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FINITE PERMUTATION GROUPS WITH FEW ORBITS
UNDER THE ACTION ON THE POWER SET

ALEXANDER BETZ, MAX CHAO-HAFT, TING GONG,
THOMAS MICHAEL KELLER, ANTHONY TER-SAAKOV AND YONG YANG

We study the orbits under the natural action of a permutation group G≤Sn on the powerset P({1, . . . , n}).
The permutation groups having exactly n+ 1 orbits on the powerset can be characterized as set-transitive
groups and were fully classified by Beaumont and Peterson in 1955. In this paper, we establish a general
method that allows one to classify the permutation groups with n+ r set-orbits for a given r , and apply
it to integers 2≤ r ≤ 15 with the help of GAP.

1. Introduction

Throughout the paper, we let n ≥ 2 denote a positive integer and let N = {1, . . . , n}.1 By a permutation
group on n letters we mean a subgroup G of Sn endowed with the natural action (g, x) 7→ gx := g(x) :

G× N → N . We call n the degree of the permutation group G. The action of G on N induces an action
of G on P(N ), given by (g, X) 7→ gX = {gx : x ∈ X} : G×P(N )→P(N ). In this case, the elements
being acted on are subsets of N . Accordingly, we shall call the orbits under this action set-orbits. Note
that for all g ∈ G and X ⊆ N , |gX | = |X |. Since there are n + 1 distinct sizes of subsets of N , it
follows that there are at least n+ 1 distinct set-orbits. Additionally, this shows that all sets in the same
set-orbit will have the same cardinality. A set-orbit containing sets of size t will be called a t-set-orbit.
For a given permutation group G on n letters, the number of distinct t-set-orbits under the action of G
on P(N ) will be denoted by st(G) and the total number of set-orbits will be denoted by s(G). Clearly
s(G)=

∑n
s=0 st(G).

Definition 1.1 (Beaumont and Peterson [2]). Given an integer 0 ≤ t ≤ n, a permutation group G on
n letters is called t-set-transitive if for all t-element subsets S, T ⊆ N , there exists g ∈ G such that
gS = T .

In terms of the action of G on P(N ), we see that G is t-set-transitive if and only if st(G)= 1. In other
words, a t-set-transitive group is a permutation group with exactly one t-set-orbit. Clearly, all permutation
groups are 0-set-transitive and n-set-transitive. A 1-set-transitive permutation group is simply transitive
on N .

Definition 1.2 (Beaumont and Peterson [2]). A permutation group G on n letters is called set-transitive
if G is t-set-transitive for all integers 0≤ t ≤ n.
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1We exclude case n = 1 as the only group action on the set {1} is the trivial action.
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Set-transitive groups were studied as early as 1944 by Neumann and Morgenstern [9]. In [2], Beau-
mont and Peterson proved that a set-transitive permutation group on n letters, with n /∈ {5, 6, 9}, always
contains the alternating group An . There has also been significant research devoted to bounding the
number of set-orbits s(G) of a degree n permutation group G. A trivial lower bound is s(G)≥ 2n/|G|.
In [5], Cameron proved that if G has order exp(o(n1/2)), then s(G)= (2n/|G|)(1+ o(1)). In [1], Babai
and Pyber showed that if G does not contain Al (l > t ≥ 4) as a composition factor, then 1

n log2 s(G)≥ c
t for

some positive constant c. In the same paper, they raised the following question: what is inf
( 1

n log2 s(G)
)

over all solvable degree n permutation groups G? This question was answered by Yang in [12].
On the other hand, there has been relatively little work done on the problem of classifying groups in

terms of their number of set-orbits. Beaumont and Peterson [2] successfully classified all set-transitive
permutation groups, and Kantor [6] classified 2, 3, 4-set-transitive groups which are not 2, 3, 4-transitive.
These classifications lend itself to a natural generalization in the following sense. Viewed in terms on
the action of G on P(N ), we see that G is set-transitive if and only if s(G)= n+ 1. Our paper seeks
to completely classify the permutation groups G on n letters satisfying s(G)= n+ r , for small positive
integers r . The paper is laid out in the following manner. In Sections 1 and 2, we give necessary
definitions and useful facts. In Section 3, we develop a general method mimicking the strategy in [2]. In
Section 4, we exemplify the method by classifying groups with n+ 2, n+ 3, n+ 4, and n+ 5 set-orbits.
Then we use GAP [11] to calculate all such groups for r ≤ 15. Before continuing, we state the following
useful facts from [2] and [7].

Given a permutation group G on n letters:

(1) If G contains a t-set-transitive subgroup H , then G is t-set-transitive.

(2) If G is t-transitive, then G is s-set-transitive for all positive integers s ≤ t .

(3) The symmetric group Sn is set-transitive.

(4) The alternating group An is set-transitive for all n ≥ 3.

(5) If st(G)= 1 for some 2≤ t ≤
⌊n

2

⌋
, then G is primitive.2

2. Main theorems

Theorem 3 in [2] states that if G is t-set-transitive, then G is (n− t)-set-transitive for any integer t such
that 1≤ t ≤ n− 1. It is easy to generalize this to the following observation:

Lemma 2.1. If G is a permutation group on n letters and 0≤ t ≤ n is an integer, then st(G)= sn−t(G).

Note that there are n+ 1 distinct sizes of sets in P(N ). Hence, if n is odd, there are an even number
of distinct set sizes, and so Lemma 2.1 implies that a permutation group on n letters must have an even
number of set-orbits. Therefore, if n is odd and a permutation group G on n letters has s(G)= n+r , then
r will have to be odd as well. Now consider the situation where n is even and a permutation group G on
n letters has an odd number of set-orbits. In this case, since st(G)= sn−t(G) for all 0≤ t ≤ n, it follows
that sn/2(G) must be odd. We summarize these results in the next lemma.

2Throughout this paper, we let bxc be the floor function.
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Lemma 2.2. Let G be a permutation group on n letters and suppose s(G)= n+ r .

(1) If r is even, then n is even.

(2) If r is odd and n is even, then sn/2(G) is odd.

Theorem 2.3 (Livingstone and Wagner [7]). Given a permutation group G on n letters and an integer
1≤ t ≤ n

2 , we have st−1(G)≤ st(G).

It follows that if 1≤ t <
⌊ n

2

⌋
− 1, then st(G) > 1 if st−1(G) > 1. We will make frequent use of this

fact in our classification.

Lemma 2.4. Let G be
(⌊n

2

⌋
+ k

)
-set-transitive for a positive integer k. If there exists a prime p such that⌊n

2

⌋
+ k < p ≤ n, then G is (n− p+ 1)-transitive.

Proof. By Theorem 7, Corollary 1 in [2], it suffices to show that p > max
(⌊n

2

⌋
+k, n−

⌊n
2

⌋
−k
)
=
⌊ n

2

⌋
+k.

This is true by assumption, so we are done. �

Lemma 2.5. Let k be a positive integer and let G be a permutation group on n letters that does not
contain An . If there exists a prime p such that

⌊n
2

⌋
+ k < p < 2n

3 , then G is not
(⌊n

2

⌋
+ k

)
-set-transitive.

Proof. Assume for contradiction that G is
(⌊n

2

⌋
+ k

)
-set-transitive, then by Lemma 2.4 such a group G

is (n− p+ 1)-transitive. Since G does not contain An , G is at most
( n

3 + 1
)
-transitive (see [4, p. 152]).

Now notice that n− p+ 1 > n− 2n
3 + 1 since p < 2n

3 and since n− 2n
3 + 1= n

3 + 1, we have reached a
contradiction and thus are done. �

Note that both Lemmas 2.4 and 2.5 hold for k = 0 when n is even. If we find a maximum k0 for which
there exists a prime p such that

⌊ n
2

⌋
+k0 < p < 2n

3 , then G cannot be
⌊ n

2

⌋
+k set-transitive for any k ≤ k0.

If n is odd and such a k0 exists, then G is not
⌊n

2

⌋
+ 1 set-transitive. Thus it is not

⌊ n
2

⌋
set-transitive

either. These results are summarized in the following corollary.

Corollary 2.6. Let G be a permutation group on n letters not containing An , where n is even (odd). Let
k0 be the greatest nonnegative (positive) integer such that there exists a prime p with

⌊ n
2

⌋
+ k0 < p < 2n

3 .
Then for all 0≤ k ≤ k0, G is not

⌊ n
2

⌋
+ k set-transitive.

Proof. If G is even, then the existence of such a nonnegative k0 shows that there exists a prime p such
that 1

2 + k ≤ 1
2 n+ k0 < p < 2n

3 . By Lemma 2.5, G is not 1
2 n+ k set-transitive. For the case of G being

odd, a positive k0 shows that there exists a prime p such that
⌊ n

2

⌋
+ k ≤

⌊ n
2

⌋
+ k0 < 2n

3 . Since this holds
at least for k = 1, it holds for k = 0 since n−

(⌊n
2

⌋
+ 1

)
=
⌊ n

2

⌋
. �

Theorem 2.7. A permutation group G on n letters not containing An is not
⌊ n

2

⌋
+ k set-transitive for any

positive integer values of k ≤ k0 where k0 is the largest integer such that 48− n+1
2 ≤ k0 ≤

5
54 n− 1

2 .

Proof. First note that 48≤ n+1
2 + k0. Due to a result by Breusch [3], which states that there exists a prime

between x and 9
8 x for x ≥ 48, there exists a prime p between n+1

2 + k0 and 9
16 n+ 9

8 k0+
9

16 . Note that
p >

⌊n
2

⌋
+ k for all k ≤ k0. Since k0 ≤

5
54 n− 1

2 , we have

p < 9
16 n+ 9

8 k0+
9

16 ≤
9

16 n+ 9
8

( 5
54 n− 1

2

)
+

9
16 =

2
3 n.

Thus by Lemma 2.5, G cannot be
⌊ n

2

⌋
+ k set-transitive for any k ≤ k0. �
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Remark. For k = 0 the theorem still holds true for even n. For odd n, G is not
⌊ n

2

⌋
set-transitive when

a positive k0 exists because G will not be
⌊ n

2

⌋
+ 1 set-transitive. This theorem is powerful as it shows

that often sets of the same size lie in different orbits. The larger n is, the more set-orbits G will have.
The theorem can be applied to make an upper bound on the amount of letters G can permute and have
exactly n+ r set-orbits. For example, the first value of n for which we get an applicable k0 is n = 81,
which gives k0 = 7. This implies that a permutation group G on n letters not containing An has at least
14 additional set-orbits, which leads to a corollary.

Corollary 2.8. If a permutation group G on n letters that does not contain An has less than n + 16
set-orbits, then n ≤ 81.

The following lemmas are in [1].

Lemma 2.9. If L ≤ G ≤ Sym(�), then s(G)≤ s(L)≤ s(G) · |G : L|.

Lemma 2.10. Assume G is intransitive on � and has orbits �1, . . . , �m . Let Gi be the restriction of G
to �i . Then

s(G)≥ s(G1)× · · ·× s(Gm).

Proof. Since G ≤ G1× · · ·×Gm we can apply Lemma 2.9. Clearly

s(G1× · · ·×Gm)= s(G1)× · · ·× s(Gm). �

Lemma 2.11. Let G be a transitive permutation group acting on a set � where |�|=n. Let (�1, . . . , �m)

denote a system of imprimitivity of G with maximal block-size b (1 ≤ b < n; b = 1 if and only if G is
primitive; bm = n). Let N denote the normal subgroup of G stabilizing each of the blocks �i . Let
Gi = StabG(�i ), and denote s = s(G1). Then

s(G)≥

(
s+m− 1

s− 1

)
.

3. Outline of methods

In this section we will outline a step-by-step method on how we fully classify groups with n+r set-orbits
for 2 ≤ r ≤ 5 which can also be applied to classify groups with n+ r set-orbits for even greater r . To
outline our method we first reduce the amount of letters n on which G could act, then once we have
a reasonable sized list we can test a number of specific permutation groups for the remaining n values.
Throughout the whole method we assume that any permutation group we consider does not contain An

because if it did then s(G)= n+ 1. We will exemplify how to do some of the steps in the calculation
sections of this paper.

Step 0. Choose the r value for which you want to classify all groups with s(G)= n+ r . Let k0 =
⌊ r−1

2

⌋
and find the smallest n such that k0 fits in the bounds specified by Theorem 2.7. The smallest n for which
any k0 appears is n = 81 with k0 = 7. This is “Step 0” because for any reasonable r , say r < 16, we
know that n ≤ 81.

Step 1. Now that we have an upper bound on n we can start eliminating some of the possible n. Right
away, if r is even then we can eliminate all the odd n by Lemma 2.2. Since we need n+ r set-orbits,
we know that G cannot be s set-transitive for at most r − 1 different set sizes s. This is where we can
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use Corollary 2.6. If n is odd then we need a k0 value such that there is a prime n−1
2 + k0 < p < 2n

3
and 2k0 > r − 1. If n is even then we need a k0 value such that there is a prime 1

2 n+ k0 < p < 2n
3 and

2k0+ 1 > r − 1. This is because then we would know that st(G) > 1 for 2k0 different s values in the odd
case, and 2k0+ 1 different s values in the even case (since sn/2(G)= sn−n/2(G)). If we look at a table
of primes and find any such p values for the necessary k0 for a given n, then we can remove that n from
the list of candidates.

Step 2 (Miller’s method). Now we look at our remaining n values and apply a theorem of Miller [8],
which states that if n =mp0+ r , p0 is prime, m ∈N, p0 > m, r > m, then a group G on n symbols, not
containing An , cannot be more than r -transitive. We decompose n so we have values of m, p0, and r that
fit the conditions and we try to find a sufficiently small r . Using Lemmas 2.4 and 2.5, we see if we can
find a small enough p such that

⌊n
2

⌋
+ k1 < p ≤ n, then n− p+ 1 > r will contradict that G is

⌊ n
2

⌋
+ k1

set-transitive. For this, k1 is the same as k0 in the last step but it is not necessary that
⌊ n

2

⌋
+ k1 < 2n

3 . If
we reach a contradiction, then we can remove that n from the list.

Step 3. After applying Miller’s method we have reduced the number of possible groups on n letters that
can have n+ r set-orbits. We will now reduce the number of groups even further using the following
argument. For a given n and r where r < n− 4, if s2(G) > 1 then it follows that s(G) > n+ r , in which
case G does not have n+ r set-orbits. Thus, we can assume s2(G)= 1 which implies that G is primitive
by Theorem 6 in [2]. Similarly, if r < n− 2, s1(G) > 1 implies that s(G) > n+ r , in which case G does
not have n+ r set-orbits. By assuming s1(G)= 1 in this case, we know that G is transitive by Theorem 5
in [2]. In these two cases, we will use [10] to find the structure of the transitive groups. To reduce even
further, we will introduce a fact from [2] which follows simply from the orbit stabilizer theorem.

Fact 3.1. If a permutation group G on n letters is s set-transitive, then
(n

s

)
divides |G|.

Since we know sk1(G) = 1, then
( n

k1

)
must divide |G|. Under the above assumption, G is primitive

or transitive, in which case one only needs to check a few groups. If the above restriction on r and n
does not hold, then we cannot use the fact that st(G)= 1 for any t . Under this situation, one must check
all nontrivial subgroups of Sn . We can use GAP to compute these cases.

Step 4 (computation). At this point, we have a list of possible n for the degree of G, and a list of possible
groups for each n. Now we can simply run a GAP program to calculate s(G) for each candidate, and list
out the ones that have s(G)= n+ r as desired.

Remark. We will do this process by hand for r = 2, 3, 4, 5 to exemplify the process and then use a
GAP program to go up to r = 15. Since we are going in a linear order for r = 2, 3, 4, 5, we will often run
into the same group twice. An example of this is when we consider all primitive groups on eight letters
such that

(8
3

)
= 56 divides |G|, and in a later section we consider all primitive groups such that

(8
2

)
= 28

divides |G|. We will not consider the same groups twice if we have already calculated s(G), but rather
just list the groups we know have s(G)= n+ r from previous sections and then only consider the groups
whose order is divisible by 28 but not 56. There will be several different instances where we can use
previous knowledge to reduce the possible number of groups with n+ r set-orbits.

4. Groups with few set-orbits

Groups with n + 2 set-orbits. Assume a group G on the set N = {1, . . . , n} has n+ 2 set-orbits.
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Looking at only even n and applying Step 1 with k0 = 1, we are left with the following possibilities:

n = 2, 4, 6, 8, 10, 12, 14, 16, 24.

To exemplify Step 2, we will show one of the calculations done. Since 24 = 1× 19+ 5, then G is at
most 5-transitive. Using k1 = 1 we need to find the smallest prime p such that 13 < p ≤ 24, so p = 17.
Thus, if G was 13 set-transitive, then it would be n− p+ 1= 8-transitive, which would contradict that
it is at most 5-transitive. Thus, we know a permutation group on 24 letters cannot have s(G)= n+ 2.

We spare the reader from having to see any more of these calculations. At the end of this method, we
are left with

n = 2, 4, 6, 8, 12.

Before continuing to Step 3, we take care of the trivial case of n = 2. The only permutation groups
on two letters are the trivial group and S2. It happens that the trivial group has s(G) = 4, so we must
include it. We will no longer consider n = 2 for any r .

Now we move on to Step 3. We consider transitive groups on four letters and primitive groups on
6, 8, 12 letters such that 15, 56, 792 divides the group orders, respectively.

Now we move on to Step 4 (computation). We show all of the groups for which s(G)= n+2 in the
following table. For the GAP ID we let nTr be TransitiveGroup(n, r) and nPr be PrimitiveGroup(n, r).
We let nSr be ConjugacyClassesSubgroups(Sn)[r ].

n G |G| GAP ID

2 1 1 2S1
4 C4 4 4T1
4 D8 8 4T3
6 PSL(2, 5) 60 6P1
8 AGL(1, 8) 56 8P1
8 A0L(1, 8) 168 8P2
8 PGL(2, 7) 336 8P5
8 ASL(3, 2) 1344 8P3

12 M12 95040 12P2

Groups with n+3 set-orbits. From the previous computations we know that C2×C2 on four letters and
PSL(2, 7) on eight letters have s(G)= n+3.

For Step 1, we use a k0 value of 2 for odd n and 1 for even n. We find primes in the necessary range
and are left with

n = 3, 4, . . . , 16, 19, 23, 24, 25, 43.

Applying Step 2, we are left with

n = 3, 4, 5, 6, 7, 8, 9, 11, 12.

For n = 3, we check all subgroups of S3. For n = 4, 5 we check the transitive groups. For n =
6, 7, 8, 9, 11, 12 we check primitive groups with order divisible by 15, 21, 56, 84, 330, 792, respectively.
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Note that for the even n we are already done from the previous section. We show the results for all
groups with n+3 set-orbits in a table, using the same GAP identification key as in the previous section.

n G |G| GAP ID

3 C2 2 3S2
4 C2×C2 4 4T2
5 C5 5 5T1
5 D10 10 5T2
7 AGL(1, 7) 42 7P4
7 PSL(3, 2) 168 7P5
8 PSL(2, 7) 168 8P4

11 M11 7920 11P6

Groups with n+4 set-orbits. We know that the same numbers we were unable to remove in the earlier
sections will reappear. Since for even numbers we need k0 = 2, the following n’s can no longer be
removed using Step 1: n = 18, 22, 34, 42. So we must continue with

n = 4, 6, 8, 10, 12, 14, 16, 18, 22, 24, 34, 42.

After Step 2 we have only
n = 4, 6, 8, 10, 12.

So we must check all subgroups of S4, the transitive groups on six letters, and the primitive groups on
8, 10, 12 letters that whose order is divisible by 28, 120, 495. We do not recheck the primitive groups
on eight letters divisible by 56.

Below we list all groups with s(G)= n+4.

n G |G| GAP ID

4 C3 3 4S4
4 S3 6 4T8
6 C3×S3 18 6T5
6 S4 24 6T8
6 S3×S3 36 6T9
6 (C3×C3)oC4 36 6T10
6 C2×S4 48 6T11
6 (C3×C3)oD8 72 6T13

10 PGL(2, 9) 720 10P4
10 P0L(2, 9) 1440 10P7

Groups with n+5 set-orbits. From previous sections we have found five groups with n+5 set-orbits.
For even n we continue to use k0 = 2, and for odd n we take k0 = 3. After Steps 1 and 2 we have the
same even numbers as in the above section, so n = 4, 6, 8, 10, 12. The odd numbers after Step 1 will be
the same as in the n+3 case, but now we must add n = 17, 21, 33, 41. We must apply Step 2 to the odd
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numbers

n = 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 33, 41, 43.

After applying Step 2 we have

n = 4, 5, 6, 7, 8, 9, 10, 11, 12.

Note that once again, we handled all the necessary computations for the even n in the previous section.
So we must check all subgroups of S5, the transitive subgroups of S7, and the primitive groups on 9, 11
letters whose order is divisible by 36, 165 but not 84, 330, respectively. Below we list all groups with
n+5 set-orbits.

n G |G| GAP ID

3 1 1 3S1
4 C2×C2 4 4S6
5 A4 12 5S14
5 S4 24 5S17
6 C2×A4 24 6T6
6 S4 24 6T7
7 C7oC3 21 7P3
9 ASL(2, 3) 216 9P6
9 AGL(2, 3) 432 9P7

10 M10 720 10P6

Remaining computations. We indeed classify all the cases till r = 15 using the same method.
The cases of 12 ≤ r ≤ 15 require some additional work. In each of these cases we could check all

subgroups of Sn(n ≤ 11) using GAP. Since our computers cannot use GAP to compute all subgroups of
Sn(n ≥ 12), we will use Lemmas 2.10 and 2.11 to eliminate nontransitive or imprimitive subgroups of
Sn . It’s important to note that for transitive and primitive subgroups of Sn we can still use GAP since
GAP’s built in library has all primitive groups of degree less than or equal to 4096. We shall discuss the
case when r = 12 in detail and then list the results for 13≤ r ≤ 15 as the process will be very similar.

In the case r = 12, note that we may check the number of set-orbits of all the subgroups of Sn (n ≤ 11)
using GAP, and we can also check all the transitive and primitive subgroups of Sn for n not too large.
We will discuss how to handle the case when n = 12, and the other possible n values can be checked in
a similar way.

Assume the action of group G is not transitive, then the 1-set-orbits will be partitioned into at least two
orbits. Assume it is partitioned into at least three orbits, then s1 ≥ 3 and by Theorem 2.3, we have si ≥ 3
for 1≤ i ≤ 11. Thus s(G)≥ 3·11+2= 35= 12+23, and this is impossible. Then assume the 1-set-orbits
is partitioned in two, then it can be a subgroup of S1×S11, S2×S10, S3×S9, S4×S8, S5×S7, S6×S6. By
Lemma 2.10 we check that in the corresponding cases, the set orbits will be at least 24, 33, 40, 45, 48, 49.
In which case the only possibility is a subgroup of S1×S11, and in this case, G is either S11 or A11.

Assume the action of group G is transitive but not primitive, note that 12= 2·6, 3·4, 4·3, or 6·2, and
by applying Lemma 2.11, we see that all the cases will lead to more set-orbits.
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Assume the action of group G is transitive and primitive, we use GAP to run through all the possible
primitive groups of degree 12 and we see none of them satisfy the requirement.

We list all the results in the next few tables.

Groups with n+6 set-orbits

n G |G| GAP ID

4 C2 2 4S2
6 A4 12 6S31
6 C5oC4 20 6S38
6 A5 60 6S50
6 S5 120 6S53

Groups with n+7 set-orbits

n G |G| GAP ID

5 C4 4 5S6
5 S3 6 5S10
5 C6 6 5S11
5 D8 8 5S12
5 D12 12 5S15
6 D12 12 6S33
7 S5 120 7S89
7 A6 360 7S93
7 S6 720 7S94
8

(((
C2×C2×C2×C2

)
oC2

)
oC2

)
oC3 192 8T38

8
(((

C2×C2×C2
)
o
(
C2×C2

))
oC3

)
oC2 192 8T40

8
(((

C2×C2×C2×C2
)
oC3

)
oC2

)
oC3 288 8T42

8
((((

C2×C2×C2×C2
)
oC2

)
oC2

)
oC3

)
oC2 384 8T44

8
((

A4×A4
)
oC2

)
oC2 576 8T45

8
(
A4×A4

)
oC4 576 8T46

8
(
S4×S4

)
oC2 1152 8T47

9
(
C3×C3

)
oC8 72 9T15

9
(
C3×C3

)
oQ D16 144 9T19

12 M11 7920 12P1

Groups with n+8 set-orbits

n G |G| GAP ID

4 C2 2 4S3
6 C6 6 6S17
8

((
C2×C2×C2

)
o
(
C2×C2

))
oC3 96 8S242

8
((

C2×C2×C2×C2
)
oC2

)
oC3 96 8S247

8
(((

C2×C2×C2
)
o
(
C2×C2

))
oC3

)
oC2 192 8S268

8
(((

C2×C2×C2×C2
)
oC2

)
oC3

)
oC2 192 8S270

8 A7 2520 8S293
8 S7 5040 8S294

12 PSL(2, 11)oC2 1320 12T218
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Groups with n+9 set-orbits

n G |G| GAP ID

5 C2×C2 4 5S5
6 C2×A4 24 6S40
6 S4 24 6S41
6 C2×S4 48 6S49
7 A5 60 7S81
8

((
C2×C2×C2×C2

)
oC3

)
oC2 96 8S240

9
(
C3×C3

)
oQ8 72 9S370

9 A8 20160 9S551
9 S8 40320 9S552

10 S6 720 10T32

Groups with n+10 set-orbits

n G |G| GAP ID

6 C5 5 6S14
6 S3 6 6S16
6 C3×C3 9 6S28
6 D10 10 6S29
6

(
C3×C3

)
oC2 18 6S35

6 C3×S3 18 6S37
6 S3×S3 36 6S45
8 GL(2, 3) 48 8S216

10 A6 360 10S1396
10 PSL

(
2, 8

)
504 10S1448

10 PSL
(
2, 8

)
oC3 1512 10S1539

10 A9 181440 10S1590
10 S9 362880 10S1591
12 PSL(2, 11) 660 12T179

Groups with n+11 set-orbits

n G |G| GAP ID n G |G| GAP ID

5 C3 3 5S4 8 SL(2, 3) 24 8S154
5 S3 6 5S9 9

(
C2×C2×C2

)
oC7 56 9S355

7 D14 14 7S48 9
((

C3×C3×C3
)
oC3

)
oC2 162 9S457

7 C2×
(
C5oC4

)
40 7S75 9

((
C3×C3×C3

)
oC3

)
oC2 162 9S458

7 S5 120 7S87 9
(
C2×C2×C2

)
o
(
C7oC3

)
168 9S462

7 C2×A5 120 7S88 9
((

C3×C3×C3
)
oC3

)
o
(
C2×C2

)
324 9S497

7 C2×S5 240 7S92 9 PSL(3, 2)oC2 336 9S499
9

(((
C3×C3×C3

)
o
(
C2×C2

))
oC3

)
oC2 648 9S522

9
(((

C3×C3×C3
)
o
(
C2×C2

))
oC3

)
oC2 648 9S524

9
((((

C3×C3×C3
)
o
(
C2×C2

))
oC3

)
oC2

)
oC2 1296 9S534

9
(
C2×C2×C2

)
oPSL(3, 2) 1344 9S535

10
(
C5×C5

)
o
((

C4×C4
)
oC2

)
800 10S1496

10
(
C2×C2×C2×C2

)
oS5 1920 10S1542

10 C2×
((

C2×C2×C2×C2
)
oA5

)
1920 10S1543

10 C2×
((

C2×C2×C2×C2
)
oS5

)
3840 10S1561

10
(
A5×A5

)
oC2 7200 10S1569

10
(
A5×A5

)
o
(
C2×C2

)
14400 10S1576

10
(
A5×A5

)
oC4 14400 10S1577

10
(
A5×A5

)
oD8 28800 10S1584

11 A10 1814400 11S3091
11 S10 3628800 11S3092
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Groups with n+12 set-orbits

n G |G| GAP ID

4 1 1 4S1
6 C4×C2 8 6S24
6 D8 8 6S27
6 D8×C2 16 6S34
8 C7oC6 42 8S196
8 PSL(3, 2) 168 8S264

10 (C5×C5)oC8 200 10S1311
10 (C5×C5)o(C8oC2) 400 10S1418
10 (C2×C2×C2×C2)oA5 960 10S1504
10 (C2×C2×C2×C2)oS5 1920 10S1541
12 A11 11!/2
12 S11 11!

Groups with n+13 set-orbits

n G |G| GAP ID n G |G| GAP ID

5 C2×C2 4 5S7 8 (C4×C4)oC2 32 8S181
6 D8 8 6S26 8 ((C4×C4)oC2)oC2 64 8S226
7 C7 7 7S23 8 ((C4×C4×C4)oC4)oC2 64 8S227
7 C3×S3 18 7S51 8 ((C4×C4×C4)oC4)oC2 64 8S228
7 C5oC4 20 7S53 8 (D8×D8)oC2 128 8S259
7 S4 24 7S63 8 C2×S5 240 8S272
7 C3×A4 36 7S71 8 C2×A6 720 8S286
7 (C3×C3)oC4 36 7S73 8 S6 720 8S287
7 S3×S3 36 7S74 8 C2×S6 1440 8S292
7 C2×S4 48 7S78 9 C9oC6 54 9S354
7 A4×S3 72 7S82 9 PSL(3, 2) 168 9S460
7 (C3×A4)oC2 72 7S83 11 PSL(2, 11) 660 11S2754
7 C3×S4 72 7S84 13 A12 12!/2
7 (S3×S3)oC2 72 7S85 13 S12 12!
7 S4×S3 144 7S90

5. Closing remarks

Now that a general method is developed for calculating all groups with n+r orbits where r is not
too large. The GAP code used for the calculation is available at https://www.math.txstate.edu/research-
conferences/summerreu/yang_documents.html. We have successfully classified all the cases for r ≤ 15.
We remark that by far the most computationally taxing step is finding all the subgroups of Sn . If one
could come up with a method to circumvent this, the classification could go much farther. Another
computationally taxing step is calculating how many set-orbits a large group has. If both of these steps
can be improved upon, the classification could go further.

http://gato-docs.its.txstate.edu/jcr:71ee1137-c3dd-42a8-8e92-cdfc104984b6
http://gato-docs.its.txstate.edu/jcr:71ee1137-c3dd-42a8-8e92-cdfc104984b6
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Groups with n+14 set-orbits

n G |G| GAP ID

6 S3 6 6S19
6 A4 12 6S30
6 S4 24 6S44
8 C2×A4 24 8S157
8 (C2×C2×C2)oC4 32 8S176
8 C2×S4 48 8S214
8 ((C2×C2×C2×C2)oC2)oC2 64 8S229
8 S5 120 8S257

10 (C5×C5)oD8 200 10S1305
10 (C5×C5)oQ8 200 10S1307
10 (C5×C5)o(C4×C2) 200 10S1309
10 ((C2×C2×C2×C2)oC5)oC4 320 10S1386
10 (C5×C5)o((C4×C2)oC2) 400 10S1419
10 C2×

(
((C2×C2×C2×C2)oC5)oC4

)
640 10S1472

14 A13 13!/2
14 S13 13!

Groups with n+15 set-orbits

n G |G| GAP ID

5 C2 2 5S3
6 C2×C2×C2 8 6S22
6 D8 8 6S23
7 C2×A4 24 7S60
7 S4 24 7S67
7 S4 24 7S70
8 S4 24 8S158
9 (C3×C3)oC6 54 9S352
9 (C3×C3×C3)oC3 81 9S401
9 ((C3×C3)oC3)o(C2×C2) 108 9S425
9 ((C3×C3×C3)oC3)oC2 162 9S459
9 ((C3×C3×C3)o(C2×C2)oC3 324 9S496
9 (S3×S3×S3)oC3 648 9S523
9 C2×A7 5040 9S548
9 S7 5040 9S549
9 C2×S7 10080 9S550

10 ((C2×C2×C2×C2)oC5)oC4 320 10S1385
13 M12 95040 ?

15 A14 14!/2
15 S14 14!

? Here M12 acts transitively on 12 elements (with 14 set-orbits in this action) and trivially on the other element.
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