion, software desfign, and problem creatfion and

fimplementatfion.

As quantum computers of large scale are currently not avafilable to fimplement faster quan-

tum algorfithms for accomplfishfing dfifficult computatfional tasks lfike breakfing cryptosystems that

are secure agafinst any classfical computer–based attack, fit fis fimportant to demonstrate quan-

tum supremacy and provfide experfimental evfidence to support the (theoretfical) clafim that quan-

tum computatfion has advantages over classfical computatfion. Sfince quantum physfics fis essentfially

stochastfic, quantum computatfion fis random fin nature. Consequently, statfistfics can play an fim-

portant role fin quantum computatfion, whfich offers, fin turn, great potentfial for computatfional

statfistfics and data scfience. As our goal fin thfis artficle fis to provfide an overvfiew of the statfistfical

aspect of quantum computatfion, we fintroduce the basfic concepts of quantum computatfion and

present some selected relevant topfics fin quantum computfing that encounter many statfistfical fis-

sues. Throughout the overvfiew, we fillustrate the finterplay between statfistfics and quantum com-

putatfion. In partficular, our focus fis on the applficatfion of new quantum resources to accomplfish

statfistfical computatfional tasks that are efither very slow or finfeasfible by classfical technfiques, and

the use of quantum approaches that may lead to new theorfies, methodologfies, and computatfional

technfiques for statfistfics and machfine learnfing. We refer readers to Wang (2012) and Wang & Song

(2020) for quantum cryptography topfics such as quantum code-breakfing algorfithms and quantum

crypto devfices.

The rest of the artficle proceeds as follows. Sectfion 2 brfiely fintroduces quantum mechanfics

and quantum probabfilfity and statfistfics. Sectfion 3 revfiews basfic concepts fin quantum computatfion

and dfifferent archfitectures for quantum computatfion. Sectfion 4 features two landmark projects

on quantum computatfional supremacy that finvolve boson samplfing and random quantum cfircufits.

Sectfion 5 fillustrates quantum annealfing and related statfistfical analysfis. Sectfion 6 presents quantum

deep learnfing and descrfibes both classfical and quantum approaches wfith Boltzmann machfines

(BMs). Sectfion 7 provfides concludfing remarks.

480 Wang•

An
nu
. 
Re
v. 
St
at
. 
Ap
pl
. 
20
22
.9
:4
79
-5
04
. 
Do
wn
lo
ad
ed
 f
ro
m 
w
w
w.
an
nu
al
re
vfi
e
ws
.o
rg

Lfiu

 
Ac
ce
ss
 p
ro
vfi
de
d 
by
 2
60
0:
6c
44
:3
93
f:
b5
54
:e
57
0:
55
02
:d
8e
b:
4f
19
 o
n 
09
/1
4/
22
. 
Fo
r 
pe
rs
on
al
 u
se
 o
nl
y. 



2. QUANTUM BACKGROUND REVIEW

2.1. Mathematfical Concepts and Notatfions

Denote byNandRthe sets of all fintegers and real numbers, respectfively. We fintroduce finfite-

dfimensfional lfinear algebra and metrfic spaces. Denote byCthe set of all complex numbers and

byCkthe vector space consfistfing of the set of allk-tuples of complex numbers (z1,...,zk). In

quantum mechanfics and quantum computatfion, we utfilfize Dfirac notatfions|·(whfich fis called

ket) and·|(whfich fis called bra) to specfify that the objects are column vectors or row vectors fin

the vector space, respectfively. We use superscrfipts∗,,and†to denote the conjugate of a com-

plex number, the transpose of a vector or matrfix, and the conjugate transpose operatfion, respec-

tfively. We denote byu|vthe finner product of vectors|uand|vand adopt a natural finner

product forCk:u|v= k
j=1u

∗
jvj=(u

∗
1,...,u

∗
k)(v1,...,vk),whereu|=(u1,...,uk)and|v=

(v1,...,vk). The finner product finduces a normu=
√
u|uand a dfistanceu−vbetween|u

and|v. We say thatHfis a finfite-dfimensfional Hfilbert space fif fit fis a vector space wfith an finner

product.

We call a matrfix AHermfitfian (or self-adjofint) fifA=A†,andamatrfixUunfitary fifUU†=

U†U=I,whereIdenotes the fidentfity matrfix. A matrfixAfis called semfiposfitfive (or posfitfive)

definfite fifu|A|u≥0 for all|u∈H(oru|A|u≥0 for all|u∈Hwfith equalfity only for|u=

0). For the matrfixA=(aj), denote fits trace by tr(A)=
k
j=1ajj. Weuse to denote the tensor

product operatfion of vectors or matrfices.

2.2. Quantum Physfics

A quantum system fis characterfized by fits state and the dynamfic evolutfion of the state. We de-

scrfibe a quantum state by a unfit complex vector and fits dynamfic tfime evolutfion by a unfitary evo-

lutfion, where the unfitary evolutfion means that the quantum state changes over tfime, and these

changes are lfinked by unfitary matrfices. Furthermore, the dynamfic tfime evolutfion of the quantum

state fis governed by a dfifferentfiatfion equatfion called the Schrödfinger equatfion. To be specfific, let

|ψ(t)be the state of the quantum system at tfimet. The states|ψ(t)and|ψ(t+s)at tfimestand

t+s, respectfively, are lfinked by|ψ(t+s)=U(s)|ψ(t),whereU(s)=exp[−
√
−1Hs] fis a unfitary

matrfix, andHfis a Hermfitfian matrfix onCd, whfich fis known as the Hamfiltonfian of the quantum

system. The Schrödfinger equatfion governs the contfinuous-tfime evolutfion of|ψ(t)as follows:
√
−1∂|ψ(t)

∂t
=H|ψ(t). Alternatfively, we may depfict a quantum system by a so-called densfity ma-

trfix. The quantum state of ad-dfimensfional quantum system can be descrfibed by a densfity matrfix

ρon thed-dfimensfional complex spaceCd,whereρfis a posfitfive semfidefinfite Hermfitfian matrfix

wfith unfit trace. We often classfify a quantum state as a pure state or an ensemble of pure states. A

pure state fis a unfit vector|ψ finCdwfith a correspondfing densfity matrfixρ=|ψ ψ|.Anensem-

ble of pure states has a densfity matrfixρ= J
j=1pj|ψj ψj|, whfich corresponds to the scenarfio

that the quantum system fis fin one of the states|ψj,j=1,...,J, wfith probabfilfitypjbefing fin the
state|ψj. We may descrfibe the quantum evolutfion fin the densfity matrfix representatfion as follows:

ρt+s=U(t)ρsU
†(t), whereρsandρt+sstand for the densfity matrfix of the state of the quantum sys-

tem at tfimessandt+s, respectfively, and the unfitary matrfixU(s) fis fintroduced above (for detafils,

see Shankar 2012, Sakurafi & Napolfitano 2017).

2.3. Quantum Probabfilfity

Measurements on quantum systems are often through observables lfike posfitfion and momen-

tum, where an observableM fis defined as a Hermfitfian matrfix onCd. Assume the followfing
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efigen-decomposfitfion forM:

M=

d

a=1

xaQa, 1.

wherexaare the real efigenvalues ofM,andQaare the correspondfing projectfions onto the

efigen-spaces ofM. Performfing a measurement onM for a quantum system prepared fin state

ρ, we adopt a measure space (,F) to descrfibe fits possfible measurement outcomes and treat

the measurement resultXas a random varfiable on (,F) wfith probabfilfity dfistrfibutfion Pρas

follows. The random varfiableXtakes values fin {x1,x2,...,xd}, and the probabfilfity of obtafinfing

measurement outcomexafis gfiven by

Pρ(X=xa)=tr(Qaρ), a=1, 2,...,d.

Wfith the probabfilfity defined, we derfive fits expectatfion and varfiance,

Eρ(X)=tr(Mρ), Var(X)=tr(M
2ρ)−[tr(Mρ)]2.

A quantum probabfilfity fis a noncommutatfive analog of the Kolmogorov probabfilfity. We gfive a

sfimple fillustratfion usfing the finfite case consfidered above. The quantum counterparts of sample

space and sfigma-field areH=Cdand an algebraAformed by subspaces ofH, respectfively.

Quantum events are subspaces ofHlfike efigen-spaces ofM, and observables are a quantum

analog of random varfiables. We present a sfimple quantum probabfilfityPon (H,A) as follows. For

a gfiven subspaceQofCd, defineP(Q)=tr(Qρ). Then there fis a correspondfing dfistrfibutfional

relatfionshfip betweenM underPand random varfiableXunder Pρ. In fact, fidentfifyfing the

projectfion matrfixQawfith fits correspondfing efigen-space, we haveP(Qa)=Pρ(X=a)wfiththe

quantum expectatfion of observableM,

E(M)=

d

a=1

aE(Qa)=

d

a=1

aP(Qa)=

d

a=1

aPρ(X=a)=Eρ(X).

However, the defined quantum probabfilfity (H,A,P) fis noncommutatfive. For example, consfider

the case ofd=2 and two noncommutable observables
1 0
0−1 and

01
10. Although each observable

corresponds to a Bernoullfi random varfiable, there fis no quantum analog of the jofint dfistrfibutfion

for these two observables, whfich fis related to Hefisenberg’s uncertafinty prfincfiple and the fact

that performfing measurements on a quantum system changes fits state and thus the resultfing

probabfilfity. The general definfitfion of quantum probabfilfity takesHas a complex Hfilbert space,A

as aC∗-algebra onH,andPas a noncommutatfive probabfilfity on (H,A). For detafils, readers are

dfirected to Holevo (2001), Parthasarathy (2012), and Wang (2012).

2.4. Quantum Statfistfics

Statfistfics fis heavfily used fin quantum theory and quantum experfiments, partficularly quantum com-

putatfion. For a quantum system, we may make statfistfical finference about the measurement dfis-

trfibutfion Pρand thus findfirectly about the quantum stateρbased on measurementsX1,...,Xn
obtafined from measurfing some observable for the quantum system. That fis,X1,...,Xnare finde-

pendent and fidentfically dfistrfibuted observatfions wfith dfistrfibutfion Pρ, and we can finferρbased

onX1,...,Xn. Assume thatρfis known up to some unknown parameterθ.ThenweusePρto

specfify a quantum parametrfic model and draw statfistfical finference aboutθ. We may define quan-

tum lfikelfihood and quantum Ffisher finformatfion and establfish quantum statfistfical theory such as

the quantum Cramér-Rao bound and asymptotfic efficfient estfimatfion. Specfifically, denote byρθa
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parametrfic quantum densfity matrfix famfily findexed by parameterθ=(θ1,...,θp). Define fits quan-

tum score matrficesj(θ),j=1,...,p, to be symmetrfized logarfithmfic derfivatfives ofρθwfith respect

toθ—that fis, j(θ) are Hermfitfian matrfices satfisfyfing

∂ρθ
∂θj
=
1

2
j(θ)ρθ+ρθ j(θ).

The quantum Ffisher finformatfion matrfix fis gfiven by J(θ)=(Jfij(θ))1≤fi,j≤p,where

Jfij(θ)=
1

2
trρθ fi(θ)j(θ)+ j(θ)fi(θ).

The quantum Cramér-Rao bound states that for an unbfiased estfimator ofθ, fits varfiance fis bounded

below by the finverse of J(θ). Also, we may modelρnonparametrfically and employ nonparametrfic

methods to finferρ. Quantum finformatfion scfience refers to the reconstructfion ofρas quantum

state tomography. For example, consfider testfing the quantum hypothesfis that a quantum state fis fin

a gfiven stateρ1agafinst an alternatfive stateρ2. We can establfish the quantum analog of the classfical

theory for the trade-off behavfior between two types of errors. As a case fin pofint, denote byβnthe

type II error of the optfimal levelαtest for the quantum hypotheses based onnfidentfical copfies of

the quantum system. Then we have the quantum Stefin lemma: lfimn→∞[n
−1logβn]=−S(ρ1|ρ2),

whereS(ρ1|ρ2)=tr(ρ1[logρ1−logρ2]) fis the quantum relatfive entropy (or quantum Kullback-

Lefibler dfivergence) ofρ1andρ2. That fis, sfimfilar to the classfical case, the quantum type II error

exponentfially decays to zero at a rate determfined by the quantum relatfive entropy. For detafils,

readers are dfirected to Artfiles et al. (2005), Barndorff-Nfielsen et al. (2003), Cafi et al. (2016),

Holevo (2001), Petz (2008), and Wang & Xu (2015).

3. QUANTUM COMPUTATION

3.1. Quantum Bfit and Superposfitfion

Bfits are the most fundamental concept fin classfical finformatfion and computatfion scfience. We en-

code the finformatfion fin a bfit wfith two mutually exclusfive states, 0 and 1, and may easfily realfize fit

by a mechanfical swfitch. The quantum counterpart of the classfical bfit fis the quantum bfit, or qubfit

for short. Sfimfilar to the two state values 0 and 1 for the classfical bfit, a qubfit has states|0and|1,

where the customary notatfion|·fis used to denote the qubfit state. However, there fis a key dfiffer-

ence between a classfical bfit and a qubfit. Besfides states|0and|1, a qubfit may be fin superposfitfion

states,

|ψ =α0|0+α1|1,

whereα0andα1are complex numbers called amplfitudes satfisfyfing|α0|
2+|α1|

2=1. The states

of a qubfit consfist of unfit vectors finC2,wfiththestates|0and|1formfing an orthonormal basfis,

that are called computatfional basfis states. Unlfike the mutually exclusfive states for classfical bfits,

the superposfitfion states allow qubfits to be both 1 and 0 at the same tfime.

We may realfize qubfits fin varfious physfical systems. For example, a qubfit can be represented

by the states of an electron orbfitfing a sfingle atom. Thfis atom model may treat|0and|1as

the so-called ground and excfited states of the electron, respectfively; fif the atom fis exposed to

lfight wfith approprfiate energy and for a sufitable amount of tfime, we may move the electron from

the|0state to the|1state, and vfice versa. Moreover, by changfing the length of exposure, we

can move the electron finfitfially fin the state|0to halfway between|0and|1, say, finto the state

|+=(|0+|1)/
√
2, or the state|−=(|0−|1)/

√
2, where|+and|−constfitute another qubfit

basfis.
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A classfical bfit can be checked to determfine whether fits state fis 0 or 1; however, quantum

physfics findficates that we cannot examfine a qubfit to determfine fits state and find the values of

α0andα1. Qubfits have stochastfic behavfiors that may be descrfibed by quantum probabfilfity, as

defined fin Sectfion 2.3. We can measure a qubfit to yfield a measurement outcome that fis efither

0 wfith probabfilfity|α0|
2or 1 wfith probabfilfity|α1|

2. Moreover, measurfing a qubfit wfill change fits

state.

Sfimfilarly to the classfical case, we may define multfiple qubfits. Ab-qubfit can be descrfibed by

C2
b
, and fits states are unfit vectors finC2

b
wfith computatfional basfis states x1 xb|,xfi=0or1,

fi=1,...,b. A gfiven state can be expressed as a lfinear combfinatfion of the computatfional basfis

states wfith 2bamplfitudes. Quantum exponentfial complexfity refers to the exponentfial growth fin

bof dfimensfionalfity of the vector space to descrfibe theb-qubfit and the number of amplfitudes

requfired to specfify fits superposfitfion states (for detafils, see Nfielsen & Chuang 2010, Wang 2012).

3.2. Quantum Entanglement

Quantum entanglement refers to the phenomenon of two partficles actfing fin the same way, as twfins

that are lfinked by an unobserved wave and share each other’s propertfies. Consfider an entangled

2-qubfit system. The quantum entanglement leads to an fintrfigufing feature of the entangled state:

Performfing a measurement on one of the entangled qubfits fimmedfiately casts the other one finto

the correspondfing perfectly correlated state, whfich results fin perfect correlatfion between the two

measurement outcomes for the qubfits. For example, take a 2-qubfit system fin a Bell state,

|ψ =
|01−|10
√
2

. 2.

Performfing a measurement on the first qubfit of the Bell state|ψ, we obtafin a random measure-

ment outcome 0 or 1 wfith probabfilfity 1/2 and 1/2, respectfively. However, after the measurement

on the first qubfit befing efither 0 or 1, the result of measurfing the second qubfit fin the Bell state

|ψ fis always 1 or 0, respectfively. That fis, there fis a perfect correlatfion between the measurement

results of the two qubfits fin|ψ. We refer to quantum states lfike the Bell state fin Equatfion 2 as

entangled states. The correlatfion phenomenon fis called perfect antficorrelatfion fin entanglement

experfiments (for more detafils, see Nfielsen & Chuang 2010, Wang 2012, Wang & Song 2020).

3.3. Quantum Algorfithms

The goal of quantum computatfion fis to harness the enormous amount of finformatfion hfidden fin

the quantum systems and utfilfize the exponentfial power of quantum partficles for the purpose of

computatfion. Classfical computers are bufilt by electrfical cfircufits comprfisfing wfires for transferrfing

finformatfion around the cfircufits and logfic gates for accomplfishfing sfimple computatfional tasks.

Sfimfilarly, quantum computers are created from quantum cfircufits wfith quantum gates to perform

quantum computatfion and process quantum finformatfion. Despfite the sfimfilarfitfies, fin contrast to

classfical computatfion, where transfistors are used to crunch the ones and zeroes findfivfidually, quan-

tum superposfitfion can allow quantum computatfion to manage both one and zero at the same tfime

and do the trfick of carryfing out sfimultaneous calculatfions. Moreover, the new quantum resources

such as quantum superposfitfion and quantum entanglement make fit possfible for quantum com-

puters to outperform classfical computers for certafin tough tasks. Already fit has been theoretfically

proven that many quantum algorfithms can speed up the best-known classfical algorfithms, wfith

examples fincludfing quadratfic speedup for Grover’s search algorfithm and exponentfial speedup for

Shor’s factorfing algorfithm (see, e.g., Nfielsen & Chuang 2010, Wang 2012).
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3.4. Quantum Machfine Learnfing

Quantum learnfing extends classfical machfine learnfing and statfistfical learnfing to the quantum

realm. It studfies how quantum resources can enhance classfical learnfing fin terms of computatfional

complexfity and statfistfical efficfiency. Quantum computers can be faster than classfical computers

for solvfing certafin machfine learnfing problems, and fit fis possfible for quantum learners to achfieve

hfigher statfistfical efficfiency for some partficular learnfing tasks, although there are caveats regard-

fing quantum state preparatfion fin some quantum machfine learnfing algorfithms. Examples of fin-

creased computatfional efficfiency finclude support vector machfines, prfincfipal component analysfis,

and BMs.

A case fin pofint fis quantum refinforcement learnfing. Classfical refinforcement learnfing studfies

the problem of learnfing fin and from finteractfive task envfironments, where a task envfironment fis

specfified by a Markov decfisfion process (MDP) through fits states that are observed by an agent.

The agent takes actfions to produce transfitfions from states to states, and transfitfions are rated wfith

rewards. The agent needs to learn whfich actfions to perform fin order to maxfimfize the rewards. In

refinforcement learnfing, the envfironments are unknown fin the sense of unknown transfitfion rules

of MDPs, and the goal fis to learn how to find optfimal polficfies for achfievfing the maxfimum rewards,

where a polficy refers to a behavfior rule to select actfions based on states. Varfious procedures and

algorfithms are developed to estfimate the so-called value functfions and value-actfion functfions

and find optfimal polficfies based on the estfimated functfions. Sutton & Barto (2018) provfide more

detafils.

We may consfider a quantum approach to learnfing vfia finteractfion and establfish a quan-

tum framework for agents, envfironments, and thefir finteractfions—namely, a quantum agent-

envfironment paradfigm for quantum refinforcement learnfing. The quantum paradfigm has the po-

tentfial to lead to enhancements fin both computatfional complexfity and statfistfical efficfiency of

classfical refinforcement learnfing. Moreover, we may mfix the classfical and quantum approaches for

refinforcement learnfing frameworks. Dependfing on whether the agent and the envfironment are

classfical or quantum, we may obtafin four agent-envfironment settfings: classfical agent and clas-

sfical envfironment (CC), classfical agent and quantum envfironment (CQ), quantum agent and

classfical envfironment (QC), and quantum agent and quantum envfironment (QQ) frameworks.

The classfificatfion loosely corresponds to placfing (classfical) machfine learnfing fin CC; applficatfions

of machfine learnfing to control quantum systems fin CQ; quantum speedups fin machfine learn-

fing algorfithms (lfike quantum annealers wfith nonquantum data) fin QC; and quantum machfine

learnfing/refinforcement leanfing wfith quantum agents, quantum envfironments, and quantum data

fin QQ.

Sfimfilar to quantum speedups fin the case of supervfised and unsupervfised machfine learnfing,

quantum algorfithms based on quantum walks and quantum Markov chafins lead to provable quan-

tum speedups fin refinforcement learnfing. Lfike onlfine learnfing, computatfional complexfity and sta-

tfistfical efficfiency may be closely connected fin the context of refinforcement learnfing. Consfider a

refinforcement learnfing settfing where an finteractfion fis happenfing wfith respect to some external

real tfime, and the envfironment alters wfith the passage of real tfime. For a learner wfith slower pro-

cessfing tfime relatfive to the envfironment alteratfion, the agent recognfizes only some tfime average

of the true envfironment, and the percefived blurred envfironment causes the learner to lose some

statfistfical efficfiency or even be unable to learn at all. However, a quantum learner can handle the

envfironment change by facfilfitatfing the agent wfith enough tfime to learn before the envfironment

changes and thus fimprove the statfistfical efficfiency. Readers are dfirected to Bfiamonte et al. (2017),

Cfilfiberto et al. (2018), Dunjko & Brfiegel (2018), Wang & Song (2020) and Wfittek (2014) for more

detafils.
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4. QUANTUM SUPREMACY

Sectfions 3.3 and 3.4 mentfion quantum algorfithms wfith theoretfically proven quantum speedups,

such as Shor’s factorfing algorfithm, Grover’s search algorfithm, and other machfine learnfing algo-

rfithms. However, from the algorfithmfic fimplementatfion pofint of vfiew, we need to bufild quantum

computers wfith a huge number of qubfits fin order to actually run the fast quantum algorfithms

on these large-scale quantum computers and practfically demonstrate thefir theoretfically proven

quantum advantages, whfich fis not possfible at the present tfime due to the lfimfitatfions of current

technology. It fis crfitfical to acqufire scalable archfitectures for constructfing quantum computers wfith

about 100 well-behaved qubfits fin the near-term future. We may employ such archfitectures to

show so-called quantum computatfional supremacy, whfich refers to any practfical major mfilestone

achfievement fin the quest for outperformfing classfical computers on some tough computatfional

tasks. Quantum computatfional supremacy fis of great current finterest fin quantum computfing and

fis befing vfigorously finvestfigated by academfic finstfitutes, government labs, and prfivate companfies.

We hfighlfight below two landmark quantum supremacy projects (Arute et al. 2019, Zhong et al.

2020).

4.1. Random Quantum Cfircufits

Thfis subsectfion presents the Google quantum supremacy study of Arute et al. (2019) that fis based

on random quantum cfircufits for solvfing a hard samplfing problem. A quantum cfircufit fis a quantum

computatfion model fin whfich a computatfion fis a sequence of quantum gates, whfich are reversfible

transformatfions on a quantum mechanfical analog of a classficaln-bfit regfister. Random quantum

cfircufits are created as a quantum computatfion model wfith statfistfical samplfing (fin fact, a mfixture of

sfize-bfiased samplfings) as fits computatfion task. Thfis model fis proposed for the study of quantum

computatfional supremacy. The computatfional task fis to generate each random quantum cfircufit fin

a specfific way so that we can sample from the output dfistrfibutfion correspondfing to the generated

quantum cfircufit. The goal fis to construct random quantum cfircufits wfith enough complexfity that

even the most powerful classfical supercomputer avafilable at the tfime cannot dfirectly sfimulate the

constructed quantum cfircufits fin practfice.

4.1.1. Output dfistrfibutfion. We now fillustrate the way to generate random quantum cfircufits

and descrfibe thefir output dfistrfibutfions. A random quantum cfircufit refers to a sequence of clock

cycles of 1-qubfit and 2-qubfit gates wfith gates applfied to dfifferent qubfits fin the same cycle. The

number of clock cycles, denoted bym, fis called the depth of the cfircufit, and the number of qubfits,

denoted byn, fis called the wfidth of the cfircufit. When the gates to be put fin use are randomly

selected from the set of unfiversal quantum gates, the unfitary matrfixUof the resultfing quantum

cfircufit fis a random matrfix. As the depth of the cfircufit goes to finfinfity, the dfistrfibutfion of the

random unfitary matrfixUconverges to the Haar measure on the unfitary group of degreen.

Denote byX={|x=|x1x2...xn :xfi∈{0, 1}}the set of quantum computatfional basfis states.

ThenXconsfists ofd=2nstates. For a quantum cfircufit wfith a unfitary matrfixU,let|ψU =

U|ψ0 be fits output state, whereψ0fis an finput state. Gfiven a computatfional basfis state|x, define

measurement probabfilfitypU(x)=|x|ψU |2—namely, the probabfilfity of obtafinfing measurement

outcomex. The quantum state of the random quantum cfircufit can be expressed as a lfinear combfi-

natfion of the computatfional basfis wfithd=2namplfitudes. As each amplfitude has real and fimagfinary

parts, there are a total of 2d=2n+1amplfitude parameters. Because of the normalfizatfion constrafint,

the parameters lfie fin the unfit sphere of a 2d-dfimensfional Euclfidean space. If the unfitary matrfix of

the random quantum cfircufit follows the Haar dfistrfibutfion, the dfistrfibutfion of the amplfitude pa-

rameters wfill be unfiform on the unfit sphere. Thus, as the depthmof the random quantum cfircufit
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goes to finfinfity, the measurement probabfilfitypU(x) approaches the Porter–Thomas dfistrfibutfion

(Rfinott et al. 2020).

4.1.2. Challenges fin output dfistrfibutfion samplfing. Quantum supremacy can be demon-

strated vfia random quantum cfircufits by checkfing quantum computers agafinst state-of-the-art clas-

sfical computers fin the task of samplfing the output dfistrfibutfions of random quantum cfircufits. A

major part of the study of quantum supremacy fis a purely statfistfical endeavor. It fincludes estfimat-

fing the nofise level fin the quantum cfircufits, assessfing thefir fidelfity, and valfidatfing that the sfimulated

bfitstrfing data are actually generated from the clafimed target dfistrfibutfion.

For a quantum computer, samplfing the output dfistrfibutfion of a random quantum cfircufit means

performfing measurements on the qubfits of the quantum cfircufit fin the computatfional basfis to gen-

erate a set of bfitstrfings, such as {0101101, 1001010,...}. Due to the nofise fin the cfircufit, the proba-

bfilfity dfistrfibutfion of the observed bfitstrfings fis dfifferent from the fideal output dfistrfibutfionpU(x)as

descrfibed fin Sectfions 4.1.1, 4.1.3, and 4.1.4. However, because the complexfity of a random quan-

tum cfircufit grows exponentfially fin fits sfize, whfich fis defined by fits wfidth (the number of qubfits)

and depth (the number of cycles), classfical algorfithms for sfimulatfing fits output dfistrfibutfion suffer

from an exponentfial scalfing of runtfime wfith cfircufit sfize, and classfical sfimulatfion of the output dfis-

trfibutfion fis practfically prohfibfitfive. Indeed, at the tfime of the quantum supremacy study, classfical

samplfing of the bfitstrfing dfistrfibutfion fis fintractable fin the quantum supremacy regfime of random

quantum cfircufits wfith 53 qubfits and 20 cycles. Furthermore, the conventfional tomographfic estfi-

matfion descrfibed fin Sectfion 2.4 scales exponentfially fin the cfircufit sfize, and an exponentfial num-

ber of bfitstrfings must be generated fin order to statfistfically recover the cfircufit output dfistrfibutfion.

These challenges motfivate new statfistfical developments for the quantum supremacy study fin the

subsequent sectfions.

4.1.3. Cross-entropy benchmarkfing. Consfider a sampleS={x1,x2,...xN},wherexjare bfit-

strfings obtafined from measurements of every qubfit fin the computatfional basfis. The jofint dfistrfi-

butfion ofSfis gfiven by PrU(S)=
N
fi=1pU(xfi).An applficatfion of the central lfimfit theorem leads

to

1

N
log PrU(S)=

1

N

N

fi=1

logpU(xfi)=−H(pU)+O(N
−1/2),

whereH(pU) fis the Shannon entropy of the output dfistrfibutfionpU.

For comparfison, let us consfider a sampleS={x1,x2,...,xN}as outputs from a classfical or

quantum operatfion takfing a specfificatfion of some random cfircufitU , where the dfistrfibutfion of

xjdepends on the unfitary matrfixU ,andxjare uncorrelated wfith the output measurementsxj
of the quantum cfircufitU. For example, we may takeU as a nofisy versfion ofUfin quantum

computatfion, andxjare measured bfitstrfings obtafined from a quantum cfircufit wfith nofise (fi.e.,

measurement outcomes of the quantum cfircufitU ), whfilexjare fideal bfitstrfings obtafined from

a quantum cfircufit wfithout nofise (fi.e., measurement outcomes of the quantum cfircufitU). Agafin

applyfing the central lfimfit theorem, we obtafin

1

N
log PrU(S)=

1

N

N

fi=1

logpU(xfi)=−H(p,pU)+O(N
−1/2),

wherep(x)=|x|U |ψ0|
2fis the output dfistrfibutfion ofxj∈Sassocfiated wfithU ,andH(p,pU)

fis the cross-entropy between the two dfistrfibutfions. In the quantum supremacy study descrfibed be-

low, we use the observed bfitstrfingsxfito estfimate the cross-entropy benchmarkfing by the average
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of the sfimulated probabfilfity dfistrfibutfion evaluated at the observed bfitstrfingsxfi, where the sfimu-

lated probabfilfity dfistrfibutfion refers to the fideal bfitstrfing probabfilfitypU(·) for the quantum cfircufit

Uthat fis computed by classfical sfimulatfions, and the average fis over the bfitstrfingsxfimeasured for

the nofisy quantum cfircufitU .

4.1.4. Quantum cfircufit model and fidelfity estfimatfion. The Google Quantum AI research

group constructed a quantum processor (computer) named Sycamore, wfith 53 programmable su-

perconductfing qubfits to fimplement random quantum cfircufits fin a 2-dfimensfional lattfice. The fim-

plementatfion creates quantum states on 53 qubfits, correspondfing to a computatfional state space

of dfimensfion 253(≈1016). An approach based on the descrfibed cross-entropy benchmarkfing was

adopted to handle nofisy random quantum cfircufits and statfistfical samplfing from bfitstrfing proba-

bfilfity dfistrfibutfions. Cross-entropy benchmarkfing (XEB), denoted byFXEB, fis defined as the ex-

pectatfion of a functfion of the fideal output dfistrfibutfionpU(·) wfith respect to the nofisy output

dfistrfibutfion.

To be specfific, denote byUasetofrrandom quantum cfircufitsU1,...,Urwfithnqubfits andm

cycles. Each cfircufitU∈Ufis executedNtfimes on the quantum processor, and every executfion of

the cfircufitUmeans that a quantum operatfion (correspondfing toU , descrfibed fin Sectfion 4.1.3)

as an fimperfect realfizatfion ofU(due to the nofise) fis applfied to the finput state|ψ0 (wfith densfity

matrfix|ψ0 ψ0|). We model the fimperfect realfizatfion ofUby a nofise model wfith the densfity

matrfixρUof the nofisy quantum operatfion as follows:

ρU=ϒ|ψU ψU|+(1−ϒ)χU, 3.

where|ψU =U|ψ0 fis the fideal output state,ϒ= ψU|ρU|ψU fis the fidelfity, andχUrepresents

the densfity matrfix of the nofise that, along wfith fidelfityϒ, descrfibes the effect of the errors. The

output probabfilfity dfistrfibutfion ofρUfin Equatfion 3 fis gfiven by

pU,ϒ(x)=ϒx|ψU ψU|x+(1−ϒ)x|χU|x=ϒpU(x)+(1−ϒ)x|χU|x. 4.

Then, an expressfion for the cross-entropy benchmarkfingFXEBfis establfished as follows:

FXEB=ϒd
x∈{0,1}n

[pU(x)]
2−ϒ=ϒ[dpU(·)pU−1], 5.

whered=2n,andpU(·)pU on the rfight-hand sfide denotes the expectatfion of the fideal output

dfistrfibutfionpU(x) wfith respect to fitself that can be computed analytfically or obtafined numerfically

by sfimulatfions. Consfider two specfial cases: (a) the bfitstrfings are sampled from the unfiform dfistrfi-

butfion and (b) the bfitstrfings are sampled from the theoretfical Porter–Thomas output dfistrfibutfion.

For casea, we havepU,ϒ(x)=1/d,andthusFXEB=ϒ=0. For caseb,pU,ϒ(x)=pU(x) fis equal to

the Porter–Thomas dfistrfibutfion, and henceFXEB=ϒ=1. Furthermore, for random quantum

cfircufits wfith enough depth, thefir theoretfical output dfistrfibutfion fis essentfially the Porter–Thomas

dfistrfibutfion, and therefore from Equatfion 5 we concludeFXEB
.
=ϒ—that fis,FXEBfis essentfially

the same as fidelfityϒeven fif bfitstrfings are sampled from nofisy quantum cfircufits.

Equatfion 5 naturally leads to the followfing estfimator of the cross-entropy benchmarkfingFXEB
based on the observed bfitstrfingsxfijfrom random quantum cfircufitUj∈UwfithNbfitstrfing samples;

fi=1,...,N;j=1,...,r:

F̂XEB=
1

Nr

N

fi=1

r

j=1

[dpU(xfij)−1], 6.

whfich has an asymptotfic varfiance (1+2ϒ−ϒ2)/(Nr).
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Cross-entropy and fidelfity measure the closeness of two quantum states. For a quantum cfircufit

wfith enough depth,FXEB=1 when there fis no nofise fin the quantum cfircufit and thus bfitstrfings are

sampled from the fideal theoretfical output dfistrfibutfion of the cfircufit;FXEB=0 when depolarfizfing

errors are overwhelmfing fin the quantum cfircufit and thus bfitstrfings are sampled from the unfiform

dfistrfibutfion. IntufitfivelyFXEBcalfibrates how often hfigh-probabfilfity bfitstrfings are sampled, and fits

value corresponds to the probabfilfity that bfitstrfings are sampled from the fideal quantum cfircufits

(fi.e., no error has occurred whfile runnfing the cfircufit). From Equatfions 5 and 6, we must obtafin the

fideal output probabfilfitypU(x) by classfically sfimulatfing the quantum cfircufitUfor evaluatfingFXEB
andF̂XEB, whfich fis exponentfially hard. Hence, fit fis fintractable to computeFXEBand fits estfimates fin

the regfime of quantum supremacy, such as random quantum cfircufits wfith 53 qubfits and 20 cycles.

As we present fin Sectfion 4.1.5 below, usfing quantum technfiques to manfipulate quantum cfircufits

and statfistfical methodologfies to model and analyze experfimental data, a statfistfical extrapolatfion

approach has been developed to statfistfically secure a hfigh enoughFXEBfor random quantum

cfircufits that are practfically prohfibfitfive for classfical computers to sfimulate at the present tfime. The

approach utfilfizes classfical numerfical sfimulatfions to evaluate the lfikelfihood of observed bfitstrfings

but does not requfire the reconstructfion of the bfitstrfing output probabfilfity dfistrfibutfion, whfich

needs an exponentfial number of bfitstrfings for the fincreasfing number of qubfits.

4.1.5. Statfistfical analysfis for quantum supremacy. Classfical computers were used to sfimulate

random quantum cfircufits for confirmfing the quantum computer and calculatfingFXEBandF̂XEB
as well as estfimatfing the cost of classfical samplfing of bfitstrfings from the random quantum cfircufits.

They were employed to verfify that the quantum computer was workfing correctly by checkfing how

often bfitstrfings were observed experfimentally agafinst thefir correspondfing probabfilfitfies evaluated

vfia classfical sfimulatfions. The classfical computers used fincluded a Google cloud cluster of 1,000

machfines and the Jülfich supercomputer (wfith 100,000 cores and 250 terabytes), as well as the

Summfit supercomputer (the most powerful supercomputer fin the world at the tfime).

We cannot evaluate FXEBandF̂XEBfor random quantum cfircufits fin the supremacy regfime.

However, we may modfify the desfign of random quantum cfircufits to reduce thefir complexfity so that

they can be classfically sfimulated to obtafin output dfistrfibutfions and computeFXEBand/orF̂XEB
for verfifyfing physfical models and valfidatfing statfistfical analysfis. All the modfified random quantum

cfircufits closely mfimficked the full experfiment, wfith random quantum cfircufits fin the supremacy

regfime whfile stfill remafinfing classfically sfimulatable, and thefir experfimental data and assocfiated

statfistfical analysfis provfided models to track the cross-entropy benchmarkfing fidelfityFXEB fin

the supremacy regfime. Varfious experfiments were conducted forrmodfified random quantum

cfircufits wfithnqubfits andmcycles to collectNbfitstrfings, whereNranges from half a mfillfion to 5

mfillfion, wfithr,n,andmup to 10, 53, and 20, respectfively. Experfiments were carrfied out to collect

N=3 mfillfion bfitstrfings on each ofr=10 modfified quantum cfircufits wfithn=53 qubfits and

m=20 cycles. The data were used to estfimateFXEB
.
=ϒand assess the output dfistrfibutfion, and

varfious statfistfical methods were employed to evaluate the cross-entropy benchmarkfing fidelfity

estfimatorF̂XEBand fits asymptotfic varfiance and valfidate the theoretfical output dfistrfibutfion. Also,

the systematfic uncertafinty (Sfinervo 2003) was quantfified by a lfinear fit to model how the fidelfity

varfies over tfime, as the performance of the quantum system may luctuate and/or degrade wfith

tfime. After the statfistfical checkfing and valfidatfion, wfith a total of 30 mfillfion bfitstrfing data, an

estfimated value of 2.24×10−3was found for the mean cross-entropy benchmarkfing fidelfity of

r=10 modfified random quantum cfircufits wfithn=53 qubfits andm=20 cycles, where the square

root of fits mean square error fis estfimated to be 0.21×10−3. Based on these statfistfical results,

Arute et al. (2019) conclude that the average fidelfity for runnfing the random quantum cfircufits on

the Sycamore quantum computer fis about 0.002.
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The computfing experfiments show that fit took 200 seconds for the Sycamore quantum com-

puter to sample a mfillfion bfitstrfings from random quantum cfircufits wfithn=53 qubfits and

m=20 cycles at target fidelfityFXEB=0.002, whfile an extrapolatfion based on statfistfical fittfing

of the computfing data by the mentfioned classfical computers findficates that an equal-fidelfity clas-

sfical samplfing would take 10,000 years on a mfillfion cores, wfith further mfillfions of years to con-

firm the fidelfity usfing classfical methods. Furthermore, the quantum computer consumed several

orders of magnfitude less energy to perform the samplfing task than the Summfit supercomputer

would have. Therefore, quantum supremacy fis demonstrated by the performed samplfing task on

the Sycamore quantum computer that fis practfically beyond the reach of the fastest classfical su-

percomputers avafilable at the tfime. Readers are dfirected to Arute et al. (2019), Aaronson & Chen

(2016), Bofixo et al. (2018), Bouland et al. (2018), Nefill et al. (2018), and Rfinott et al. (2020) for

more detafils.

We would lfike to pofint out agafin that the Google quantum supremacy study heavfily relfies on

statfistfics. In spfite of the extensfive statfistfical analysfis conducted by Arute et al. (2019), there are

many statfistfical fissues that deserve further finvestfigatfion. For example, the authors of thfis artficle

found that the nofisy quantum cfircufit model does not fit to the generated bfitstrfings of Arute et al.

(2019).

4.2. Boson Samplfing

Thfis subsectfion descrfibes the boson samplfing quantum supremacy study reported by Zhong et al.

(2020). Boson samplfing fis a specfial quantum computatfion model based on lfinear optfics where

the requfired physfical devfices are sfingle-photon sources, beam splfitters, phase shfifters and photon

detectors. The quantum computatfion model for boson samplfing arrangesnfidentfical bosons to

pass through a network of passfive optfical elements (beam splfitters and phase shfifters) and then

detects the locatfions of the bosons, and fits purpose fis to sample from the output dfistrfibutfion

for demonstratfing quantum supremacy. We fintroduce two equfivalent ways to define the boson

samplfing model, where one naturally leads to quantum computatfion and the other dfirectly shows

the dfifficulty fin classfical computatfion.

4.2.1. Physfical model definfitfion. Consfider the quantum system finvolvfingnfidentfical photons

andmmodes, where mode can be loosely finterpreted as the place that a photon can be fin, and we

are only finterested fin the case thatmfis greater than or equal ton. Note that we may wrfite the

computatfional basfis states fin the form of|s=|s1,s2,...,sm,wheresfifis the number of photons

detected fin thefith mode. Denote the set correspondfing to all the computatfional basfis states by

m,n={s=(s1,s2,...,sm):sfi∈N,s1+s2+···+sm=n}.

The number of elements fin the set m,nfisM=
m+n−1
n
. Sfince a general state can be expressed as

a lfinear combfinatfion of the computatfional basfis states wfith complex coefficfients whose squared

norms sum up to 1, we may wrfite a general computatfional state for the boson computer wfith

nphotons andmmodes fin the followfing form:

|ψ =
s∈ m,n

αs|s, where
s∈ m,n

|αs|
2=1.

Wfith no loss of generalfity, we assume the finfitfial state of a quantum computer to be |1n ≡

|1,......,1,0,......,0, whfich means that each of the firstnmodes contafins one photon and the

remafinfing modes do not contafin any photons. Consfider how the lfinear optfical elements work fin

a specfial case when there fis only one photon fin the quantum system. Each phase shfifter and beam

splfitter takes actfion on at most two modes, wfithout any actfion on the otherm−2 modes. Assume
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that a phase shfifter takes actfion on thefith mode, ands m,nfindficates the photon fin thefith

mode. Then the phase shfifter changes only one amplfitude,αs, by multfiplyfing fit wfithefiθfor some

specfifiedθ, but fit does not alter any other amplfitudes. Suppose that a beam splfitter takes actfion on

thefith andjth modes, and denote the correspondfing quantum states by|sand|t, respectfively.

Then the actfion maps the two amplfitudesαsandαtfinto ̌αsand ̌αt, where thefir relatfionshfip can

be specfified by the followfing transformatfion:

α̌s
α̌t
=
cosθ−sfinθ

sfinθ cosθ

αs
αt
.

As the quantum system fin thfis case has only one photon, there are a total ofmcomputatfional basfis

states. Consequently, the unfitary matrfices representfing the transformatfions of a beam splfitter and

a phase shfifter are equal to them-dfimensfional fidentfity matrfices except for a 2×2 submatrfix and

a dfiagonal entry correspondfing to the amplfitude change, respectfively. Then the product of such

matrfices correspondfing to the optfical elements fin a lfinear optfical network yfields anm×munfitary

matrfixUto represent the unfitary transformatfion of the lfinear optfical network. Conversely, any

m×munfitary matrfixUcan be mathematfically decomposed as a productU=UT...U1,where

eachUficorresponds to a unfitary matrfix of a beam splfitter or a phase shfifter, andT=O(m
2). That

fis, we can use only lfinear optfical elements to fimplement anym×munfitary transformatfion.

Gfiven a quantum system wfithnphotons, fit can be shown that the unfitary transformatfion corre-

spondfing to the optfical network has a unfitary matrfix representatfionφ(U)=φ(UT)...φ(U1), where

φfis a homomorphfism map. We just need to fidentfify the specfificatfion of eachφ(Ufi) to obtafin an

explficfit expressfion forφ(U).

Assume that thefith optfical element fis a phase shfifter. We can mathematfically express fits actfion

as the followfing dfiagonal unfitary transformatfion:

|s1,s2,...,sm → e
fiθsfi|s1,s2,...,sm,

and the correspondfing unfitary matrfix representatfion yfields an expressfion forφ(Ufi).

Assume that thejth optfical element fis a beam splfitter. The actfion of the beam splfitter fis hard

to descrfibe. It takes actfion on two modes only, wfithout makfing any change for the otherm−2

modes. Suppose that the two modes the beam splfitter has acted on are thefith andjth modes. Then

the correspondfing unfitary transformatfion can be expressed as follows:

|s1,s2,...,sfi−1,u,sfi+1,...,sj−1,v,sj+1,...,sm

→
s+t=u+v

βu,v,s,t|s1,s2,...,sfi−1,s,sfi+1,...,sj−1,t,sj+1,...,sm,

where

βu,v,s,t =
u!v!

s!t!
k+l=u,k≤s,l≤t

s

k

t

l
(−1)s−k(sfinθ)s+l−k(cosθ)k+t−l

for some specfified angleθ. The unfitary matrfix correspondfing to thfis transformatfion renders an

expressfion forφ(Uj).

Usfing the derfived expressfion for eachφ(Ufi) along wfithφ(U)=φ(UT)...φ(U1), we can ob-

tafin the unfitary matrfix for representfing the actfion of the whole optfical network. Infitfiatfing fin the

state|1n and then passfing through the optfical network, the photons wfill be fin the quantum state

φ(U)|1n. We measure the state to obtafin a measurement outcome correspondfing to a computa-

tfional basfis state. The measurement we obtafin fis random. Treatfing|1n|φ(U)|s|
2as a mappfing

froms m,nto [0,1], we obtafin a probabfilfity dfistrfibutfion on m,nthat assfigns probabfilfity Pr(s)

to state|s,where

Pr(s)=|1n|φ(U)|s|
2,s∈ m,n. 7.
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4.2.2. Permanent based model definfitfion. Alternatfively, we may define boson samplfing by

the permanents of the submatrfices of the unfitary matrfix representfing the optfical network. Let

A=(afij)bean×nmatrfix, and define fits permanent as follows:

Per(A)=
π∈Sn

n

fi=1

afiπ(fi),

whereSnfis the set of all permutatfions of 1,...,n.

Gfiven anm×munfitary matrfixUands=(s1,...,sm) m,n, we construct ann×nmatrfix

UsfromUby retafinfing fits firstncolumns and then copyfingsfitfimes fitsfith row. Define a dfiscrete

probabfilfity dfistrfibutfion on m,nas follows:

Pr(s)=
|Per(Us)|

2

s1!...sm!
. 8.

It can be proved that the probabfilfity dfistrfibutfion Equatfion 8 fis equal to the probabfilfity dfistrfibutfion

Equatfion 7 fin the way descrfibed fin Sectfion 4.2.1, through the system wfithnphotons,mmodes,

and an optfical network whose actfion fis represented by the unfitary matrfixU.

4.2.3. Quantum supremacy wfith boson samplfing. The boson samplfing problem fis defined

as samplfing from the dfistrfibutfion Pr(s) defined fin Equatfion 7 or Equatfion 8. Gaussfian boson

samplfing makes use of Gaussfian states as probabfilfity sources of photons, and the resultfing output

dfistrfibutfion can be further expressed as matrfix functfions called Hafnfian and Torontonfian. Sfince

the permanent, Hafnfian, and Torontonfian matrfix functfions are fin the #P-complete complexfity

class, fit fis fintractable for classfical computers to evaluate the matrfix functfions and thus handle

boson samplfing. However, the physfical definfitfion finherently shows that fit fis possfible to carry out

a successful quantum computfing experfiment on an optfical network wfith approprfiate sfize and thus

render quantum supremacy.

The quantum supremacy study reported by Zhong et al. (2020) bufilt a photonfic quantum com-

puter (processor) called Jfiuzhang to perform Gaussfian boson samplfing. Jfiuzhang can enable up to

76 qubfits to successfully accomplfish Gaussfian boson samplfing tasks that are beyond the capacfity of

the fastest classfical supercomputers avafilable at the tfime. Zhong et al. (2020) documented physfical

experfiments performed and statfistfical analysfis undertaken to verfify quantum states and valfidate

output dfistrfibutfions based on the generated samples fin the easy regfime where the full output dfis-

trfibutfions can be obtafined. They provfided cfircumstantfial evfidence to support the results fin the

quantum supremacy regfime where a full verfificatfion fis not possfible due to the fintractable nature

of boson samplfing. Also, tfime costs to run Gaussfian boson samplfing on supercomputers fin the

prohfibfitfive regfime were estfimated based on statfistfical fittfing of classfical computatfional cost data.

In a nutshell, Zhong et al. (2020) announced that a 200-second job of Gaussfian boson samplfing

on Jfiuzhang would requfire 0.6 bfillon years for the fastest supercomputer avafilable at the tfime to

finfish. Hence, quantum supremacy fis demonstrated by the performed Gaussfian boson samplfing

on the photonfic quantum computer that was practfically beyond the reach of the fastest classfical

supercomputers avafilable at the tfime. More detafils are provfided by Aaronson & Arkhfipov (2011),

Hamfilton et al. (2017), Harrow & Montanaro (2017), Lund et al. (2017), Markov et al. (2018),

Quesada et al. (2018) and Zhong et al. (2020).

5. QUANTUM ANNEALING

Quantum annealfing fis the quantum analog of classfical annealfing, wfith thermodynamfics replaced

by quantum dynamfics. Both classfical annealfing and quantum annealfing are employed to solve

optfimfizatfion problems whose objectfive functfion can be represented by the energfies of physfical
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systems. Quantum annealfing may be consfidered a specfial-purpose quantum computer that fis de-

sfigned to effectfively solve specfific optfimfizatfion problems, and quantum annealers are physfical

hardware devfices to fimplement quantum annealfing (see McGeoch 2014, Wang et al. 2016).

5.1. Classfical Isfing Model

Consfider a classfical Isfing model descrfibed by a graphG=(V(G),E(G)), whereV(G)andE(G)are

the vertex and edge sets ofG, respectfively. We assfign each vertex a random varfiable wfith a value

fin {+1,−1} and let each edge represent the finteractfion between two vertex varfiables connected

by the edge. A configuratfions={sj,j∈V(G)}fis a set of values assfigned to all vertex varfiablessj,

j∈V(G). In physfics, vertfices and vertex varfiables are called sfites and spfins, respectfively, and we

refer to the spfin values+1and−1 as spfin up and spfin down, respectfively. Define the followfing

Hamfiltonfian for the classfical Isfing model:

HcI≡H
c
I(s)=−

(fi,j)∈E(G)

δfijsfisj−
j∈V(G)

γjsj, 9.

where (fi,j) represents the edge between the sfitesfiandj, the first summatfion fis over all (fi,j)∈E(G),

δfijdenotes the finteractfion between sfitesfiandjassocfiated wfith edge (fi,j)∈E(G), andγjstands

for an external magnetfic field on vertexj∈V(G). We refer to a set of fixed values {δfij,γj}asan

finstance of the Isfing model andHcI(s) as the energy of the Isfing model at configuratfions. Then,

the probabfilfity of a specfific configuratfionsfis descrfibed by the Boltzmann dfistrfibutfion of the Isfing

model as follows:

PT(s)=
e−H

c
I
(s)/T

ZT
, ZT=

s

e−H
c
I
(s)/T, 10.

whereTfis the fundamental temperature of the system fin unfits of energy.

We fillustrate the classfical annealfing by the Isfing model as follows. The annealfing fis used to

solve a combfinatorfial mfinfimfizatfion problem whose objectfive functfion fis represented by the Isfing

energy functfionHcI(s). Denote bybthe total number of sfites fin the Isfing model. AsH
c
I(s)fisde-

fined overs∈{−1,+1}b, fit fis prohfibfitfive to search over the exponentfial large configuratfion space

for a mfinfimfizer ofHcI(s) by determfinfistfic exhaustfive search algorfithms. We resort to annealfing

methods to explore the huge search space probabfilfistfically and search for a configuratfion wfith the

mfinfimal energy. For example, we fimplement sfimulated annealfing by usfing Markov chafin Monte

Carlo (MCMC) to generate configuratfions from the Boltzmann dfistrfibutfion PT(s) wfith slowly

decreasfing temperatureT. The lowest energy state fis often called a ground state fin physfics (see

Bertsfimas & Tsfitsfiklfis 1993, Kfirkpatrfick et al. 1983, Wang et al. 2016).

5.2. Quantum Isfing Model

ThesamegraphGfis used to descrfibe the quantum Isfing model, where the vertex setV(G)stands

for the quantum spfins, wfith the edge setE(G) for the finteractfions between two quantum spfins.

Each vertex has a qubfit that fis realfized by fits quantum spfin. AsGhasbvertfices, the vector space

for the descrfibed quantum Isfing system fisCd(d=2b). We characterfize fits quantum state by a

unfit vector finCdand fits dynamfic evolutfion by a Hermfitfian matrfix of sfized, whfich fis called a

quantum Hamfiltonfian for the quantum system. The energfies of the quantum system are defined

to be the efigenvalues of the quantum Hamfiltonfian, and ground states refer to the efigenvectors

correspondfing to the smallest efigenvalue. Set

Ij=
10

01
, σxj=

01

10
, σzj=

10

0−1
, j=1,...,b,
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whereσxjandσ
z
jare called Paulfi matrfices finxandzaxes, respectfively. We replacesjfin the classfical

Isfing HamfiltonfianHcI(s)byσ
z
jto define the quantum Hamfiltonfian as follows:

H
q

I=−
(fi,j)∈E(G)

δfijσ
z
fiσ
z
j−

j∈V(G)

γjσ
z
j, 11.

whereγjandδfijstand for the local field on the vertexj∈V(G) and the Isfing finteractfion along

the edge (fi,j)∈E(G), respectfively, and we use the quantum conventfion thatσzjandσ
z
fiσ
z
jfin

Equatfion 11 denote thefir tensor products wfith fidentfity matrfices

σzj≡I1⊗···⊗Ij−1⊗σ
z
j⊗

vertexj

Ij+1⊗···⊗Ib 12.

and

σzfiσ
z
j≡I1⊗···⊗Ifi−1⊗σ

z
fi⊗Ifi+1⊗···⊗Ij−1⊗σ

z
j

vertficesfiandj

⊗Ij+1⊗···⊗Ib. 13.

Observe that the quantum HamfiltonfianH
q

Ifin Equatfion 11 fis a dfiagonal matrfix of sfize 2
bwhose

dfiagonal elements (efigenvalues) are the same as the classfical HamfiltonfianHcI(s) fin Equatfion 9

correspondfing to all 2bbfinary statessordered lexficographfically. Therefore, findfing the mfinfimal

energy of the classfical Isfing HamfiltonfianHcIfis equfivalent to findfing the mfinfimal energy of the

quantum Isfing HamfiltonfianH
q

I. The quantum formulatfion of the orfigfinal optfimfizatfion problem

fis to facfilfitate the desfign of quantum annealfing fin the next subsectfion, but so far the computatfional

task for solvfing the optfimfizatfion problem fis stfill the same as fin the classfical case.

5.3. Quantum Isfing Model fin the Transverse Ffield

Quantum annealfing requfires an fintroductfion of a transverse magnetfic field to yfield a quantum

Hamfiltonfian fin the transverse field. Define a quantum Hamfiltonfian to govern the transverse mag-

netfic field as follows:

HX=−
j∈V(G)

σxj, 14.

where agafin we adopt the quantum conventfion to denote byσxjthe tensor products ofbmatrfices

of sfize 2,

σxj≡I1⊗···⊗Ij−1⊗σ
x
j⊗

vertexj

Ij+1⊗···⊗Ib. 15.

Observe that the 2b×2bnondfiagonal matrfixHXfin Equatfion 14 does not commute wfith dfiagonal

matrfixH
q

Ifin Equatfion 11, and thus fintroducfingHXchanges the system behavfior from classfical

to quantum. Due to the sfimple symmetrfic structure ofHX, we can derfive explficfit expressfions

for fits efigenvalues and efigenvectors. In partficular, (1,...,1)fis fits ground state, the efigenvector

correspondfing to the smallest efigenvalue ofHX.

Quantum annealfing proceeds as follows. The quantum annealfing system fis finfitfially drfiven by

the transverse magnetfic fieldHXprepared fin fits ground state (1,...,1), and then we slowly drfive

the system from the finfitfial HamfiltonfianHX to fits final target HamfiltonfianH
q

I. Specfifically, we

engfineer the quantum annealfing process through the finstantaneous Hamfiltonfian for the Isfing

model fin the transverse field as follows:

HD(t)=A(t)HX+B(t)H
q

I, t∈[0,tf], 16.
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wheretfdenotes the total annealfing tfime; tfime-varyfing smooth functfionsA(t)andB(t) are called

the annealfing schedules, whfich satfisfyA(tf)=B(0)=0;A(t) fis decreasfing; andB(t)fisfincreasfing.

It fis evfident that att=0,HD(0)=A(0)HX,andatt=tf,HD(tf)=B(tf)H
q

I.AsA(0) andB(tf)are

known constants,HD(t) has fidentfical efigenvectors asHXat the finfitfial tfimet=0andasH
q

Iat the

final tfimet=tf, wfith the correspondfing efigenvalues dfifferfing by factorsA(0) andB(tf), respectfively.

Consequently, throughHD(t), we can engfineer the system to move fromHX finfitfialfized fin fits

ground state to the final targetH
q

I.

The adfiabatfic quantum theorem shows that durfing the evolutfion of quantum annealfing, the

system tends to stay fin the ground states of the finstantaneous Hamfiltonfian vfia quantum tunnelfing

(Farhfi et al. 2000, 2001, 2002; McGeoch 2014). At the end of the annealfing procedure, we measure

the quantum system. Wfith some probabfilfity, the quantum system stays fin a ground state of the

final HamfiltonfianH
q

I, and thus the measurement outcome renders a solutfion to the optfimfizatfion

problem. That fis, we can utfilfize the quantum annealfing procedure drfiven by Equatfion 16 to find

the global mfinfimum ofHcI(s) and solve the orfigfinal mfinfimfizatfion problem. For detafils, readers

may refer to Brooke et al. (1999), Hu & Wang (2021), Isakov et al. (2016), Jörg et al. (2010), Wang

et al. (2016), and Wang & Song (2020).

5.4. Quantum Annealer

Quantum annealers, quantum devfices to fimplement quantum annealfing, are currently befing fin-

vestfigated by a number of academfic labs and companfies, wfith uncertafin quantum speedup. In

partficular, the D-Wave machfine fis a commercfially avafilable hardware devfice that fis desfigned and

bufilt to physfically fimplement quantum annealfing. It fis an analog computfing devfice based on su-

perconductfing qubfits to process quantum annealfing and solve certafin combfinatorfial optfimfizatfion

problems. Many experfiments have been conducted to test D-Wave machfines, and computatfional

studfies, such as Monte Carlo sfimulatfions, have been carrfied out to assess the performance of D-

Wave machfines and compare fit wfith classfical and quantum models through sophfistficated statfistfical

analysfis. It has been demonstrated that D-Wave machfines are useful fin desfignfing quantum algo-

rfithms and solvfing applficatfion problems and can be faster than classfical algorfithms lfike classfical

annealfing, yet no quantum supremacy or quantum speedup over classfical computatfion has been

found fin D-Wave machfines. Readers are dfirected to Albash et al. (2015), Bofixo et al. (2014, 2016,

2018), Brady & van Dam (2016), Rønnow et al. (2014), and Wang et al. (2016) for more dfiscussfion.

6. QUANTUM LEARNING WITH BOLTZMANN MACHINES

BMs have been fintroduced as probabfilfistfic generatfive models that contafin bfidfirectfionally con-

nected networks of stochastfic bfinary unfits and can be finterpreted as neural network models.

They can be regarded as partficular graphfical models—more precfisely, undfirected graphfical mod-

els known as Markov random fields. BMs provfide a model for deep learnfing archfitectures such as

deep belfief networks. They have the potentfial to learn finternal representatfions for complex un-

supervfised learnfing tasks such as object and speech recognfitfion problems. A BM model fis mathe-

matfically equfivalent to the Isfing model fin physfics. Thfis provfides a new way to sample from a BM:

(a) map the BM to the correspondfing Isfing model, (b) engfineer a physfical system to realfize the

target problem to be solved, (c) run the physfics untfil the Isfing system establfishes some equfilfib-

rfium wfith a state correspondfing to a possfible solutfion, (d) measure the physfical system to obtafin

a realfizatfion of states of the Isfing model, and (e) map the Isfing measurement outputs finto these

correspondfing to the BM to render a possfible solutfion to the orfigfinal problem. The procedure

requfires relevant physfical fimplementatfions or computer sfimulatfions, whfich have been employed
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v1

h1Vfisfible layer

Hfidden layer

h2

hm

v2

vn

Ffigure 1

General Boltzmann machfine. The dfiagram shows that every two nodes are connected to create a fully
connected undfirected graph.

fin both classfical and quantum domafins wfith examples fincludfing classfical and quantum annealfing.

We revfiew classfical BMs and descrfibe thefir trafinfing by quantum means; we also fintroduce quan-

tum BMs for deep learnfing, where quantum deep learnfing here refers to both quantum BMs and

the trafinfing of classfical BMs by quantum resources. The scenarfios may bear some resemblance

to quantum refinforcement learnfing consfidered fin Sectfion 3.4, where mfixtures of classfical and

quantum approaches are used fin the quantum refinforcement learnfing framework.

6.1. Boltzmann Machfines

A BM fis a network of symmetrfically coupled stochastfic bfinary unfits, whfich consfists of a set of

vfisfible unfitsv∈{0, 1}nassocfiated wfith observatfions and a set of hfidden unfitsh∈{0, 1}mused to

capture dependencfies between observed varfiables. Every two nodes are connected, so the model

creates a fully connected undfirected graph as fillustrated finFfigure 1. The model has a jofint

dfistrfibutfion

p(v,h;θ)=
1

Z(θ)
e−E(v,h;θ)andZ(θ)=

v h

exp(−E(v,h);θ),

whereZ(θ) fis called the partfitfion functfion; the energy functfionE(v,h;θ) fis defined as

E(v,h;θ)=−
1

2
vTLv−

1

2
hTJh−vTWh;

θ={W,L,J}fis the model parameter; and matrficesW =(Wfij),L=(Lfij), and J=(Jfij)represent
vfisfible-to-hfidden, vfisfible-to-vfisfible, and hfidden-to-hfidden symmetrfic finteractfion terms. The

dfiagonal elements ofLand J are set to 0. The condfitfional dfistrfibutfions of hfidden and vfisfible

unfits are gfiven by

p(hj=1|v,h−j)=σ

⎛

⎝

fi

Wfijvfi+
l=j

Jjlhj

⎞

⎠and

p(vfi=1|h,v−fi)=σ

⎛

⎝

j

Wfijhj+
k=fi

Lfikvj

⎞

⎠,
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whereσ(x)=1/(1+e−x) fis the sfigmofid functfion. The margfinal dfistrfibutfion of the vfisfible unfits fis

p(v;θ)=
1

Z(θ)
h

exp(−E(v,h;θ)).

Gfiven the observed data, the trafinfing of a BM consfists of findfing the parameterθthat maxfimfizes

the log-lfikelfihood functfion logp(v;θ). Because for a general BM fit fis not possfible to analytfically

find the maxfimfizer of the lfikelfihood, the usual approach fis to apply gradfient ascent, fiteratfively

updatfingθ(t)toθ(t+1)by the gradfient of the log-lfikelfihood,

θ(t+1)=θ(t)+η
∂

∂θ(t)
logp(v;θ(t)),

whereηfis the learnfing rate. It can be shown that the parameter fincrement durfing the fiteratfion

has the followfing expressfions:

W=η(EPdata[vh]−EPmodel[vh]), L=η(EPdata[vv]−EPmodel[vv]), and

J=η(EPdata[hh]−EPmodel[hh]),

where EPmodel and EPdatadenote, respectfively, the expectatfions wfith respect to the model dfistrfi-

butfionp(v,h;θ) and the data dfistrfibutfion Pdata(h,v;θ)=p(h|v;θ)Pdata(v), and Pdata(v)fisthe

empfirfical dfistrfibutfion of the observed data. We call EPdatathe data-dependent expectatfion, and

sfince EPmodel represents an expectatfion taken wfith respect to the jofint dfistrfibutfionp(v,h;θ)ofthe

vfisfible and hfidden varfiables, we call fit the data-findependent expectatfion or model expectatfion.

For general BMs, fit fis usually very dfifficult to dfirectly compute the model expectatfion due to fits

exponentfial growth fin the unfits.

We employ MCMC approaches to estfimate the data-dependent expectatfion and the data-

findependent expectatfion. In partficular, for the computatfion of model expectatfion, the condfitfional

dfistrfibutfion of every node gfiven the other nodes fis known, so standard MCMC sfimulatfion meth-

ods are often employed to compute the model expectatfion, although MCMC can be very costly or

even fimpossfible for large BMs (for more detafils, see Hfinton & Salakhutdfinov 2012; Salakhutdfinov

2015; Salakhutdfinov & Hfinton 2009, 2012).

6.2. Restrficted Boltzmann Machfines

Because the learnfing process for general BMs fis tfime consumfing, we may fimpose some restrfictfions

on the network topology to sfimplfify the learnfing problem. A restrficted Boltzmann machfine (RBM)

model fis a specfial varfiant of BMs where every vfisfible node fis connected to every hfidden node, but

there fis no connectfion between two varfiables of the same layer, as shown finFfigure 2. One major

advantage of the RBM fis that fits model expectatfions are easy to calculate. Agafin fit contafinsnvfisfible

unfitsv=(v1,...,vn) assocfiated wfith observatfions andmhfidden unfitsh=(h1,...,hm) to capture

dependencfies between observed varfiables. The jofint dfistrfibutfion of the RBM model fis gfiven by

p(v,h)=1
Z
e−E(v,h)wfith the energy functfion

E(v,h)=−

m

fi=1

n

j=1

wfijhfivj−

n

j=1

bjvj−

m

fi=1

cfihfi.

Thus, we have

p(h|v)=

m

fi=1

p(hfi|v)andp(v|h)=

n

fi=1

p(vfi|h).
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v1

h1Vfisfible layer

Hfidden layer

h2

hm

v2

vn

Ffigure 2

Restrficted Boltzmann machfine. The dfiagram shows that every vfisfible node fis connected to every hfidden
node, but there fis no connectfion between two varfiables of the same layer.

Sfince the connectfions between hfidden varfiables are absent, the margfinal dfistrfibutfion of the vfisfible

varfiables has a sfimplfified expressfion,

p(v)=
1

Z
h

p(v,h)=
1

Z
h

e−E(v,h)=
1

Z

n

j=1

ebjvj
m

fi=1

⎛

⎝1+e
cfi+

n

j=1
wfijvj

⎞

⎠.

The condfitfional dfistrfibutfion ofhfigfivenvand the condfitfional dfistrfibutfion ofvjgfivenhare, re-

spectfively, gfiven by

p(hfi=1|v)=σ

⎛

⎝
n

j=1

wfijvj+cfi

⎞

⎠and p(vj=1|h)=σ

m

fi=1

wfijhfi+bj ,

whereσ(x) fis the sfigmofid functfion. For the RMB model wfithθ=(wfij,bj,cfi), we can obtafin an

explficfit form for the gradfient of the log-lfikelfihood functfion, gfivfing

θ(t+1)=θ(t)+η
∂

∂θ(t)

n

fi=1

lnL(θ(t)|vfi)−λθ
(t)+ θ(t−1),

whereη,λ,andϵare posfitfive constants, representfing the learnfing rate, moment wefight, and mo-

mentum coefficfient, respectfively, andL(θ|v)= n
fi=1L(θ|vfi) fis the lfikelfihood functfion. Gfiven one

sfingle trafinfing examplēv, the log-lfikelfihood of the RBM model wfith the parameterθfis gfiven by

lnL(θ|̄v)=lnp(̄v|θ)=ln
1

Z
h

e−E(̄v,h) =ln
h

e−E(̄v,h)−ln
v,h

e−E(v,h),

and the gradfient fis

∂lnL(θ|̄v)

∂θ
=−

h

p(h|̄v)
∂E(̄v,h)

∂θ
+
v,h

p(v,h)
∂E(v,h)

∂θ
.

That fis,

∂lnL(θ|̄v)

∂wfij
=p(hfi=1|̄v)̄vj−

v

p(v)p(hfi=1|v)vj,

∂lnL(θ|̄v)

∂bj
=v̄j−

v

p(v)vj,
∂lnL(θ|̄v)

∂cfi
=p(hfi=1|̄v)−

v

p(v)p(hfi=1|v).
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In the above gradfient expressfions, the second terms correspond to the expectatfions of the gradfient

of the energy functfion under the model dfistrfibutfion, and thefir exact computatfion calls for a sum-

matfion over all the vfisfible varfiables, whfich fis computatfionally fintractable. One way to get around

thfis dfifficulty fis to estfimate the second term fin the log-lfikelfihood gradfient by MCMC sfimulatfions,

though the MCMC approach can be computatfionally very expensfive. Ffischer & Igel (2012, 2014)

provfide more detafils.

We may utfilfize RBMs to bufild deep BMs (DBMs), where a DBM model consfists of multfi-

hfidden layers and only between-layer connectfions exfist. For example, a DBM wfith two hfidden

layers can be bufilt by a stack of two RBMs wfith tfied wefights. The learnfing procedure for BMs

and RBMs descrfibed fin thfis and prevfious sectfions can be applfied to DBMs (for more detafils, see

Hfinton & Salakhutdfinov 2012; Salakhutdfinov 2015; Salakhutdfinov & Hfinton 2009, 2012).

6.3. Quantum Trafinfing of Boltzmann Machfines

As the typfical trafinfing of BMs relfies on MCMC and thus fis computatfionally very expensfive or even

fimpossfible, we may find that trafinfing wfith quantum resources can be very helpful fin reducfing the

trafinfing cost. In fact, the quantum approach fin learnfing wfith BMs can be more feasfible than or

preferable to the classfical approach. Quantum trafinfing technfiques have been developed to trafin

classfical BMs. Examples finclude specfial-purpose quantum computers such as quantum annealers

and programmable photonfic cfircufits. In partficular, quantum annealfing fis very sufitable for trafinfing

BMs, and the D-Wave machfine, a quantum annealer wfith thousands of qubfits, has been explored

for trafinfing BMs wfith deep quantum learnfing protocols. More detafils are provfided by Adachfi &

Henderson (2015), Benedettfi et al. (2016), and Wfiebe et al. (2014).

6.4. Quantum Boltzmann Machfines

As fin the classfical BM case, we adopt a probabfilfistfic graphfical model that consfists of a set of

vfisfible unfitsv∈{−1, 1}nassocfiated wfith observatfions and a set of hfidden unfitsh∈{−1, 1}mused

to capture dependencfies between observed varfiables. We use the notatfionz=(v,h)todenotethe

combfined unfits. A quantum Isfing model fis defined through fits quantum Hamfiltonfian gfiven by

Hq=
fi

bfiσ
z
fi+

fi,j

wfijσ
z
fiσ
z
j,

where, as fin Sectfion 5, we wrfite

σzfi≡I⊗...⊗I

fi−1

⊗σz⊗I⊗...⊗I

b−fi

,I=
10

01
,σz=

10

0−1
,andb=m+n.

Define the densfity matrfix asρ=Z−1e−Hq,whereZ=tr[e−Hq] fis the partfitfion functfion. Thefith

dfiagonal element of the densfity matrfix gfives the probabfilfity assocfiated wfith thefith state of the

quantum Boltzmann machfine (QBM). We can derfive the margfinal dfistrfibutfion of the vfisfible unfits

from the densfity matrfix. For a gfiven vfisfible vectorv=(v1,...,vn)∈{1,−1}
n, define a matrfix

v=|vv|⊗Ih,whereIhfis the fidentfical matrfix of dfimensfion equal to the number of hfidden unfits.

Then, the margfinal dfistrfibutfion correspondfing tovof the QBM model fis gfiven by Pv=tr[vρ].

Now we consfider addfing a transverse field to the Isfing Hamfiltonfian to fintroduce a transverse

field quantum Isfing model. Define nondfiagonal matrfices

σxfi≡I⊗...⊗I

fi−1

⊗σx⊗I⊗...⊗I

b−fi

andσx=
01

10
.
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The transverse Isfing Hamfiltonfian fis then gfiven by

H=
fi

fiσ
x
fi+

fi

bfiσ
z
fi+

fi,j

wfijσ
z
fiσ
z
j,

where fi,bfi,andwfijare model parameters. Agafin we define the partfitfion functfionZ=tr[e−H],

the densfity matrfixρ=Z−1e−H, and the margfinal dfistrfibutfion of the vfisfible unfits Pv=tr[vρ].To

trafin the QBM, we employ gradfient descent to update the parametersθ=(,b,w) and mfinfimfize

the negatfive log-lfikelfihood functfion

L=−
v

Pdatav log(Pv),

where Pdatav denotes the empfirfical dfistrfibutfion of the trafinfing set. The gradfient ofLfis gfiven by

∂L

∂θ
=

v

Pdatav
tr[v

∂e−H

∂θ
]

tr[ve−H]
−
tr[∂e

−H

∂θ
]

tr[e−H]
.

As tr[∂e
−H

∂θ
]=−tr[∂H

∂θ
e−H], we have

tr[∂e
−H

∂θ
]

tr[e−H]
=−

∂H

∂θ
,

whereA ≡tr[ρA] denotes the Boltzmann average of a gfiven matrfixA. We may estfimate∂H
∂θ
by

samplfing from the model. However, the term
tr[v

∂e−H

∂θ ]

tr[ve−H]
cannot be estfimated usfing samplfing. Thus,

fit fis almost fimpossfible to find the model parameters by mfinfimfizfing the negatfive log-lfikelfihood. We

use the varfiatfional approach to solve thfis problem by mfinfimfizfing an upper bound of the negatfive

log-lfikelfihood.

LetHv v|H|v. WecallHvthe clamped Hamfiltonfian because every vfisfible qubfitσzfifis

clamped to fits correspondfing classfical data valuevfi. An applficatfion of the Golden–Thompson

finequalfity leads us to Pv≥
tr[e−Hv]

tr[e−H]
, and we then can conclude that

L=−
v

Pdatav log
tr[e−Hv]

tr[e−H]

fis an upper bound of the negatfive log-lfikelfihood functfionL. Instead of mfinfimfizfingL,wenow

mfinfimfize the upper boundLusfing fits gradfient,

∂L

∂θ
=

v

Pdatav
tr[v

∂e−Hv

∂θ
]

tr[ve−Hv]
−
tr[∂e

−H

∂θ
]

tr[e−H]
=
∂Hv

∂θ v

−
∂H

∂θ
,

where, for a matrfixA, we define

Av=
v

Pdatav Av=
v

Pdatav
tre−HvA

treHv
.

Therefore, the updatfing rules forbfi,wfij,andfiare gfiven as follows:

bfi=η σ
z
fiv− σ

z
fi , wfij=η σzfiσ

z
jv− σ

z
fiσ
z
j ,and fi=η σ

x
fiv− σ

x
fi ,

whereηfis the learnfing rate of the gradfient descent algorfithm (Wang & Wu 2020). We can estfimate

the unclamped termsσzfi andσ
z
fiσ
z
jby samplfing from a Boltzmann dfistrfibutfion wfith Hamfilto-

nfianH, and the clamped termsσzfivandσ
z
fivby samplfing from a Boltzmann dfistrfibutfion wfith

HamfiltonfianHv. However, there fis a serfious fissue regardfing estfimatfingσxfivandσ
x
fi. In fact, we

need measurements fin theσxfibasfis to estfimateσ
x
fi, but we cannot estfimateσ

x
fi by samplfing fin
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theσzfibasfis, as nondfiagonal matrfixσ
x
fidoes not commute wfithσ

z
fi. As a matter of fact, for all vfisfible

varfiablesv,wehaveσxfiv=0. Note thatσ
x
fi >0 for posfitfive fiandσ

x
fi <0fornegatfive fi;thus,

we conclude that fi<0fif fi>0and fi>0fif fi<0. Thfis renders an finvalfid trafinfing of fi

usfing the updatfing rule. One possfible ad hoc fix fis to treat thebfisandwfijs as trafinable parameters

and regard the fis as superparameters, or even set all the fis to be equal to a fixed value.

As we descrfibed fin Sectfion 5, quantum annealfing drfiven by the same quantum HamfiltonfianH

can be fimplemented by quantum annealers lfike the D-Wave machfine. It turns out that a quantum

annealer can provfide a sample from the Boltzmann dfistrfibutfion of the Hamfiltonfian and trafin a

QBM to tune the model parametersθ=(fi,bfi,wfij). More detafils can be found fin the artficles by

Amfin et al. (2018) and Kfieferova & Wfiebe (2016).

7. CONCLUDING REMARKS

Quantum computatfion has attracted enormous attentfion at the frontfiers of scfience. Whfile the

mafin goals of quantum computatfion are the finventfion of faster quantum algorfithms and the cre-

atfion of quantum computers to demonstrate quantum advantages and fimplement quantum al-

gorfithms for accomplfishfing hard computatfional or communficatfion tasks, thfis artficle provfides an

overvfiew on the statfistfical aspect of quantum computatfion to fillustrate the finteractfion between

statfistfics and quantum computatfion. Thfis stands fin contrast to classfical computatfion, where there

fis lfittle role for statfistfics to play fin fits determfinfistfic platform. We fintroduce fimportant quantum

concepts and key quantum propertfies for quantum computatfion. We revfiew quantum annealfing,

quantum machfine learnfing wfith BMs, and quantum supremacy vfia boson samplfing and random

quantum cfircufits. Our dfiscussfion of the selected topfics focuses on the use of quantum compu-

tatfion fin statfistfical machfine learnfing and applficatfions of statfistfical analysfis to resolve fissues en-

countered fin quantum computatfion, as well as the finterplay between quantum computatfion and

statfistfics, whfich may demonstrate quantum advantage and/or lead to new theorfies, methodolo-

gfies, and computatfional technfiques for statfistfics and machfine learnfing. In partficular, we present

quantum computatfion and fillustrate fits finterface wfith statfistfics and data scfience, and we hfighlfight

the advantages of quantum computatfion and quantum learnfing for statfistfics and machfine learn-

fing fin terms of computatfional complexfity and learnfing efficfiency. There fis a great demand for

the certfificatfion of quantum devfices, such as testfing and assessfing thefir quantum performance,

and such certfificatfion needs sound and scalable statfistfical methods for calfibratfing and valfidatfing

quantum propertfies. In fact, a quantum computatfion endeavor such as quantum supremacy calls

for an fintegratfion of new experfimental technfiques, better mathematfical and statfistfical modelfing,

and fimproved computatfional tools where statfistfics and data scfience can play a major role (Hu

& Wang 2021; Wang 2012, 2022; Wang & Song 2020; Wang et al. 2016). For example, for the

study of quantum supremacy, we need to repeat computfing experfiments, reanalyze observed data,

and address or close potentfial loopholes. Classfical algorfithms and computer power contfinue to

be fimproved, and what fis fimpractfical for classfical computers today may become tractable fin the

future. At the same tfime, the computatfional power of quantum computers wfill keep growfing.

Hence, the benchmark of the classfical computatfional cost fis a movfing target, and the quantum

supremacy frontfier wfill be movfing toward larger and larger computatfional problems to herald a

much-antficfipated computfing paradfigm that wfill ultfimately offer a large-scale computatfional plat-

form to run well-known quantum algorfithms, such as the Shor and Grover algorfithms. As shown

fin Sectfion 4, we expect a hfigh demand for statfistfics fin the contfinufing study of quantum supremacy.
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