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Abstract—In the design of cyber-physical systems (CPS)
where multiple physical systems are coupled via a com-
munication network, a key aspect is to study how network
services are distributed. In this letter, we first describe a
cross-layer model for CPS to explicitly capture the coupling
between control and networking and the time-sensitive
requirements of each physical system. Physical systems
processes are coupled via a shared network that provides
a diverse range of cost-prone and capacity-limited services
with distinct latency characteristics. Service prices are
given such that low latency services incur higher com-
munication cost, and prices remain fixed over a constant
period of time but will be adjusted by the network for the
future time periods. Physical systems decide to use spe-
cific services over each time interval depending on the
service prices and their own time sensitivity requirements.
Considering the service availability, the network coordi-
nates resource allocation such that physical systems are
serviced the closest to their preferences. Performance of
individual systems are measured by an expected quadratic
cost and we formulate a social optimization problem sub-
ject to time-sensitive requirements of the physical systems
and the network constraints. From the formulated social
optimization problem, we derive the joint optimal time-
sensitive control and service allocation policies.

Index Terms—Cross-layer optimal design, cyber-physical
systems, latency-varying services.
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I. INTRODUCTION

MANY applications of CPS such as industrial automation
and autonomous vehicles include multiple controlled

dynamical systems with the feedback loops closed over a
shared network infrastructure [1]. This poses novel challenges
for the communication and control system design to sup-
port such coupled network of systems with stringent real-time
requirements and tight inter-layer dependencies [2]. Recent
evolution of 5G communication technology has provided a
great potential to revisit the control and networking co-design
paradigm in CPS by facilitating an adaptable communica-
tion medium that can conveniently adjust its service features
depending on the user demands in, e.g., latency, reliability,
bandwidth and security [3]. A strictly separate design of con-
trol and network layers leads to conservative solutions and
results in low quality of control as well as high cost of
communication. Hence, to fulfill the tight quality of control
requirements and also to exploit the flexibility of the state-
of-the-art communication technology, control and networking
need to be co-designed in a cross-layer fashion [4], [5].

Providing a systematic and applicable joint design frame-
work, however, is proven to be challenging due to, first, the
tight integration of the physical and cyber layers through
multiple coupling sources, and second, complexity of optimal
solutions that make them non-scalable and intractable to apply
on real-time CPS [6], [7]. Despite the noticeable progress
including [8]–[10] to develop the co-design architectures, most
of the results are obtained either under oversimplification of
one of the CPS layers or under the traditional average-type
constraints and stationary interfaces, where the former often
results in eccentric design frameworks suitable for specific
CPS models [11], and the latter leads to only asymptotic
averaged performance guarantees [12].

In this letter, we describe a novel cross-layer interactive
ecosystem for real-time CPS wherein heterogeneous physi-
cal systems are aware of the diverse network services while
their time sensitivity requirements are shared with the network
for an efficient service allocation. The major novelties are,
first, the model of communication network and serviceability,
and second, the sampling strategy which can schedule data
packets to be delivered to the controller in future time-steps.
Motivated by the state-of-the-art communication technology,
we assume network services provide multiple latency-varying
transmission links, through which systems can close their
sensor-to-controller loops subject to a given price. In a future-
contract model, each system decides to pay the price for a
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certain network service for a known future time period. The
system may change its service preference for the next future
time period depending on the service price and its possibly
changed communication requirements. Requests of all systems
are processed by the network where some requests might be
differently serviced due to service limitations. Service prices
are updated for the next time periods to avoid high traffic
for certain services and also to incentivize the users to select
expensive services only when necessary. Performance of each
physical system is measured by quadratic control cost plus the
communication service price. This urges the physical systems
not to always request the fastest transmission links because of
higher communication prices. Service allocation is coordinated
by the network such that the average sum of local performance
discrepancies, resulting from network service limitations, is
minimized across the physical layer over a finite time hori-
zon. Given the described cross-layer interaction model, the
joint optimal control and networking policies are derived.

Notations: In this letter, E [ · ], E [ · | · ] and tr(·) denote,
respectively, the expectation, conditional expectation and trace
operators. We denote [x]b

a � max{min{x, b}, a}. A matrix
A � 0 (� 0) is positive definite (positive semi-definite). For
time varying variables, vectors, matrices and sets, superscripts
denote the corresponding system and subscripts denote the time
instance, e.g., Xi

t belongs to system i and its content corresponds
to time instance t. We also use Xi

[t1,t2] � {Xi
t1 , . . . , Xi

t2}. For
time-invariant matrices, we use subscript to show the belonging
system. Moreover, for a general vector Y and a weight matrix
Q of appropriate dimensions, we define ‖Y‖2

Q � Y�QY .

II. PROBLEM STATEMENT

We consider a class of CPS consisting of N dynamical
systems coupled via a common communication network.
Each physical system i ∈ {1, . . . , N} consists of a linear
time-invariant (LTI) stochastic process Pi, a time-sensitivity
controller1 Si, and a feedback controller Ci. Let xi

k ∈ R
ni ,

ui
k ∈ R

oi and wi
k ∈ R

ni denote, respectively, the state, con-
trol signal and exogenous disturbance for the ith system at
time-step k. Dynamics of the plant Pi is modeled as

xi
k+1 = Aix

i
k + Biu

i
k + wi

k, (1)

where Ai ∈ R
ni×ni , Bi ∈ R

ni×oi , and the process noise wi
k is

zero-mean Gaussian distributed with variance �wi � 0, and
wi

k is assumed to be independent of wj
� for all i �= j or k �= �.

Initial states xi
0’s are assumed to be randomly chosen from

arbitrary i.i.d. zero-mean distributions with variance �xi
0
, and

are independent of wj
k, ∀j and k. The control cost of each

physical system follows the finite horizon LQG function, i.e.,

Ji = E

⎡
⎣‖xi

tf ‖2
Q2

i
+

tf −1∑
k=0

‖xi
k‖2

Q1
i
+ ‖ui

k‖2
Ri

⎤
⎦, (2)

where, tf represents the final time of the time horizon [0, tf ],
Q1

i � 0, Q2
i � 0 represent constant weights for the state,

and Ri � 0 is the control input weight matrix. Assume that
the communication network has multiple capacity-limited ser-
vice opportunities, each with a distinct latency and price, that
can be used by the physical systems. Let the network be

1Time sensitivity controller indeed determines the time-varying value of a
state information n terms of its influence in reducing a cost function.

comprised of D + 1 transmission links, together providing a
spectrum of network services with different latencies, denoted
by L = {sd|d ∈ D � {0, . . . , D}} where d represents the link’s
corresponding latency. This means, if xi

k is forwarded through
the link sd to the controller Ci at a time-step k, then it will be
received at Ci at time-step k+d. Let the time horizon [0, tf −1]
be divided into m sub-intervals. We denote the pth sub-interval
by Tp, p ∈ {1, . . . , m}, and Tp consists of ηp(ηp ∈ N) time-
steps. Hence, the final time-step becomes tf = ∑m

p=1 ηp. For
the ease of the exposition, we assume that all sub-intervals
have equal lengths, i.e., ηp = η, ∀p, and thus, the time-interval
becomes Tp = [(p − 1)η, pη − 1].

Let us denote the initial and the final time-steps of the sub-
interval Tp by ťpi = (p − 1)η and ťpf = pη − 1, respectively. At
the beginning of a sub-interval Tp, i.e., at time-step ťpi , each
physical system decides on its preferred service sd ∈ L to be
its sensor-to-controller communication link. The service pref-
erence remains unchanged for the entire sub-interval Tp (i.e.,
until ťpf ), and physical systems can select a different commu-
nication service only at the beginning of the next sub-interval
Tp+1, i.e., at the time-step ťp+1

i .
During each sub-interval Tp, the service price for each trans-

mission link sd is denoted by λd
p, and is assumed to be fixed

over the entire pth sub-interval. They may, however, change
from Tp to Tp+1. Prices are set such that links with lower
latency are more expensive, i.e., λ0

p ≥ . . . ≥ λD
p , ∀p, and

�p � [λ0
p, . . . , λ

D
p ]� represents the service price vector for

the sub-interval Tp. In general, using a higher latency service
results in an increase in the average control cost (2).

Let θ i
t (d) ∈ {0, 1} denote whether system i is selected the

transmission service sd at time-step t, i.e., if θ i
t (d) = 1, then

xi
t is sent through the link sd at time-step t to the controller
Ci and will be delivered at time t + d. Since the systems may
change their service preferences only at time instances ťpi ’s,
p ∈ {1, . . . , m}, θ i

ťpi
(d) = θ i

ťpi +1
(d) = · · · = θ i

ťpf
(d), ∀d ∈ D.

Hence, the decision outcome of the time-sensitivity controller
Si, generated only at time instances ťpi , is represented as

θ i
ťpi
(d) =

{
1, sd is selected to transmit xi

t, ∀t ∈ Tp,
0, sd is not selected, ∀t ∈ Tp.

(3)

We assume that each Si selects one and only one of the
transmission services during each sub-interval Tp, i.e.,

D∑
d=0

θ i
ťpi
(d) = 1, ∀p = {1, . . . , m}, ∀i ∈ {1, . . . , N}. (4)

Since the decision outcome θ i
ťpi
(d),∀d, is fixed for the entire

sub-interval Tp, with a slight abuse of notation, we define
the binary-valued θ i

Tp
(d) as the representative for all θ i

t (d),

t ∈ Tp, and θ i
Tp

� [θ i
Tp

(0), . . . , θ i
Tp

(D)]�. The total service
cost for the physical system i over the entire horizon [0, tf ] is∑m

p=1 η θ i�
Tp

�p, and the local cumulative cost for that system,

that is a function of ith system’s local policies, becomes

Ji(ui, θ i) = E
[
‖xi

tf ‖2
Q2

i
+

tf −1∑
k=0

‖xi
k‖2

Q1
i

+ ‖ui
k‖2

Ri
+

m∑
p=1

ηθ i�
Tp

�p

]
. (5)

Since simultaneously minimizing the network and the con-
trol cost are conflicting objectives, the optimization problem
becomes a trade-off between the two urging decision-makers
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Fig. 1. Multiple LTI control systems over a service-limited network with
a variety of latency-varying cost-prone transmission services over time
periods of length Tp , p = 1, . . . , m. (Z−d denotes the delay operator.)

(Ci,Si) to search for the best combined strategy to minimize
the accumulated cost of control and communication.

Network services are assumed to have capacity limitations
such that not all systems can simultaneously be serviced
through one specific link. To satisfy the service capacity con-
straints, allocated services to the physical systems may differ
from the proffered ones (θ i

Tp
). The ultimate allocation of

services is decided by a resource allocation unit in the network
layer. Let ϑ i

t � [ϑ i
t (0), . . . , ϑ i

t (D)]� denote the resource allo-
cation outcome for system i at time-step t such that ϑ i

t (d) = 1
ensures that xi

t will be forwarded to the controller Ci via
the service link sd and will be received by Ci at time-step
t +d. Denoting the average capacity of a certain service sd by
0 < cd < N, the capacity constraint is

1

tf

tf −1∑
k=0

N∑
i=1

ϑ i
k(d) ≤ cd, ∀d ∈ D. (6)

The main objective of this letter is to study how each phys-
ical system optimally selects θ i and ui and how the network
optimally reacts to the service selection θ i’s to construct
appropriate ϑ i’s to satisfy the service constraints.

III. CROSS-LAYER OPTIMAL DESIGN

A. Cross-Layer Policy Makers
As depicted in Fig. 1, each system in the physical layer is

steered by two local policy makers: a feedback controller Ci
and a time-sensitivity controller Si. We define I i

k and Ī i
ťpi

as the

sets of available information for decision making for Ci and Si,
respectively. We note that Ci generates the control input ui

k at
every time-step k, while Si generates θ i

Tp
only at time instances

ťpi , p ∈ {1, . . . , m}, hence, as suggested by the subscripts, I i
k

is updated at every k, while Ī i
ťpi

is updated at every ťpi . Given

the information sets I i
k and Ī i

ťpi
, we now introduce the causal

policies γ i
k : I i

k �→ R
oi and ξ i

ťpi
: Ī i

ťpi
�→ {0, 1}D+1 of the

system i that generate the control input at time-step k and
service preferences for the sub-interval Tp, respectively. That
is ui

k = γ i
k(I i

k) and θ i
Tp

= ξ i
ťpi
(Ī i

ťpi
).

We assume that a dedicated error-free acknowledgement
channel exists to inform the controllers at every time-step k
about the binary decision of the resource manager w.r.t. the
preferred services of that system (θ i

Tp
), i.e., ϑ i

k are known at

Ci at time-step k (see Fig. 1). Note that each controller uses
a collocated estimator to estimate the current system state if
it is not communicated. The decision on ϑ i

k is made at every
time-step k, unlike θ i

Tp
that is decided once for the entire sub-

interval Tp. Ideally, network desires to service the dynamical
systems exactly according to their preferences, i.e., ∀k ∈ Tp,
ϑ i

k = θ i
Tp

. If service limitations do not allow this, the allocated
services are not necessarily the ones requested by some of the
systems during some of the sub-intervals.

Similarly, we define Ĩk as the set of available information
for the network to allocate resources at time-step k. We
introduce πk : Ĩk �→ {0, 1}(D+1)N as the causal policy for
computing ϑ i

k, i.e., [ϑ1
k , . . . , ϑN

k ] = πk(Ĩk).2

B. Information Structures of the Policy Makers

To characterize the information sets I i
k, Ī i

ťpi
, Ĩk, we first

assume that the local decision makers Si and Ci have
the knowledge of their own constant model parameters
I i

cp � {Ai, Bi, �wi , Q1
i , Q2

i , Ri}. The resource allocation unit
has access to I i

cp,∀i. Before introducing the information
interaction model, we state the following assumption.

Assumption 1: Resource allocation in the network layer is
rendered independent of the local plant control inputs, i.e.,
none of the ui

t, t < k, is incorporated in determining ϑ i
k.

Considering the arbitrary time-step k belongs to an arbitrary
sub-interval Tp, and noting the order of generating variables
in one sampling cycle, (θ i

Tp
→ ϑ i

k → ui
k → xi

k+1), the

information sets I i
k, Ī i

ťpi
and Ĩk of the three decision makers

Ci, Si and the resource allocation, are as follows:

I i
k = I i

cp ∪ {Z i
[0,k], θ

i
[0,k], ϑ

i
[0,k], ui

[0,k−1],�[1,p]} (7)

Ī i
ťpi

= I i
cp ∪ {θ i

[0,ťp−1
f ]

, ϑ i
[0,ťp−1

f ]
, ui

[0,ťp−1
f ]

,�[1,p]} (8)

Ĩk = ∪N
i=1{I i

cp ∪ {θ i
[0,k], ϑ

i
[0,k−1]}} (9)

and, Z i
t = {ϑ i

t (0)xi
t, ϑ

i
t−1(1)xi

t−1, . . . , ϑ
i
t−D(D)xi

t−D}. We also

use I i = {I i
k}

tf −1
k=0 , Ī i = {Ī i

ťpi
}m
p=1, and Ĩ = {Ĩk}tf −1

k=0 .

Remark 1: According to (7)-(9), ui
k = γ i

k(I i
k) is a function

of ϑ i
[0,k], but πk does not incorporate ui

[0,k],∀i, in computing

ϑ i
k = πk(Ĩk). The ultimate allocated resources to system i

at a time k ∈ Tp, however, depend on θ i
[0,k]. Since πk is a

function of θ i
[0,k] for k ∈ Tp (Ĩk includes θ i

[0,k], ∀i), control
performance is indirectly considered in resource allocation as
θ i

[0,k] are chosen by the physical systems in order to minimize
the cumulative cost (5). Moreover, it leads to a considerable
complexity reduction in computing the optimal policies π∗

k
and γ

i,∗
k (Section III-C), since the network does not need to

have access to the entire control input history of all control
systems, i.e., ui

[0,k−1], i ∈ {1, . . . , N}.

C. Cross-Layer Joint Optimization Problem
Given the information sets (7) and (8), the cumulative cost

function (5), for a system i ∈ {1, . . . , N}, is expressed as

Ji(ui, θ i|I i, Ī i) = E
[
‖xi

tf ‖2
Q2

i
+

tf −1∑
k=0

‖xi
k‖2

Q1
i
+ ‖ui

k‖2
Ri

2With slight abuse of notation, to point the resource allocation outcome for
a specific system i, we will sometimes write ϑ i

k = πk(Ĩk).
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+
m∑

p=1

ηθ i�
Tp

�p
∣∣I i

k, Ī i
ťpi

]
. (10)

Note that, (10) represents the local cumulative cost func-
tion without considering the resource constraint (6), thus, no
resource allocation decision ϑ i is present. The overall objective
is to optimize the average performance of all systems under
the constraint (6). If some of the service requests are handled
differently in the network due to the constraint (6), i.e., when
ϑ i

k is applied, the corresponding control input will be changed
and the cumulative control cost Ji then becomes

Ji(ui, ϑ i|I i, Ĩ) = E
[
‖xi

tf ‖2
Q2

i
+

tf −1∑
k=0

‖xi
k‖2

Q1
i
+ ‖ui

k‖2
Ri

+
m∑

p=1

∑
k∈Tp

ϑ i�
k �p

∣∣∣I i
k, Ĩk

]
. (11)

We formulate a social cost J as the average difference between
the sum of Ji’s from the perspectives of the network (after
resource allocation) and the physical systems, i.e.,

J = 1

N

N∑
i=1

E
[

Ji(ui, ϑ i|I i, Ĩ) − min
ui,θ i

Ji(ui, θ i|I i, Ī i)

]
. (12)

The aim is to derive the optimal policies γ
i,∗
k (I i

k), ξ
i,∗
ťpi

(Ī i
ťpi
)

and π∗
k (Ĩk) that jointly minimize J over the horizon [0, tf −1]

min
γ i,ξ i,π

J (13a)

s.t. ui
k = γ i

k(I i
k), θ i

Tp
= ξ

i,∗
ťpi

(Ī i
ťpi
), ϑk = πk(Ĩk) (13b)

∑
k∈Tp

ϑ i�
k �p ≤ η θ i�

Tp
�p, ∀i, p ∈ {1, . . . , m} (13c)

1

tf

tf −1∑
k=0

N∑
i=1

ϑ i
k(d) ≤ cd, ∀d ∈ D. (13d)

The constraint (13b) ensures γ i, ξ i and π are admissible poli-
cies and measurable functions of the σ -algebras generated by
their corresponding information sets, (13c) guarantees that re-
allocated services impose no higher cost on the systems over
the intervals Tp, and (13d) is the capacity constraint (6).

We propose a heuristic adaptive law to update the service
prices for each sub-interval Tp to incentivize the systems to
more evenly distribute their service requests, as follows:

λd
p+1 =

[
λd

p + αd

(
N∑

i=1

θ i
Tp

(d) − cd

)]λd
max

λd
min

, (14)

where, αd ∈ R≥0 is a network parameter to properly adjust
the prices. The update law (14) ensures that λd

p ∈ [λd
min, λ

d
max],

where, λd
min and λd

max are known to all systems a priori.3 The
adaptive law (14) does not lead to an average degradation
of (12) since, first, service prices are part of the local costs,
and second, the prices for less-used services are decreased.

Theorem 1, for which we omit the proof due to space
limitation, shows the structure of the optimal control law.

3Search for the αd’s to find the optimal pricing mechanism is an interesting
yet challenging problem, and beyond the scope of this letter.

Theorem 1: Given the information sets I i
k, Ī i

ťpi
and Ĩk

in (7)-(9) and the problem (13a)-(13d), the optimal plant con-
trol law γ

i,∗
k , ∀i, is of certainty equivalence form and control

inputs are obtained from linear state feedback law as

ui,∗
k = γ

i,∗
k (I i

k) = −Li,∗
k E [xi

k|I i
k], i ∈ {1, . . . , N} (15)

Li,∗
k =

(
Ri + B�

i Pi
k+1Bi

)−1
B�

i Pi
k+1Ai, (16)

where, Pi
T = Q2

i , and Pi
k solves the Riccati equation

Pi
k = Q1

i + A�
i

[
Pi

k+1 − Pi
k+1Bi

(
Ri + B�

i Pi
k+1Bi

)−1
B�

i Pi
k+1

]
Ai.

Theorem 2: Consider the problem (13a)-(13d) and let
γ i,∗, i ∈ {1, . . . , N} follow the certainty equivalence
law (15)-(16). Given Ī i

ťpi
and Ĩk in (8) and (9), the optimal

time sensitivity control law is computed from the following
constrained mixed-integer linear-programming (MILP)

θ
i,∗
[k,tf −1] = arg min

ξ i
[ť

p
i ,ťmi ]

Ji(γ i,∗, ξ i
[ťpi ,ťmi ]

(Ī i
[ťpi ,ťmi ]

))

= arg min
ξ i

[ť
p
i ,ťmi ]

tf −1∑
t=k

⎡
⎣

τ i
t∑

l=1

τ i
t∑

j=l

b̄i
j,tTr(P̃i

tA
l−1T

i �wi Al−1
i ) + θ i�

t �μ(k)

⎤
⎦

s.t. ∀i, t ∈ Tp, θ
i
ťpi

= · · · = θ i
t = · · · = θ i

ťpf
= θ i

Tp
= ξ i

ťpi
(Ī i

ťpi
)

b̄i
0,t = θ i

t (0), b̄i
j,t ≤

j∑
l=0

θ i
t−j(l), j ∈ {1, . . . , τ i

t },

D∑
l=0

θ i
t (l) = 1,

τ i
t∑

j=0

b̄i
j,t = 1,

D∑
j=t+2

b̄i
j,t = 0, t ≥ k,

θ i
s = ϑ i

s, ∀s < k. (17)

where, μ(k) = p for k ∈ Tp, τ i
t � min{D, t + 1}, and P̃i

t =
Q1

i + A�
i Pi

t+1Ai − Pi
t, and b̄i

j,t = [[1 − θ i
t (0)]

∏j−1
d=1

∏d
l=0 [1 −

θ i
t−d(l)]][

∑j
d=0 θ i

t−j(d)]. For notational correctness, we use the

convention
∏d2

d=d1
ad � 1 and

∑d2
d=d1

ad � 0, ∀d1 > d2.
Subsequently, the optimal resource allocation law is computed
from the following constrained MILP

ϑ∗
[k,tf −1] = arg min

π[k,tf −1]

N∑
i=1

tf −1∑
t=k

[
ϑ i�

t �μ(k)

+
τ i

t∑
l=1

τ i
t∑

j=l

b̃i
j,tTr(P̃i

tA
l−1T

i �wiAl−1
i )

]

s.t.
1

tf

tf −1∑
t=0

N∑
i=1

ϑ i
t (d) ≤ cd, ∀d ∈ D,

∑
t∈Tp

ϑ i�
t �p ≤ ηθ i�

Tp
�p, ∀i, p ∈ {1, . . . , m} (18)

where, b̃i
j,t is similarly defined as b̄i

j,t with the exception that
θ i

t is replaced by ϑ i
t for all i and t (see expression (21)).

Proof: Using the optimal control law (15)-(16), the cost-to-
go Vi

k = ‖xi
tf ‖2

Q2
i
+∑tf −1

t=k ‖xi
t‖2

Q1
i
+‖ui

t‖2
Ri

is optimally computed
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as (see [13, Th. 1 and Proposition 1]):

Vi,∗
k = ‖ E

[
xi

k|I i
k

]‖2
Pi

k
+ E

⎡
⎣‖ei

k‖2
Pi

k
+

tf −1∑
t=k

‖ei
t‖2

P̃i
t

∣∣∣I i
k

⎤
⎦

+
tf∑

t=k+1

tr(Pi
t�

i
w), (19)

where, ei
k � xi

k − E [xi
k|I i

k], and P̃i
t = Q1

i + A�
i Pi

t+1Ai − Pi
t.

Moreover, the state estimate, at time-step k, is given as

E
[
xi

k|I i
k

] =
min{D,k+1}∑

j=0

b̃i
j,k E

[
xi

k|xi
k−j, ui

0, . . . , ui
k−1

]
, (20)

and, for all j ∈ D, and k ≥ j, we have

b̃i
j,k =

j−1∏
d=0

d∏
l=0

[1 − ϑ i
k−d(l)][

j∑
d=0

ϑ i
k−j(d)]. (21)

For, k < j, bi
0,k, . . . , bi

k,k’s are defined as in (21), bi
k+1,k =∏k

d=0
∏d

l=0 [1 − ϑ i
k−d(l)], and bi

k+2,k = · · · = bi
D,k = 0.

Having (19), with k ∈ Tp, the optimal time sensitivity con-
trol law ξ

i,∗
[ťpi ,ťmi ]

is obtained by minimizing the cumulative cost

Ji(ui,∗, θ i|I i, Ī i), i.e., ∀k ∈ [0, tf − 1] and k ∈ Tp

θ
i,∗
[k,tf −1] = arg min

ξ i
[ť

p
i ,ťmi ]

E

⎡
⎣Vi,∗

k (γ i,∗, ξ i) +
tf −1∑
t=k

θ i�
t �μ(k)

∣∣Ī i
ťpi

⎤
⎦.

Since Ī i
ťpi

⊆ I i
k, ∀k ∈ Tp, and employing (20), one can compute

E [ E [ei
kei�

k |I i
k]|Ī i

ťpi
] = E [ei

kei�
k |Ī i

ťpi
], at Si side, to be:

E [ei
kei�

k

∣∣Ī i
ťpi

] =
τ i

k∑
l=1

τ i
k∑

j=l

b̄i
j,k E [Al−1

i wi
k−lw

i�
k−lA

l−1�
i ]

=
τ i

k∑
l=1

τ i
k∑

j=l

b̄i
j,kAl−1

i �i
k−lA

l−1�
i ,

where, �i
k−l = �xi

0
, k < l, and �i

k−l = �wi , k ≥ l. Having

this with Ī i
ť0i

= I i
cp, we rewrite E [Vi,∗

0 (γ i,∗, ξ i)|Ī i
ť0i

] as follows

E [Vi,∗
0 (γ i,∗, ξ i)|Ī i

ť0i
] = ‖ E

[
xi

0

]‖2
Pi

k
+

tf∑
t=k+1

tr(Pi
t�wi)

+ tr(Pi
0

τ i
0∑

l=1

τ i
0∑

j=l

b̄i
j,0Al−1�

i �xi
0
Al−1

i )

+
tf −1∑
t=0

tr(P̃i
t

τ i
t∑

l=1

τ i
t∑

j=l

b̄i
j,tA

l−1�
i �i

t−lA
l−1
i ).

As the only term in the last expression that is dependent on
θ i

[k,tf −1] is the last term, we have for all k ∈ Tp

θ
i,∗
[k,tf −1] = arg min

ξ i
[ť

p
i ,ťmi ]

E

⎡
⎣Vi,∗

k (γ i,∗, ξ i) +
tf −1∑
t=k

θ i�
t �μ(k)

∣∣Ī i
ťpi

⎤
⎦

= arg min
ξ i

[ť
p
i ,ťmi ]

tf −1∑
t=k

⎡
⎣tr(P̃i

t

τ i
t∑

l=1

τ i
t∑

j=l

b̄i
j,tA

l−1�
i �i

t−lA
l−1
i ) + θ i�

t �μ(k)

⎤
⎦

Note that, �p is known for Si assuming k ∈ Tp (k is the current
time). The optimization problem is, however, solved from k to
the final time tf over which the prices may change from Tp to
Tp+1 while future price changes are not disclosed for Si’s at
time k ∈ Tp. Hence, the system solves the local optimization
problem considering the current prices, i.e., �p, for the whole
horizon [k, tf ]. At the beginning of the next sub-interval Tp+1
when Si updates θ i

Tp+1
, the adjusted price �p+1, is considered

until tf . The constraints of the problem (17) are all linear and
θ i

k is a binary variable, hence the problem is an MILP that is
solved m times over the horizon [0, tf ], once per each sub-
interval Tp, p = {1, . . . , m}. The constraint

∑D
l=0 θ i

t (l) = 1
ensures that only one transmission link is selected per-time,
while the last two constraints are essential for correct indexes
in the parameter b̄i

j,k for k ≥ D and k < D.

To find π∗, we take similar steps to compute ϑ
i,∗
k given

the information set Ĩk. We compute E [Vi,∗
k (γ i,∗, π)|Ĩk] that

results in a similar expression with the exception being b̄i
j,t

is replaced by b̃i
j,t in (21). Hence, considering the price

and resource constraints (13c)-(13d), we derive the optimal
resource allocation from the following MILP, with k ∈ Tp

ϑ∗
[k,tf −1] = arg min

π[k,tf −1]

N∑
i=1

E

⎡
⎣Vi,∗

k (γ i,∗, π i) +
tf −1∑
t=k

ϑ i�
t �μ(k)

∣∣Ĩk

⎤
⎦

= arg min
π[k,tf −1]

N∑
i=1

tf −1∑
t=k

⎡
⎣ϑ i�

t �μ(k) +
τ i

t∑
l=0

τ i
t∑

j=l

b̃i
j,tTr(P̃i

tA
l−1T

i �wi Al−1
i )

⎤
⎦.

Theorems 1 and 2 show that under the assumption that
πk is independent of γ i

[0,k−1]’s, we can decompose the
problem (13a)-(13d) and solve it for the plant control policy
separately, while the resource allocation and time-sensitivity
control remain coupled through the adaptive service prices and
capacity constraints. Note that, the complexity of MILPs (17)
and (18) to compute the mentioned policies are of orders
O(NDm2) and O(NDt2f ), respectively, which suggests compu-
tationally feasibility for medium size CPS over finite horizons.

IV. NUMERICAL RESULTS

We consider a set of 20 homogeneous LTI systems

with Ai =
[

1.01 0.2
0.2 1

]
, Bi =

[
0.1 0
0 0.15

]
, wi

k ∼
N (0, 1.5I2×2), and Q1

i = Q2
i = Ri = I2×2, ∀i and ∀k. We

consider 6 network services with latencies D = {0, . . . , 5},
where for {s0, . . . , s4} we assume cd = 4 and c5 = 5. The
maximum and minimum prices for {s0, . . . , s5} are �max =
[31, 19, 12, 9, 5.5, 2.5] and �min = [19, 12, 9, 5.5, 2.5, 0.5].
Each sub-interval Tp consists of 10 time-steps, and tf = 50,
i.e., m = 5. The initial service costs �1 for the interval
T1 = [0, 9], is [25, 13, 11, 7, 4, 1], and prices are updated
according to (14) with αd = 1, ∀d ∈ D. We compare ser-
vice request and allocation for the varying service costs, i.e.,
αd = 1, and constant service costs, i.e., �p = �1, ∀p. To cap-
ture the service usage, we define a network utilization quotient
ρt(d), ∀t ∈ [0, tf ] and d ∈ D, as follows

ρt(d) = 1

N(t + 1)

[
t∑

k=0

N∑
i=1

ϑ i
k(d)

]
. (22)

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on September 14,2022 at 21:37:14 UTC from IEEE Xplore.  Restrictions apply. 



922 IEEE CONTROL SYSTEMS LETTERS, VOL. 5, NO. 3, JULY 2021

Fig. 2. Usage of different services. The solid lines (—) correspond to
the time varying service costs and the dotted lines with circles (· · ◦ · ·)
correspond to constant costs.

Thus, ρt(d) shows the usage percentage of the service sd upto
time t, and from the constraint (13d), ρtf −1(d) ≤ cd/N.

In Fig. 2 we plot ρt(d) for time varying and constant service
costs. In both cases, the usage for all services are the same
for the first interval [0, 9], as expected. Based on (14), prices
for the services s0, s4, s5 increase whereas the prices for the
rest decrease. These cost changes incentivize the systems to
choose different services (θ i

t ), and consequently, the allocation
of the links (ϑ i

t ) also changes because of (13c).
In particular, during the interval T2 = [10, 19], we observe

a different usage in services s4 and s5 between the two sce-
narios. The increments in the service costs, however, do not
necessarily change the utilization, for example, the increased
cost of s0 did not change its usage. An interesting observation
lies in the usage of services s2 and s3 for the final interval
T5 = [40, 49]. Since s3 is not used over T3 = [30, 39], its
cost is reduced for T4 = [40, 49], however we still observe
a decrease in its usage, and this is because s2 is still more
efficient for many systems than s3.

From this experiment, we notice that by adaptively chang-
ing the service costs, the utilization can be regulated, and the
adaptive rule and its parameters play a significant role in reg-
ulating the usage. This is particularly a very interesting line
of future research that how to optimally adapt the prices.

If the systems are served exactly as they request, each of
them will incur a control cost of 61.1741 and a service cost of
1300. However, due to the capacity constraints, the systems do
not obtain the desired service and the total control cost for the
group becomes 22566.56 compared to 61.1741×20 = 1223.48
– almost a twenty-fold increase. The network would earn a
total of 1300×20 = 26000 if it could serve the exact requests.
However, due to the capacity constraints, the network receives
a total of 9916. The total cost due to the capacity limitation
becomes 22566.56 + 9916 = 32482.56, compared to the cost
of 1223.48 + 26000 = 27223.48 with no capacity limitation.

We also studied the average deviation of the requested
services from the assigned services. Let ϑ i,∗ denote the actual
service assignment to the i-th system, and θ i,∗ denote its
desired request, then the average deviation is calculated as

�t =
∑t

k=0
∑N

i=1

∣∣∑D
d=0 d(ϑ

i,∗
k (d) − θ

i,∗
k (d))

∣∣
N(t + 1)

, (23)

where in (23), | · | represents the absolute value. The results
are plotted in Fig. 3, where we notice that �t is slightly higher

Fig. 3. Average link assignment variation.

with time varying costs as the updated costs persuade the
systems to deviate further to adopt a new service.

V. CONCLUSION

We propose a cross-layer model of CPS wherein multiple
LTI stochastic systems are coupled via a shared network that
provides a range of costly and capacity-limited services with
distinct latencies. Service recipients (physical systems) select
certain network services for a time period for a given price.
Requests are processed by the network and services are allo-
cated taking into account the users’ demands and network
limitations. Service prices are adjusted for future periods with
the aim of receiving more evenly distributed service requests.
We formulate a social cost minimized by cross-layer decision
makers, and we derive the resulting optimal policies taking
into account their limitations, tolerances and constraints.
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