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Abstract

If G is permutation group acting on a finite set Q, then this action induces a natural action of G on the
power set Z(Q). The number s(G) of orbits in this action is an important parameter that has been used in
bounding numbers of conjugacy classes in finite groups. In this context, inf(log, s(G)/log, |G|) plays a role,
but the precise value of this constant was unknown. We determine it where G runs over all permutation
groups not containing any A;,/ > 4, as a composition factor.
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1. Introduction

Let G be a permutation group acting on a finite set Q of size n. Then G induces a
natural action on the power set &2(Q). The orbits of this action are called set orbits
and we let s(G) denote the total number of set orbits in this action. This number was
studied by Babai and Pyber in [1]; in particular, they proved that if G is a permutation
group of degree n with no composition factor isomorphic to A for k > ¢ (where t > 4)
then s(G) > 2¢"/! for some absolute constant ¢; > 0. Clearly ¢; depends on ¢, but no
value or bound for ¢; was given. As a corollary, they obtained s(G) > |G|/("1°%21 for
a constant ¢, which depends only on ¢ but was also unspecified. This latter bound
plays a crucial role in finding lower bounds for the number of conjugacy classes of
finite groups. The best such bounds are currently obtained via Pyber’s approach [6],
which relies on the bound on set orbits. It is therefore desirable to have an idea of
the size of c¢;, or even its exact value. It turns out that with today’s computational
power, it is possible to determine ¢, in some situations. We focus on the important
case when ¢ = 4, that is, avoiding any simple alternating composition factor. For ¢ = 4
we can restate the above bound by saying that there is an absolute positive constant c3

This research was supported by NSF-REU grant DMS-1757233 and NSA grant H98230-21-1-0333.
Y. Yang was also partially supported by a grant from the Simons Foundation (#499532).

© The Author(s), 2022. Published by Cambridge University Press on behalf of Australian Mathematical
Publishing Association Inc.

89

® CrossMark
https://doi.org/10.1017/5S0004972721001064 Published online by Cambridge University Press


http://dx.doi.org/10.1017/S0004972721001064
https://orcid.org/0000-0002-9500-8739
https://orcid.org/0000-0003-3901-8585
https://orcid.org/0000-0002-4768-7546
https://orcid.org/0000-0003-1730-6180
https://orcid.org/0000-0003-4671-8088
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0004972721001064&domain=pdf
https://doi.org/10.1017/S0004972721001064

90 M. Gintz et al. [2]

such that for any permutation group G with no simple alternating composition factor
we have s(G) > |G| and the best possible value for c3 is inf(log, s(G)/log, |G|). We
determine this value and also the corresponding permutation groups that attain it. Our
main result is the following theorem.

THEOREM 1.1. We have

k terms
. f(lngs(G)) IOgZS(M122M122542"'?S4)
inf[ —=——=) = =M,
log, |Gl k—co log, Mot M1z 2 Syt -+ 0S4l
—

k terms

where the infimum is taken over all permutation groups G not containing any A;,[ > 4,
as a composition factor. (Here M1, acts naturally on 12 elements.)

We will give a good estimate for the value M in Theorem 2.11.

While we believe that the result is nice, its proof, admittedly, is not. By its nature the
proof requires some subtle, but tedious, estimates and lots of calculations, The clean
end result justifies the effort.

For solvable groups, inf(log, s(G)/log, |G|) has already been determined in [3] to
be ~ 0.18939, which is obtained by the group G = S4¢--- ¢ S4. The value of ¢; has
also been studied. In [9], the ratio log, s(G)/n was considered for solvable G; here
G=AT(Q2*1S40---15, gave the minimum. In [10], the same ratio for arbitrary G with
no simple alternating composition factors was determined and the group that yields the
minimum is G = Myy t M5 0S40 --- 0S4, Some more general situations have recently
been studied in [8].

The main difficulty of this and the previous papers is to determine a sequence of
groups that achieves the infimum. The experience gained in the previous work allows
us to narrow this down to a few candidates with some thorough calculations. The other
major challenge of this paper is that much tighter estimates than before are needed
to eliminate candidate groups that give sequences very close to the one we ultimately
prove to yield the infimum.

2. Main results

We use H @ S to denote the wreath product of H with S where H is a group and S is
a permutation group.

Let G be a permutation group and s(G) denote the number of set orbits of G.
Following the notation in [3], we let ds(G) = log, s(G)/log, |G|.

We provide some preliminary facts about transitive groups. Let G be a transitive
permutation group on a set {2 where |Q| = n. A system of imprimitivity is a partition
of Q which is invariant under the action of G. A transitive group is primitive if the only
systems of imprimitivity are 1-sets and Q itself. Let (Q,...,€Q,,) denote a system of
imprimitivity with maximal block-size b (where 1 < b <n,bm =n and b =1 if and

https://doi.org/10.1017/5S0004972721001064 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972721001064

[3] Set orbits of permutation groups 91

only if G is primitive). Let N be the intersection of the stabilisers of the blocks. Then
G/N is a primitive group acting on the set of blocks €.

Let G be a transitive permutation group of degree n that is not primitive. If we have
a system of imprimitivity with m > 2 blocks of size b with b maximal, then G < K ! P
where K is a permutation group of degree n/m and P; is the primitive group acting on
the m blocks. We may keep doing this and, after reindexing for convenience, we have
G S H Py ¢--- L Pj where each P; is primitive and H is a permutation group. In this
case, we say that G is induced from H.

The following two results are from [1].

LEMMA 2.1. If L £ G < Sym(Q), then s(G) < s(L) < 5(G) - |G : L|.

LEMMA 2.2. Assume that G is intransitive on Q and has orbits Qq, ..., Q,,. Let G; be
the restriction of G to Q. Then s(G) > s(G) X - - - X 5(Gy,).

Suppose the action of G on € is not transitive. Since the number of set orbits will
increase with the number of orbits on €, we may assume that G has two orbits €} and
Q,. Let G; denote the restriction of G to Q;. Then G < G| X G, and |G| £ |G| - |G2l.
By Lemma 2.2, s(G) > s(Gy) - s(Gz). Then
log, s(G) o 108y (s(G1) - 5(G2)) _ log, s(Gy) + log, 5(Go)

log, |G|~ logy(IGi] - 1Gal) log, |G| + log, |G|
> min{ds(G), ds(G>)}

ds(G) =

(since (a + b)/(c + d) = min{a/c,b/d} for positive numbers a, b, c and d). Thus, in
order to prove Theorem 1.1, we need only consider transitive groups.

LEMMA 2.3. Let G =H P be a permutation group of degree nm where H is a
permutation group of degree n and P has degree m. Then ds(H) > ds(G).

PROOF. Let F = H X H X - - - X H with m terms. Note that F < G and s(F) = s(H)" by
Lemma 2.2. Also s(F) > s(G) by Lemma 2.1 and |H|" = |F| < |G]. Then
mlog, s(H) log, s(H)" log,s(F) _ log,s(G)

ds(H) = = = > = ds(G). |
S(H) mlog, |H| _ log, H"  log, |F| ~ log, |G| (6

We also make use of Tables 1 and 2 in [10]. Table 1 provides lower bounds for the
number of set orbits of a primitive group and Table 2 provides upper bounds on the
orders of primitive groups not containing A;, / > 4, as a composition factor.

We introduce several sequences to assist with our proof. Define {ai}i>-1 by
a_ = s(My) = 14 and ag = s(M2 t Myz) = 604576714, Let a; = (“}**) for k > 1. The
value of a_; may be easily verified in GAP [7], and we explain ag shortly. Define
the sequence {br}rs0 by bo =0 and bp.y =4 - by + 1. The explicit formula is by =
(4% — 1)/3, which may be easily checked by induction. Lastly, define

o= log,(ax) _ log,(ax)
, log2(9504013'4k - 24bc) 13-4k -log, 95040 + by - log, 24"
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The following calculation shows that ¢y is decreasing:

a+3
log, (ax+1) 10g2( Y )

B 10g,(95040134" . 24bur) 4k log, 9504013 + (4b; + 1) - log, 24
< 4log, ax
T 45+ log, 950403 + 4 - by - log, 24 + log, 24

log, ay
= ¥ log, 950401 + by - log, 24
We may obtain using Maple that ¢; = 0.129675, ¢, ~ 0.128179, c3 =~ 0.127806 and ¢4 =~
0.127712. Also cg < 0.1276818245.

To calculate s(M; ¢ M1,), we consider the structure of the group action of M}, and
provide a method for calculating s(G ! M1,) in general. A partition of a positive integer
n expresses n as the sum of a sequence of strictly positive integers. Let IT denote
the set of all partitions of 12 and suppose that m € IT is a partition of 12. Let B(r)
denote the number of terms in the partition, say B(n) = n; + ny + - - - + n;, where n;
is the number of occurrences of the largest term in the partition, n, is the number
of occurrences of the second largest term and so on. Define F(rr) = ny!ny!---n;!. For
example, if r = (4,2,2,1,1,1, 1), thenn; = 1, n, = 2 and n3 = 4, which gives B(r) =7
and F(rr) = 1!2!4!. Let P(n, k) denote the number of ways to permute k objects out of
n, so P(s(G), B(r))/F(r) gives the number of ways of choosing B(rr) orbits from the
set orbits of G with repetitions described by ny, ny, ..., n;. Finally, we define N(r) to
be the number of orbits of M}, on all the multiset permutations (permutations with
repetitions) of a set of 12 elements with the partition 7 as multiset structure. Table 3 in
[10] provides a summary of this information. Thus we can calculate s(G ¢ M1,) using

P(s(G),B
(G M) = ) Ny - D
mell

and Table 3 in [10] and verify that ay = 604576714. The GAP code for these calcu-
lations is available at https://www.math.txstate.edu/research-conferences/summerreu/
yang_documents.html.

Ck+1

Ck.

LEMMA 2.4 [10, Lemma 2.3]. Let G be a transitive permutation group acting on a

set Q, where |Q| = n. Let (Q4,...,Q,,) denote a system of imprimitivity of maximal

block-size b. Let N denote the normal subgroup of G stabilising each of the blocks Q.

Let G; = Stabg(Q;) and s = 5(Gy). Then

(1) s(G) = s"/IG/N|,

2) s(G) = (St’fl_l) and equality holds if G/N = S,,,.

LEMMA 2.5. Let G be a permutation group that does not contain any alternating

group A; with | > 4 as a composition factor and suppose G is induced from H. If
log,(s(H)) _ log,(24%) > B, 2.1

log, |H| log, |H|

where @ = 23/60 and 0 < 8 < 3/20, then log,(s(G))/log, |G| = S.
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PROOF. We may assume G < H!P;¢---'P; where each P; is primitive and
deg(P;) = m;. By (2.1), s(H) > 24% - |HP. Also |Py| < (24!/3)ym~1 by [5, Corollary 1.5].
By Lemma 2.4,

24am |H|Bm1
240m-1)/3
> 247 - |HP™ - 240 mDyE > pg0 gL PP

s(HUPy) > s(H)™ [|Py| > =24 - |HP™ . (24(1/3mi=1))3/20

Thus
log, s(H ¢ Py) log, 24

log |1 P\l Togy|H 1Pyl =
By induction,
logy s(HUPy 2220 P)) log, 24¢ > B,
log, |[H P2+ 2Py log, IHt Py 2.+ P

from which ds(G) > log, s(Ht Py t--- 1 P;)/log, [H Py ¢--- 2 Pj| by Lemma 2.1. O

LEMMA 2.6 [5]. If H be a primitive group of degree n where H does not contain A,
then:

(1) |H| <50-nVe;
(2) |H| <3"and |H| < 2" ifn > 24;
3) |H| < 2%7" vwhen n > 25 and n # 32.

PROPOSITION 2.7. Let G be a primitive permutation group of degree n, not containing
A; with | > 4 as a composition factor. Then ds(G) > cg.

PROOF. Let G be a primitive permutation group of degree n not containing A;, for
[ > 4, as a composition factor. If 7 > 25 and n # 32, then |G| < 2°7%" by Lemma 2.6,
s0 (G) > 2"/|G| = 2%%" and

log, s(G) _ log, 2024n 24

= — > 0.3157 .
log, |G| ~ log, 207" 76 g >

ds(G) =

If n = 32, then s(G) > 361 by Table 2 of [10]. Also |G| < 2°? by Lemma 2.6. So
log, s(G) o log, 361
log, |G|  32-log,2

If n < 25, we note that s(G) > n + 1 and |G| < 3" by Lemma 2.6. For 2 < n < 20, direct
calculation shows that

ds(G) =

> 0.2654 > cg.

log, s(G) S log,(n + 1)

ds(G) =
S(G) log, |Gl nlog, 3

> Cg

for each n. For n = 21,22,23 and 24, we use the upper bounds for |G| in Table 2 of
[10]. In all cases, ds(G) > 1.66 > cg. O
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THEOREM 2.8. Let G be a transitive permutation group not containing any compo-
sition factors A;, 1 > 4. Let G be induced from H where H is a primitive permutation
group of degree n. If H is different from M, then ds(G) > cg.

PROOF. By Lemma 2.5, it suffices to show that
log, s(H) 5 log,(24)
log, |H| log, |H|

for all n. Suppose n > 25 and n # 32. Then |H| < 2°7" and s(H) > 2"/|H| > 2°?*" by
Lemma 2.6. Then
1 H) — 2 log, 24 _ 23/60 L Jog, 24
0% S(H) 5 log 24 0-24n — log, 47F) _ 24 @lom:2% (505 .
log, |H| 0.76n 76 0.76 - 25
Suppose 1 = 32. Then s(H) > 361 and |H| < 2 by Table 2 of [10] and Lemma 2.6 and
SO

> Cg

log, 361 — 2 log, 24
log, 232

For 21 <n <24 and n = 14, 15, 16 and 17 we refer to Tables 1 and 2 in [10] to find
bounds for s(H) and |P,|. Direct calculation shows that the inequality holds.

For 3 < n <13 and n = 18,19 and 20, we note that s(H) > n + 1. We use the upper
bounds for |P;| from [10] and direct calculation shows that the inequality holds in all
cases excluding M.

We need to consider n = 2, 3 and 4 differently. We note that by Lemma 2.7, G is not
primitive and so we may assume that G < H ¢ Py ¢ - - - 2 P; where each P; is primitive of
degree m;. Let K = H P;. We show that

>0.21 > Cg.

log, s(K) % log, 24
log, K| log, K|

Suppose that n = 4. Then s(H) > 5 and s(K) > 5™ /|P,| by Lemma 2.4. Also |H| <
24.1f m; > 25 and m; # 32, then |P;| < 2076m by Lemma 2.6. Then

> Cg. (*)

log, (5™ /2076m) % log, 24
log,(24m: - 20.76m) 25 . ]og, 24 - 2076

If m; = 32, then |P;| < 319979520 by [10]. So s(K) > 5%2/319979520. We verify
that (x) is satisfied.

For 5 < my < 24 we use the bounds for |P;| in [10] and the estimate s(K) > 5™ /|P;|
and direct calculation shows that () is satisfied in all cases except when P; = M. If
Py = M, we calculate s(S4 t M) = 5825 by the method outlined above. Since |M,| =
95040, direct calculation shows that (%) is satisfied.

For 2 < m; < 4, we note that s(K) > (s(}:’()l;)'_*f‘) = (42’“) by Lemma 2.6. If m; = 4,

then |Pq] £ 24 and s(K) > (i) =70. It is easy to see that () is satisfied. Similarly,
direct calculation shows that (x) is satisfied when m; = 2 or 3.

> 0.279 > cs.
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If n = 3, then s(H) > 4 and s(K) > 4™ /|P,| by Lemma 2.4. If m; > 25 and m; #
32, then |P;| < 207%™ by Lemma 2.6 and |K| = |H|™ |P;| < 6™ -2076™ since |H| < 6.
Thus, we see that

log, s(K) _ 310824 _ logy(4™ /207m) B 10,24
log, K| log, [K| = log, 6™ - 2076m  ]og, 625 . 20.76:25

=0.349 > cs.

For my = 32 and 5 < m; < 24 with P; # M, and m; # 8, the bounds in [10] and
s(K) = 4™ /|P;| show that (%) is satisfied. If P; = M, then s(S3 ¢ M) = 862 by the
method outlined above. Direct calculation shows that (x) is satisfied.

For 2 < m; <4 and m; = 8, the bounds s(K) > (s(?()lg)lfln”) = (3+3m') and the bounds
for |Py| in [10] show that () is satisfied by direct computation.

Suppose that n = 2. Then |H| = 2 and s(H) > 3. If m; > 25 and m; # 32, then |P| <

20-76m  Also s(H ¢ Py) > 3™ /|P,|. Then

logy s(K) _ 10824 _ logy(3™/207m) 2 1og, 24
log, K| log, K| = log,2m -2076m ~ Jog, 225 . 207625

= 0.664 > Cg.

For m; =32 and 12 < m; <24 and Py £ M;,, we use the bound s(K) > 3™ /|P;|
and the bounds in [10]. Direct calculation shows that (x) is satisfied. If P; = M,, then
$(S2 ¢ M5) = 120 by the method described above. We verify that (%) is satisfied.

For 2 < m; < 11, we use s(K) > (s(i’()l_;)]flm ‘) = (2+2'” ‘). Direct calculation shows that
(%) is satisfied.

Therefore, ds(G) > cg provided H is different from M ;. |

THEOREM 2.9. Let G be a transitive permutation group where G does not contain any
alternating group A;, | > 4, as a composition factor. Let G = M1z ¢ Py ¢+ -t P; where
each P; is a primitive group. If Py is different from My, then ds(G) > cs.

PROOF. Note that s(M;) = 14 and [M 5| = 95040. Let L = M, ¢ Py, where deg(P) =
my > 2. By Lemma 2.4, s(L) > 14™ /|Py]. Also |L| = 95040™ - |P;|. By Lemma 2.5, it
suffices to show that for all m; > 2,

23
() = logs@) _ g loe 24

> Cg.
log, || log, || 8

If m; > 25 and m; # 32, then |P;| < 2°7%™ by Lemma 2.6. Then s(L) > 14™ /20.76m
and

log,(14/2076) 2 log, 24

*(L) > -
@) 10g,(95040 - 2076) 25 -10g,(95040 - 20-76)

> 0.172 > cg.

If m; = 32, then |P1| < 319979520 and so s(L) > 1432/319979520. Thus we see that
*(L) > 0.164 > c3.

For 5 < m; < 24, bounds for |P;| are obtained from [10] and x(L) > cg is verified
by direct computation.
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For the remaining computations, we use Lemma 2.4 to get a better bound:

S(M]z) -1+ ml) _ (S(Mlz) -1+ ml)

si) 2 ( s(Mpp) — 1 13

If my =4, then |Py| <24 and s(L) 2 (}}) = 2380, so *(L) > 0.133 > c5. If m; =3,
then |P1] < 6 and s(L) > (}3) = 560, s0 *(L) > 0.141 > c5. If m; = 2, then |P|| < 2 and

S(L) 2 (}3) = 105, 50 *(L) > 0.145 > 5.
Therefore, deg(P;) = 12 and P, = M. O

THEOREM 2.10. Let H be a transitive permutation group where H does not contain any
alternating group A;, | > 4, as a composition factor. Let H = My t M3 0S40+ 08y,
S

t terms

where t > 0. Then ds(H 0S4 084084084 084) < ds(H Py -+t Pj) where each P; is a
primitive group if deg(P) # 4.

PROOF. As calculated before, s(M, ¢ M15) = 604576714 and [M, : M 5| = 950403, If
K is an arbitrary group, |K ¢ S| = |K|* - 24, and so one can easily verify by induction
that |[H| = 95040134 - 247 = 95040!34 . 244'-/3,

Next we need some bounds on s(H ¢S4 284084 284284) and s(HPy2---2P)).
We handle the first group by defining the sequence Ay = s(H), A; = s(H1Sy),
Ay =s(H1S4084), A3 =s(H1S4284084), As=s(H1S40854084084) and As =
S(HUS40840840840S4). By Lemma 2.4(2), Ajl = (A"IS) for 0 <i<4. Hence
A1 = (A +3)(A; + 2)(A; + 1)(A;))/24 and A,y +3 < (A; +3)*/24 since Ay > ag =
604576714. For simplicity, we set Ag = A. Then

4 4944 16 1024
A5=A4+3 S(A4+3) S((A3+3)/24) _ (A3 +3) S__.<(A+3)
4 24 24 245 24341

Also |[H 0542842084 284 08,4 = |H|'0%* . 2434 > |H|1024 . 2 881024 Consequently,

log,((A + 3)102# /2434
log, [H[102% - 24341
_ logy(A + 3)1024 _og, 2434
log, |H[102+ . 2.8§102¢
logy(A+3)  341-log, 24
~ Jog, 2.88H] _ 10241og, 2.881H]

ds(H 1S4 20854084084084) <

Next we obtain a similar bound for s(H ¢ Py ¢---2 P;). Consider s(H ! P;) where
deg(P;) = my # 4. Note that s(H ¢ P;) > A™ /|P;| by Lemma 2.4(1). From the proof of
Lemma 2.5,

log, A™ /|P)| B log, 24
log, [HI™ - |Py|  log, |H|™ - |Py|

ds(HUPy -1 Pj) 2
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Since |P;| < 3™ by Lemma 2.6, we have

log, A log, |P Z 10g, 24
ds(H Py 2 P) > —22 og Pl &log

log, 3|H|  mlog, 3|H|  mlog, 3|H|

log, A log,|P1| g log,24

log, 3|H| mylog,2|H| m;log,?2|H|
It suffices to show that

log, A log, |P| 50224 log,4+3) 341 -log, 24
log, 3|H| mylog,2|H| mlog,2|H| — log,2|H| 1024 1og, 2|H|

By rearranging these terms, we can write this inequality as

log, 2|H| log, |Pi| 23 -log,24 341 -log, 24
2822 og, A — logy(A +3) > + -
log, 3y 08 A Tlea@+ 3= =0 60m, 1024

Note that [H| > 95040", so log, 2|H|/log, 3|H| = 0.99729879. Further, we have A >
604576714, so

log, 2|H| 341 - log, 24
2222 og, A — logy(A +3) + 2"
log, 3 10824 Tlog@ +3) 1024

341 - log, 24

> 0.99729879 - log, A —log,(A + 3) + > 1.4480303828.

1024
Thus it suffices to show that

log, |P] N 23log, 24

*(P)) =
( 1) ny 601’)’11

< 1.4480303828 = y.

If my > 25, then |P| < 2™ by Lemma 2.6 and *(P;) < 1.08 < y. Similar compu-
tations hold for 2 < m; < 24 by reading off the bounds for |P;| from Table 2 of [10],
and one obtains x(P;) < vy in all cases except when P; = M1, and P; = ASL(3,2), a
primitive group of degree 8. We now take care of these two cases.

Suppose Py = M. Since |Mj5| = 95040 < 2.6'2,

log,(A'?) — log, 95040 — £ log, 24
102,(95040|H|12)
12 - log,(A) — log, 95040 — 2 log, 24
g 12 - Tog,(2.6/H])
log,(A) log, 95040 2 Jog, 24
" log,2.6/H) 12 -1log,2.6/H) 12 - log,(2.6/H])

ds(HUPy1---1P)) >
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Given that A > 604576714, it suffices to show that,

log,(4) log, 95040 2 log, 24
log,(2.61H|) 12 -log,(2.6|H|) 12 - log,(2.6|H|)
log,(A +3) 341 - log, 24

= log,(2.88|H|) 1024 - log,(2.88|H|)’

By rearranging these terms, we can write this inequality as
log,(2.88|H|) - log,(A) 341 - log, 24

log,(A +3) +

log,(2.6H1) 1024
_ log,(2.88/H]) (log2 95040 & log, 24)
— log,(2.61H]) 12 2 )

Here |H| = 9504034 . 24@-D/3 where ¢ is the number of terms of Sy in H. Define
log,(2.88H]) _ log, 2.88 + 13 - 4' - log, 95040 + ((4' — 1)/3)log, 24

hy(f) = _ ,
{0 = e, 26H) ~ Togy 2.6+ 13 -4 -log, 95040 + (& — 1)/3)log, 24
G0 = (D) -1 log,(x + 3) 4 o 10g; 24

log, 95040 + 2 log, 24
510 = () (——— =)

It suffices to show that the inequality above, now translated as a;(x, ) > s1(¢), holds
for all x > A = 604576714 and ¢ > 0.

Clearly h;(¢) is a decreasing function and h;(f) — 1 as t — co. The function a;(x, t)
is increasing for a fixed value of ¢ > 0, and achieves a minimum when ¢ — oo and
x = 604576714. Thus, a;(x,t) > 1.5268. Since h;(¢) is decreasing, s;(¢) is decreasing.
So s1(7) achieves its maximum value for = 1 and 5;(1) < 1.5248. Thus, a;(x, t) > s1(¢)
for all x and t.

Finally, consider P; = ASL(3,2), where |ASL(3,2)| = 1344 < 2.478. Thus,
log,(A®) — log, 1344 — 2 log, 24

log,(|H® - 1344)
8 -log,(A) — log, 1344 — 2 log, 24
8 -log,(2.47 - |H|)
_ log, A log, 1344 & log, 24
a log,2.47|H]) 8-log,(2.47/H|) 8 -log,(2.47|H|)’
It suffices to show that

ds(H Py 2--- 1 P)) >

log, A log, 1344 2 Jog, 24
log,(2.47|H|) 8 -log,(2.47|H|) 8 -log,(2.47|H|)
log, (A + 3) 341 - log, 24

= log,(2.88|H|) 1024 - log,(2.88|H|)’
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By rearranging the terms, we can write this inequality as

log,(2.88|H|) - log, A 341 - log, 24
log,(2.47|H|) 1024

log,(A + 3) +

_ log,(2.881H)) (10g2(1344) + 2 log, 24)
~ log,(2.47|H|) 8 ’

As before, |H| = 9504034 . 24@-D/3 where ¢ is the number of terms of S, in H. Define
log, 2.88 + 13 - 4" - log, 95040 + ((4' — 1)/3) log, 24

ha(t) = ,
) = e, 247+ 13-4 - Tog, 95040 + (& — 1)/3) log, 24
34] - log, 24
W (x, 1) = ha(1) - logy x — log,(x + 3) + Tz?’

log,(1344) + £ log, 24
)

Again, h(?) is a decreasing function with i;(f) — 1 as t — co and a,(x, t) is increasing
for a fixed value of . We still have a,(x, ) > 1.526 and s,(f) achieves its maximum
value for = 1 and s,(1) < 1.520. Thus, a,(x, t) > s,(¢) for all x and . O

$2(0) = ho(1) - (

THEOREM 2.11. We have

k terms
—_———
. log, s(G) . logy s(Mip * M2 284 0---2084) .
fl————=] = lim = lim ¢,
10g2 |G| k—o0 10g2 [Mip d M1y 0S40+ - 28y k—o0
[ ——

k terms
where the infimum is taken over all permutation groups G not containing any A;,[ > 4,

as a composition factor.

PROOF. Let G be a permutation group. Let M = limy_,. ¢x S0 that M < cg. By our
earlier remarks, G is transitive. By Proposition 2.7, if G is primitive, ds(G) > cs > M.
So we assume that G is imprimitive.

By Theorem 2.8, G is induced from M}, and, by Theorem 2.9, G is induced from
My ¢ My,. By Theorem 2.10, inf(log, s(G)/log, |G|) = lim_ Ck. O

REMARK 2.12. Again we set M = limy_,, cx. By Lemma 2.5,
2 log,(24)

(13 - 48)10g,(95040) + ((4% — 1)/3)log,(24)

Since ¢y is a strictly decreasing sequence with cg < 0.1276818247, this gives

0.1276817008 < M < 0.1276818247.

M > c3 - ~ 0.1276817008.

This estimate will give an explicit bound for [1, Corollary 1] when ¢ = 4. Since
[1, Corollary 1] is an important ingredient in Pyber’s proof of a lower bound for the
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number of conjugacy classes k(G) of a finite group G in terms of its order [6] (which
has undetermined constants in it), it is likely that our result will help to find an explicit
scalar constant in this result. We note that Pyber’s result has been improved in [2, 4].
We also note that [4, Theorem 3.1] now has an (albeit extremely small) bound thanks
to the main result of [3] (which is generalised by our result here). In particular, the
currently best lower bound for £(G) in terms of |G| for solvable groups, as stated in [4,
Corollary 3.2], is explicit.
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