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A Cross-Layer Optimal Co-Design of Control
and Networking in Time-Sensitive
Cyber-Physical Systems

Mohammad H. Mamduhi
John S. Baras

Abstract—In the design of cyber-physical systems (CPS)
where multiple physical systems are coupled via a com-
munication network, a key aspect is to study how network
services are distributed. In this letter, we first describe a
cross-layer model for CPS to explicitly capture the coupling
between control and networking and the time-sensitive
requirements of each physical system. Physical systems
processes are coupled via a shared network that provides
a diverse range of cost-prone and capacity-limited services
with distinct latency characteristics. Service prices are
given such that low latency services incur higher com-
munication cost, and prices remain fixed over a constant
period of time but will be adjusted by the network for the
future time periods. Physical systems decide to use spe-
cific services over each time interval depending on the
service prices and their own time sensitivity requirements.
Considering the service availability, the network coordi-
nates resource allocation such that physical systems are
serviced the closest to their preferences. Performance of
individual systems are measured by an expected quadratic
cost and we formulate a social optimization problem sub-
ject to time-sensitive requirements of the physical systems
and the network constraints. From the formulated social
optimization problem, we derive the joint optimal time-
sensitive control and service allocation policies.

Index Terms—Cross-layer optimal design, cyber-physical
systems, latency-varying services.
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I. INTRODUCTION

ANY applications of CPS such as industrial automation

and autonomous vehicles include multiple controlled
dynamical systems with the feedback loops closed over a
shared network infrastructure [1]. This poses novel challenges
for the communication and control system design to sup-
port such coupled network of systems with stringent real-time
requirements and tight inter-layer dependencies [2]. Recent
evolution of 5G communication technology has provided a
great potential to revisit the control and networking co-design
paradigm in CPS by facilitating an adaptable communica-
tion medium that can conveniently adjust its service features
depending on the user demands in, e.g., latency, reliability,
bandwidth and security [3]. A strictly separate design of con-
trol and network layers leads to conservative solutions and
results in low quality of control as well as high cost of
communication. Hence, to fulfill the tight quality of control
requirements and also to exploit the flexibility of the state-
of-the-art communication technology, control and networking
need to be co-designed in a cross-layer fashion [4], [5].

Providing a systematic and applicable joint design frame-
work, however, is proven to be challenging due to, first, the
tight integration of the physical and cyber layers through
multiple coupling sources, and second, complexity of optimal
solutions that make them non-scalable and intractable to apply
on real-time CPS [6], [7]. Despite the noticeable progress
including [8]-[10] to develop the co-design architectures, most
of the results are obtained either under oversimplification of
one of the CPS layers or under the traditional average-type
constraints and stationary interfaces, where the former often
results in eccentric design frameworks suitable for specific
CPS models [11], and the latter leads to only asymptotic
averaged performance guarantees [12].

In this letter, we describe a novel cross-layer interactive
ecosystem for real-time CPS wherein heterogeneous physi-
cal systems are aware of the diverse network services while
their time sensitivity requirements are shared with the network
for an efficient service allocation. The major novelties are,
first, the model of communication network and serviceability,
and second, the sampling strategy which can schedule data
packets to be delivered to the controller in future time-steps.
Motivated by the state-of-the-art communication technology,
we assume network services provide multiple latency-varying
transmission links, through which systems can close their
sensor-to-controller loops subject to a given price. In a future-
contract model, each system decides to pay the price for a
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See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on September 14,2022 at 21:37:14 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0001-5255-0352
https://orcid.org/0000-0002-7745-9405
https://orcid.org/0000-0002-4955-8561
https://orcid.org/0000-0001-9940-5929

918

IEEE CONTROL SYSTEMS LETTERS, VOL. 5, NO. 3, JULY 2021

certain network service for a known future time period. The
system may change its service preference for the next future
time period depending on the service price and its possibly
changed communication requirements. Requests of all systems
are processed by the network where some requests might be
differently serviced due to service limitations. Service prices
are updated for the next time periods to avoid high traffic
for certain services and also to incentivize the users to select
expensive services only when necessary. Performance of each
physical system is measured by quadratic control cost plus the
communication service price. This urges the physical systems
not to always request the fastest transmission links because of
higher communication prices. Service allocation is coordinated
by the network such that the average sum of local performance
discrepancies, resulting from network service limitations, is
minimized across the physical layer over a finite time hori-
zon. Given the described cross-layer interaction model, the
joint optimal control and networking policies are derived.

Notations: In this letter, E[ -], E[ - | -] and tr(-) denote,
respectively, the expectation, conditional expectation and trace
operators. We denote [x]g £ max{min{x, b}, a}. A matrix
A > 0 (= 0) is positive definite (positive semi-definite). For
time varying variables, vectors, matrices and sets, superscripts
denote the corresponding system and subscripts denote the time
instance, e.g., X} belongs to system i and its content corresponds
to time instance . We also use Xftl’tz] £ {Xfl, .. .,sz}. For
time-invariant matrices, we use subscript to show the belonging
system. Moreover, for a general vector Y and a weight matrix
Q of appropriate dimensions, we define ||Y ||2Q 2yTor.

[I. PROBLEM STATEMENT

We consider a class of CPS consisting of N dynamical
systems coupled via a common communication network.
Each physical system i € {1,...,N} consists of a linear
time-invariant (LTI) stochastic process P;, a time-sensitivity
controller! S;, and a feedback controller C;. Let x, € R,
u}( € R% and w}( € R™ denote, respectively, the state, con-
trol signal and exogenous disturbance for the ith system at
time-step k. Dynamics of the plant P; is modeled as

x}'{H =A,-x§<+B,-uf{+w;(, €))

where A; € R%*" B; € R"*%_ and the process noise wfc is
zero-mean Gaussian distributed with variance X, > 0, and
w;; is assumed to be independent of wﬂz for all i #j or k # £.
Initial states x;,’s are assumed to be randomly chosen from
arbitrary i.i.d. zero-mean distributions with variance Exf) , and

are independent of wf{ Vj and k. The control cost of each
physical system follows the finite horizon LQG function, i.e.,

f—1
. - - -
Ji=E ||x§f||Qiz+k§0||x;(||Qi1+||u}<||RI. , )

where, tr represents the final time of the time horizon [0, #],
Ql-1 > 0, Ql-2 > 0 represent constant weights for the state,
and R; > 0 is the control input weight matrix. Assume that
the communication network has multiple capacity-limited ser-
vice opportunities, each with a distinct latency and price, that
can be used by the physical systems. Let the network be

ITime sensitivity controller indeed determines the time-varying value of a
state information n terms of its influence in reducing a cost function.

comprised of D + 1 transmission links, together providing a
spectrum of network services with different latencies, denoted
by £L={sqld e D2 1{0,...,D}} where d represents the link’s
corresponding latency. This means, if x; is forwarded through
the link s4 to the controller C; at a time-step k, then it will be
received at C; at time-step k+-d. Let the time horizon [0, #r —1]
be divided into m sub-intervals. We denote the p!"' sub-interval
by Ty, p € {1,...,m}, and T, consists of n,(n, € N) time-
steps. Hence, the final time-step becomes 7y = Zzlzl np. For
the ease of the exposition, we assume that all sub-intervals
have equal lengths, i.e., n, = 1, Vp, and thus, the time-interval
becomes T, = [(p — )n, pn — 1].

Let us denote the initial and the final time-steps of the sub-
interval T, by # = (p — 1)n and fJ’Z = pn — 1, respectively. At
the beginning of a sub-interval T, i.e., at time-step ??, each
physical system decides on its preferred service s; € L to be
its sensor-to-controller communication link. The service pref-
erence remains unchanged for the entire sub-interval 7), (i.e.,
until f}’?), and physical systems can select a different commu-
nication service only at the be%inning of the next sub-interval
Tpy1, ie., at the time-step fer .

During each sub-interval T}, the service price for each trans-
mission link sy is denoted by A%, and is assumed to be fixed
over the entire p" sub-interval. They may, however, change
from T}, to Tpy1. Prices are set such that links with lower
latency are more expensive, i.e., )»2 > .. > )»5, Vp, and
Ap £ [kg, ...,)\II])]T represents the service price vector for
the sub-interval 7). In general, using a higher latency service
results in an increase in the average control cost (2).

Let 6/(d) € {0, 1} denote whether system i is selected the
transmission service sg at time-step ¢, i.e., if Qf(d) = 1, then
! is sent through the link s, at time-step f to the controller
C; and will be delivered at time ¢+ d. Since the systems may
change their service preferences only at time instances if’s,
pe{l,....m}, 05(d) = Gf_,H(d) = = eg;,(d), Vd € D.

1
Hence, the decision outcome of the time-sensitivity controller
S;, generated only at time instances tf , is represented as

) : i
% ) = { I, sq4is selected to transmit x;, V¢ € T), 3)

0, sg is not selected, Vt € T),.

We assume that each S; selects one and only one of the
transmission services during each sub-interval 75, i.e.,

D
Y hd =1 Vp={l,....m}, Vie{l,....N}. 4
d=0 '

Since the decision outcome 91’,, (d), Vd, is fixed for the entire

sub-interval T, with a slightl abuse of notation, we dgﬁne
the binary-valued 9}17 (d) as the representative for all 6/(d),

t € T,, and e;p = [e;p (0), ...,e;p(D)]T. The total service
cost for the physical system i over the entire horizon [0, #] is
T .
Zl’f:l n O’Tp AP, and the local cumulative cost for that system,
that is a function of i system’s local policies, becomes
=1 m
Tl 0 = E [ I 12, + D I3, + N3, + Y n6f, 4p)- (5)
Y k=0 ! p=1
Since simultaneously minimizing the network and the con-

trol cost are conflicting objectives, the optimization problem
becomes a trade-off between the two urging decision-makers

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on September 14,2022 at 21:37:14 UTC from IEEE Xplore. Restrictions apply.



MAMDUHI et al.: CROSS-LAYER OPTIMAL CO-DESIGN OF CONTROL AND NETWORKING IN TIME-SENSITIVE CYBER-PHYSICAL SYSTEMS 919
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/Z*%-{Y)
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Fig. 1. Multiple LTI control systems over a service-limited network with
a variety of latency-varying cost-prone transmission services over time
periods of length Tp, p=1,..., m. (Z—d denotes the delay operator.)

(Ci, S;) to search for the best combined strategy to minimize
the accumulated cost of control and communication.

Network services are assumed to have capacity limitations
such that not all systems can simultaneously be serviced
through one specific link. To satisfy the service capacity con-
straints, allocated services to the physical systems may differ
from the proffered ones (Q’T)). The ultimate allocation of
services is decided by a resource allocation unit in the network
layer. Let 9/ 2 [9/(0), ..., 9/(D)]" denote the resource allo-
cation outcome for system i at time-step ¢ such that l?,i @ =1
ensures that x! will be forwarded to the controller C; via
the service link s; and will be received by C; at time-step
t+d. Denoting the average capacity of a certain service sg by
0 < ¢4 < N, the capacity constraint is

=1 N
Z Z 9i(d) < cq, Vd € D. (6)
=0 i

The main objective of this letter is to study how each phys-
ical system optimally selects 6' and u' and how the network
optimally reacts to the service selection 6'’s to construct
appropriate 9'’s to satisfy the service constraints.

[1l. CROSS-LAYER OPTIMAL DESIGN
A. Cross-Layer Policy Makers

As depicted in Fig. 1, each system in the physical layer is
steered by two local policy makers: a feedback controller C;
and a time-sensitivity controller S;. We define I’ and ZL as the
sets of available information for decision making for C; and Si,
respectively. We note that C; generates the control input u; at
every time-step k, while S; generates 9’ _only at time instances

lf, p € {l,..., m}, hence, as_suggested by the subscripts, I
is updated at every k, while Z;p is updated at every ?-7 Given

the information sets I’ and th, we now introduce the causal
7} — R% and gl,, z;" — {0, }P*L of the
system i that generate the control mput at time-step k and
service preferences for the sub-interval 7, respectively. That
is uk = yk(I’) and QT = EZP(ZL’;

We assume that a dedicated error-free acknowledgement
channel exists to inform the controllers at every time-step k
about the binary decision of the resource manager w.r.t. the
preferred services of that system (H’Tp), ie., ﬁ,i are known at

policies yk

C; at time-step k (see Fig. 1). Note that each controller uses
a collocated estimator to estimate the current system state if
it is not communicated. The decision on z?,i is made at every
time-step k, unlike 9%,) that is decided once for the entire sub-
interval T,. Ideally, network desires to service the dynamical
systems exactly according to their preferences, i.e., Vk € T),
ﬂ,i = 0}1). If service limitations do not allow this, the allocated
services are not necessarily the ones requested by some of the
systems during some of the sub-intervals.

Similarly, we define Z; as the set of available information
for the network to allocate resources at time-step k. We
introduce 7y : Zx > {0, 1}PtDN ag the causal policy for
computing 19’, ie, [0}, ..., ﬂN] = 1 (L) .2

B. Information Structures of the Policy Makers
To characterize the information sets Ik,l Ik, we first

assume that the local decision makers S; and C; have
the knowledge of their own constant model parameters
Iip £ {Ai, Bi, Ewi, Qil, Qiz,R,-}. The resource allocation unit
has access to Iép,Vi. Before introducing the information
interaction model, we state the following assumption.
Assumption 1: Resource allocation in the network layer is
rendered 1ndependent of the local plant control inputs, i.e.,
none of the uj, t < k, is incorporated in determining 9.
Considering the arbitrary time-step k belongs to an arbltrary
sub-interval T,, and noting the order of generating variables
in one sampling cycle, (9’T - O = uw > x), the
information sets Z, Z’ and 7Z; of the three decision makers

Ci, S; and the resource allocatlon are as follows:

I;( =Ié U{Z()k 901(],19[0’1(],14[(),1(,]]7A[l,p]} (7

i __ 7l i i i

;é’ _Icpu{elotp llvﬂlotp llﬂuloy;ﬁ—l]aA[l,p]} (8)

jk = Uﬁvzl{fép U {Q[iO,k]v 19[0’](_1]}} (9)
and, 2} = {ﬂ;(ol)x;‘, 9 (Dxi_ . ..,ﬁ;_D(D)ngll)}. We also
use T = (Z1)]y, T {z;' m . and T = T, -

Remark 1: According to (N-9), uk = yk(I,’() is a function
of 19[0 K but w3 does not incorporate “[0 xp Vis in computing
19’ = nk(Ik) The ultimate allocated resources to system i
at a time k € T,, however, depend on 90 K- Since my is a
function of 90 K] for k € T, (Ik includes 00 K Vi), control
performance is 1nd1rectly cons1dered in resource allocation as
9[0 x are chosen by the physical systems in order to minimize
the cumulative cost (5). Moreover, it leads to a considerable
complexity reduction in computing the optimal policies 7’
and y,ﬁ’* (Section III-C), since the network does not need to
have access to the entire control input history of all control
systems, i.e., “l[o k1] ie{l,...,N}

C. Cross-Layer Joint Optimization Problem

Given the information sets (7) and (8), the cumulative cost
function (5), for a system i € {1, ..., N}, is expressed as

tr—1
Ji 0T, I =E [nx;fugz + D Il + N,
1 k:0 1

2With slight abuse of notation, to point the resource allocation outcome for
a specific system i, we will sometimes write z?k = nk(Ik)
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(10)

m
+Zn9£1\p1f,iﬂ.

p=1

Note that, (10) represents the local cumulative cost func-
tion without considering the resource constraint (6), thus, no
resource allocation decision ' is present. The overall objective
is to optimize the average performance of all systems under
the constraint (6). If some of the service requests are handled
differently in the network due to the constraint (6), i.e., when
¥ is applied, the corresponding control input will be changed
and the cumulative control cost J* then becomes

=1
Jw 9T 1) = E [ux:fnzg_z + 3 Ixidg + gl
1 k:() 1

+§: Y oi'a

p=1keT),

i ik}. (11)

We formulate a social cost J as the average difference between
the sum of J"’s from the perspectives of the network (after
resource allocation) and the physical systems, i.e.,

ut 91

ZE[Jl(u 9171, I) — minJ (i, 0'|T, I’)}. (12)

The aim is to derive the optimal policies y,i’*(I]’;), E;ié*(i})
and 71,2“ (i'k) that jointly minimize J over the horizon [0, #r — 1]

min J (13a)
yi.Ehm

st = (T}, 0 =& (Tp), % =m(T) (13b)

> 0L Ap <6 Ap Vipe{l,...m} (130)
keT,
1 1= LN
—ZZﬁk(d) <cq, Vd eD. (13d)
k 0 i=1

The constraint (13b) ensures yi , &' and 7 are admissible poli-
cies and measurable functions of the o-algebras generated by
their corresponding information sets, (13c) guarantees that re-
allocated services impose no higher cost on the systems over
the intervals T, and (13d) is the capacity constraint (6).
We propose a heuristic adaptive law to update the service
prices for each sub-interval T}, to incentivize the systems to
more evenly distribute their service requests, as follows:

Ad

N max
[Ag +ag (Z 07, (d) — cdﬂ :
i=1 24

min

)\,d

p+1 — (14)

where, ag € Rxq is a network parameter to properly adJust
the prices. The update law (14) ensures that )Jl e

min’ max]

where, Aﬁn and A4 . are known to all systems a priori.’ The

adaptive law (14) does not lead to an average degradation

of (12) since, first, service prices are part of the local costs,
and second, the prices for less-used services are decreased.

Theorem 1, for which we omit the proof due to space

limitation, shows the structure of the optimal control law.

3Search for the ag’s to find the optimal pricing mechanism is an interesting
yet challenging problem, and beyond the scope of this letter.

Theorem 1: Given the information sets Z, ij’? and Zj
in (7)-(9) and the problem (13a)-(13d), the optimal i)lant con-
trol law Vl?*’ Vi, is of certainty equivalence form and control
inputs are obtained from linear state feedback law as

Wt =y @) = —Ly ERZ, ie{l,...,N} (15

. , -1 .
L= (Ri +BiTP§(+]B,») BiTP;<+1Ai’ (16)

where, P} = 07, and P! solves the Riccati equation

B P} +1i|A
Theorem 2: Consider the problem (13a)-(13d) and let
y®*,i € {1,...,N} follow the certainty equivalence
law (15)-(16). leen Zj and Zj in (8) and (9), the optimal
time sensitivity control law is computed from the following
constrained mixed-integer linear-programming (MILP)

= 0l4] [Py = Phi(R+ B P )

o
Oy = g 00 S &g gy L )
@ .7m

Ul

. - ~: 7 1T _ T
= arg min ST B TrPATT A + 6] A

W =k | =1 j=I

st Vit €Ty, 0 = =06/ =--- =06, =0p =& (T}))
i y i i

J

by, =0/0), b, <> 6l je{l.....T}}.

D . III - D -

Yooy =1, > b, =1 Y b,=0 1>k

=0 j=0 j=t+2

0l =, Vs <k amn
where, (k) = p for k € T, 7/ = min{D, 1+ 1} and Pl =
Q} ATP;HA- —P’ and b}, = [[1 — 6] (0)]1‘[ l1‘[, oll —

d(l)]][ (d)] For notatlonal correctness, we use the

conventlon ]—[d 2, Ad £ 1 and Zd Ly, 0d = £ 0,Vd, > d.
Subsequently, the optnnal resource allocation law is computed
from the following constrained MILP

N 1

Dk 1) = AL ﬂ[IkT};n]J > [19 Ao
=1 t=k
i1
+ 33 5 TrBiAr EW,-AfI)}
=1 j=I
=1 N

1 .
s.t. . > 9id) <cq VA €D,

=0 i=1

S 0l < ne};A,,, Viipell,...,
teT)y

m}  (18)

where, l;]’l is similarly defined as l_)]".’t
6/ is replaced by ©/ for all i and ¢ (see expression (21)).
Proof: Using the optimal control law (15)-(16), the cost-to-

-1 S )
goVi= ||xtf||22+2i;k ||x;”2Ql+””;”12€; is optimally computed

with the exception that
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as (see [13, Th. 1 and Proposition 1]):

tr—1
V" = NEDIT I + B | lekliz + 3 leilly |
=k
"
+ Y u(Pizh), (19)
t=k+1
where, ¢ £ x; — E[q|Z[], and P, = O] + A/ P, |Ai — P},

Moreover, the state estimate, at time-step &, is given as
min{D,k+1}

EMIT] = Y BLE[dl ] @0)
j=0
and, for all j € D, and k > j, we have
j—1 d
=111 -»i d(l)][Zﬂk_]w)] @1
d=01=0

For, k < j, bé)k,.. bkk s are defined as in (21), bk+1k =

Ao T 11— d(l)] and b, = =bl =0.
Having (19), with k € T, the 0pt1mal time sens1t1v1ty con-

trol law S[’;’,_f‘;m] is obtained by minimizing the cumulative cost
Jiu*, 01T Y, ie., Vk € [0,4f — 1] and k € T,
=1
. i i i T =
A1 = v min | VG 604 30 Al
. 1m t=k
Since itip C T}, Vk € T, and employing (20), one can compute
LT = .
E[E [ekek |I’]|ZL’ 1= Elege; |ZLZ’§,], at S; side, to be:
%

.
L1= b Bl Wi wi Al
=1 j=I

i
T

DRI

=1 j=I
where, 2,’; ;= X e k < [, and 2,’;._1 = X,i, k > [. Having
this with 1’ = T., we rewrite E [V;™(y"*, éi)|ZL[’Q] as follows

E [e}ce;C

cp?

y
IIf);-( + ) u(PD,)

E Vg™ (" €)1 T = I E[x)]
t=k+1

TS
+uP) Y Y bAl ! (AT
I=1 j=I
=1 fr‘ TtA
Y e Y S A S
=0 =1 j=I
As the only term in the last expression that is dependent on

G[ikt _p7 1s the last term, we have for all k € T},
1]
-1
I . . . . T —-.
Ofiy—1 = arg min Ef V"0 8) + 6] Auw|Z)
%7 1=k
[f_] rli Tli
. ~2 - 1T . _ T
=arg min y | (P Y b AT BLATD 6] Au
rf,;;ﬂ] t=k =1 j=I

Note that, A, is known for S; assuming k € T, (k is the current
time). The optimization problem is, however, solved from k to
the final time #r over which the prices may change from 7), to
T,41 while future price changes are not disclosed for S;’s at
time k € T),. Hence, the system solves the local optimization
problem considering the current prices, i.e., A, for the whole
horizon [k, fr]. At the beginning of the next sub-interval 7)1
when S; updates Q’Tp+], the adjusted price Apy1, is considered
until 7r. The constraints of the problem (17) are all linear and
Gli is a binary variable, hence the problem is an MILP that is
solved m times over the horizon [0, #], once per each sub-
interval T,, p = {1,...,m}. The constraint Z,DZO 0i(l) =
ensures that only one transmission link is selected per-time,
while the last two constraints are essential for correct indexes
in the parameter bjl.’ ¢ fork>D and k < D.

To find 7*, we take similar steps to compute 29- given

the 1nf0rmat10n set 7. We compute E [V’ (b 71)|Ik] that
results in a similar expression with the exception being b’

is replaced by b]" in (21). Hence, considering the price
and resource constraints (13c)-(13d), we derive the optimal
resource allocation from the following MILP, with k € T,

o =arg
[k,1r—1] )
[kt —1] —k

N -1
min ZE|:V;{*()/I* T )-‘1—219 A/J.(k)ij|
N = - oo B B .
=arg min 303 0 Ao+ DY B TPATT ZAT |.
=1 =k

1= =0 j=I

|

Theorems 1 and 2 show that under the assumption that
m; is independent of yy,, ;;’s, we can decompose the
problem (13a)-(13d) and solve it for the plant control policy
separately, while the resource allocation and time-sensitivity
control remain coupled through the adaptive service prices and
capacity constraints. Note that, the complexity of MILPs (17)
and (18) to compute the mentioned policies are of orders
O(NDm?) and (’)(Nth) respectively, which suggests compu-
tationally feasibility for medium size CPS over finite horizons.

V. NUMERICAL RESULTS
We consider a set of 20 homogeneous LTI systems

. 1.01 0.2 01 0 ;
with 4 = oy 1| B = [0 0.15]’ Wi
N(0, 1.5Iry2), and Q} = 0? = R; = Ihy, Vi and Vk. We
consider 6 network services with latencies D = {0, ..., 5},

where for {sg,...,s4} we assume ¢4 = 4 and ¢s = 5. The
maximum and minimum prices for {sq, ..., s5} are Apax =
[31,19,12,9,5.5,2.5] and Amin = [19,12,9,5.5,2.5,0.5].
Each sub-interval T}, consists of 10 time-steps, and # = 50,
i.e., m = 5. The initial service costs A; for the interval

= [0,9], is [25,13,11,7,4,1], and prices are updated
according to (14) with oy = 1, Yd € D. We compare ser-
vice request and allocation for the varying service costs, i.e.,
ag = 1, and constant service costs, i.e., A, = Ay, Vp. To cap-
ture the service usage, we define a network utilization quotient
pi(d), Yt € [0,tr] and d € D, as follows

1 t
erolE ]

k=0 i=

N

pi(d) = (22)
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Fig. 2. Usage of different services. The solid lines (—) correspond to
the time varying service costs and the dotted lines with circles (- - o - -)
correspond to constant costs.

Thus, p;(d) shows the usage percentage of the service s; upto
time ¢, and from the constraint (13d), szfl (d) <cq/N.

In Fig. 2 we plot p,(d) for time varying and constant service
costs. In both cases, the usage for all services are the same
for the first interval [0, 9], as expected. Based on (14), prices
for the services sg, s4, s5 increase whereas the prices for the
rest decrease. These cost changes incentivize the systems to
choose different services (6;), and consequently, the allocation
of the links (z?ti) also changes because of (13c).

In particular, during the interval 7> = [10, 19], we observe
a different usage in services s4 and s5 between the two sce-
narios. The increments in the service costs, however, do not
necessarily change the utilization, for example, the increased
cost of 5o did not change its usage. An interesting observation
lies in the usage of services s and s3 for the final interval
Ts = [40, 49]. Since s3 is not used over 73 = [30, 39], its
cost is reduced for T4, = [40, 49], however we still observe
a decrease in its usage, and this is because sy is still more
efficient for many systems than s3.

From this experiment, we notice that by adaptively chang-
ing the service costs, the utilization can be regulated, and the
adaptive rule and its parameters play a significant role in reg-
ulating the usage. This is particularly a very interesting line
of future research that how to optimally adapt the prices.

If the systems are served exactly as they request, each of
them will incur a control cost of 61.1741 and a service cost of
1300. However, due to the capacity constraints, the systems do
not obtain the desired service and the total control cost for the
group becomes 22566.56 compared to 61.1741x20 = 1223.48
— almost a twenty-fold increase. The network would earn a
total of 1300 x 20 = 26000 if it could serve the exact requests.
However, due to the capacity constraints, the network receives
a total of 9916. The total cost due to the capacity limitation
becomes 22566.56 + 9916 = 32482.56, compared to the cost
of 1223.48 4 26000 = 27223.48 with no capacity limitation.

We also studied the average deviation of the requested
services from the assigned services. Let #"* denote the actual
service assignment to the i-th system, and 6“* denote its
desired request, then the average deviation is calculated as

_ Vo 20t | Xm0 4@ @) — 67 (@)

Ay
Nt+1)

. (23)

where in (23), | - | represents the absolute value. The results

-

are plotted in Fig. 3, where we notice that A, is slightly higher
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Fig. 3. Average link assignment variation.

with time varying costs as the updated costs persuade the
systems to deviate further to adopt a new service.

V. CONCLUSION

We propose a cross-layer model of CPS wherein multiple
LTI stochastic systems are coupled via a shared network that
provides a range of costly and capacity-limited services with
distinct latencies. Service recipients (physical systems) select
certain network services for a time period for a given price.
Requests are processed by the network and services are allo-
cated taking into account the users’ demands and network
limitations. Service prices are adjusted for future periods with
the aim of receiving more evenly distributed service requests.
We formulate a social cost minimized by cross-layer decision
makers, and we derive the resulting optimal policies taking
into account their limitations, tolerances and constraints.
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