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ABSTRACT
Flash memory has been used extensively as external storage of
smartphones, tablets, IoT devices, laptops, etc. Therefore, more and
more sensitive or even mission critical data are stored in flash and,
once the data turn obsolete, securely deleting them is necessary
for both regulation compliance and privacy protection. Traditional
secure deletion on flash memory mainly focuses on sanitizing data.
However, unique nature of flash memory may cause various data
“remnants” and, even though the data are removed, the remnants
may be utilized by the adversary to recover the deleted data, com-
promising the secure deletion guarantee.
Based on both theoretic analysis and experiments using real-world
workloads, we have identified one common type of remnants in
the flash memory, namely duplicates, which are caused by unique
internal functions of flash storage media including garbage collec-
tion, wear leveling, bad block management. We propose RedFlash,
a novel secure deletion scheme which can efficiently Remove both
the data and the corresponding duplicates towards secure deletion
on Flash memory. Security analysis and experimental evaluation
show that RedFlash can ensure the secure deletion guarantee, at
the cost of a small performance degradation, compared to a regular
(non-secure) flash controller.

CCS CONCEPTS
• Information systems→ Flash memory; • Security and pri-
vacy → Data anonymization and sanitization.
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1 INTRODUCTION
Retention regulations like the EU General Data Protection Regu-
lation (GDPR) [7], the DoD 5220.22-M [6], the Health Insurance
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Portability and Accountability Act (HIPAA) [29], mandate consis-
tent procedures for data protection. All of them also implement
policies and procedures to address a significant data protection
issue, namely, how to securely delete electronic data once they turn
invalid. This is of paramount importance for both individuals and
organizations. For individuals, the recovery of the deleted data may
endanger their privacy or may bring life threats, e.g., John thought
he had removed his nude photos from his smartphone, but later,
a hacker successfully restores the nude pictures and threatens to
post them in a public website. For organizations, the recovery of
the deleted data may ruin their reputation. For example, a sensitive
CIA (Central Intelligence Agency) document was published by New
York Times as a PDF file that contained the original document with
sensitive information covered up by an overlay; Internet users then
removed the overlay and revealed sensitive information about the
role of CIA in the 1953 overthrow of the Iranian Government [42].

Secure deletion usually requires “rendering target data recov-
ery infeasible using state of the art laboratory techniques” [51]
(secure deletion guarantee). Achieving such a guarantee in mod-
ern computing devices, however, is a challenging task. A major
reason is, a modern computing device is usually equipped with a
complicate storage system which consists of a few different layers,
e.g., application layer, file system layer, storage medium layer; and
therefore, performing secure deletion at the upper layers is usually
not able to eliminate the data, since data leakage may be observed
at the lower layers. For example, given a Microsoft Word document,
deleting data from the document itself cannot guarantee that the
data really become inaccessible. Upon receiving a delete request
issued by Microsoft Word (at the application layer), the system may
simply modify the metadata at the file system layer (e.g., changing
the block allocation table and invalidating the data being deleted)
to make the data appear to have been removed. However, the actual
content is still preserved at the storage medium layer and may be
extracted by the adversary through disk forensics. Therefore, se-
cure deletion should be performed at the lower layers (e.g., storage
medium layer) in order to achieve the secure deletion guarantee.

Hard disk drives (HDDs) and flash memory are two mainstream
storage media for computing devices nowadays, and people are
increasingly turning to flash memory for external storage due to its
high speed, high reliability and low power consumption. Compared
to HDDs, flash memory removes any moving mechanical parts and
exhibits a completely different physical nature, e.g., erase-before-
write design, out-of-place update, only allowing a finite number
of program-erase (P/E) cycles, suffering from read disturb errors,
etc. Therefore, a flash storage medium usually introduces a flash
translation layer (FTL) to transparently handle its unique nature,
exposing a block access interface externally. This type of flash-based
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block devices can be found broadly in real world, e.g., solid state
drives (SSD), universal flash storage (UFS) cards, MultiMediaCard
(MMC), secure digital (SD) cards, etc. Secure deletion techniques
have been designed for computing devices using HDDs [13, 36,
48, 67, 69] which however, cannot work correctly for computing
devices using flash storage as they suffer from new attacks unique
for flash memory. An immediate attack is that they usually rely
on overwriting target data (or cryptographic keys) at the block
layer to ensure secure deletion; however, due to the use of out-
of-place update in flash storage media [85], data overwritten at
the block layer will be temporarily preserved in the flash memory,
and extracted by the adversary later to compromise the secure
deletion guarantee. Later secure deletion techniques [24, 25, 32, 33,
43, 46, 53, 54, 72, 84, 85] incorporate the secure deletion strategy
into the flash storage medium so that they can directly “destroy”
the flash memory data, but still, they cannot achieve the secure
deletion guarantee because: they only target data to be deleted, but
are unaware of the fact that, unique functions implemented inside
a flash storage medium may produce various data remnants across
the entire flash and, without carefully handling such remnants, the
adversary may utilize them to partially or completely recover the
deleted data.

In this work, for the first time, we have successfully identified
a common type of data remnants, namely duplicates, produced
internally by unique functions of flash storage. We have experimen-
tally confirmed the existence of duplicates by running real-world
workloads. In addition, leveraging the duplicates, we have suc-
cessfully attacked the traditional secure deletion schemes. Finally,
we have designed RedFlash, the first secure deletion scheme for
flash memory which can efficiently remove both the data and the
corresponding duplicates towards secure deletion.

There are a few key insights in the design of RedFlash. First, we
efficiently locate the duplicates associated with the deleted data
without relying on RAM (i.e. no RAM) and brute-force searching
over the external storage (i.e. no searching). This is based on our
observations that RAM is vulnerable to power-loss and searching
the external storage is expensive. Our key idea is to chain each
data node and the pages storing its duplicates together in the flash
memory and, once a data node is deleted, we can efficiently locate
all those pages storing its duplicates by traversing the chain and
delete them, without relying on RAM and searching over external
storage. Each page in the duplicate chain will maintain a “dup
field”, which stores its association to other pages in the chain. A
few additional ideas are: 1) Having observed that each out-of-band
(OOB) area (i.e., a special area associated with each flash page) is
usually under utilized, we choose to store the “dup field” in each
OOB area, eliminating the need of using additional space from a
flash page. 2) The duplicate chain could be broken if some of the
pages in the chain are reclaimed by the flash controller earlier. We
thus make the chain more robust by associating a newly added
page with all the existing pages in the chain. In addition, we embed
a unique chain ID to each page in the chain, preventing deleting a
page which has been reclaimed earlier and used to store other data.
The uniqueness of the chain ID is ensured by taking advantage of
the block device address storing the corresponding data node.

Second, we efficiently remove data as well as their corresponding
duplicates by adapting scrubbing [85]. Using conventional block

erasure may lead to significant write amplification when the data
being removed are small in size. Using scrubbing can efficiently re-
move data of small size with𝑂 (1) complexity, but it is only good for
SLC (single-level cell) flash, rather than MLC (multi-level cell) flash
due to bit corruptions. Having observed that performing scrubbing
on a flash page typically corrupts bits stored in its paired page of
the same flash block, we enable efficient deletion of data from the
MLC flash, by first relocating the data stored in the paired page,
and then performing scrubbing on both the page and the paired
page.
Contributions. Our major contributions in RedFlash are:
We have theoretically analyzed why duplicates exist due to the

unique working principle of the internal functions of flash storage
media. We have also experimentally confirmed the existence of
duplicates by running real-world workloads.
We have designed RedFlash to securely and efficiently delete both

the data and their corresponding duplicates from NAND flash.
We have analyzed the security of RedFlash. We have implemented

RedFlash into an open-source NAND flash controller framework,
and performed experimental evaluation (for SLC flash) and simula-
tion (for MLC flash) to assess performance of RedFlash.

2 BACKGROUND KNOWLEDGE ON FLASH
MEMORY AND SECURE DELETION

2.1 Flash Memory
Flash memory especially NAND flash has dominated the mass
storage of mobile computing devices today. NAND flash consists of
memory cells, which are grouped into pages (typically 512B, 2KB,
or 4KB in size), and pages are further grouped into blocks (typically
16KB, 128KB, 256KB, or 512KB in size). Each page has a small out-
of-band (OOB) area [39], typically 64 bytes for a 2KB page, and 224
bytes for a 4KB page [4]. The OOB can be used to store additional
information like error correction code, a flag indicating that an
encompassing block is bad, etc. Depending on the number of bits
each memory cell can store, NAND flash includes single-level cell
(SLC, in which each cell stores 1 bit), and multi-level cell (MLC, in
which each cell stores more than 1 bit, e.g., 2 bits).

Compared to traditional mechanical drives, NAND flash exhibits
some special characteristics: 1) The unit of a read/program opera-
tion is a page, but the unit of an erase operation is a block. Usually,
the read operation (around 20 𝜇s) is much faster than the program
operation (around 200 𝜇s), which is much faster than the erase
operation (around 1.5 ms). Also, reading a cell may cause its nearby
cells in the same block to change over time, causing read disturb
errors. 2) A flash page cannot be re-programmed before it is erased.
Therefore, to overwrite a flash page requires first erasing the en-
tire encompassing block, which requires copying out valid data in
this block and writing them back after the block is erased, causing
significant write amplification. To mitigate this issue, flash mem-
ory usually uses an out-of-place [38, 85] instead of in-place update
strategy. 3) Each flash block has a limited number of program-erase
(P/E) cycles (e.g., 10K - 100K), and if a flash block is programmed/
erased more than a certain threshold, the flash block will turn “bad”.
Flash file system vs. flash translation layer. Traditional file
systems built for HDDs cannot be directly applied to flash memory
due to its unique nature. Instead, a flash-specific file system (e.g.,



YAFFS [87], JFFS [2], and F2FS [8]) needs to be used. The flash
file system however, requires direct access to the raw NAND flash,
which is rarely supported in computing devices now, and hence
flash file systems are used rarely today. Themost popular alternative
of using flash memory is emulating it as a block device via a piece
of special firmware called flash translation layer (FTL), such that
traditional block-based file systems (e.g., EXT, FAT, NTFS) can be
directly used. The FTL stays between the file system and the raw
NAND flash, implementing a few key functions including garbage
collection, wear leveling, bad block management, and read disturb
management.
Garbage collection. Due to the out-of-place update feature of flash
memory, an overwrite operation from the upper layer will invali-
date flash pages storing the obsolete data. Those flash pages will
be reclaimed by garbage collection. A typical procedure of garbage
collection [78] is: 1) selecting one block which has the largest num-
ber of invalid pages as a victim block; and 2) copying valid data in
the victim block to a free block; and 3) erasing the victim block.
Wear leveling. A flash block can be programmed/erased for a limited
number of times, and once the limit is reached, the block will be
worn out. To prolong overall service life of flash memory, wear
leveling (static or dynamic) [88] will be used to distribute program-
mings/erasures (P/Es) evenly across the flash.
Bad block management. A flash block may turn “bad” over time
and cannot reliably store data. Bad block management typically
introduces a bad block table to keep track of bad blocks [76]. Once
a block turns bad, it will be added to the bad block table and will no
longer be used; additionally, valid data stored in it will be copied to
good blocks.

The FTL may also implement read disturb management [40].
Typical techniques for read disturb management are: 1) The FTL
counts the total number of reads on each flash block since last erase
and, once the count of a flash block exceeds a threshold, the data
stored on it will be copied to a new block which is rarely read. 2)
The FTL actively detects frequently read pages, and proactively
moves them to rarely read blocks [40].

2.2 Secure Deletion on Flash Memory
The overwriting-based approaches. To securely delete data from
flash memory, we can use block erasure [24, 25, 32] or scrubbing [43,
46, 84, 85]. Flash memory can be erased in unit of blocks; therefore,
to delete a portion of data from a flash block, we can store valid
data in this block elsewhere, and perform a block erasure. The block
erasure is expensive when deleting small data. Instead, scrubbing
programs all the remaining “1” bits on a page to “0”, such that the
entire page is turned to “0”s and the stored data are removed, which
is much more efficient when deleting small data.
The encryption-based approaches. The data stored in flash pages
are encrypted using unique keys and, secure deletion of data can be
achieved by purging the corresponding keys stored in a condensed
key storage area of flash [24, 53, 54, 72]. Simply destroying the
cryptographic keys while preserving the encrypted data may not
ensure secure deletion, because: First, the cryptographic keys may
have been present in various sources including processor caches
or memory when data were used, and may be extracted after se-
cure deletion [18, 31, 41, 60, 64]. Second, most existing encryption

algorithms provide conditional security and may be broken over
time [16, 17, 30], e.g., by quantum computers; in addition, keys
may be leaked over time [55, 57], e.g., being coerced [47] or stolen;
therefore, the adversary can preserve the encrypted data claimed to
have been securely deleted via encryption keys purging, and may
be able to decrypt them successfully in the future [31, 56].

3 COMPROMISING EXISTING SECURE
DELETION SCHEMES USING DUPLICATES

In this section, we first justify the existence of duplicates across
the entire flash, both theoretically and experimentally. Leveraging
the duplicates, we can compromise the existing secure deletion
schemes for flash memory.

3.1 Theoretically Analyzing The Existence of
Duplicates in Flash Storage Media

A flash storage medium is managed by the flash translation layer
(FTL) and, the FTL implementations are very diverse in different
flash storagemedia. Ourmethodology is to analyze typical functions
implemented in main-stream FTLs as well as typical algorithms
used to implement each function. In this way, our analysis can
capture a majority of the existing FTL implementations in the wild.
In the following, we analyze each typical function and show why
duplicates are produced.
Duplicates created by garbage collection. During garbage collec-
tion, the flash controller will choose a victim block with the largest
number of invalid pages. Then, it will select a block from a pool
of free blocks, and copy the data in the valid pages of the victim
block to the free block. However, the flash controller typically1 will
not immediately erase the victim block, since an erase operation is
time-consuming (Sec. 2.1). Instead, the victim block will be added
to the free block pool [26, 49], and will be erased only when the
system is idle [1, 34, 45]. Thus, duplicates are preserved in victim
blocks.
Duplicates created by wear leveling. We mainly focus on static
wear leveling (Sec. 2.1) which is used more broadly in real-world
flash storagemedia than dynamicwear leveling. Uponwear leveling,
the flash controller chooses a block (identified as𝑀) which has the
smallest erase count from blocks being used, and chooses another
block (identified as 𝑁 ) which has the largest erase count from
the free block pool. Then, the controller swaps block 𝑀 and free
block 𝑁 by copying all the data from𝑀 to 𝑁 . Last, the controller
adds𝑀 to the free block pool, which will be erased during the idle
time. The rationale for wear leveling is, the data stored in 𝑀 is
cold data, and therefore should be swapped to the block which has
the largest erase count; additionally, those blocks with large erase
count will be moved out from the free block pool, so that they will
not be used when allocating new free blocks. This wear leveling
implementation is advantageous, since it swaps a block being used
with a free block for wear leveling, and data can be simply copied
to the free block, without involving any immediate erasures. In
1Note that there may be an extreme case when the free blocks are rare in the flash
memory and the I/O stream is continuous; in this case, the garbage collection may
need to erase the victim blocks immediately to facilitate future I/Os. However, this
extreme case only happens when a mobile device has reached its storage capacity.
This is a low-probability event during the mobile device’s lifetime and, in most of the
device’s lifetime, the garbage collection will not erase the victim blocks immediately.



ID Content Number of I/Os
1 Financial1, Financial2, WebSearch1 10,089,261
2 Financial1, Financial2, WebSearch2 13,613,622
3 Financial1, Financial2, WebSearch3 13,295,518

Table 1: Trace sets

this wear leveling, duplicates are preserved in free block𝑀 , which
will be erased during the idle time for performance optimization.
Another common implementation is that, the controller swaps two
blocks in use, and one block has the largest erase count, while the
other has the smallest erase count. To accommodate block swapping,
it needs to request a free block from the free block pool, and involves
2 block erasures2. In this wear leveling, the duplicates are preserved
in the free block. In general, different static wear leveling strategies
mainly concern on what blocks to be swapped [65] and when to
swap the blocks [58]. Although different strategies may be used in
wear leveling, the final step is always to swap the blocks, which
typically produces duplicates as immediately erasing the obsolete
blocks is inferior.
Duplicates created by bad block management. If a block turns
“bad”, the flash controller usually chooses an empty block from the
free block pool, copies valid data from the bad block to this empty
block, and adds the bad block to the bad block table. However,
data originally stored in the bad block usually will not be sanitized
(note that a regular flash storage medium does not handle secure
deletion), and hence duplicates are preserved in the bad blocks.

3.2 Experimentally Confirming The Existence
of Duplicates

We have experimentally confirmed the existence of duplicates in
the flash memory using real-world workloads and a flash storage
simulator.

For real-world workloads, we used the storage traces [14] from
the UMass Trace Repository, which contain I/O traces from OLTP
applications and search engine. The storage traces contain two
financial traces (namely, Financial1 and Financial2) and three web
search traces (namely,WebSearch1,WebSearch2, andWebSearch3).
Considering a server with an SSD may run multiple services si-
multaneously, we therefore combined the traces, generating a few
different trace sets (see Table 1) for comparison. Note that, we need
more write I/Os to invoke garbage collection and wear leveling, and
the financial traces have much more write I/Os compared to that
of the web search traces; therefore, each trace set contains both
financial traces, but has a different web search trace.

For the flash storage simulator, we used DiskSim [27], a trace-
driven disk simulator that includes modules for most secondary
storage components. Originally DiskSim cannot simulate flash stor-
age media. In 2009, Microsoft Research developed a package extends
for DiskSim to enable SSD simulation.

2The process is as follows: 1) The data in the first block is copied to the free block; 2)
The first block is erased; 3) The data in the second block is copied to the first block;
4) The second block is erased; 5) The data in the free block is copied to the second
block; 6) The free block is added back to the free block pool, and will be erased during
the idle time. Using RAM to help swapping blocks is not recommended, as RAM is
vulnerable to power loss.

Parameter Value
Storage capacity 128 GB

Minimum free blocks percentage 15%
SSD_LIFE_TIME_THRESHOLD 0.80

Cleaning policy wear-aware cleaning
Table 2: DiskSim configurations in our experiments

ID Total # of duplicate pages Size (GB)
1 286,393 2.18
2 320,810 2.44
3 286,887 2.19

Table 3: Experimental results

The configurations of the simulator are shown in Table 2. Some
of the parameters in Table 2 are explained as follows:

• Minimum free blocks percentage: This is the minimal per-
centage of free blocks needed for the flash storage. If the
number of free blocks drops and their percentage is below
this minimum percentage, the garbage collection needs to
be triggered. We chose a reasonable value 15% for our exper-
iments.

• SSD_LIFE_TIME_THRESHOLD: This is a ratio between the
remaining P/E cycles and the total P/E cycles of a flash
block. When a flash block’s remaining P/E cycles is less
than 𝑆𝑆𝐷_𝐿𝐼𝐹𝐸_𝑇 𝐼𝑀𝐸_𝑇𝐻𝑅𝐸𝑆𝐻𝑂𝐿𝐷∗𝑡𝑜𝑡𝑎𝑙 𝑃/𝐸 𝑐𝑦𝑐𝑙𝑒𝑠 , the
wear leveling should be invoked.We chose an empirical value
0.8 as the threshold in the experiments.

• Cleaning policy: This determines garbage collection and
wear leveling strategy used in the simulator. We chose the
wear-aware cleaning scheme, which is the optimal one hav-
ing been implemented in the simulator.

Experimental process and results.We built DiskSim 4.0 with an
SSD Model in a Ubuntu 14 virtual machine. We ran each trace set
(Table 1) in the virtual machine, and calculated (i.e., by intercepting
the FTL of the SSD simulator) the total number of duplicate pages
generated in the flash memory during each run. Note that: 1) The
simulator does not simulate bad block management which is more
hardware-related and, therefore, the duplicate pages obtained in our
experiments are generated by garbage collection and wear leveling
only. 2) The total number of duplicates obtained is a mix of those
generated by the garbage collection and those generated by wear
leveling, and we were not able to explicitly distinguish them. This
is because, the simulator uses a wear-aware cleaning scheme which
mixes3 the garbage collection and the wear leveling function.

The experimental results are shown in Table 3. We can observe
that: First, a large number of duplicate pages (around 300K) were
generated during running each trace set. This experimentally con-
firms that duplicates will be generated in the flash memory. Second,
the number of duplicate pages generated is different when running
different trace sets. This is reasonable as different trace sets have
different I/Os, leading to different operations in the FTL.
3Specifically, when the garbage collection is triggered, the victim block having the
least number of valid pages will be selected. Then, the simulator will calculate this
block’s remaining number of P/E cycles and, if it is less than a threshold, the wear
leveling will be triggered as well.



Figure 1: The architecture of a flash-based block device.

3.3 Compromising Existing Secure Deletion
Schemes on Flash Memory by Leveraging
Duplicates

Compromising the overwriting-based secure deletion schemes.
Duplicates are created internally across the entire flash. There-
fore, after target data have been securely deleted via block era-
sure [24, 25, 32, 84], scrubbing [46, 84, 85], or even the most recent
analog scrubbing [43], duplicates of the deleted data likely remain
in the flash memory. After secure deletion, the adversary can per-
form forensic analysis on the NAND flash, extracting duplicates of
the deleted data for potential recovery.
Compromising the encryption-based secure deletion schemes.
Most of the existing secure deletion schemes for flash memory store
keys in the local storage [24, 52–54, 72] and securely remove them
upon secure deletion. Since keys are stored in flash blocks, and data
(i.e. keys) stored in those blocks may be duplicated by the internal
management of flash memory (Sec. 3.1 and 3.2). Therefore, even
if the original keys have been purged during secure deletion, by
performing forensic analysis on the NAND flash, the adversary
can extract duplicates to restore the deleted keys which can be
used to decrypt the data claimed to have been deleted. Note that
uncovering cryptographic keys from NAND flash is feasible via
digital forensics and memory acquisition [59, 60].

4 SYSTEM AND ADVERSARIAL MODEL
System model. We mainly consider computing devices equipped
with flash memory as external storage, in the form of flash-based
block devices via FTL. These include servers/workstations equipped
with ATA/ SCSI/ NVMe SSDs, andmobile computing devices (smart-
phones, tablets, IoT devices) equipped with memory cards (e.g., UFS
cards, eMMC cards, MicroSD cards). The flash-based block device
(Figure 1) usually exposes a block-based access interface, such that
data can be read and written in “blocks”, and a block-based file
system (e.g., EXT4, FAT32) can be deployed. Let 𝑁 be the storage
capacity (in terms of data nodes [72], each is the unit of file system
I/Os) of a block device. Let 𝑖 be the block address, and 0 ≤ 𝑖 ≤ 𝑁 −1.
The block-based access interface provides two entry-points:
Block_Device_Read(𝑖 , &𝑑𝑎𝑡𝑎): read a data node from block ad-

dress 𝑖 , and store it to the memory address &𝑑𝑎𝑡𝑎.
Block_Device_Write(𝑖 , &𝑑𝑎𝑡𝑎): write a data node (stored in the

memory &𝑑𝑎𝑡𝑎) to block address 𝑖 .
NAND flash inside the block device consists of 𝑛 erase blocks, and
each flash block contains 𝑠 pages. The FTL is responsible to translate

a block address 𝑖 to a flash memory address (𝑥,𝑦), where 𝑥 is the
erase block index, and 𝑦 is the page index.
Adversarial model. We consider a computationally bounded ad-
versary. The adversary can have access to a victim computing device
multiple times, obtaining a snapshot of the storage medium upon
each access (i.e., a multi-snapshot adversary). Note that the access
time of the adversary is controlled by the user [71], so that the user
can sanitize the sensitive data before exposing the device to the
adversary. Each snapshot being obtained by the adversary includes
information from the storage medium, which can be the physical
image of the raw NAND flash, obtainable by forensic data recovery
tools [21, 50, 79]. For a given data node which needs to be securely
deleted, the user can only allow the adversary to capture snapshots
outside its lifetime, preventing the data node from being restored
trivially by the adversary after deletion. This type of multi-snapshot
adversary is common in real world. For example, an attacker breaks
into a hotel room, obtaining a snapshot of the memory card of a
victim mobile device, aiming to restore sensitive data deleted by
the device’s owner; the attacker gained access to the device before,
obtaining an earlier snapshot of the device.

We assume that the adversary will not take advantage of the
correlation among the content of the data. Content may be corre-
lated with each other, which could be a threat to secure deletion.
However, content correlation requires knowledge on the high-level
semantics of the data which is not suitable to be investigated in
the lower-layer storage media. Equivalently, we assume there is no
correlation among the content of the data.
Definitions. We define the secure deletion guarantee as: Given
a data node, we say it is securely deleted from a computing device
if the multi-snapshot adversary cannot recover it by obtaining and
analyzing snapshots of the device outside its lifetime.

5 RedFlash
To simplify the presentation, we assume the size of a data node is
equal to that of a page, since a page is the read/write unit of NAND
flash. This can be easily extended to a general case where the size
of a data node is a multiple of the page size. In the following, a
“duplicate” refers to the duplicate data stored in a flash page.

5.1 Design Overview
A straw-man scheme. A basic approach could be: 1) We immedi-
ately delete any duplicates produced by internal management of
flash storage (e.g., garbage collection, wear leveling, and bad block
management). In this way, we ensure that the adversary cannot
utilize any duplicates to recover the deleted data. 2) Once a deletion
request is issued by the user from upper layer, we will immediately
delete the corresponding data node from flash memory using block
erasure. This straightforward solution, however, is expensive be-
cause: 1) for those data nodes which have duplicates but have not
yet been deleted, it is unnecessary to remove their duplicates, as
the existence of those duplicates does not “hurt” the secure deletion
guarantee; and 2) a block erasure causes write amplification and is
expensive when deleting data of small size.

Our approach is to wait until a secure deletion request is issued
and then 1) to delete the targeted data node, and 2) to locate and
delete any duplicates across flash memory associated with this data



Figure 2: Duplicate chain.

node. A significant issue faced in our approach is how to efficiently
locate duplicates associated with the data node being deleted. To
address this issue, we follow two principles:
No searching: One can simply search the duplicates across the

entire flash memory in a brute-force manner. This however, should
be avoided because: 1) searching the entire flash is prohibitively
expensive; and 2) identical data may be present among files [61]
originally (e.g., two files have identical data [77]), and searching
duplicates based on the deleted data node may lead to mistakenly
deleting data belonging to another file.
No RAM: One can keep track of locations of all duplicates as-

sociated with each data node in RAM. This however, should be
also avoided because: 1) RAM is volatile and suffers from failures
like power-loss and is not a reliable source. 2) The embedded flash
device is usually equipped with a limited amount of RAM.
Following the aforementioned design principles, we propose to
“chain” each data node and its associated duplicates together across
the flash (no RAM), generating a duplicate chain. In this way, once a
data node is deleted, all the associated duplicates can be efficiently
found by simply traversing the chain (no searching). We reserve an
area in each flash page, called “dup field” , which is used to store
information needed to maintain the duplicate chain. In Figure 2: A,
we provide an example of a duplicate chain. Upon garbage collec-
tion, a valid data node stored in page 10 (note that we neglect the
flash block index for now to simplify the presentation) is copied to
a new page 17 of a new block; now page 17 stores the current data
node, and page 10 stores a duplicate, and location 10 is written to
the “dup field” of page 17 upon copying; after a while, wear leveling
happens, the data node stored in page 17 is copied to another page
30 of a new block; now page 30 stores the current data node, and
page 17 stores a duplicate, and the location 17 is written to the “dup
field” of page 30 upon copying; once the data node stored in page
30 is securely deleted, according to the “dup field” of page 30, we can
efficiently locate page 17, and according to the “dup field” of page 17,
we can efficiently locate page 10. A few additional challenges need
to be addressed as discussed as follows:
Challenge 1: Where can we store the “dup field” in a flash page?

Having observed that each flash page has an OOB area (Sec. 2.1),
and only a few bytes of OOB have been used by the flash controller,
we utilize the remaining unused space of the OOB to store the “dup
field”, instead of using extra other space in the corresponding page.
This is advantageous because: Flash memory is update unfriendly,
i.e., an update can only be performed after a block erasure is per-
formed; therefore, once the OOB is initially written (e.g., 64 bytes

out of 128 bytes have been used), it cannot be written again before
the entire encompassing block is erased; therefore, the unused space
of the OOB (e.g., 64 bytes) will be temporarily “freezed”; we use the
unused space of the OOB to store the “dup field” during the initial
write of the OOB, fully utilizing it before it is “freezed”. Note that
this will not affect regular functions of the flash controller, since
this space is not used by other functions4.
Challenge 2: How can we handle a “broken” duplicate chain?

A duplicate in a chain may be reclaimed earlier and the entire
chain could be broken (see Figure 2: B). Using the previous example,
there was a chain 10 → 17 → 30. However, before a data node
stored in page 30 is deleted, the flash block encompassing page 17
may be reclaimed by the flash controller earlier, and hence page
17 has been sanitized and the corresponding “dup field” has been
lost. In other words, we now lose connection with page 10, which
stores a duplicate and should be sanitized once the data node stored
in page 30 is securely deleted (see Figure 2: B). Note that flash
memory is update unfriendly, and therefore, once page 17 is lost,
updating the chain from 10 → 17 → 30 to 10 → 30 by directly over-
writing the “dup field” of page 30 is infeasible except performing an
expensive block erasure. Our idea is to make the chain more robust.
Specifically, when adding a new page to the chain, we redundantly
store all the prior locations in the chain to the “dup field” of this
new page. Following the previous example, “dup field” of page 17
will store location of page 10, but “dup field” of page 30 will store
location of both page 10 and 17 (see Figure 2: C). In this way, even
if page 17 is erased, the chain will not be broken, since the “dup
field” of page 30 also stores the location of page 10.

Another issue for a “broken” chain (Figure 2: B) is, suppose page
17 has been reclaimed earlier and may now have been used to
store new data, we should not sanitize page 17 again once the data
node stored in page 30 is securely deleted. But how can the flash
controller know whether a page still remaining in the chain has
been deleted before. This can be mitigated by checking each page
before deleting data from it. If a page has been deleted before, it
may now store inconsistent information (e.g., content stored may
be different or the “dup field” stores something inconsistent). For
example, page 17 is supposed to store identical content and its “dup
field” is supposed to store location of page 10, but if it does not, then
page 17 definitely has been deleted before. Note that reading a flash
page is an order of magnitude faster than writing a page (Sec. 2.1),
and therefore extra overhead due to checking pages in the duplicate
chain will not be significant upon secure deletion. Rarely, there
could be a special case that, page 17 has been deleted before and
then used to store new identical data and the information stored
in “dup field” is accidentally consistent. In the previous example,
both page 10 and page 17 have been deleted earlier, and then used
to store data associating with a new data node with identical data,
accidentally creating a new chain 10 → 17. To handle this special
case, we need to store in the “dup field” of each page in the chain a
unique chain ID. A timestamp upon creating the chain may be used
as this ID, but it may not be practical since a micro-second precision
may not be enough and a higher precision requires large space for
storing it. Having observed that each chain is associated with a data

4Usually there are other layers under the FTL, e.g., MTD, which will deny a page write
if the FTL tries to use more than the unused space of the OOB.



node, which is bounded to a block device address (Sec. 4), we use
this corresponding block address as the chain ID. When a page was
deleted and used to store data associated with a new data node, its
chain ID is surely different since two different data nodes will not
have an identical block device address even though the two data
nodes may have identical content. Note that: 1) the block device
address 𝑖 will be passed to the FTL when Block_Device_Write(𝑖 ,
&𝑑𝑎𝑡𝑎) is called; and 2) the size of this address is not large, e.g., for
a 4TB flash device, with a 4KB data node size, it is at most 30 bits.

A last issue for a “broken” chain is, there may exist a special case
that a page’s “dup field” stores its own location. For example, as
shown in Figure 3, the block encompassing page 17 is reclaimed
earlier but later page 17 is used again to store new data which
associates with the same data node, and thus the “dup field” of page
17 now stores location 17. Both page 17 in the duplicate chain will
have the same chain ID. To mitigate this issue, upon secure deletion,
when traversing the duplicate chain (starting from the deleted data
node and traversing back) to delete duplicates, if a page has been
deleted before, it will not be deleted again.
Challenge 3: How can we handle the growth of “dup field”?

Since we store in the “dup field” of a page all its previous loca-
tions, the size of the “dup field” may grow over time. Fortunately,
according to our experiments (see Sec. 7.1), the length of a dupli-
cate chain is usually small in practice and hence the number of
previous locations is usually small. Therefore, we use the OOB area
of a page to store it. For example, for a 4KB page with 128-byte
OOB, if there are 64 bytes used for storing the ‘dup field”, we can
store up to 21 previous locations (assuming each location is repre-
sented by 3 bytes). In addition, the “dup field” may contain obsolete
locations since some of the flash blocks holding duplicates have
been reclaimed earlier, and those obsolete locations will be purged
periodically to reduce the size of the “dup field”. In the worst case if
the “dup field” is too large to be stored entirely in each OOB, we will
use regular space from the page to store it.

5.2 Design Details
We elaborate the design details of RedFlash, a secure deletion
scheme which can efficiently Remove both the data and the corre-
sponding duplicates from Flash memory. RedFlash is incorporated
into the FTL by modifying its existing functions: garbage collection,
wear leveling, bad block management. We also need to modify the
block access interface Block_Device_Write(𝑖 , &𝑑𝑎𝑡𝑎) with secure
deletion support and, the secure deletion in the FTL is triggered
when Block_Device_Write(𝑖 , NULL) is called.
Thepage copy operation. A core function ofRedFlash is aPage_Copy
operation, which is used to copy data from a source page to a desti-
nation page (Figure 4). In this operation, to copy data from a source
address to a destination address, we construct “dup field” of the
destination page as: the “dup field” of the source page, appended
by the location of the source page. Upon data copying, the newly

Figure 3: A special case for the robust duplicate chain.

constructed “dup field” will be written to the OOB of the destination
page.
Special functions of FTL. Special functions in the FTL will be
modified as follows to support RedFlash.
During garbage collection, the flash controller will pick a victim

block, and copy data stored in all the valid pages of the victim block
to a free block. When copying data from each valid page in the
victim block to a page in the free block, we use Page_Copy.
Upon wear leveling, the flash controller swaps a block (i.e., a cold

block) which has the smallest erase count from blocks being used,
with another block (i.e., a hot block) which has the largest erase
count from the free block pool. This requires copy each page from
the cold block to the hot block. When copying data from each page
in the cold block to a page in the hot block, we use Page_Copy to
replace the existing copy operation.
Bad block management is designed to manage “bad” blocks. When

a bad block is detected, the flash controller chooses an empty block
from the free block pool, copies valid data from the bad block to
this free block. When copying data from a valid page in the bad
block, Page_Copy should be used.
Major operations of RedFlash. RedFlash is incorporated into a
flash-based storage system by modifying the existing block ac-
cess interface Block_Device_Write(𝑖 , &𝑑𝑎𝑡𝑎), as shown in Figure 5.
When &𝑑𝑎𝑡𝑎 is not NULL, the system performs a regular write on

Page_Copy (i, j) /*copy data from page 𝑖 to page 𝑗*/
(1) Read page 𝑖 , including both content𝐶𝑖 and its “dup field” 𝐷𝑖

(2) Construct page 𝑗 ’s “dup field”𝐷 𝑗 as: 𝐷𝑖 || 𝑖
(3) Write both𝐶𝑖 and 𝐷 𝑗 to page 𝑗 , with𝐷 𝑗 written to page 𝑗 ’s OOB

Figure 4: The page copy operation in RedFlash

Block_Device_Write(𝑖 , &𝑑𝑎𝑡𝑎)
1. Translate 𝑖 to a flash page location (𝑥, 𝑦) by searching FTL’s

mapping table
2. If 𝑑𝑎𝑡𝑎 is NULL 𝐴𝑁𝐷 (𝑥, 𝑦) is NULL, return FAILURE
3. If 𝑑𝑎𝑡𝑎 is NULL 𝐴𝑁𝐷 (𝑥, 𝑦) is not NULL: /*secure deletion is

performed on block address 𝑖*/
(1) Read page (𝑥, 𝑦) , and extract its “dup field” 𝐷0
(2) If 𝐷0 contains page locations { (𝑥𝑖 , 𝑦𝑖 ) |1 ≤ 𝑖 ≤ 𝑛}

For 1 ≤ 𝑖 ≤ 𝑛:
Read page (𝑥𝑖 , 𝑦𝑖 ) , and extract “dup field” 𝐷𝑖

Read chain ID from 𝐷𝑖

If chain ID == 𝑖 𝐴𝑁𝐷 page (𝑥𝑖 , 𝑦𝑖 ) has not been
deleted before, delete data from page (𝑥𝑖 , 𝑦𝑖 )

(3) Delete data from page (𝑥, 𝑦)
(4) Update FTL’s mapping table by removing mapping for 𝑖
(5) return SUCCESS

4. If (𝑥, 𝑦) is not NULL, invalidate page (𝑥, 𝑦) /*This is an over-
write on block address 𝑖*/

5. Request a new flash page (𝑎,𝑏 )/*Write the new data to flash
memory*/

6. Construct the “dup field” by filling its chain ID 𝑖

7. Write 𝑑𝑎𝑡𝑎 to page (𝑎,𝑏 ) and “dup field” to its OOB
8. Update FTL’s mapping table by mapping 𝑖 to page (𝑎,𝑏 )
9. return SUCCESS

Figure 5:Major operations ofRedFlash. SUCCESS: 0; FAILURE:
-1



the block address 𝑖 . If the block address 𝑖 stores data before, this is
an overwrite operation, and the corresponding flash page which
stores the old data should be invalidated first (optionally, if the old
data being overwritten need to be securely deleted, we can call
Block_Device_Write(𝑖 , NULL) first). The new data will be stored to
a new flash page, and before writing it, we need to initialize its “dup
field” by embedding a unique chain ID, which is the block address 𝑖 .
When &𝑑𝑎𝑡𝑎 is NULL, the system performs secure deletion on the
block address 𝑖 , and the data node stored in the corresponding flash
page should be deleted. The FTL will read this page, extracting its
“dup field”. If the “dup field” does not contain any locations, this
data node does not have any duplicates, secure deletion ends. Oth-
erwise, the FTL will check each location, read the corresponding
page, and check each “dup field”. The duplicate stored in a page
will be deleted if its “dup field” contains a matched chain ID (i.e., 𝑖)
and the duplicate stored in the page has not been deleted yet.
Efficiently deleting data stored in a flash page. Deleting data
from a flash page is non-trivial considering flash memory is “up-
date unfriendly” (Sec. 2.1). To enable efficiently deleting data from
a flash page, we use scrubbing [85] for SLC NAND flash. For MLC
NAND flash, simply performing scrubbing on the target page can-
not work [46, 85], since multiple bits share one cell in MLC chips
and, scrubbing one page will cause corruptions to other pages (i.e.,
paired pages) in the same block. Deletion on data stored in an MLC
NAND flash page can be efficiently performed by adapting the
scrubbing technique as: relocating the content in the paired pages,
and performing scrubbing on both the target and the paired page.
Note that the paired page can be easily located based on the type of
flash memory [46]. The modifications for MLC can be summarized
as: 1) When secure deletion is triggered from the user, for each
page in the duplicate chain, the content of its paired-page will be
read and written to a new flash page, and the mapping table will
be updated correspondingly; 2) In Block_Device_Write(𝑖 , &𝑑𝑎𝑡𝑎)
(Figure 5), step 3(3) will be updated as: “delete data from page (x,y)
and its paired page using scrubbing”; step 3(4) will be updated as
“Update FTL’s mapping table by removing mapping for 𝑖 and its
paired page”.
Extra considerations. 1) Handling duplicates from read disturb
management: Read disturb management requires re-locating read-
frequently blocks/pages elsewhere. The obsolete blocks/pages typi-
cally will not be reclaimed immediately for performance consider-
ation, and data stored in them will be temporarily preserved and
may be utilized to compromise the secure deletion guarantee. To
mitigate this compromise, we can add the duplicates generated
by read disturb management to the duplicate chain, and eliminate
them upon secure deletion. 2) Mitigating data leakage at the voltage
level: Even though data have been securely deleted at the digital
level, flash memory cells may hold their “imprints” at the analog
level. If the adversary can successfully extract such analog signal,
it may compromise the secure deletion guarantee. Those remnants
can be eliminated by sanitizing data at the lower voltage level by
using analog scrubbing [43] instead of conventional scrubbing. 3)
Other remnants which may affect secure deletion: The past exis-
tence of the deleted data may affect the layout of data storage and,
even if the data are deleted, such an impact may be preserved in
the flash memory [24], leading to the compromise of the secure
deletion guarantee. This type of “remnants” can be taken care by

randomizing the storage layout [24]. 4) Handing legacy flash de-
vices: RedFlash needs to be integrated into the FTL. Therefore, to
allow the legacy flash devices to use RedFlash, a potential solution
could be upgrading the flash firmware via tools provided by manu-
facturers [44, 74]. 5) About the usage of OOB: The OOB area is often
used to store the error correction code (ECC), and RedFlash will
utilize the remaining space to avoid interfering the original func-
tionality. For example, a 2KB flash page is associated with 64 bytes
of OOB, and typically only 12 bytes are used to store ECC [73, 75];
in other words, 52 bytes can be used by RedFlash to store a “dup
field” of the duplicate chain. This is usually sufficient regardless of
the storage size, because: The size of the “dup field” is determined
by the number of bits required for representing each page number
as well as the length of the duplicate chain; the size of each page
number grows when the storage capacity grows in a logarithmic
way, which scales pretty well; the duplicate chain is usually short
in length (Sec. 7.1) regardless of the storage size, as a good FTL
design will not preserve too many copies at the same time to avoid
wasting too much space. In the worst case if the OOB does not have
enough space to store the “dup field”, RedFlash can use some of the
regular space in the corresponding flash page.
User steps. Secure deletion is usually performed by users staying
in the user space. To invoke secure deletion incorporated in the
FTL, the user application can intercept the existing “write (fp, buf,
nbytes)” system call, where “fp” is the file pointer (determined by
the file descriptor and the offset), “buf” is the memory address of
the data being written, and “nbytes” is the size of the data being
written. By setting “buf” to NULL, it can issue a secure deletion
request on file data located at “fp” with length “nbytes”. Based on
“fp” and “nbytes”, the file system can calculate the corresponding
block addresses 𝑖1, 𝑖2, · · · , 𝑖𝑘 (assuming there are 𝑘 blocks storing
the file data being deleted), and then invoke Block_Device_Write(𝑖 ,
NULL), where 𝑖 ∈ {𝑖1, 𝑖2, · · · , 𝑖𝑘 }.

6 SECURITY ANALYSIS
In the following, we first show that, for any given data node 𝐷 ,
the straw-man scheme can ensure secure deletion of 𝐷 against the
multi-snapshot adversary. We then show RedFlash can achieve a
security guarantee comparable to the straw-man scheme.
The straw-man scheme can ensure secure deletion of 𝐷 . Since
the adversary can obtain snapshots of raw NAND flash (Sec. 4),
by performing forensic analysis on the captured snapshots, the
adversary can only obtain two types of flash pages: type I - pages
with all ‘1’s (i.e., an empty page which is programmable); and type
II - pages storing actual data/metadata. The adversary surely can-
not learn anything about 𝐷 from the type I pages. The adversary
cannot learn anything about 𝐷 from the type II pages either, be-
cause: First, the data/metadata stored in the type II pages of the
captured snapshots will not be the duplicates of 𝐷 , since they are
completely sanitized from the NAND flash upon deleting 𝐷 and
the adversary can only capture snapshots outside the lifetime of
𝐷 . Second, the data/metadata stored in the type II pages from the
captured snapshots will not correlate to 𝐷 based on our assumption
(Sec. 4).
RedFlash can achieve a security guarantee comparable to the
straw-man scheme. Compared to the straw-man scheme, the



adversary in RedFlash may obtain two additional types of pages
in the captured snapshots: type III - pages with all ‘0’s (this type
of pages exists after scrubbing is performed on them); and type
IV - pages storing data duplicates (together with “dup fields”) of
other data than 𝐷 . We show in the following that utilizing the extra
types of pages will not give the adversary additional advantages of
recovering the deleted data node 𝐷 .

From the type-III pages, the adversary surely cannot learn any-
thing about 𝐷 . From the type-IV pages, we discuss two cases: 1)
From duplicates of other data rather than 𝐷 , the adversary cannot
learn anything about 𝐷 either, since they are not correlated to 𝐷

based on our assumption (Sec. 4). 2) From “dup fields”, the adver-
sary can derive duplicate chains. However, since the “dup fields”
corresponding to 𝐷 have been completely sanitized upon deleting
𝐷 , the duplicate chains obtained here will have nothing to do with
𝐷 and cannot be used to derive any knowledge about 𝐷 .

7 EXPERIMENTAL EVALUATION AND
SIMULATION

7.1 Experimental Results for SLC Flash
Real-world implementation and experimental setup. We im-
plemented RedFlash into OpenNFM [28], an open-source NAND
flash controller framework, which has implemented the major op-
erations of an FTL in C. We have modified a few major functions,
including garbage collection, wear leveling, and bad block manage-
ment in the OpenNFM (refer to Sec. 5.2 for details of the new imple-
mentations for those functions). In addition, we have intercepted
the 𝐹𝑇𝐿_𝑊𝑟𝑖𝑡𝑒 function so that it can handle both the regular write
requests invoked by Block_Device_Write(𝑖 , &𝑑𝑎𝑡𝑎) and the secure
deletion requests invoked by Block_Device_Write(𝑖 , NULL).

To perform experimental evaluation over the SLC NAND flash,
we ported [82] RedFlash to LPC-H31315, an electronic development
board equipped with 180MHz ARM micro-controller, 512MB SLC
NAND flash (consisting of approximately 4,000 erase blocks, and 64
pages in each block), and 32 MB SDRAM. After RedFlash is ported,
the electronic board can be used as a secure USB device supporting
secure deletion. The device was attached to a host computing de-
vice (Firefly AIO-3399J [9], Six-Core ARM 64-bit processor, up to
1.8GHz, 4GB RAM, Ubuntu 16) and used as external storage like any
regular USB devices. We used benchmark tool fio [35] to evaluate
the throughput, which was running in the host computing device
and performing I/Os on the attached USB device (formatted using
FAT32). When evaluating the throughput, we did not run the the
real-world workloads used in Sec. 3.2, as they fit the large-size disk
only, but our LPC-H3131 only has 512MB flash storage.
Evaluating lengths of duplicate chains. When adding a new
page to a duplicate chain, RedFlash needs to store all locations of
prior duplicates in the chain to “dup field” of the new page. Since
we only have limited space to store the “dup field”, to avoid over-
whelming the “dup filed”, each duplicate chain should not be too
long. We therefore measured the lengths of the duplicate chains by

5As a low-end electronic board, LPC-H3131 only has 1-2MB/s throughput. This will not
affect most of our experimental results except throughput. However, our evaluation
on throughput is to show additional overhead compared to the baseline scheme, by
running both of them in this low-end board. This additional overhead will not be
significantly different when changing to a high-end board with 100MB/s throughput.

Wear leveling threshold Length
10 3
20 3

Table 4: The length of the longest duplicate chains.

Figure 6: Comparison of I/O throughput between OpenNFM
and RedFlash, obtained from fio benchmark under different
read/write patterns. SR: sequential read; RR: random read;
SW: sequential write; RW: random write.

stressing the flash device as follows: we kept writing data to the
flash device and, once the device was completely filled, we deleted
all the data; we repeated the aforementioned process until the ac-
cumulated data being written reach 50GB. Under different wear
leveling threshold, we obtained the length of the longest duplicate
chain. The results are shown in Table 4. We can observe that the
length of the duplicate chain does not exceed 3 under different wear
leveling thresholds. The results indicate that a duplicate chain is
usually not too long in practice. This is reasonable, since a long
duplicate chain indicates that there are too many invalid pages si-
multaneously present in the flash memory, which is usually avoided
by a good FTL design.
Throughput. To assess how RedFlash affects throughput of a regu-
lar (non-secure) flash storage device, we used original OpenNFM as
a baseline for comparison. Note that we did not compare RedFlash
with existing secure deletion schemes for flash memory, since none
of them can handle duplicates towards ensuring secure deletion.
The threshold for wear leveling was set as 10 (i.e., when the dif-
ference of P/E cycles of two blocks exceeds 10, wear leveling is
triggered) which can ensure good wear leveling effectiveness. The
results are shown in Figure 6. The benchmark evaluated different
I/O patterns including sequential read/write and random read/write.
We can observe that, 1) RedFlash has little influence on read opera-
tions. This is because, RedFlash does not need to modify any logic
relating to reads. 2) RedFlash has influence on write operations.
The write throughput of RedFlash decreases around 10% compared
to that of OpenNFM. This is due to additional operations added
to various functions of FTL, causing additional overhead to writes.
This concludes that compared to a regular non-secure flash device
(for SLC flash), RedFlash achieves the secure deletion guarantee at
the cost of a small additional overhead.

We also assessed the write throughput of RedFlash using real-
world I/O workloads. We chose another workload traces which can
match the storage capacity of the LPC-H3131. The traces were a
portion of SNIA (Storage Networking Industry Association) Nexus
5 Smartphone Traces [5], as listed in Table 5. We did not perform



Name Read(MB) Write(MB)
log176_booting 736 223
log111_email 12 45

log166_webBrowsing 16 77
log156_download 1 712
log186_twitter 55 129
log191_facebook 27 67

log260_faceBookHandOuts 50 129
log201_googleMap 46 147

log235_radioFacebook 19 131
log225_musicTwitter 80 215
log225_musicFacebook 162 270
log230_musicMessage 50 179

log220_musicWebBrowse 120 162
log121_movie 123 4
log152_youtube 1 27

log161_cameraVideo 248 1981
log171_angryBird 24 67

Table 5: Real-world traces collected from SNIA

each trace individually; instead, we created a few trace sets, each
of which contains a few different traces. This is because: 1) each
trace itself is not large enough to write enough data to the flash
storage device to invoke special functions in the FTL like wear
leveling; 2) a real user usually runs multiple different workloads in
his/her computing device, and grouping multiple workload traces
will be closer to real-world scenarios. To simulate different users’
behaviors when using their computing devices, we combine the
traces in Table 5, creating 4 trace sets, each of which is a collection
of traces, representing a typical user profile:

• User profile #1: a user which mainly uses his/her computing
device for work, and the corresponding trace set #1 is: {log176,
log111, log166, log156}.

• User profile #2: a user which mainly uses his/her device for
social networking, and the corresponding trace set #2 is:
{log176, log186, log191, log260, log201, log235}.

• User profile #3: a user which mainly uses his/her device for
listening music, and the corresponding trace set #3 is: {log176,
log225(twitter), log225(facebook), log230, log220}.

• User profile #4: a user which mainly uses his/her device for
video and gaming, and the corresponding trace set #4 is:
{log176, log121, log152, log161, log171}.

Each record in a SNIA trace contains block address and size of the
data being read/written, but does not contain the actual content due
to the privacy concerns. We therefore created a large content file
containing randomly generated data as the data source. We fixed
the wear leveling threshold as 10. To execute each write record
in the trace, we sequentially read a different chunk of data from
the content file and write it to the storage medium. Note that: 1)
the size of the chunk is determined by the write size of the record,
and 2) we neglect the block address of each record. The results are
shown in Figure 7, which double confirm that RedFlash does not
cause too much degradation in write throughput when running
real-world I/O workloads.

Figure 7: Comparison of write throughput between Open-
NFM and RedFlash, obtained by running real-world workload
traces.

Figure 8: Time (ms) for securely deleting a data node in SLC
flash.

Wear leveling threshold WLI
10 1.87%
20 2.22%

Table 6: The WLI value of RedFlash under different wear lev-
eling thresholds.

Overhead for secure deletion. We evaluated the time needed for
securely deleting a data node (stored in a page) when the length
of a duplicate chain varies. Note that when measuring the secure
deletion time, we did not run extra workloads in the device, and
therefore, the time is purely for secure deletion without affected by
other workloads. The result is shown in Figure 8. We can observe
that, the time needed for secure deletion is linear to the length of the
duplicate chain. This is reasonable, since RedFlashwill remove both
the targeted data and the corresponding duplicates upon secure
deletion. The longer the duplicate chain, the more data needed to
be deleted upon secure deletion.
Wear leveling. The service life of flash memory is mainly deter-
mined by effectiveness of wear leveling. We thus assess impact of
RedFlash on the wear leveling. We use Hoover economic wealth
inequality indicator [72], which calculates an appropriately normal-
ized sum of difference of each measurement to the mean. Assuming
there are 𝑛 erase blocks with erase count 𝑒1, 𝑒2, ...𝑒𝑛 , respectively,
we calculate the wear leveling inequality (WLI for short) value as:
𝑊𝐿𝐼 = 1

2
∑𝑛
𝑖=1 | |

𝑒𝑖
𝐸
− 1

𝑛 | |, where 𝐸 =
∑𝑛
𝑖=1 𝑒𝑖 . Intuitively, WLI indi-

cates the fraction of erasures that should be re-assigned to other
blocks to ensure completely even wear [72] and a smaller WLI value
will imply a better wear leveling effectiveness.

To calculate WLI value of RedFlash, we continuously wrote data
to attached USB device incorporating RedFlash, and erased the
device once filled. We repeated aforementioned process until the



Figure 9: Time (ms) for securely deleting a data node in MLC.

total amount of data written reached 50 GB. The wear leveling
threshold is 10 and 20 for each run, respectively. The results for
WLI are shown in Table 6. We can observe that WLI values are
around 2% under different wear leveling thresholds. These small
values indicate good wear leveling effectiveness of RedFlash. We
can also observe that, the WLI value is smaller when the wear
leveling threshold is smaller. This is because: for a smaller wear
leveling threshold, wear leveling will be triggered more frequently,
and erasures are eventually distributed more evenly across the flash.

7.2 Simulation Results for MLC Flash
The major performance difference between RedFlash on SLC and
MLC flash is deleting data stored on a flash page. We therefore also
assess the performance of RedFlash on securely deleting a data
node from MLC via simulations.
Simulation setup.We still relied on the testbed (LPC-H3131, which
runs RedFlash and is attached to the host computing device via
USB) built for SLC. The difference is, when the secure deletion on
a data node is invoked, we simulate each read/program operation
using a delay function, rather than actually perform it (LPC-H3131
is equipped with SLC only, rather than MLC). The amount of time
being delayed for each read/program is corresponding to some
typical value from the datasheet of MLC flash [3]. In this manner,
we can measure the time needed for securely deleting a data node
from MLC flash.
Overhead for secure deletion on MLC. We measured the time
needed for securely deleting a data node when the length of its
corresponding duplicate chain varies. Note that the time is purely
for secure deletionwithout affecting by otherworkloads. The results
are shown in Figure 9. We can observe that: 1) For MLC, the time
needed for securely deleting a data node is linear with the length
of its duplicate chain. The reason is, the time needed to securely
remove data from an MLC flash page is pretty constant and, the
amount of data needed to be deleted for securely deleting this data
node is linear with the length of its duplicate chain. 2) Under the
same length of duplicate chain, secure deletion on MLC requires
more time than that of SLC. This is because: in MLC, RedFlash will
not only scrub pages associated with the duplicate chain, but also
the paired pages (relocating data stored on them before deletion is
performed), which brings extra overhead.

8 RELATEDWORK
We briefly summarize existing secure deletion approaches. Thor-
ough surveys about secure deletion approaches can be found in
various sources [71, 91].
Secure deletion on cloud and database systems. A large num-
ber of existing research works tried to securely dispose of data
outsourced to the clouds [62, 63, 70, 80, 81, 83, 86]. This is achieved
by encrypting the outsourced data, and disposing of keys such that
the encrypted data become inaccessible. Several other schemes in-
vestigated how to securely remove data from databases [11, 12]
and storage systems [19, 22, 37, 90]. Especially, Neuralyzer [89]
and EphPub [23] leveraged domain name system caching to ensure
successful deletion of data when a prefixed lifetime expires.
Secure deletion on file systems/block devices. Several exist-
ing works studied the secure deletion problem in the file system
layer [10, 15, 20, 48, 67, 69] or the block device layer [66]. In general,
over-writing [15, 48] and encryption with ephemeral key [20, 67]
are used to securely remove data from the file systems/block de-
vices. They cannot ensure secure data deletion on flash storage
media because: due to the out-of-place update, data deleted from
upper layers (e.g., the file system) will be temporarily preserved in
the flash memory until garbage collection is performed.
Secure deletion on flash memory. Lee et al. [53, 54] proposed
a secure deletion scheme by forcing current and previous keys of
a file to be stored in the same flash block, so that a file can be
deleted by a single block erasure. Reardon et al. [72] proposed data
node encrypted file system (DNEFS), in which they divided the
entire flash memory into two areas: a data storage area and a key
storage area. They encrypted each data node with a unique key, and
collocated keys in the key storage area. Secure deletion is achieved
by deleting keys in a batch. Since keys are condensed in a small
area, one block erasure can eliminate multiple keys. Peters et al.
proposed DEFY [68], which transformed data using all-or-nothing
transform (AONT), creating a small message expansion. Data can
be efficiently deleted by simply deleting the small expansion due to
the all-or-nothing property.

Having observed that programming a single “1” bit to “0” is
possible (the reverse operation is not allowed), Wei et al.[85] pro-
posed scrubbing to efficiently delete data from a flash page. Wang et
al. [84] minimized scrubbing overheads by organizing data in such
a way that creates scrubbing-friendly patterns. Hasan et al. [43]
observed data leakage at the voltage level after the scrubbing is
performed, and proposed analog scrubbing as a remediation. Ana-
log scrubbing can be used to replace the scrubbing operation in
RedFlash if we want to eliminate data leakage at the voltage level
of SLC flash. TrueErase [32, 33] proposed a full-storage-data-path
framework that performs per file secure deletion and works with
common file systems and solid-state storage. The data in the flash
memory are deleted via block erasure. HiFlash [25], NFPS [46] and
TedFlash [24] explored another type of remnants, namely, the im-
pact of the past existence of the deleted data on the flash memory
layout, which is orthogonal to our work.

9 CONCLUSION
Data duplicates produced by unique internal functions of flash trans-
lation layer may lead to compromise of secure deletion guarantee.



In this work, we have both theoretically and experimentally con-
firmed the existence of such data remnants. We propose RedFlash, a
secure deletion scheme which can efficiently remove both data and
the corresponding duplicates across the entire flash. Security anal-
ysis and experimental evaluation show that RedFlash can achieve
the secure deletion guarantee, at the cost of a small performance
degradation, compared to a regular (non-secure) flash controller.
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