


B. Previous and related work

Previous work by the authors focused on i) extremizing

throughput bounds for a single channel M = 1 [1] and ii)
finding preliminary results for the two channel scenario [2].

The latter paper introduced both lower and upper bounds on

the system throughput which translated the associated channel

assignment problem from a combinatorial problem to a lower

dimensional nonlinear program (NLP). The contribution of this

paper is to partially characterize the minimization of the lower

bound on system throughput.

Related work on throughput optimization of multi-channel

random access systems is too extensive to meaningfully

summarize here, and so only a small number of the most

relevant references known to the authors are mentioned here.

Maximizing throughout through distributed price signalling in

non-cooperative game was investigated in [3]. Slotted Aloha

in which a radio continues to transmit until a collision occurs

is considered in [4]. A seminal work on coordinated and

uncoordinated throughput maximization, focused on machine

to machine (M2M) communications is presented in [5]. Fur-

thermore, a joint optimization technique based on spreading

factor (SF) assignment, energy harvesting (EH) time duration

and transmit power to maximize minimum throughput in

LoRa networks was investigated in [6]. A Bayesian online

backoff algorithm was proposed for studying throughput and

random access delay distribution of unslotted ALOHA systems

in LPWAN setting in [7]. An optimal resource allocation

policy based on spectrum map and radio conditions in the

LoRaWAN setting is studied in [8]. A mathematical model

which accurately estimates how packet error rate depends on

the offered load is proposed in [9]. Network level performance

under the ALOHA protocol using autonomous sensing scheme

allowing independent transmissions of CR users is investigated

in [10]. Random Access Technology (RAT) selection for het-

erogeneous networks (HetNet) using a non-cooperative game

framework is proposed in [11].

C. Outline

The rest of this paper is organized as follows: the system

model is defined in §II, the throughput bounds are reviewed in

§III, throughput minimization in the many small users regime

is addressed in §IV, minimization over M = 2 channels is

addressed in §V, numerical results are given in §VI, and a

conclusion is in §VII. Some proofs are in the Appendix. Table

I summarizes the most common notation.

II. THE RANDOM ACCESS ERASURE COLLISION CHANNEL

The model is from [1], [2]. RV denotes random variable

and IID denotes independent and identically distributed.

General Notation. Let a ≡ b denote equal by definition.

Write [m : n] ≡ {m, .., n} for m,n ∈ N and [n] for [1 : n].
Radios, users, and uplink channels. There are N ∈ N radios,

indexed by i ∈ [N ], each with a wireless uplink to a shared

access point (AP) or base station (BS). Radios are henceforth

termed users. The users and AP have M ∈ N independent

and identically distributed uplink channels. The AP assigns a

TABLE I
SUMMARY OF NOTATION.

Notation Interpretation

M # channels provided by access point (AP)
N # users to be served by AP
Σ sum offered load across all users
R ≡ Σ/M average per-channel load
X
¯

minimum load of a user

X̄ maximum load of a user
Nj users i assigned to channel j
xj = (xij , i ∈ Nj) loads of users assigned to channel j
τ(xj) expected throughput on channel j
µ(xj) average per-user load on channel j
π(xj) congestion on channel j
τ
¯
, τ̄ bounds on per-channel throughput

x = (xj , j ∈ [M ]) user loads assigned to each channel
T (x) average per-channel expected throughput

T
¯
, T̄ bounds on average per-channel throughput

(n, µ) # users and average load for each channel
A feasible set of (n, µ) chanel assignments
Pmin,Pmax combinatorial channel assignment problems

P
¯
, P̄ nonlinear optimization problems

channel j ∈ [M ] to each user i ∈ [N ] and (user, channel)

indices are denoted as (i, j). All packets are the same size, all

transmission have the same duration, and time is slotted into

synchronized packet transmission slots.

Channel erasures. The uncertainty of the wireless channel is

modeled by Bernoulli RVs where qi ∈ (0, 1) is the probability

of non-erasure of a transmission from user i on any channel j,

i.e., any (i, j) message arrives intact at the AP with probability

qi or is corrupted / dropped / lost with probability 1 − qi.
Erasure channels are independent across users, channels, and

time, and are identically distributed across channels and time.

Channel collisions. The AP is subject to collisions in each

time slot on each channel, i.e., i) multiple packets arriving in

the same time slot on the same channel are all lost, but ii) all

packets that are the unique packet arriving on their channel in

a time slot are successfully received.

Contention. Each user i ∈ [N ] is assumed to have a infinite-

backlog of packets for transmission and random access chan-

nel contention. The decision to access the channel randomly

by a user is IID across time and decisions in a given time

slot are independent. The contention probability for user i is

defined as pi ∈ (0, 1) and p = (pi, i ∈ [N ]) is the contention

probability vector for N users. The contention probability is

a design parameter to be optimized in order to extremize the

throughput. As shown in §III-A, the parameter pi is wrapped

into design parameter xi.

III. THROUGHPUT AND THROUGHPUT BOUNDS

The throughput bounds below are from prior work [1], [2].

A. Single channel throughput

Let Nj ≡ (i1, . . . , inj
) ⊂ [N ] be the indices of the nj

users assigned to channel j ∈ [M ]. For user i ∈ Nj , the

probability of a message successfully arriving at the AP is

rij ≡ pijqij . The expected throughput of the AP on channel
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j is the probability of a single message arriving at the AP on

that channel in a given time slot, i.e.,

τ(rj) ≡
∑

i∈Nj

rij
∏

i′∈Nj\i

(1− ri′j) (1)

with rj ≡ (rij , i ∈ Nj) . The change of variables

xij ≡
rij

1− rij
, i ∈ Nj , (2)

describes the offered load xij from user i on channel j and

xj ≡ (xij , i ∈ Nj) is the collection of user loads on the

channel. The channel j expected throughput in terms of xj is

τ(xj) ≡
njµ(xj)

π(xj)
=

njµj

πj
(3)

where

µj = µj(xj) ≡
1

nj

∑

i∈Nj

xij , πj = π(xj) ≡
∏

i∈Nj

(1 + xij).

(4)

The quantities µj , πj are the average per-user (offered) load

and channel congestion on channel j, respectively. Further-

more, define the minimum x
¯
j ≡ mini xij and maximum

x̄j ≡ maxi xij individual user load on each channel j.

Proposition 1 ([1]). With the notation above, the single

channel throughput has lower and upper bounds

τ
¯
(nj , µj) ≤ τj(xj) ≤ τ̄(nj , µj , x

¯ j , x̄j), (5)

where,

τ
¯
(nj , µj) ≡

njµj

(1 + µj)nj
(6)

τ̄(nj , µj , x
¯ j , x̄j) =

njµj

(1 + x
¯ j)

nj

x̄j−µj

x̄j−x
¯ j + (1 + x̄j)

nj

µj−x
¯ j

x̄j−x
¯ j

Remark 1 (Bound interpretation). The lower bound asserts

throughput is minimized by load homogenization: given only

summary statistics (nj , µj) on the actual heterogeneous per-

user loads xj , the worst-case throughput is achieved by the

homogenized load in which each user has identical load

µj . Similarly, the upper bound asserts throughput is maxi-

mized by load extremization: given only summary statistics

(nj , µj , x
¯ j , x̄j) on the actual heterogeneous per-user loads

xj , the best-case throughput is achieved by setting all users

to have load either x
¯ j or x̄j , with the number of each type

such that there are nj users with average per-user load µj .

B. Average multiple channel throughput

Recall the per-channel quantities from §III-A:

(nj , xj , µj , x
¯
j , x̄j). Collect them into lists, for j ∈ [M ]:

n ≡ (nj), x ≡ (xj), µ ≡ (µj), x
¯
≡ (x

¯
j), x̄ ≡ (x̄j). (7)

As channels are homogeneous and independent, it follows that

the expected throughput per channel of the AP is:

T (x) ≡
1

M

∑

j∈[M ]

τ(xj). (8)

The following corollary is immediate.

Corollary 1 ([2]). With the notation above, the AP’s average

per-channel expected throughput has lower and upper bounds

T
¯
(n, µ) ≤ T (x) ≤ T̄ (n, µ, x

¯
, x̄). (9)

where

T
¯
(n, µ) ≡

1

M

∑

j∈[M ]

τ
¯
(nj , µj)

T̄ (n, µ, x
¯
, x̄) ≡

1

M

∑

j∈[M ]

τ̄(nj , µj , x
¯ j , x̄j). (10)

Observe, by construction, N =
∑

j∈[M ] nj for any channel

assignment N . Define the sum, minimum, and maximum

offered load (Σ(x), X
¯
(x), X̄(x)), where

Σ = Σ(x) ≡
∑

j∈[M ]

njµj =
∑

ij

xij

X
¯
= X

¯
(x) ≡ min

j∈[M ]
x
¯
j = min

ij
xij

X̄ = X̄(x) ≡ max
j∈[M ]

x̄j = max
ij

xij (11)

System parameters (M,N,Σ, X
¯
, X̄) satisfy

1 ≤ M < N, 0 ≤ X
¯
≤

Σ

N
≤ X̄. (12)

In words: i) Σ/N ∈ [X
¯
, X̄] ensures Σ is sufficient to serve

all N users a load of at least X
¯

but no more than X̄ , and ii)
M < N is because it is trivial to avoid channel contention

when N ≤ M by assigning each user to its own channel.

C. Assignment and bound extremization

It is of interest to understand the impact of channel as-

signment on T (x) (8). As described, the AP has M channels

available to serve N users, where N > M and typically

N � M .

The N users have offered loads x = (xi, i ∈ [N ]), and

an assignment N = (Nj , j ∈ [M ]) partitions [N ] into M
disjoint subsets, resulting in per-channel offered loads xN =
(xN

j , j ∈ [M ]), which in turn results in per-channel expected

throughputs (τ(xN
j ), j ∈ [M ]) in (3) and a sum expected

throughput T (xN ) in (8). As the assignment N determines the

average per-channel expected throughput T (xN ), the channel

assignment problems are the combinatorial optimizations

Pmin : min
N

T (xN ) Pmax : max
N

T (xN ). (13)

The simple upper bound on the number of possible assign-

ments is NM , which is infeasibly large even for moderate

values of (M,N) in practical scenarios. Structural properties

of the expected sum throughput function T (·) that would

enable an efficient solution or approximation of problems

Pmin,Pmax may exist but are not evident to the authors.

Instead, the authors analyze the nonlinear optimization prob-

lems associated with the expected sum throughput bounds.

The system parameters (M,N,Σ, X
¯
, X̄), viewed as given
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exogenously, determine the set of feasible (n, µ) values, as

defined below.

Definition 1. Given system parameters (M,N,Σ, X
¯
, X̄)

obeying (12), the set A holds all feasible (n, µ) values:

A =







(n, µ) :
∑

j∈[M ]

nj = N,
∑

j∈[M ]

njµj = Σ, (14)

X
¯

≤ min
j∈[M ]

µj ≤ max
j∈[M ]

µj ≤ X̄, 1 ≤ min
j∈[M ]

nj

}

.

The requirement 1 ≤ minj∈[M ] nj ensures each channel is

utilized by at least one user. With the feasible set A defined,

it is natural to consider the extremization of the bounds on the

average per-channel expected throughput:

P
¯
: min
n,µ∈A

T
¯
(n, µ) P̄ : max

n,µ∈A
T̄ (n, µ). (15)

The four problems (P
¯
,Pmin,Pmax, P̄) have ordered values:

min
n,µ∈A

T
¯
(n, µ) ≤ min

N
T (xN ) ≤ max

N
T (xN ) ≤ max

n,µ∈A
T̄ (n, µ).

(16)

This paper offers partial analysis of the minimization of P
¯

un-

der different regimes of the exogenous parameters (N,M, X̄)
in the following sections.

IV. THROUGHPUT LOWER BOUND MINIMIZATION IN THE

MANY SMALL USERS REGIME

The many small users regime is defined as the limit as N ↑
∞ while holding (M,Σ) fixed. The term small is due to the

average load per user Σ/N vanishing to 0. This section is

organized as follows: a parameterized set of feasible points is

defined in §IV-A, the corresponding parameterized asymptotic

throughput is given in §IV-B, and a partial characterization of

the optimal point within the class is given in §IV-C.

A. A class of feasible points parameterized by K

Fix system parameters (Σ,M,X
¯
), obeying (12). The fol-

lowing class of feasible points, puts the minimum number of

users (one) and the minimum per-user load (X
¯

) on K of the

M channels, and balances the remaining N − K users and

Σ−KX
¯

load across the remaining M −K channels.

Definition 2 (Quasi-uniform feasible points). For K ∈ [0 :
M − 1], the quasi-uniform allocation (nK , µK) is

(nK
j , µK

j ) =

{

(1, X
¯
), j ∈ [K]

(

N−K
M−K , Σ−KX

¯N−K

)

, j ∈ [K + 1 : M ]
(17)

Such points are always feasible with respect to Def. 1:

∑

j∈[M ]

nK
j = K · 1 + (M −K) ·

N −K

M −K
= N (18)

∑

j∈[M ]

nK
j µK

j = K1X
¯
+ (M −K)

N −K

M −K

Σ−KX
¯

N −K
= Σ

Remark 2. The focus on quasi-uniform points is motivated

in part by results in §V where, for M = 2 channels, the

throughput lower bound T
¯

is stationary for allocations that

are either load balanced (i.e., K = 0) or imbalanced (i.e.,

K = M − 1). Future work will seek to extremize T
¯

over a

broader class of points.

B. Throughput in the asymptotic many small users regime

Per (10) and Def. 2, T
¯

at (nK , µK), denoted T
¯
(K), is

T
¯
(K) ≡ T

¯
(nK , µK) =

1

M









X
¯
K

1 +X
¯

+
Σ−X

¯
K

(

1 + Σ−X
¯
K

N−K

)

N−K
M−K









.

(19)

Using limn↑∞(1 + 1/n)n = e yields the many small users

asymptotic average per-channel throughput, denoted T
¯

↑(K):

T
¯

↑(K) ≡ lim
N↑∞

T
¯

K =
1

M

[

KX
¯

1 +X
¯

+ (Σ−X
¯
K)e−

Σ−X
¯
K

M−K

]

=
M −K

M

[

X
¯

1 +X
¯

K

M −K
+

Σ−X
¯
K

M −K
e−

Σ−X
¯
K

M−K

]

(20)

Remark 3 (Feasibility and approximation accuracy). With

(M,Σ, X
¯
,K) fixed, it is evident that i) the quasi-uniform

allocations in Def. 2 are feasible for N ≤ Σ/X
¯

but infeasible

for N > Σ/X
¯

, as the per user load in channels K+1 through

M falls below the minimum of X
¯

, and ii) the accuracy of the

approximation T
¯
(K) ≈ T

¯

↑(K) is increasing in N .

The highest accuracy is at the largest feasible value of

N , i.e., N = Σ/X
¯

, where the accuracy of the throughput

approximation in channels K + 1 through M is tied to the

accuracy of the approximation (1+X
¯
)1/X¯ ≈ e. The accuracy

of the latter is decreasing in X
¯

over (0, 1], from perfect

accuracy as X
¯

↓ 0 to a ratio of 2/e ≈ 0.73 at X
¯

= 1.

The lowest accuracy is at the smallest feasible value of N ,

i.e., N = M , where the accuracy of the throughput approxi-

mation in channels K + 1 through M is tied to the accuracy

of the approximation (1 + x)1/x ≈ e at x = x(K) = Σ−KX
¯M−K .

The accuracy of the latter is decreasing in x, and, as x(K)
is increasing in K, the accuracy is highest for K small.

In summary, the approximation accuracy is highest for N
large (i.e., near Σ/X

¯
) and improves when X

¯
is small, and

lowest for N small (i.e., near M ), but improves for K small.

Remark 4 (Connection with classic slotted Aloha throughput

analysis). The value T
¯

↑(0) corresponds to load balancing

across all M channels; the resulting asymptotic average per-

channel throughput is the classic throughput of slotted Aloha

T
¯

↑(0) = Re−R, R ≡ Σ/M. (21)

Viewing the asymptotic throughput as a function of the sum

offered load per channel R ≡ Σ/M , an elementary analysis

yields the conclusion that the asymptotic average per-channel

throughput is initially increasing then subsequently decreasing

in R, reaching the maximum asymptotic throughput of 1/e at

R = 1, i.e., when the offered load per channel is unity.
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rewritten as µ2 ≥ X
¯

for µ2 = (Σ−n1µ1)/(N −n1). Observe

the feasible set defined by h1, . . . , h4 is not polyhedral, on

account of the dependence of h4 on the product n1µ1; in fact

the constraint may also be written as

µ1(n1) ≤ X
¯
+

Σ−X
¯
N

n1
. (31)

B. Balanced and imbalanced allocations

Channel allocations that load balanced and maximally im-

balanced, defined below, are of particular interest.

Definition 4 (Balanced and imbalanced allocations). The

(load) balanced allocation splits users and load equally across

the two channels:

(n1, n2) =

(

N

2
,
N

2

)

, (µ1, µ2) =

(

Σ

N
,
Σ

N

)

. (32)

The (maximally) imbalanced allocation puts one user and

minimum load on one channel, and the remaining users and

allocation on the other channel:

(n1, n2) = (1, N − 1), (µ1, µ2) =

(

X
¯
,
Σ−X

¯
N − 1

)

. (33)

The balanced and imbalanced allocations correspond to

K = 0 and K = M − 1, respectively, in Def. 2. There is no

loss in generality with the imbalanced allocation in placing

the single user on channel 1, due to the channel symmetry.

The balanced and imbalanced throughputs are

T
¯

(

N

2
,
Σ

N

)

=
Σ

2(1 + Σ
N )

N
2

(34)

T
¯
(1, X

¯
) =

1

2

[

X
¯

1 +X
¯

+
Σ−X

¯
(1 + Σ−X

¯N−1 )
N−1

]

.

Definition 5 (Imbalance to balance throughput difference).

The (imbalanced to balanced) throughput difference δib,

viewed as a function of X
¯

, is defined as

δib(X
¯
) ≡ T

¯
(1, X

¯
)− T

¯

(

N

2
,
Σ

N

)

(35)

=
1

2

[

X
¯

1 +X
¯

+
Σ−X

¯
(1 + Σ−X

¯N−1 )
N−1

−
Σ

(1 + Σ
N )

N
2

]

Observe the equivalence:

δib(X
¯
) ≤ 0 ⇔ T

¯
(1, X

¯
) ≤ T

¯

(

N

2
,
Σ

N

)

δib(X
¯
) ≥ 0 ⇔ T

¯
(1, X

¯
) ≥ T

¯

(

N

2
,
Σ

N

)

(36)

C. Necessary conditions for optimality of balanced and im-

balanced allocations

Proposition 3. For M = 2 and X̄ = ∞ and given system

parameters (N,Σ, X
¯
) obeying (12):

• The balanced allocation in Def. 4 is a stationary point

of Problem P
¯

(30) if

Σ ≥ N
(

eW( 2

N ) − 1
)

, (37)

where W denotes the Lambert W function, satisfying

W (x)eW (x) = x.

• The imbalanced allocation in Def. 4 is a stationary point

of Problem P
¯

in the limit as X
¯

↓ 0.

The proof is in the Appendix.

Proposition 4. For M = 2 and X̄ = ∞ and given system

parameters (N,Σ) obeying (12), the imbalanced allocation

has smaller expected throughput than the balanced allocation

in the limit as X
¯

↓ 0.

Proof: The function f(n;x) ≡ (1 + x/n)n is increasing

in n. As such, from Def. 5,

2

Σ
lim
X
¯
→0

δib(X
¯
) =

1

(1 + Σ
N−1 )

N−1
−

1

(1 + Σ
N )

N
2

< 0. (38)

From (36), limX
¯
↓0 T

¯
(1, X

¯
) ≤ T

¯
(N/2,Σ/N).

As X
¯

↓ 0, the imbalanced allocation becomes a single

channel (M = 1) system, and as such its lower throughput

relative to a balanced (M = 2) system in Prop. 4 reflects the

increased throughput achievable with an additional channel.

D. Series approximation of the balance to imbalance through-

put difference

Consider the (N,Σ) plane, and define the regions:

Ri(X
¯
) ≡ {(N,Σ) : δib(X

¯
) < 0}

Rb(X
¯
) ≡ {(N,Σ) : δib(X

¯
) > 0} (39)

where regions Ri(X
¯
),Rb(X

¯
) have boundary

∆ib(X
¯
) ≡ {(N,Σ) : δib(X

¯
) = 0}. (40)

As solution of δib(X
¯
) = 0 is difficult, the first two Taylor

series approximations in X
¯

around X
¯
= X are employed:

δ̄ib(X
¯
) = δib(X) + δ′ib(X)(X

¯
−X) +R1(X)

δ
¯
ib(X

¯
) = δib(X) + δ′ib(X)(X

¯
−X)

+
1

2
δ
′′

ib(X)(X
¯
−X)2 +R2(X) (41)

The first two derivatives of δ′ib (Def. 5) with respect to X
¯

are

δ′ib(X
¯
) =

1

2

[

1

(1 +X
¯
)2

+
(N − 2)(Σ−X

¯
)− (N − 1)

(N − 1)(1 + Σ−X
¯N−1 )

N

]

(42)

δ
′′

ib(X
¯
) =

1

2

[

−2

(1 +X
¯
)3

+
(N − 2)(Σ−X

¯
)− 2(N − 1)

(N − 1 + Σ−X
¯
)(1 + Σ−X

¯N−1 )
N

]

and the Lagrange error for the kth-order Taylor series approx-

imation is defined as

Rk(X) ≡
δ
(k+1)
ib (X)

(k + 1)!
(X

¯
−X)k+1. (43)

Proposition 5. The first (δ̄ib) and second (δ
¯ ib) Taylor series

approximations (41) upper and lower bound the throughput

difference δib(X
¯
) (Def. 5):

δ
¯ ib(X¯

)
(a)

≤ δib(X
¯
)
(b)

≤ δ̄ib(X
¯
), (44)
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(N,Σ) pairs used in Fig. 5 and 6 and ii) the linear (upper)

and quadratic (lower) bounds on the boundary ∆ib(X
¯
) (40)

from Prop. 5. The four (N,Σ) pairs are chosen such that 2 of

them lie in Ri(X
¯
) and other two in Rb(X

¯
) in order to show

the existence of 2 distinct global extremas.

Fig. 5 shows the imbalance to balance throughput difference

function δib(X
¯
) (Def. 5) vs. X

¯
and its linear (δ

¯
ib) and

quadratic (δ̄ib) bounds from Prop. 5: the absence of a root

in the top figure means δib(X
¯
) < 0 for all feasible X

¯
, while

a root near X
¯
= 0.08 is evident in the bottom figure.

Fig. 6 shows four contour plots of T
¯
(n1, µ1) on the (n1, µ1)

plane, for the four (N,Σ) points shown in Fig. 4. The top

(bottom) two plots show the imbalanced (balanced) allocation

minimizes throughput over the feasible set, respectively.

VII. CONCLUSION

The performance of multi-channel random access systems

serving heterogeneous users depends upon the user to channel

assignment, but the corresponding combinatorial optimization

problems (13) are difficult to solve. This motivates the in-

troduction of nonlinear optimization problems that provide

lower and upper bounds (15). Focusing on the lower bound, P
¯
,

this paper analyzed the problem in two regimes: i) the many

small users regime (N ↑ ∞) in §IV, and ii) the two channel

(M = 2) case in §V. The focus is on throughput comparison

among quasi-uniform allocations (Def. 2) or between balanced

and imbalanced allocations (Def. 4), where the results are in

terms of solutions of nonlinear equations (Prop. 2) or Taylor

series approximations of nonlinear equations (Prop. 5).

Ongoing and future work will continue to investigate the

optimization problems P
¯
, P̄ (15), with the focus on character-

izing the optimal allocations (n, µ) as a function of the system

parameters (M,N,Σ, X
¯
, X̄).
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APPENDIX

Only proof sketches are included due to space constraints.

A. Proof of Prop. 3

Proof: The Lagrangian for (30) is used to establish KKT

conditions, i.e., primal and dual feasibility and complementary

slackness. For the balanced point (n1, µ1) = (N/2,Σ/N), the

KKT conditions require ∂
∂n1

T
¯
(n1, µ1) ≤ 0. An analysis of

this inequality, omitted here, yields the condition (37). For the

imbalanced point (n1, µ1) = (1, X
¯
), taking the limit X

¯
↓ 0

yields KKT conditions that analysis, omitted here, shows wil

always hold, ensuring this point is asymptotically stationary.

B. Proof of Prop. 5

Proof: Properties of the balance to imbalance throughput

difference function δib(X
¯
) (Def. 5) include the following

inequalities on the first two derivatives (42):

• δib(X
¯
) is increasing in X

¯
, i.e., δ′ib(X¯

) > 0, over X
¯

∈
(0, Σ

N ).
• δib(X

¯
) is concave in X

¯
, i.e., δ

′′

ib(X¯
) ≤ 0, over X

¯
∈

(0, Σ
N ) for any N ≥ 3.

The proof of these two properties is omitted here, due to space

limitations. Using the Lagrange error Rk(X) (43), the two

approximations (41) are shown to obey the ordering asserted

in Prop. 5 as follows. First, the functions (δib, δ̄ib, R1) are

related as

δib(X
¯
) = δ̄ib(X

¯
) +R1(X) (46)

where

R1(X) =
δ
′′

ib(X)

2
(X

¯
−X)2. (47)

As δ′ib(X¯
) > 0 and δ

′′

ib(X¯
) ≤ 0, it follows that δib(X

¯
) ≤

δ̄ib(X
¯
). Second, the functions (δib, δ

¯
ib, R2) are related as

δib(X
¯
) = δ

¯
ib(X

¯
) +R2(X) (48)

where

R2(X) =
δ
(3)
ib (X)

3!
(X

¯
−X)3 (49)

requires the third derivative δ
(3)
ib (X):

δ
(3)
ib (X) =

6

(1 +X)4
+

N((N − 2)(Σ−X)− 3(N − 1))

((Σ−X) + (N − 1))2(1 + Σ−X
N−1 )

N

(50)

Analysis, omitted here, shows R2(X) ≥ 0 for X < Σ
N and

Σ ≥ 3N/(N − 2). It follows that δib(X
¯
) ≥ δ

¯
ib(X

¯
).
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