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Value of Information in Feedback Control: Quantification

Touraj Soleymani

Abstract—Although transmission of a data packet containing
sensory information in a networked control system improves the
quality of regulation, it has indeed a price from the communication
perspective. It is, therefore, rational that such a data packet be
transmitted only if it is valuable in the sense of a cost-benefit anal-
ysis. Yet, the fact is that little is known so far about this valuation
of information and its connection with traditional event-triggered
communication. In the present article, we study this intrinsic prop-
erty of networked control systems by formulating a rate-regulation
trade-off between the packet rate and the regulation cost with an
event trigger and a controller as two distributed decision makers,
and show that the valuation of information is conceivable and
quantifiable grounded on this trade-off. In particular, we charac-
terize an equilibrium in the rate-regulation trade-off, and quantify
the value of information VoI, there as the variation in a so-called
value function with respect to a piece of sensory information that
can be communicated to the controller at each time k. We prove
that, for a multi-dimensional Gauss—Markov process, Vol is a
symmetric function of the discrepancy between the state estimates
at the event trigger and the controller, and that a data packet
containing sensory information at time k should be transmitted to
the controller only if VoI, is nonnegative. Moreover, we discuss
that VoI, can be computed with arbitrary accuracy, and that it
can be approximated by a closed-form quadratic function with a
performance guarantee.

Index Terms—Decision policies, Nash equilibria, networked con-
trol systems, rate-regulation tradeoff, semantic communications,
semantic metrics, value of information.

|. INTRODUCTION

Networked control systems are spatially distributed systems wherein
feedback control loops are closed over communication channels [1].
Commonly, in a networked control system, data packets containing
sensory information are transmitted to the controller in a periodic way
as this facilitates the analysis of such a system [2]. It has, however, been
conceived that not every one of these data packets has the same effect
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on the system performance, and that one should employ a mechanism,
i.e., event trigger, that transmits a data packet only when a significant
deviation in the system occurs [3]. This adaptive communication has
a major consequence: a dramatic reduction in the number of packet
transmissions guaranteeing some level of system performance, which
has been found appealing, and led to extensive development of event-
triggered systems in different contexts even beyond control including
consensus [4], fault detection [5], optimization [6], and signal process-
ing [7].

Although transmission of a data packet containing sensory infor-
mation in a networked control system decreases the uncertainty of the
controller and improves the quality of regulation, it has indeed a price
from the communication perspective. It is, therefore, rational that such
a data packet be transmitted only if it is valuable in the sense of a
cost-benefit analysis, i.e., only if its benefit surpasses its cost. Yet, the
fact is that little is known so far about this valuation of information and
its connection with the above-mentioned adaptive communication. In
the present article, we study this intrinsic property of networked control
systems by formulating a rate-regulation tradeoff between the packet
rate and the regulation cost, and show that the valuation of information
is conceivable and quantifiable grounded on this tradeoff.

The rate-regulation tradeoff in our study involves a stochastic op-
timization problem with an event trigger and a controller as two
distributed decision makers. Unfortunately, this problem for the joint
design of the event trigger and the controller is intractable (see, e.g., [8]
and [9]). The reasons are that, in general, the underlying information
structure is nonclassical, the optimal estimator at the controller is
nonlinear with no analytical solution due to a signaling effect, and
estimation and control are coupled due to a dual effect. Nevertheless,
in this article, we characterize an equilibrium at which neither decision
maker has a unilateral incentive to change its policy, and quantify
the value of information Vol there as the variation in a so-called
value function with respect to a piece of sensory information that
can be communicated to the controller at each time k. We study
the issue of global optimality of this very equilibrium in a separate
article [10].

We argue that the value of information systematically captures the
semantics of data packets by taking into account their potential impacts,
and that a strategy based on the value of information optimally shapes
the information flow in networked control systems. As such, the value
of information can be regarded as a semantic metric that determines
the right piece of information, a concept that is not defined in classical
data communication, while it is crucial to the development of future
communication networks [11]. Note that previously Dempster [12]
and Davis [13], [14] studied the value of information in the context
of optimal control. However, in these works, the value of information
was defined as the variation in a value function with respect to relaxation
of the nonanticipativity constraint at the controller. It is obvious that
our perspective here is fundamentally different.!

!For the preliminary work of the authors on the topic of the value of informa-
tion in feedback control, see, e.g., [15]-[17].
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A. Related Work

An event trigger can be used at the sensor side to reduce the number
of packet transmissions in the observation channel? or at the controller
side to reduce that in the command channel. We are here interested
in finding the optimal decision policies in the former case,> where
the event trigger and the controller become two distributed decision
makers. To elucidate the essence of the underlying problem, we suppose
that network-induced effects such as quantization, packet dropouts,
and time-varying delays are negligible. In this context, Astrom and
Bernhardsson [3] showed that for a scalar linear diffusion process, with
impulse control and under a sampling rate constraint, event-triggered
sampling outperforms periodic sampling in the sense that it attains a
lower mean error variance.

In addition, several works have addressed optimal event-triggered
estimation, and found optimal triggering policies [19]-[22]. Notably,
Imer and Basar [19] studied the optimal event-triggered estimation
of a scalar Gauss—Markov process with perfect information* based
on dynamic programming by assuming that the triggering policy is
symmetric threshold, and obtained the optimal threshold value of the
policy. Rabi et al. [20] formulated the optimal event-triggered esti-
mation of the scalar Wiener and scalar Ornstein—Uhlenbeck processes
with perfect information as an optimal multiple stopping time problem,
and showed that the optimal triggering policy is symmetric threshold
when negative information® is discarded. Lipsa and Martins [21] used
majorization theory to analyze the optimal event-triggered estimation of
a scalar Gauss—Markov process with perfect information, and proved
that the optimal triggering policy is symmetric threshold despite the
presence of negative information. Later, Molin and Hirche [22] studied
the convergence properties of an iterative algorithm for the optimal
event-triggered estimation of a scalar Markov process with perfect
information and symmetric noise distribution and found a result co-
inciding with that in [21].

In the joint design of the event trigger and the controller, a separa-
tion between estimation and control is not given a priori. Therefore,
the above results on optimal event-triggered estimation do not apply
directly to optimal event-triggered control. There exist, however, anum-
ber of works that have specifically addressed optimal event-triggered
control, and found optimal control policies [9], [23], [24]. In particular,
Molin and Hirche [23] investigated the optimal event-triggered control
of a Gauss—Markov process with perfect information, and showed that
the optimal control policy is certainty equivalent when the triggering
policy is reparametrizable in terms of primitive random variables.
Ramesh et al. [9] studied the dual effect in the optimal event-triggered
control of a Gauss—Markov process with perfect information, and
proved that the dual effect generally exists. They also proved that the
certainty equivalence principle holds if and only if the triggering policy
is independent of the control policy. Later, Demirel ez al. [24] addressed
the optimal event-triggered control of a Gauss—Markov process with
imperfect information by adopting a stochastic triggering policy that

2The observation channel is a communication channel that is placed between
the sensor and the controller. In contrast, the command channel is a communi-
cation channel that is placed between the controller and the actuator.

3A control problem with data-rate constraints on both observation and com-
mand channels can in effect be converted to one with a data-rate constraint only
on the observation channel (see, e.g., [18]).

“4Perfect information refers to a situation where the exact value of the state
of the process can be observed at each time. In contrast, imperfect information
refers to a situation where only a noisy version of the output of the process can
be observed at each time.

SNegative information refers to any information that can be inferred associated
with non-transmission by the receiver/controller.

preserves the Gaussianity of the conditional distribution, and showed
that the optimal control policy remains certainty equivalent.

B. Contributions and Outline

In this article, we introduce the notion of the value of information,
and establish a theoretical framework for its quantification. More specif-
ically, we prove the existence of an equilibrium in the rate-regulation
tradeoff for a multi-dimensional Gauss—Markov process with imper-
fect information without any limiting assumptions on the information
structure or the policy structure, and quantify Vol at this equilibrium,
where the optimal estimator at the controller becomes linear, the design
of the event trigger and the controller becomes separated, and the
control becomes neutral. We prove that Vol is a symmetric function
of the discrepancy between the state estimates at the event trigger and
the controller, and that a data packet containing sensory information
should be transmitted to the controller at time k£ only if Vol is
nonnegative. Moreover, we discuss that Vol;, can be computed with
arbitrary accuracy, and that it can be approximated by a closed-form
quadratic function with a performance guarantee.

In our analysis, we show that a symmetric threshold triggering policy
based on the value of information and a certainty-equivalent control
policy based on a non-Gaussian linear estimator are, in fact, person-
by-person optimal. This structural result applies to multi-dimensional
Gauss—Markov processes. Therefore, it is in contrast with the results
in [21] and [22], which are restricted to scalar Gauss—Markov pro-
cesses. Our triggering policy in its specialized scalar form, however, is
consistent with the one obtained in [21] and [22], and requires similar
complexity for the computation of the threshold. In addition, the above
structural result determines the triggering policy and the control policy
jointly at an equilibrium, and asserts that the conditional mean used
within the control policy, as we will see, is not affected by negative
information at all. Hence, it is different from the results in [9] and [23],
which specify only the optimal control policy when the triggering policy
is fixed, providing no insight into the associated conditional mean in
the optimal design when the triggering policy is not fixed a priori.

The remainder of the article is organized in the following way. We
formulate the rate-regulation problem in Section II, and present our
results on the characterization and the computation of the value of
information in Section III. We then provide our numerical examples in
Section IV. Finally, we make concluding remarks in Section V.

C. Preliminaries

In the sequel, the sets of real numbers and nonnegative integers
are denoted by R and N, respectively. For z,y € N and = < y, the
set N, ) denotes {z € N|z < z < y}. For matrices X and Y, the
relations X > 0 and Y > 0 denote that X and Y are positive definite
and positive semidefinite, respectively. The indicator function of a
subset A of a set X is denoted by 14 : X — {0, 1}. The probability
measure of a random variable z is represented by P (), its probability
density or probability mass function by p(z), and its expected value
and covariance by E[z] and cov[z], respectively.

Definition 1 (Dual effect): For a given control system, let Z;, be the
information set of the controller at time k, and Z¢ be the information
set of the controller at time k£ when all control inputs are equal to zero.
The control has no dual effect of order r, r > 2, (see, e.g., [25]) if

E[M}|Z7) = E[M{,|Z)

where M, ; = (x1,; — E[x,¢|Zf])" is the rth central moment of the ith
component of the state x;, conditioned on Z;.. In other words, the control
has no dual effect if the expected future uncertainty is not affected by
the prior control inputs.
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Definition 2 (Nash equilibrium): For a given team game with two
decision makers, lety! € G and~? € G2 be the decision policies of the
decision makers where G! and G are the sets of admissible policies, and
L(~',~?) be the associated loss function. A policy profile (y'*,y?*)
represents a Nash equilibrium (see, e.g., [26]) if

Ly, 7*) < L(y*,y*), forally* € G,
L(y"*,7**) < L(v"*,~?), forallv* € G°.

Note that Nash equilibria in a team game are also known as person-by-
person optimal solutions.

Il. RATE-REGULATION TRADEOFF

Consider a Gauss—Markov process with the discrete-time time-
varying state equation

Tpt1 = Az + Brug + wy, (D

for k € Nyp,nj with initial condition x, where 3, € R™ is the state
of the process, Ar € R™™ is the state matrix, By € R™*™ is the
input matrix, u; € R™ is the control input applied by an actuator and
decided by a controller that is collocated with the actuator, w;, € R"™
is a Gaussian white noise with zero mean and covariance W, > 0, and
N € N is a finite time horizon. A noisy version of the output of the
process is observed by a sensor at each time k, and given by the output
equation

Y = Crap + vk ()

fork € Njo, n], where g, € R? is the output of the process, C, € RP*"
is the output matrix, and v, € RP is a Gaussian white noise with zero
mean and covariance V}, > 0. Itis assumed that = is a Gaussian vector
with mean m and covariance M, and that ¢, wy,, and vy, are mutually
independent for all £ € Ny 7.

The feedback control loop is closed via a reliable but costly commu-
nication channel, and the sensory information in this channel is carried
in the form of data packets subject to one-step delay. Let ay and by,
represent the input and the output of the channel at time &, respectively.
Then, we have

o ag, if 6k = 1,
b1 = {@, otherwise 3)

for k € Ny nj with by = @, where J;, € {0,1} is the transmission
decision decided by an event trigger that is collocated with the sensor.
It is assumed that the data packet that can be transmitted at time k
contains the minimum mean-square-error state estimate at the event
trigger at time k, and that the quantization error is negligible. Clearly,
this state estimate condenses all the previous and current outputs of the
process, and its transmission is always better than that of the raw output
at time k.

The event trigger and the controller, as two distributed decision
makers, make their decisions at each time k based on their causal
information sets, which are given by

]: = {yt7bt7657us

t € Ny p,s € N[O,k—l]} ) 4)

I = {bt,émus

t € Njo., 5 € Niok-1 | )

respectively, We say that a triggering policy 7 and a control policy
w are admissible if m = {P(6x|Z¢)}Y, and p = {P(ux|Z{) 1,
where P(0,|Z;) and P(ug|Z;) are Borel measurable stochastic ker-
nels defined on suitable measurable spaces. We represent the sets of
admissible triggering policies and admissible control policies by P and
M, respectively.

For the system outlined above, we are interested in a rate-regulation
tradeoff between the packet rate and the regulation cost. Let us measure
the packet rate by

R(m,p) == 55 E [zjjzo ékdk] ©)

where /), > 0 is a weighting coefficient, and measure the regulation
cost by

J(m, p) == ﬁ E [Zi\f& o Qray + fo:o qukuk] @)

where Q) = 0and Ry, > 0 are weighting matrices. The rate-regulation
tradeoff can then be expressed as a stochastic optimization problem with
the loss function

Q)(7r7 /J) = (1 - )‘)R(Wv /J) + )“](’”7//*) (8)

over the space of admissible policy profiles (, u) € P x M given a
tradeoff multiplier A € (0, 1). This tradeoff, as we will see, allows us
to describe the value of information.

Remark 1: The rate-regulation tradeoff, which is formulated based
on the weighted sum approach (see, e.g., [27]), is a tradeoff between
two objective functions. The objective function in (6) penalizes the
packet rate in the communication channel, and is appropriate for packet
switching networks. This objective function takes into account the
price of communication through the weighting coefficient. Moreover,
the objective function in (7) penalizes the state deviation and the
control effort, and is appropriate for regulation tasks. This objective
function can be modified for tracking tasks by a transformation when
the reference trajectory is known. Finally, note that the underlying
optimization problem with the loss function (8) over the space of
admissible policy profiles (7, ;1) € P x M is, in general, an intractable
problem. However, in this article, based on a game theoretic analysis,
we prove the existence of a Nash equilibrium (7*, *). Even though
we investigate an imperfect information case, the results can easily be
specialized for the perfect information counterpart.

IIl. QUANTIFICATION OF THE VALUE OF INFORMATION

In this section, we present our results on the characterization and the
computation of the value of information. We first show how the value
of information emerges from the rate-regulation tradeoff formulated
in the previous section. We then discuss its structural properties and
computational aspects.

A. Formula of the Value of Information

Since in the rate-regulation tradeoff the system has two decision
makers with different information sets, we can define two different
value functions, viz., one from the perspective of the event trigger, i.e.,
Vi¢(Zy), and one from the perspective of the controller, i.e., V¢ (Z5).
Based on this observation, we introduce our general formula of the
value of information in the following definition.

Definition 3 (Value of Information): The value of information at
time k is defined as the variation in the value function V,¢(Z5) with
respect to the sensory information ay, that can be communicated to the
controller at time k, i.e.,

Vol (Zi;) := Vi (To)lsp=0 = Vi (i) s =1 ©)

where V£ (Z5)|5, denotes the value function V,%(Z) when the trans-
mission decision ¢y, is enforced.

Remark 2: The value of information Vol (Z;), defined in (9), in
a sense measures the sensitivity of the value function V,¢(Zg) with
respect to a data packet that can be transmitted to the controller at time
k. Note that the above formula is general and valid for any choice of the
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system model. Furthermore, recall that we are interested in a valuation
of information associated with a decision about transmission of a data
packet through the observation channel at each time k. This decision
is made by the event trigger and according to the stochastic kernel
P(8x|Zg ). For this reason, Vol (Z5) was evaluated based on the value
function V¢ (Z5), and not the value function V,¢(Zg).

The next lemma introduces a loss function that is equivalent to the
original loss function in the sense that it yields the same optimal decision
policies. Associated with this loss function, we will subsequently define
the value functions V,¢(Zy) and V¢ (Z7).

Lemma 1: Let Sy = 0 be a matrix obeying the algebraic Riccati
equation

Sk =Qr + A£Sk+1Ak — AgskJrlBk

% (BE Sk41Br + Ri) ' BE Siq1 Ay (10)
for k € Njo, n7 with initial condition Sy 41 = Qn41. Then
U(m,u):=E [Zi\;o 0,0k + gk} (1)

is equivalent to ®(mw,u), where 0 = lx(1—A)/A and ¢, =
(u + (BE Sk41Bi + Ri) ' B i1 Apxi) T (B Sp1 Br +
Rk)(uk + (Bgsk+1Bk + Rk)ilBgS]H,lAk%k).

Proof: The result is proved by applying few operations on the state
equation (1) and the algebraic Riccati equation (10), and by discarding
the fixed terms (see, e.g., [28]). [ |

Definition 4 (Value functions): The value functions V,(Zy) and
VE(Zf) are defined as

VE(IE) = min E [fo:k 0,6 + Grin Ig] , (12)
TEP: p=p*
V) = _min E (00 +alze] a3

for k € Njg,nj given a policy profile (7*, ;*), where we adopt the
convention 0_1 = 0, ¢y4+1 = 0,and Sy = 0.

Note that at a Nash equilibrium, the value functions V,¢(Z;) and
V¢(Zf) should simultaneously satisfy the optimality relations (see,
e.g., [29]).

B. Emergence of the Value of Information

Let %, and 2}, unless otherwise stated, denote the minimum mean-
square-error state estimates at the event trigger and the controller at
time k, respectively. In addition, let us define the estimation error
from the perspective of the event trigger €;, := x), — &y, the estimation
error from the perspective of the controller é; := x) — 1, and the
estimation mismatch €y := &) — &. The following two propositions
characterize the optimal estimators at the event trigger and the con-
troller. These estimators will be needed for our structural result.

Proposition 1: The conditional mean E[xy|Zf] is the minimum
mean-square-error estimator at the event trigger, and obeys

Tpr1 = ApTr + Brug

+ K1 (Ynt1 — Crr (A + Bruyg)) , (14)

Yier = (AYRAF + W)+ CFL Vi Coa) T (15)

for k € Ny, with initial conditions o = mo + YoCd V5 ' (yo —
Comg) and Yy = (My' + CEVy Co)™t, where iy = E[zy|Zg],
Y. = COV[JSk‘Zz], and K, = YkCng’l

Proof: Clearly, given the information set 7, the mean square error
is minimized by E[z|Z;], and the optimal estimator is the standard
Kalman filter (see, e.g., [30]). [ |

Proposition 2: The conditional mean E[xy|Zf] is the minimum

mean-square-error estimator at the controller, and obeys

for k € Nyp, nj with initial condition Zo = my, where T, = E[z4|Z}]
and 1, = Ay E[éx|Zg, 6, = 0]. In addition, the conditional covariance
cov(xy|Z;] obeys
Zpi1 = Ay Zp AR + Wy
- 5kAk(Zk - Yk)AZ - (1 - ‘Sk)Ek )

for k€ Nj ) with initial condition Zy = M,, where Z; =
COV[Q?]Q‘IE} and 25, = Ak(Zk — COV[ék‘I]g, 6k = ODAZ

Proof: Clearly, given the information set Z;, the mean square error
is minimized by E[z|Z{]. Moreover, from the state equation (1), we
see that

Tpy1 = Ap E[eg|Zg ] + Brug,

(18)
Zy1 = Ay cov[zy| g, 1] AL + Wi (19)

By definition, the transmission decision J, at each time can be either
one or zero. If 6, = 1, the controller receives ¥}, at time k + 1. In this
case, we can write

P(@k|Zi 1) = P(@rl Ly, Tw, Yi) = p(zkl|Zy)

where we used the fact that {y, Y}, } is statistically equivalent to Zf.
Hence, we obtain E[x |Z , ] = Z) andcov[zy|Z;, ] = Y. However,
if 9 = 0, the controller receives nothing at time k + 1. In this case, we
can write

P(zk|Z5y 1) = p(k|Z, 0 = 0)
= L p(6 = 0IZ¢, ) okl ZE)

where c is a normalizer. Hence, for any admissible triggering pol-
icy, the conditional mean E[z|Z; ] and the conditional covariance
cov[zy|Zg , ;] can be computed based on p(zx|Zf ;). Let us define ),
and Z}, as

), = E[zk|Z§, 0n = 0] — &y,
Zy, = Zy, — coV[zi|Zi, 0 = 0].
Consequently, for any value of J;, we see that
ElzrZrii] = @ + 0 (& — &x) + (1 — )@y,
covlzy|Tp | = Zi — 0u(Zi — Yi) — (1 — k) 2},

(20)
2n

Now, we only need to substitute (20) and (21) in (18) and (19),
respectively, and define 1, := Az} and Zj := A, Z} AT. We can
and = = Ak(Zk — COV[.’L‘k‘Z£76k = 0])A£ = Ak(Zk —
cov[éx|Zg, 0, = 0])AT, and the result follows. ]

Remark 3: Observe that the optimal estimators at the event trigger
and the controller have completely different structures. While the con-
ditional distribution P(z|Z;) is Gaussian and the conditional mean &,
obeys a linear recursive equation, the conditional distribution P (z | Z)
is generally non-Gaussian and the conditional mean 2, generally obeys
anonlinear recursive equation. Note that the residuals 25, and = in (16)
and (17) are both due to negative information. The existence of these
terms implies that the controller might be able to decrease its uncertainty
even when it does not receive any data packet from the sensor. The
values of the residuals ¢;, and =, at each time k depend on the structure
of the triggering policy. For any fixed triggering policy, these values can
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be computed numerically by techniques from nonlinear filtering (see,
e.g., [8] and [31]).

The next theorem, which is our main result, characterizes a Nash
equilibrium in the rate-regulation tradeoff.

Theorem 1: There exists at least one Nash equilibrium (7*, *) in
the rate-regulation tradeoff such that

(", p*) = ({]lvOIkzo}szo ; {—Lki’k}]k\fzo)

with the value of information Vol (Zf) as a symmetric function of the
estimation mismatch é;, obeying

(22)

VOIk(Iz) = égA{Fk+1Akék — Ok + Ok (23)

WhereFk = A£Sk+lBk(B]sz+lBk + Rk)ilBg‘SkJrlAk and Ok —
EVii (ZE)IZE, 0k = 0] — E[Vi (Z0)IZ, 0k = 1, and  with
the conditional mean ', without being affected by negative information
obeying

Thy1 = Apr + Brug + 0 Apép (24)

for k€ Njg ) with initial condition %o, =mg, where L =
(Bgsk+1Bk + Rk)ilBgSkleAk.

Proof: The proof is structured in two parts. In the first part, we show
that W(z*, p*) < W(mw, p*) for all € P. Note that given the con-
trol policy p*, the state estimate &, obeys Zp1 = AxZr + Brur +
0r A€, for k € Ny nj with initial condition Zo = my. From the
additivity of V;¢(Zy), we obtain

Vi (Zp) = p(lgﬂ?e) E [9k5k +éh 1 Teg1éhpa
k

min
P(Srq1lZy,

E (011041

640l hyobria + - II(:+1:| Iﬁ}
— min E [Gkék 4 &7 Ty + Ve (T, z;]
p(3,/Z5)

for k € Npp, n7 with initial condition V5, (Z%, ;) = 0. We prove by
backward induction that V;¢ (Z7) is a symmetric function of €. Clearly,
the claim is satisfied for time N 4 1. We assume that the claim holds
at time k + 1, and shall prove that it also holds at time k. Given the
dynamics of Z, in this case, we observe that é; and €;, obey

(25)
(26)

€1 = Apép — 0pArer + wi,
Cry1 = (1 — 0p)Arép +ny

for k€ Njg ) with initial conditions éy = zg — 29 and €&, =
Tg — Tg, where ng € R™ is a Gaussian white noise with zero
mean and covariance Ny = Kjp1(Crp1 (ApYr AL + Wi)CL, +
Viet1) KL, ;. From (25), we find

I;]

- E [égAgrkHAkék 46287 ATT 1 Ayéy

~T ~
E [ek+1Fk+1ek+1

+ wgfk+1wk — 26kéZA£Fk+1Akék

—26ké£Asz+1wk + 2é{Ang+1wk ‘Izi|

(sE [égAng_'_lAkék + tr(AZFk+1AkYk)

k

—I—tr(FkHWk) — §ké£A{Fk+1Akék ‘Ilj]

where we used the facts that E[éy|Zf] = €, cov[éx|Zi] = Y,
E[éx|Zf] = éx, E[wi|Zf] = 0, and that wy, is independent of é;,. Ac-
cordingly, we can show that

V;’(Zﬁ) = rrgln {Gkék + (1 — 6k)é£A{Pk+1Akék
k

+ (T2 Wi + AT Tign AYi) + E[ViE (T4)IZ5]
(27)

The minimizer in (27) is obtained as §;; = Lvor, (Z£)05 where
Voly(Zf;) = & Ap U1 Agéy — Ok + 0k

and g = E[Vlf+1(Il§+1)‘II§: O =0] - E[Vlf+1(I£+1)|Il§v O = 1].
Define now 7, := —ny. Note that i, is also a Gaussian white noise
with zero mean and covariance Ny,. It follows that

E [VkeJrl(ékH)‘IZa&k]
—E [V§+1 ((1 = 8) Axéx, + nx) ]zg,ak}

=E [Vke+1 (= (1= k) Agey, — ny,) ’Lﬁﬁk]
= [rn ViE1 (— (1 = 61) Apér — ny)dexp(—2nf Ny Mg )dny,
= [rn Vi (— (1 = 6k) A&y + fig ) dexp(— 50 N, 'y, )iy,

—E [Viﬂ (= (1= 0k)Agéy, +ny) ‘I,i, 64

where d is a constant, the first equality comes from (26), and
the second equality from the hypothesis assumption. Therefore,
E[Vie 1 (T 1 1)|Z, 0x] is a symmetric function of €. This implies that
ox and Vol (Z¢) are also symmetric functions of é;. Moreover, we can
write V,¢(Z5) as

Vel (Zg), if Vol (Zg) > 0,

(28)
Vi (Zo),

Vi) = { otherwise
where Vi#H(Zg) and V,&0(Zg) are both symmetric functions of é.
Hence, we conclude that V/¢(Z) is a symmetric function of é.

In the second part, we show that W (7*, u*) < W(xw*, u) for all
1 € M. Note that given the triggering policy 7*, the state estimate
Tk obeys f?kJrl = AL, + Bruy + 0, Arér + (1 — 5k)lk forall k €
No, 5] With initial condition Z; = mg. From the additivity of V,¢(Zg),
we obtain

ch(Ilg) min E |:Ck,1 4+ (uk —+ kak)TAk(uk —+ kak)
p(ukl|Zy)

+ min

E [Ck + (up41 + Lk+1iﬂk+1)TAk+1
P(ugy1lZy, )
X (U1 + L1 @hyr) + - ’IEH] )Iﬁ}

= min E |:Ck_1 + (uk + Lk$k)TAk
P(uklZ¢)

X (ug, + Lyxy) + ch+1(II§+1)

I,g]

for k € Njo ) with initial condition V§_ ,(Z5,,) = 0, where ¢, =
ek:ﬂ.volk(l'z)zo is a function of é; and Ay = B;{S}H_lBk + Ry. We
prove by backward induction that V¢ (Zf ) is independent of the previous
control inputs. Clearly, the claim is satisfied for time N + 1. We assume
that the claim holds at time k£ + 1, and shall prove that it also holds at
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time k. Using the identity x, = &) + éj, we find

E [(uk + Lpzi) T Ag (uy + kak)‘lﬁ}

= E |:(Uk + Lk:IA:k)TAk(uk + Lki’k) + tr(Fka)’I,‘é]

Uk

where we used the facts that E[Z,|Z;] = &) and E[é;|Zf] = 0. Given
the dynamics of 2, in this case, we observe that é; and €, obey

(29)
(30)

€pt1 = Apér — 0 Agér +wy — (1 — k),
€1 = (1 — 0p)Ape +ny — (1 — di)2p

for k € Njg, ) withinitial conditions &g = x¢ — &g and &g = &9 — 0.
Since Jy, is a function of €, we recursively infer that é; and &, are
independent of the control inputs. Accordingly, we can show that

ViE(Z) = min { Elew1|TE] + (ue + i) A
Uk

X (up + LpZy) + tr(T Zy) + E[ch+1(zli+l)|zlj]}
(31)

where E[c,_1|Z] and Z;, = cov[é|Z;] are independent of the control
inputs because €;_; and é; are independent of the control inputs,
respectively. The minimizer in (31) is obtained as uj = — L%y, and
we conclude that V,¢(Zy) is independent of the previous control inputs.
We now need to prove that 2, = 0 for all k € Nyp n7. Note that &, and
€q are Gaussian vectors with zero mean. We assume that 2, = 0 for all
t € Njg k1], and shall show that 2;, = 0. For any value of 2;,, we have

P(éx|Zi, 0k = 0) o p(dk = 0[éx) P(€x|Z).

By the hypothesis assumption and using the triggering policy 7*, we
see that p(éx|Zf) and p(d, = 0|é)) are symmetric with respect to €.
Hence, p(éx|Z;, 6, = 0) is also symmetric with respect to éj. This
implies that 2, = 0, and the proof is complete. ]

Remark 4: Our structural result shows that at the equilibrium
(m*, u*), the design of the event trigger and the controller in (22) be-
comes separated, the optimal estimator at the controller in (16) becomes
linear, and the conditional covariance in (17) becomes independent
of the previous control inputs, implying that the control has no dual
effect of order r = 2. In addition, our result shows that Vol (Z;) is
a symmetric function of the estimation mismatch €, and that it can
be computed with arbitrary accuracy through solving the optimality
equation in (27) recursively and backward in time. The complexity
of this computation is O(Nd"s) when the estimation mismatch ¢, is
discretized in a grid with d" points and the associated expected value
is obtained based on a weighted sum of s samples.

Remark 5: We argue that instead of fixing an ad-hoc triggering
condition and studying the properties of the resulting event-triggered
system, i.e., the procedure that has been used in most of the studies on
event-triggered estimation and control, one should study a cost-benefit
analysis without any limiting assumptions on the information structure
or the policy structure, and find a triggering condition as a result of
this analysis. Note that Vol (Zg) is, in fact, the difference between
the benefit and the cost of a data packet. In light of our structural
result, at each time k, the benefit of transmitting a data packet is
eFATT 1 Arér + or and its associated cost is 0. In this respect,
our triggering condition has an important interpretation: a data packet
containing the sensory information & should be transmitted to the

controller only if its benefit surpasses its cost, i.e., Vol (Zy) > 0. This
interpretation does not exist for any triggering condition that is not
based on a cost-benefit analysis.

Remark 6: Note that the rate-regulation tradeoft in our study might
admit multiple Nash equilibria. Unfortunately, there exists no general
procedure for finding all these equilibria (if any). Using backward
induction, we here proved the existence of a Nash equilibrium (7*, p*),
which has desirable characteristics. Our result guarantees that the set
of globally optimal solutions cannot be empty. A natural question that
arises in relation to the equilibrium (7*, 1*) is whether it is globally
optimal. We can infer from the results in the literature (see, e.g., [21] and
[22]) that for the special case of scalar Gauss—Markov processes, the
optimality gap of this equilibrium is zero. We study this issue for the
general case of multi-dimensional Gauss—Markov processes in [10],
where we show that the optimality gap of this equilibrium, in fact,
remains zero (see [10, Theorem 1]).

C. Quadratic Approximation of the Value of Information

The computation of Vol (Z) based on the optimality equation (27)
can be difficult especially when n increases. This motivates us to search
for an approximation of the value of information that can be expressed
analytically. The next proposition provides such an approximation with
a performance guarantee.

Proposition 3: Let the control policy p* be fixed. A triggering policy
7+ that outperforms the periodic triggering policy with period one in
the rate-regulation tradeoff is given by

+ _
oy = ﬂvOI;(I;;)zo (32)
where Volﬁ (Z5) is a quadratic approximation of the value of informa-

tion expressed as

Vol (Z;) = &; Aj Tiy1 Axéy, — Oy.. (33)

Proof: Let 7 denote the periodic triggering policy with period one,
and 7 denote a triggering policy obtained according to

52’ = argmin E [Ok(Sk + ézﬂFkHékH
g8

VL T|E e

where V,7(Z5) is the cost-to-go associated with the policy profile
(7, u*). We prove that ¥ (7™, u*) < W(7, u*). To do so, it is enough
to show V7 (Zg) < V7 (Zg), where V7 (Zf) is the cost-to-go as-
sociated with the policy profile (7, u*). Clearly, VIGL(I]E\, i) =
Vi 41(Zx 1) = 0. Assume that the claim holds at time & + 1. We
have

A A 7T+ €
E |0k0 + i1 Thrrrsr + Vi (Zis )

I,g]

7l'+ e
Vi (Zp) = [
<E [9;452’ + €41 Dig1bryr + Vkﬂl(Ierl)‘Ili]

<E [Gk + é£+1rk+1ék+l + Vkﬁ+1(II§+1)

I;]
= Vkﬁ (Ig)

where the first inequality comes from the induction hypothesis and
the second inequality from the definition of the triggering policy w+.
Therefore, the claim holds at time k.

Besides, following our analysis in the proof of Theorem 1, we deduce
that the minimizer in (34) is obtained as 6; = ILVOIZr (720 where

VOIE_ (Zy) = ézAzrlﬁ-lAkék — 0+ 0F
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Fig. 1. Rate-regulation tradeoff curve. The regulation cost is scaled 5
by one-tenth. The achievable region is specified as the area above the §'
tradeoff curve. 3
‘g’ .
and of = E[Vkﬁ+1(Iﬁ+1)\I§, O = 0] — E[Vkﬂ+1(zlg+1)|zli’ 0 = 1]. © 40 ‘ ‘ ‘ ‘
Finally, observe that using the periodic triggering policy 7, the esti- 0 100 200 300 400 500
mation error é; obeys €;11 = A;é; + wy fort € N1, n). Hence, é; Time Step

for ¢ € N2 n7 is independent of 6. This implies that or =0, and
the proof is complete. |

Remark 7: The value of information approximate VoI (Z¢) is a
closed-form quadratic function of the estimation mismatch éj, which
does not depend on the cost-to-go terms. Our result provides a perfor-
mance guarantee for this approximation in the sense that the triggering
policy 7+ synthesized based on VOI: (Zg) outperforms the periodic
triggering policy with period one, when the certainty-equivalent con-
trol policy p* is used. The result is obtained by exploiting a rollout
algorithm, which can be viewed as a single iteration of the method of
policy iteration.

IV. NUMERICAL EXAMPLES

In this section, we provide two numerical examples that can
demonstrate our theoretical results. In the first example, we consider
a simple system with state coefficient A, = 1.1, input coefficient
By =1, output coefficient C, = 1, noise variances W; =3 and
Vi =1 for k € Ng,n], mean and variance of the initial condition
mo =0 and M, =1, weighting coefficients Qni+1 =1, {p =1,
Qr =1, and Ry, = 0.1 for k € Njg 7, and time horizon N = 100.
For this system, the rate-regulation tradeoff curve was numerically
computed using different values of the tradeoff multiplier A € (0, 1),
and is depicted in Fig. 1. In light of the results in [10], this tradeoff
curve is, in fact, globally optimal. The achievable region is specified
in Fig. 1 as the area above the tradeoff curve. Note that there exists no
policy profile with performance outside the achievable region.

In the second example, we consider an inverted pendulum on a cart,
for which the continuous-time equations of motion linearized around
the unstable equilibrium are given by

(M + m)i + bi: — ml¢ = u,
(I +ml*)¢ — mglp = mli

where « is the position of the cart, ¢ is the pitch angle of the pendulum, «
is the force applied to the cart, M = 0.5 kg is the mass of the cart, m =
0.2 kg is the mass of the pendulum, b = 0.1 N/m/s is the coefficient
of friction for the cart, [ = 0.3 m is the distance from the pivot to the
pendulum’s center of mass, I = 0.006 kg.m? is the moment of inertia
of the pendulum, and g = 9.81 m/s? is the gravity. We suppose that

Fig. 2. Value of information, transmission decision, and control input
trajectories. The value of information is scaled by one-tenth. The solid
lines represent the trajectories under the triggering policy designed
based on the value of information, and the dotted lines represent the
trajectories under a periodic triggering policy.

a sensor measures the position and the pitch angle at each time. The
discrete-time state equation of the form (1), the output equation of the
form (2), and the loss function of the form (8) are specified with state,
input, and output matrices and noise covariances

10000 0.0100  0.0001 0.0000 0.0001
4, _ |0:0000 0.9982 00267 00001| . |00182|
0.0000  0.0000 1.0016 0.0100 0.0002
[0.0000 —0.0045 0.3122 1.0016 0.0454
[0.0006  0.0003 0.0001 0.0006
W, _ |0:0003 0.0008 0.0003 0.0004
0.0001 0.0003 0.0007 0.0006
10.0006  0.0004 0.0006 0.0031
o 1 0 o 0]’ k_{o.oozo 0.0000}
0010 0.0000 0.0010

for k € Njg,n), mean and covariance of the initial condition mg =
[0 0 0.2 0]7 and My = 10Wy, weighting coefficients and matrices
Qn41 = diag{1,1,1000, 1}, ¢, = 1, Q) = diag{1,1,1000, 1}, and
Ry, = 1fork € Nyg, n, time horizon N = 500, and tradeoff multiplier
A = 0.0066. For a realization of this system, the value of information,
transmission decision, and control input trajectories are shown in Fig. 2,
and the position, velocity, pitch angle, and pitch rate trajectories in
Fig. 3. Note that in this experiment, the value of information became
nonnegative only 17 times, which led to the transmission of a data
packet from the sensor to the controller at each of those times. The
corresponding trajectories under a periodic triggering policy with the
same number of transmissions are also illustrated in Figs. 2 and 3. We
observe that the system under the triggering policy designed based on
the value of information was able to achieve relatively much better
regulation quality.
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Fig. 3. Position, velocity, pitch angle, and pitch rate trajectories. The
solid lines represent the trajectories under the triggering policy designed
based on the value of information, and the dotted lines represent the
trajectories under a periodic triggering policy.

V. CONCLUSION

In this article, we introduced the notion of the value of information
as an intrinsic property of networked control systems, and established
a theoretical framework for its characterization and computation. The
results asserted that the value of information systematically measures
the semantics of each data packet as the difference between its benefit
and its cost, and that a strategy based on the value of information
optimally manages the communication between the sensor and the
controller by allowing only data packets with nonnegative valuations to
be transmitted. Note that the above objectives could not be achieved by
means of the traditional information-theoretic metrics or the traditional
event-triggered conditions. We suggest that future research should ex-
tend the framework developed in this study to other classes of systems.
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