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Abstract. We say that a pure d-dimensional simplicial complex \Delta on n vertices is shelling

completable if \Delta can be realized as the initial sequence of some shelling of \Delta 
(d)
n - 1, the d-skeleton

of the (n  - 1)-dimensional simplex. A well-known conjecture of Simon posits that any shellable
complex is shelling completable. In this note we prove that vertex decomposable complexes are
shelling completable. In fact we show that if \Delta is a vertex decomposable complex, then there exists
an ordering of its ground set V such that adding the revlex smallest missing (d + 1)-subset of V
results in a complex that is again vertex decomposable. We explore applications to matroids and
shifted complexes, as well as connections to ridge-chordal complexes and k-decomposability. We also
show that if \Delta is a d-dimensional complex on at most d + 3 vertices, then the notions of shellable,
vertex decomposable, shelling completable, and extendably shellable are all equivalent.
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1. Introduction. A pure simplicial complex \Delta is k-decomposable if it is a sim-
plex or it admits a face of dimension at most k whose deletion and link results in a
complex that is again in the class. The case k = 0 is also known as vertex decom-
posable (see Definition 2.4) and is an important class in many combinatorial settings.
Examples of vertex decomposable complexes include the independence complexes of
matroids (as shown by Provan and Billera in [19], where the class of k-decomposable
was introduced). It is also not hard to see that for any k = 1, 2, . . . , n - 1 the k-skeleton

of a simplex on vertex set [n], which we denote \Delta 
(k)
n - 1, is vertex decomposable.

By definition a k-decomposable complex is (k + 1)-decomposable, and a pure d-
dimensional complex is d-decomposable complex if and only if it is shellable. Shella-
bility of \Delta can also be characterized in terms of the existence of an ordering of its
facets F1, F2, . . . , Fs that satisfies a codimension one intersection property (see Defini-
tion 2.1). Shellability itself is an important combinatorial tool that has consequences
for the topology of \Delta as well as algebraic properties of its Stanley--Reisner ring. By
results of Bruggesser and Mani [8], a large class of shellable simplicial complexes come
from the boundary complexes of simplicial polytopes.

Given a pure k-decomposable complex \Delta , a natural question to ask is whether
one can add a new facet to \Delta that results in a complex that is still k-decomposable.
In the case of shellable complexes this question was asked by Simon in [20], in the
context of the related notion of extendable shellability. A pure shellable complex \Delta 
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1292 M. COLEMAN, A. DOCHTERMANN, N. GEIST, S. OH

is said to be extendably shellable if any shelling of a pure subcomplex of \Delta can be
extended to a shelling of \Delta . Here a subcomplex of \Delta is a simplicial complex on the
same vertex set as \Delta , whose set of facets is a subset of the facets of \Delta .

Although shellable complexes arise naturally in many contexts, it seems that ex-
tendably shellable complexes are harder to come by. Results of Danaraj and Klee [11]
imply that any 2-dimensional triangulated sphere (which is necessarily polytopal) is
extendably shellable, and Kleinschmidt [16] has shown that any d-dimensional sphere
with d+3 vertices is extendably shellable. Bj\"orner and Eriksson [7] proved that inde-
pendence complexes of rank 3 matroids are extendably shellable. On the other hand,
Ziegler [23] has shown that there exist simplicial 4-polytopes that are not extendably
shellable. The inspiration for much of our work will be the following question posed
by Simon [20].

Conjecture 1.1 (Simon's conjecture [20]). The complex \Delta 
(k)
n - 1 is extendably

shellable.

The k = 2 case of Simon's conjecture follows from [7] by considering the uniform
matroid of rank 3. More recently Bigdeli, Yazdan Pour, and Zaare-Nahandi [4] estab-
lished the k \geq n - 3 cases, with a simpler proof provided independently by the second
author [12] based on results of Culbertson, Guralnik, and Stiller [9]. In [10] these last
collection of authors also showed that if \Delta is a d-dimensional simplicial complex on at
most d+ 3 vertices, then in fact the notions of shellable and extendably shellable are
equivalent. This implies the k = n - 3 case of Simon's conjecture and also provides a
generalization of Kleinschmidt's results. This result is also best possible in the sense
that there are 2-dimensional complexes on 6 vertices that are not extendably shellable
(see, for example, the work of Moriyama and Takeuchi [17] and also Bj\"orner [5]).

Inspired by these observations, in this paper we consider a related notion. Recall

that we use \Delta 
(d)
n - 1 to denote the d-skeleton of the (n - 1)-dimensional simplex.

Definition 1.2. A pure d-dimensional simplicial complex \Delta on n vertices is said
to be shelling completable if there exists a shelling F1, F2, . . . , Fs of \Delta that can be taken

as the initial sequence of some shelling of \Delta 
(d)
n - 1.

In particular, a shelling completable complex is shellable. Note also that if \Delta is

shelling completable, then any shelling of \Delta can be completed to a shelling of \Delta 
(d)
n - 1.

Indeed, suppose \Delta is shelling completable and F1, . . . , Fs is a shelling order of \Delta that

can be completed to a shelling of \Delta 
(d)
n - 1 via F1, . . . , Fs, Fs+1, . . . Ft. For any j > s

the condition that Fj must satisfy to constitute a shelling move is independent of the
shelling order on \Delta .

Next note that Simon's conjecture is equivalent to the statement that any pure
shellable complex is shelling completable. From this perspective it is of interest to
find a large class of shellable complexes that are shelling completable. Also note that

if \Delta is a k-decomposable complex that can be completed (by adding facets) to \Delta 
(d)
n - 1

while maintaining k-decomposability, then \Delta is shelling completable.
Our first examples of shelling completable complexes come from the class of pure

shifted complexes, which are known to be vertex decomposable. Recall that a sim-
plicial complex is shifted if there exists an ordering of its vertex set V = \{ 1, 2, . . . , n\} 
such that for any face \{ v1, v2, . . . , vk\} replacing any vi with a smaller vertex results in
a k-set that is also a face. Note that if \Delta is a pure d-dimensional shifted complex ac-
cording to some ordering on its vertex set, then adding the reverse-lexicographically
(revlex) smallest missing (d + 1)-subset F again results in a shifted complex (see
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COMPLETING AND EXTENDING SHELLINGS 1293

Proposition 2.8 below). This in turn implies that pure shifted complexes are in fact
shelling completable. Our first result says that in fact any pure vertex decomposable
complex admits an ordering of its vertex set with this property.

Theorem 2.9. Suppose \Delta is a pure d-dimensional vertex decomposable complex
on ground set V . Then either \Delta is full over V or there exists a linear order on V
such that if F is the revlex smallest (d+ 1)-subset of V not contained in \Delta , then the
simplicial complex generated by \Delta \cup \{ F\} is vertex decomposable.

As a corollary we obtain a large class of shelling completable complexes, providing
a positive answer to a weakened version of Simon's conjecture.

Corollary 2.11. Pure vertex decomposable complexes are shelling completable.

Corollary 2.11 also provides a new tool in the search for a counterexample to
Simon's conjecture, since in particular it implies that any ``stuck"" initial shelling of

\Delta 
(k)
n - 1 must in fact fail to be vertex decomposable.
Recall that the class of vertex decomposable complexes include pure shifted com-

plexes and (independence complexes of) matroids. Theorem 2.9 implies that there
exists an ordering of the ground set of these complexes with the property that adding
the revlex smallest missing k-subset results in a vertex decomposable complex. In the
context of shifted complexes we have seen that the natural ordering of the ground set
satisfies this property. For the case of matroids we prove that such revlex decomposing
orders (see Definition 3.2) are easy to come by.

Proposition 3.6. Let \scrM be a rank d matroid on ground set V . Then any or-
dering v1, v2, . . . , vn of V with the property that \{ v1, v2, . . . , vd\} \in \scrM is a revlex
decomposing order.

In particular for a rank d matroid \scrM it is ``easy"" to find a d-subset F of the
ground set with the property that \scrM \cup \{ F\} , while no longer a matroid, is still vertex
decomposable.

Simon's conjecture and shelling completions are also related to certain notions
of chordality for simplicial complexes. In [2] Bigdeli and Faridi study a notion of
ridge chordal simplicial complexes (based on a similar notion for clutters introduced
by Bigdeli, Yazdan Pour, and Zaare-Nahandi in [3]). They conjecture that if \Delta 
is a simplicial complex whose clique complex has shellable Alexander dual, then \Delta 
is ridge chordal. They show that this conjecture implies Simon's conjecture, and
also show that it holds true if one replaces the ``shellable"" assumption with ``vertex
decomposable."" Recently Benedetti and Bolognini [1] have provided a counterexample
to the full Bigdeli--Faridi conjecture. We discuss these connections in subsection 2.1.

In the last part of the paper we consider shelling completable complexes with few
vertices (relative to dimension). We exploit a connection between chordal graphs and
certain shellable complexes to establish the following.

Theorem 4.1. Suppose \Delta is a pure shellable d-dimensional simplicial complex
on d+ 3 vertices. Then \Delta is vertex decomposable (and hence shelling completable).

This theorem, along with results from [10], imply that for d-dimensional complexes
on at most d + 3 vertices the notions of vertex decomposable, shellable, shelling
completable, and extendably shellable are all equivalent.

The rest of the paper is organized as follows. In section 2 we recall some nec-
essary definitions, prove Theorem 2.9, and discuss some corollaries and connections
to chordal complexes. In section 3 we discuss the notion of revlex decomposing or-
ders in the context of matroids and prove Theorem 3.6. In section 4 we consider
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1294 M. COLEMAN, A. DOCHTERMANN, N. GEIST, S. OH

d-dimensional complexes on at most d+3 vertices and prove Proposition 4.1. We end
in section 5 with some discussion and open questions.

2. Vertex decomposable complexes and shelling completions. In this
section we provide some necessary background regarding simplicial complexes and
related notions and also prove Theorem 2.9.

A simplicial complex \Delta on a finite ground set V is a collection of subsets of V
that is closed under taking subsets, so that if \sigma \in \Delta and \tau \subset \sigma , then \tau \in \Delta . The
elements of \Delta are called faces. Note that we do not require \{ v\} \in \Delta for all v \in V .
The elements v \in V such that \{ v\} \in \Delta will be called the vertices of \Delta , whereas
elements w \in V that are not vertices will be called loops. In particular the vertex set
of \Delta can be a proper subset of its ground set. As in [14] we adopt the convention that
the void complex \emptyset is a simplicial complex, distinct from the empty complex \{ \emptyset \} .

A facet of \Delta is an element that is maximal under inclusion. The dimension
of \Delta is the largest cardinality (minus 1) of any facet. A simplicial complex \Delta is
pure if all facets have the same cardinality. Given a ground set V and a collection
\scrS = \{ S1, S2, . . . , Sk\} of subsets Si \subset V , we will use \langle S1, S2, . . . , Sk\rangle to denote the
simplicial complex generated by \scrS , by which we mean the smallest simplicial complex
containing the collection \scrS . Note that if a simplicial complex \Delta has facets F1, . . . , Fk,
then \Delta = \langle F1, . . . , Fk\rangle . With these notions we can state the definition of a shellable
complex.

Definition 2.1. A pure d-dimensional simplicial complex \Delta is shellable if there
exists an ordering of its facets F1, F2, . . . , Fs such that for all k = 2, 3, . . . , s the
simplicial complex \Biggl( 

k - 1\bigcup 
i=1

\langle Fi\rangle 

\Biggr) 
\cap \langle Fk\rangle 

is pure of dimension d - 1. By convention the void complex \emptyset and the empty complex
\{ \emptyset \} are both shellable.

Note that a shellable complex is connected as long as d \geq 1, and a pure 1-
dimensional simplicial complex (a graph) is shellable if and only if it is connected.
We next recall the notion of link, star, and deletion of a face in a simplicial complex.

Definition 2.2. Suppose \Delta is a simplicial complex on ground set V , and let
F \in \Delta be a nonempty face. The link, star, and the deletion of F are defined as

\ell k\Delta (F ) := \{ G \in \Delta : G \cap F = \emptyset , G \cup F \in \Delta \} ,

star\Delta (F ) := \{ G \in \Delta : F \subset G\} ,

del\Delta (F ) := \{ G \in \Delta : F \nsubseteq G\} .

The ground set of star\Delta (F ) is V , whereas the ground set of \ell k\Delta (F ) is V \setminus F . If | F | > 1,
then del\Delta (F ) has ground set V , and if F = \{ v\} , then the ground set is V \setminus \{ v\} .

We note that shellability is preserved by taking links, a fact that will be useful
later.

Lemma 2.3 (see [24, Lemma 8.7]). If \Delta is a shellable simplicial complex and
F \in \Delta is any face, then the link \ell k\Delta (F ) is shellable.

We next define the class of vertex decomposable simplicial complexes recursively
as follows.

D
ow

nl
oa

de
d 

09
/1

4/
22

 to
 1

47
.2

6.
36

.1
39

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COMPLETING AND EXTENDING SHELLINGS 1295

Definition 2.4. A simplicial complex \Delta is vertex decomposable if \Delta is a simplex
(including \emptyset and \{ \emptyset \} ), or \Delta contains a vertex v such that

1. both del\Delta (v) and \ell k\Delta (v) are vertex decomposable, and
2. any facet of del\Delta (v) is a facet of \Delta .

A vertex v that satisfies the second condition is called a shedding vertex of \Delta . We
will call a vertex v that satisfies both conditions a decomposing vertex.

Vertex decomposable complexes were introduced in the pure setting by Provan
and Billera [19] and extended to nonpure complexes by Bj\"orner and Wachs [6]. It is
known that any pure vertex decomposable complex is shellable, a fact implied by the
following result of Wachs [22].

Lemma 2.5 (see [22, Lemma 6]). Suppose \Delta is a simplicial complex with shedding
vertex v. If both del\Delta (v) and \ell k\Delta (v) are shellable, then \Delta is shellable.

In what follows we will restrict ourselves to pure simplicial complexes. Given two
facets F and G of a pure d-dimensional simplicial complex \Delta we say that F and G
are adjacent if they differ by one vertex, i.e., | F \cap G| = d.

Lemma 2.6. Suppose \Delta is a pure simplicial complex, and let v \in V be a vertex.
Then v is a shedding vertex if and only if any facet of star\Delta (v) is adjacent to some
facet of del\Delta (v).

Proof. For one direction suppose v is a shedding vertex of \Delta , and let F be a facet
of star\Delta (v). We have that F\setminus \{ v\} is a face of del\Delta (v). Let F \prime be a facet of del\Delta (v)
containing F\setminus \{ v\} . Since v is a shedding vertex we have that F \prime is a facet of \Delta , and
since \Delta is pure we have that F \prime and F have the same cardinality. We conclude that
F \prime is a facet of del\Delta (v) adjacent to F .

For the other direction suppose v is not a shedding vertex, so that some facet F
of del\Delta (v) is not a facet of \Delta . Let F \prime be a facet of \Delta that contains F , so that v \in F \prime ,
and hence F \prime is a facet of star\Delta (v). But F

\prime cannot be adjacent to any facet in del\Delta (v)
since F was a facet of del\Delta (v).

We next turn to the question of shelling completions for vertex decomposable
complexes. For this we will need the following concepts. Suppose \Delta is a d-dimensional
simplicial complex on ground set V . We say that \Delta is full (over V ) if it is the d-
skeleton of the simplex over the vertex set V i.e., it consists of all (d + 1)-subsets of
V . Note that a d-simplex is full if and only if | V | = d+ 1.

We will also need the notion of revlex order on k-subsets of an ordered ground
set. For this recall that if V = \{ 1, 2, . . . , n\} is a linearly ordered set, then \{ v1 <
v2 < \cdot \cdot \cdot < vk\} is revlex smaller than \{ w1 < w2 < \cdot \cdot \cdot < wk\} if for the largest j with
vj \not = wj we have vj < wj . Note that if one adds a new element n + 1 to the set V
then any k-subset that contains n + 1 will be revlex larger than any k-subset that
does not contain n+ 1. This implies the following observation.

Lemma 2.7. Suppose V is a finite linearly ordered set with largest element v, and
suppose \scrF is a collection of d-subsets of V . Let \scrG \subset \scrF denote the collection of those
d-subsets F \in \scrF such that v /\in F . Then assuming \scrG \not = \emptyset , the revlex smallest element
of \scrG is also the revlex smallest element of \scrF .

As mentioned in section 1, we can use revlex orders to build new shifted complexes
from existing ones. More precisely we have the following.

Proposition 2.8. Suppose \Delta is a pure shifted d-dimensional simplicial complex
with respect to some linear order on its ground set V , and assume that \Delta is not full
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1296 M. COLEMAN, A. DOCHTERMANN, N. GEIST, S. OH

on V . Let F be the revlex smallest (d + 1)-subset of V satisfying F /\in \Delta . Then the
complex \Delta \cup \langle F \rangle is again a pure shifted simplicial complex.

Proof. One can see that replacing any element x \in F with some y \in V satisfying
y < x results in a (d + 1)-subset F \prime = (F\setminus \{ x\} ) \cup \{ y\} that is revlex smaller than F .
Hence F \prime is a facet of \Delta \cup \langle F \rangle , implying that \Delta \cup \langle F \rangle satisfies the shifted condition
for all sets of size (d+ 1). But since \Delta \cup \langle F \rangle is pure this implies the condition for all
subsets, so that \Delta \cup \langle F \rangle is shifted.

Our main result generalizes this observation for the class of vertex decomposable
complexes.

Theorem 2.9. Suppose \Delta is a pure d-dimensional vertex decomposable simplicial
complex on ground set V . Then either \Delta is full over V or there exists a linear order
on V such that if F is the revlex smallest (d+1)-subset of V not contained in \Delta , then
the simplicial complex \Delta \cup \langle F \rangle is vertex decomposable.

Proof. We use induction on d, then on n = | V | . Note that for d =  - 1 the
statement is trivial. If d = 0, then \Delta is either full (it consists of all \{ v\} for v \in V ) or
adding any missing element in V results in a vertex decomposable complex. For any
d \geq 1, the case n = d+ 1 is true since \Delta is a simplex on V and hence is full.

We now assume that d \geq 1 and n \geq d + 2. We claim that we can also assume
that \Delta is not full over its vertex set W . To see this suppose that \Delta is full over W
and pick any ordering on the ground set V so that all elements in W are smaller
than all elements in V \setminus W . Let F \prime be the revlex smallest facet of \Delta according to this
ordering, and let w be the largest element of F \prime . Now let v be the smallest element
in V \setminus W , and set F = (F \prime \setminus \{ w\} ) \cup \{ v\} . Then the simplicial complex \Delta \prime = \Delta \cup \langle F \rangle 
is vertex decomposable since del\Delta \prime (v) = \Delta , the complex \ell k\Delta \prime (v) is a simplex, and v
is a shedding vertex since F is adjacent to F \prime . We conclude that v is a decomposing
vertex.

Now suppose that \Delta is a vertex decomposable complex that is not full on its
vertex set. At this point we can continue the induction by picking a vertex v which is
a loop (if one exists) or a decomposing vertex (which always exists since \Delta is vertex
decomposable). The reason for this flexibility will be explained later.

Case 1. Suppose we choose v to be a loop. In this case we have by induction on
n that the complex \Delta on ground set V \setminus \{ v\} admits the desired ordering. To extend
the ordering to all of V we simply define v to be the largest element. This provides
the desired ordering of V by Lemma 2.7.

Case 2. Next suppose we choose v be a decomposing vertex of \Delta , so that both
del\Delta (v) and \ell k\Delta (v) are vertex decomposable. Consider the partition of facets of \Delta 
into star\Delta (v) \.\cup del\Delta (v). We now have two subcases.

Case 2a. First assume del\Delta (v) is not full on its vertex set V \setminus \{ v\} . By induction on
n, we have that del\Delta (v) admits an ordering of its vertex set V \setminus \{ v\} such that the revlex
smallest missing (d + 1)-subset F \subset V \setminus \{ v\} can be added to obtain another vertex
decomposable complex. Let \Delta \prime = \Delta \cup \langle F \rangle . Note that del\Delta \prime (v) = \langle del\Delta (v) \cup \{ F\} \rangle 
and \ell k\Delta \prime (v) = \ell k\Delta (v), both of which are vertex decomposable by assumption. We
have not added any facets to star\Delta (v), so v is a shedding vertex of \Delta \prime by Lemma 2.6.
Hence v is a decomposing vertex for \Delta \prime . Use the ordering on V \setminus \{ v\} provided by the
induction hypothesis and extend to all of V by declaring v to be the largest element.
This again provides the desired ordering of V by Lemma 2.7.

Case 2b. We next suppose that del\Delta (v) is full on vertex set V \setminus \{ v\} . Note that
we can assume that \ell k\Delta (v) is not full on V \setminus \{ v\} since otherwise this would imply
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COMPLETING AND EXTENDING SHELLINGS 1297

that \Delta is full. In this case, by induction on d we have that there exists an ordering
on the ground set V \setminus \{ v\} of \ell k\Delta (v) with the desired properties. In particular the
revlex smallest missing d-set G \subset V \setminus \{ v\} has the property that the simplicial complex
\langle \ell k\Delta (v) \cup \{ G\} \rangle is vertex decomposable. Now let \Delta \prime denote the simplicial complex
generated by \Delta \cup \{ G\cup \{ v\} \} . Note that del\Delta \prime (v) = del\Delta (v) since del\Delta (v) is full. Also
\ell k\Delta \prime (v) = \langle \ell k\Delta (v) \cup (G\setminus \{ v\} )\rangle , which we have assumed is vertex decomposable.

Finally we claim that v is a shedding vertex. To see this note that there has to
be some facet in del\Delta (v) that is adjacent to G \cup \{ v\} since del\Delta (v) is full. The claim
then follows from Lemma 2.6. Once again we use the ordering on V \setminus \{ v\} obtained by
induction and extend to all of V by declaring v to be the largest element. One can
see that G \cup \{ v\} is the revlex smallest missing (d + 1)-subset of \Delta because we are
assuming that del\Delta (v) is full. The result follows.

For an illustration of the various steps in the above proof, we refer to Example 3.4.
To establish our desired corollary we will next need the following observation, for which
we thank Michelle Wachs for a simplified proof.

Lemma 2.10. Suppose \Delta is a shellable d-dimensional complex on ground set V ,
and suppose F is a (d + 1)-subset of V with the property that the complex \Delta \prime =
\langle \Delta \cup \{ F\} \rangle is again shellable. Then any shelling of \Delta can be extended to a shelling of
\Delta \prime by adding F as the last facet.

Proof. Suppose \Delta , F , and \Delta \prime are as above, and let \Gamma = \langle F \rangle \cap \Delta . First note that
it is enough to prove that \Gamma is pure of dimension d  - 1, since then adding F to any
shelling of \Delta satisfies the conditions of Definition 2.1. Suppose F1, F2, . . . , Fk is a
shelling of \Delta \prime where F = Ft. For a contradiction suppose that \Gamma has an inclusionwise
maximal face G of dimension less than d - 1. Then G \subset Ft \cap Fi for some i \not = t. Let
j be the smallest such i.

Case 1. First suppose j < t. Then we have G \in \langle Ft\rangle \cap (\cup t - 1
i=1\langle Fi\rangle ). Since

F1, . . . , Fk is a shelling we have a (d - 1)-dimensional H such that G \subsetneq H and

H \in \langle Ft\rangle \cap 

\Biggl( 
t - 1\bigcup 
i=1

\langle Fi\rangle 

\Biggr) 
\subset \langle Ft\rangle \cap 

\Biggl( 
k\bigcup 

i=1

\langle Fi\rangle 

\Biggr) 
= \Gamma .

This is a contradiction to the assumption that G is a facet of \Gamma .
Case 2. Next suppose j > t. In this case Ft and Fj are the only facets among

the F1, . . . , Fj that contain G. But since \langle Fj\rangle \cap (\cup j - 1
i=1 \langle Fi\rangle ) is pure (d - 1)-dimensional

it follows that there exists a (d - 1)-dimensional face H such that

G \subsetneq H = Fj \cap Ft \in \langle Ft\rangle \cap 

\Biggl( 
k\bigcup 

i=1

\langle Fi\rangle 

\Biggr) 
= \Gamma ,

which is again a contradiction to the fact that G is a facet.

As a corollary we get a large class of complexes that are shelling completable, and
hence we obtain a weakened form of Simon's conjecture.

Corollary 2.11. Pure vertex decomposable complexes are shelling completable.

Proof. Suppose \Delta is pure d-dimensional vertex decomposable on ground set V ,
where | V | = n. Let m be the number of (d+1)-subsets of V that are missing as facets

in \Delta . If m = 0, then \Delta = \Delta 
(d)
n - 1 is full, and we are done. Otherwise by Theorem 2.9 we

have some (d+1)-subset F \subset V such that F /\in \Delta with \Delta \cup \{ F\} vertex decomposable
and hence shellable. From Lemma 2.10 we know that any shelling order of \Delta can be
extended to a shelling of \Delta \cup \{ F\} . The result follows by induction on m.
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1298 M. COLEMAN, A. DOCHTERMANN, N. GEIST, S. OH

2.1. Connection to ridge chordal complexes. As mentioned in section 1,
our results also connect to notions of higher dimensional chordality for simplicial
complexes. In this section we explain this relation, after reviewing the relevant defi-
nitions.

For a pure d-dimensional simplicial complex \Delta on vertex set V , a clique is a subset
K \subset V such that either | K| < d + 1 or else all (d + 1)-subsets of K appear among
the facets of \Delta . A ridge R \subset V of \Delta is a face of \Delta such that | R| = d. The closed
neighborhood of a ridge R is the set

N\Delta [R] = R \cup \{ v \in V : R \cup \{ v\} is a facet of \Delta \} .

We say that a ridge R is simplicial if N\Delta [R] is a clique.
In [3] Bigdeli, Yazdan Pour, and Zaare-Nahandi use these concepts to recursively

define the class of chordal compelxes (which we will refer to as ridge chordal to dis-
tinguish it from other notions). In what follows we use \Delta \setminus R to denote the simplicial
complex consisting of all faces \sigma \in \Delta that do not contain R.

Definition 2.12. A pure simplicial complex \Delta is ridge chordal if \Delta = \emptyset or if \Delta 
admits a simplicial ridge R such that \Delta \setminus R is ridge chordal.

In [3] the authors use the language of clutters but our definition is equivalent for
the case of pure simplicial complexes. Also note that a pure 1-dimensional simplicial
complex is ridge chordal if and only if it is a chordal graph. In [2], Bigdeli and Faridi
extend this notion to the setting of arbitrary simplicial complexes.

For a simplicial complex \Delta we let Cl(\Delta ) denote the clique complex of \Delta , by
definition the simplicial complex whose faces are the cliques of \Delta . Note that Cl(\Delta )
is a simplicial complex of dimension at least d, with the same d-faces as \Delta and a
complete k-skeleton for all k < d. The following conjecture has appeared in [12] and
[18] (and in a stronger form in [2]). In what follows we use \Gamma \ast to denote the Alexander
dual of a simplicial complex \Gamma .

Conjecture 2.13. If \Delta is a pure simplicial complex such (Cl(\Delta ))\ast is shellable,
then \Delta is ridge chordal.

In [18] Nikseresht shows that if (Cl(\Delta ))\ast is vertex-decomposable, then \Delta is ridge
chordal. From results of [3] this implies that if \Delta is vertex-decomposable and not
full, then there exists a (d + 1)-subset F such that F /\in \Delta and such that \Delta \cup \{ F\} 
is shellable. In other words the shelling can be continued for one more step. Our
Corollary 2.11 says that in fact the shelling can be completed to the full d-skeleton.

Recently in [1] Benedetti and Bolognini provided a counterexample to Conjecture
2.13, in the form of a complex \Delta that is not ridge chordal but such that (Cl(\Delta ))\ast 

is shellable (in fact they provide an infinite family of such complexes). We suspect
that the complexes in this family are in fact shelling completable although this does
not seem easy to check. It is also an open question whether one can construct a
non--ridge-chordal complex \Delta such that (Cl(\Delta ))\ast is 1-decomposable (see section 5).

In the context of ridge chordality, we see that the condition of being vertex de-
composable is strong enough to imply results that are not true under the weaker
shellability assumption. It is still an open question whether this dichotomy exists in
the context of shelling completability. See section 5 for further discussion.

3. Revlex decomposing orders and matroid complexes. Recall that a
simplicial complex \scrM is a matroid if it is pure and its set of facets satisfy the following
exchange property: If F and G are facets of \scrM , then for any x \in F\setminus G there exists
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COMPLETING AND EXTENDING SHELLINGS 1299

some y \in G\setminus F such that (F\setminus \{ x\} )\cup \{ y\} is a facet of \scrM . The facets of \scrM are usually
called bases in this theory. Also note that in some contexts this simplicial complex
is called the independence complex of \scrM but we will sometimes simply refer to it as
the matroid itself. It is well known that matroids are vertex decomposable [19], and
hence Corollary 2.11 implies the following.

Corollary 3.1. Independence complexes of matroids are shelling completable.

Given that any shelling of a rank d matroid can be completed to a shelling of

the full skeleton \Delta 
(d - 1)
n , a natural question to ask is whether one can control which

facet can be added in the next step of the completion. In the context of matroids,
one expects some flexibility since matroids themselves admit many shelling orders.
In particular recall that if V = \{ v1, v2, . . . , vn\} is any ordering of the ground set of
a rank d matroid \scrM , then both lexicographic ([5, Theorem 7.3.4]) and revlex ([13,
Proposition 6.3]) orderings of the facets (bases) of \scrM give rise to a shelling of the
complex \scrM . For our purposes we will need the following notion.

Definition 3.2. Suppose \Delta is a pure d-dimensional vertex decomposable simpli-
cial complex. An ordering v1, v2, . . . , vn of its ground set is a revlex decomposing
order for \Delta if the complex generated by \Delta \cup \{ F\} is again vertex decomposable, where
F is the revlex smallest (d+ 1)-subset of V that is missing from \Delta .

Note that Theorem 2.9 says that any vertex decomposable complex admits a
revlex decomposing order. From the inductive proof of that theorem we get the
following recursive method for detecting whether a given ordering of the ground set
is a revlex decomposing order.

Corollary 3.3. Suppose \Delta is a pure d-dimensional simplicial complex. A linear
ordering v1, . . . , vn of its ground set is a revlex decomposing order for \Delta if one of the
following is true:

\bullet vn is a loop, and v1, . . . , vn - 1 is a revlex decomposing order for \Delta (on ground
set v1, . . . , vn - 1),

\bullet vn is a decomposing vertex for \Delta , del\Delta (vn) is not full, and v1, . . . , vn - 1 is a
revlex decomposing order for del\Delta (vn),

\bullet vn is a decomposing vertex for \Delta , del\Delta (vn) is full, and v1, . . . , vn - 1 is a revlex
decomposing order for \ell k\Delta (vn),

\bullet \Delta is full over its vertex set, and any loop is bigger than any nonloop in this
ordering.

Also note that in the proof of Theorem 2.9 at each step in the induction we must
choose a vertex v where we employ the inductive hypothesis on either the deletion
del\Delta (v) (in the first case) or the link \ell k\Delta (v) (in the latter). In this way we can obtain
a sequence of subcomplexes

\Delta = \Delta n,\Delta n - 1, . . . ,\Delta s,

where n is the size of the ground set of \Delta , and \Delta s is a simplex over some (possibly
smaller) ground set. We illustrate this process below with a worked example.

Example 3.4. Suppose \Delta is the 3-dimensional simplicial complex on ground set
\{ 1, 2, . . . , 7\} with facets

\{ 1234, 1235, 1245, 1345, 2345, 1236, 1246, 1256, 2356, 1237, 2347\} .

Here we abuse notation and, for example, let 1245 denote the 4-subset \{ 1, 2, 4, 5\} . We
use the natural ordering on the ground set and verify that it is a revlex decomposing
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1300 M. COLEMAN, A. DOCHTERMANN, N. GEIST, S. OH

order. In what follows, we will describe the various simplicial complexes in terms of
their generating sets of facets.

First we define \Delta 7 = \Delta and note that

del\Delta 7(7) = \langle 1234, 1235, 1245, 1345, 2345, 1236, 1246, 1256, 2356\rangle 

is not full (e.g., 1346 is missing). Hence at this step we consider the deletion of vertex
7 and define \Delta 6 = del\Delta 7

(7).
Next we note that del\Delta 6(6) is full, so we now consider the link of 6 in \Delta 6 and

define
\Delta 5 = \ell k\Delta 6

(6) = \langle 123, 124, 125, 235\rangle .

Continuing in this fashion we have that del\Delta 5
(5) is not full so we define

\Delta 4 = del\Delta 5(5) = \langle 123, 124\rangle .

Next we see that del\Delta 4
(4) = \langle 123\rangle is full and so we consider the link of 4 in \Delta 4

and have
\Delta 3 = \ell k\Delta 4(4) = \langle 12\rangle .

At this point we see that \Delta 3 is a simplex (on ground set \{ 1, 2, 3\} ), and hence we
have reached a base case.

Reversing this process, we see that at each step the addition of a new facet F leads
to a vertex decomposable complex. We begin with \Delta 3 since it is full over its vertex
set and hence a base case of Theorem 2.9. We extend \Delta 3 to \Delta \prime 

3 by noting that 3 is the
smallest loop, and 2 is the largest vertex. Hence we add the facet (12\setminus \{ 2\} )\cup \{ 3\} = 13.
Now in \Delta 4 we replace \ell k\Delta 4

(4) = \Delta 3 with \Delta \prime 
3, which results in adding the facet 134

to obtain \Delta \prime 
4. In \Delta 5 we replace del\Delta 5

(5) = \Delta 4 with \Delta \prime 
4 which results in adding the

facet 134 to obtain \Delta \prime 
5. Next in \Delta 6 we replace \ell k\Delta 6

(6) = \Delta 5 with \Delta \prime 
5, adding facet

1346 to obtain \Delta \prime 
6. Finally in \Delta 7 we replace del\Delta 7

(7) = \Delta 6 with \Delta \prime 
6, adding the facet

1346. We note that the simplicial complex \langle \Delta \cup \{ 1346\} \rangle is vertex decomposable, and
1346 is indeed the smallest element missing from \Delta = \Delta 7 among the revlex ordered
4-subsets of \{ 1, . . . , 7\} .

We will use the above observations to show that many orderings of the ground
set of a matroid give rise to revlex decomposing orders. For this we will need the
following result.

Lemma 3.5. Let \scrM be a rank d matroid on ground set V , and suppose that \scrM 
is full on V \setminus \{ v\} for some nonloop v \in V . Suppose F is a d-subset of V with v \in F
such that F is not a facet (basis) of \scrM . Then the complex generated by \scrM \cup \{ F\} is
again a matroid.

Proof. We first observe that for any d-subset A of V \setminus \{ v\} there exists a (d  - 1)-
subset B \subset A with the property that B \cup \{ v\} is a facet of \scrM . This follows from
applying the exchange property with A and any facet F that contains v (which must
exist since v is not a loop).

Now let F = \{ x1, x2, . . . , xd - 1, v\} be a d-subset that is missing from \scrM . Let G
be any facet of \scrM . We will verify the exchange properties between F and G. We first
claim that for any f \in F there exists some gi such that (G\setminus \{ gi\} ) \cup \{ f\} is a facet of
\scrM . If f \not = v, then this is clear since \scrM is full on V \setminus \{ v\} . If f = v we use the above
observation with A = G to obtain B = G\setminus \{ gi\} .

Next we claim that for any g \in G with g \not = v there exists some xi \in F such that
(F\setminus \{ xi\} ) \cup \{ g\} is a facet of \scrM . For this we again use the above observation with
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A = \{ g, x1, . . . , xd - 1\} . Note that the resulting B must contain g since otherwise F
would be a facet of \scrM . We take xi = A\setminus B, and the result follows.

Proposition 3.6. Let \scrM be a rank d matroid, and suppose v1, v2, . . . , vn is any
linear ordering of its ground set V with the property that \{ v1, v2, . . . , vd\} \in \scrM . Then
v1, v2, . . . , vn is a revlex decomposing order for \scrM .

Proof. Suppose that v1, v2, . . . , vn is such an ordering of V , and let F be the
revlex smallest d-subset of V that is missing from \scrM . Let q \geq 2 be the smallest index
such that vq \in F and vq - 1 \not \in F .

Since \scrM is a matroid we have that any element of V is a loop or a decomposing
vertex. Repeatedly using Corollary 3.3, we get that v1, v2, . . . , vn is a revlex decom-
posing order for \scrM if v1, v2, . . . , vq is a revlex decomposing order for

\Gamma := \ell k\Delta (F \cap \{ vq+1, . . . , vn\} )| \{ v1,...,vq\} .

We see that \Gamma is a matroid (since it is obtained via a sequence of deletions and
links of a matroid), with the property that del\Gamma (vq) is full. This follows from the fact
that F was the revlex smallest d-subset missing from \scrM . From Lemma 3.5 we see
that any ordering of the ground set of \Gamma is a revlex decomposing order. The result
follows.

As a consequence of Proposition 3.6 we get the following.

Corollary 3.7. Let \scrM be a rank d matroid and suppose v1, v2, . . . , vn is any
linear ordering of its ground set V with the property that \{ v1, v2, . . . , vd\} \in \scrM , and
let F be the revlex smallest d-subset missing from \scrM . Then the complex generated by
\scrM \cup \{ F\} is vertex decomposable.

Remark 3.8. Given a rank d matroid \scrM on ground set V , a related question to
ask is whether there exists a d-subset F \subset V such that \scrM \cup \{ F\} is again a matroid.
Let \scrB (M) denote the collection of facets (bases) of a matroid. If F happens to be
a circuit-hyperplane (that is, F is a circuit of \scrM and V \setminus F is a circuit of the dual
matroid \scrM \ast ), then Kahn [15] has shown that \scrB (\scrM ) \cup \{ F\} forms the set of bases
of a new matroid \scrM \prime . This process is known as a relaxation of \scrM . Furthermore,
Truemper [21] has shown that if M1 and M2 are connected matroids on the same
ground set and the symmetric difference \scrB 1\bigtriangleup \scrB 2 has cardinality one, then in fact one
of \scrB 1 and \scrM 2 is obtained from the other by relaxing a circuit-hyperplane.

As for a nonexample we thank Jay Schweig for the following explicit construction:
Consider the rank 3 matroid \scrM with ground set \{ x, a, b, c, d\} generated by the facets
(bases) \{ xab, xac, xad, xbc, xbd, xcd\} (so that M is the cone over the rank 2 uniform
matroid on 4 elements). Note that if F is any missing 3-subset of M , then x /\in F .
Now if F had the exchange property with xab it could not with xcd, since we cannot
replace x with anything to obtain a basis of M \cup \{ F\} .

Remark 3.9. A shedding order for a vertex decomposable complex \Sigma is an order-
ing v1, v2, . . . , vn of its vertices with the property that vi is a decomposing vertex of
\Sigma i, where we define \Sigma n = \Sigma and \Sigma i - 1 = del\Sigma i

(vi) (so that \Sigma i - 1 is necessarily vertex
decomposable). In [19, Proposition 3.2.3] it is shown that any ordering of the vertices
of a matroid \scrM is a shedding order for \scrM .
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We note that there exist shedding orders that are not revlex decomposing orders.
For instance, consider the simplicial complex \Gamma with facets

\{ 1234, 1235, 1245, 1345, 2345, 1346, 1456, 2456, 3456\} ,

which is the complex obtained from \Delta 6 of Example 3.4 by reversing \{ 1, 2, 3, 4, 5\} .
Since del\Sigma (6) is full, we have that 1, 2, . . . , 6 is a shedding order. But in \ell k\Sigma (6) =
\{ 134, 145, 245, 345\} we cannot use 5 as a decomposing vertex, so that 1, 2, . . . , 6 is not a
revlex decomposing order. On the other hand 5, 4, 3, 2, 1, 6 gives a revlex decomposing
order, as discussed above.

In light of Corollary 3.7 a natural question to ask is whether there exists an
ordering of the ground set such that all missing facets can be added in revlex order.
The next example shows that an arbitrary ordering will not work.

Example 3.10. Let \scrM be the matroid on ground set [6] generated by the facets
\{ 1234, 1345, 2346, 3456\} . We note that adding the revlex smallest missing 4-subset
1235 results in a shelling move, but the shelling fails when we continue to add the
next revlex smallest subsets

1235, 1245, 1236, 1246, 1256.

To see this let \Delta denote the complex obtained by adding these 4-subsets, and consider
F = 56, a face of \Delta . We note that \ell k\Delta (F ) = \{ 34, 12\} , which is 1-dimensional and
disconnected and hence not shellable. By Lemma 2.3 we conclude that \Delta is not
shellable.

4. Complexes with few vertices. In [10] it is shown that a d-dimensional
complex \Delta on d + 3 vertices is extendably shellable if and only if \Delta is shellable.
In this section we show that these conditions are also equivalent to \Delta being vertex
decomposable. In what follows we will assume that our complexes have no loops, so
that the vertex set of \Delta coincides with its ground set.

For our result we will exploit a connection between shellable complexes and the
notion of a chordal graph. Recall that a simple graph G is chordal if it has no induced
cycles of length 4 or more (so that all cycles of length 4 or more have a ``chord""). It is
well known that any chordal graph admits a simplicial vertex, a vertex v \in V (G) such
that its neighborhood (the subgraph induced on the set of vertices adjacent to v) is a
complete graph. From [12] we have the following result, adapted for our purposes.

Lemma 4.1. Let Kn denote the complete graph on vertex set [n] = \{ 1, 2, . . . , n\} .
Suppose \{ e1, e2, . . . , ek\} \subset E(Kn) is a collection of edges and for each j = 1, 2, . . . , k,
let Fj = [n]\setminus ej denote the complementary (n  - 2)-subset. Then Kn\setminus \{ e1, e2, . . . , ek\} 
is a chordal graph if and only if the simplicial complex generated by F1, F2, . . . , Fk is
shellable.

Lemma 4.2. Any shellable 1-dimensional simplicial complex (graph) G is vertex
decomposable.

Proof. Recall that a graph G is shellable if and only if it is finite and connected.
Let G be a connected graph on vertex [n]. If n = 1, then G is a simplex and hence
vertex decomposable. Suppose n \geq 2, and let T be a spanning tree of G. Choose
v \in G to be a leaf vertex of T . Then G\setminus \{ v\} is connected, and lkG(v) is nonempty.
The result follows by induction on n.

Lemma 4.3. Suppose \Delta is a pure d-dimensional simplicial complex on at most
d+ 2 vertices. Then \Delta is vertex decomposable.
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Proof. We use induction on d. We see that the statement is true for d = 1 by
Lemma 4.2, since a graph without isolated vertices on at most 3 vertices must be
connected (and hence shellable). For d \geq 2, if \Delta is a simplex (meaning it only uses
d+1 vertices) we are done. Otherwise we can pick a vertex v such that there exists a
facet F with v \in F and another facet G with v /\in G. We then have that del\Delta (v) is a
simplex (generated by the single facet G) and hence is vertex decomposable. The link
\ell k\Delta (v) is a pure (d - 1)-dimensional complex on at most d+ 1 vertices and hence is
vertex decomposable by the induction hypothesis. To see that v is a shedding vertex
note that the single facet of del\Delta (v) is G, which was a facet of \Delta by assumption. The
claim follows.

Theorem 4.1. Suppose \Delta is a pure shellable d-dimensional simplicial complex
on d+ 3 vertices. Then \Delta is vertex decomposable.

Proof. We prove the statement by induction on d. If d = 1 the claim follows from
Lemma 4.2. Suppose d \geq 1, and let \Delta be a d-dimensional complex with shelling order
F1, F2, . . . , Fj . Suppose \Delta has vertex set V , and let G be the simple graph on vertex
set V with nonedges \{ V \setminus Fi : Fi \in \Delta \} , corresponding to the complements of facets.

From Lemma 4.1 we have that G is a chordal graph and hence admits a simplicial
vertex v, so that the graph induced on its neighborhood NG(v) is a complete graph.
We first claim that v is a shedding vertex of \Delta . For a contradiction suppose F is a facet
of del\Delta (v) such that F \cup \{ v\} is a facet of \Delta . This implies that \{ i, j\} = V \setminus (F \cup \{ v\} ) is
missing as an edge in the complement graph G. Since v is simplicial this implies that
i or j is not adjacent to v in G. Without loss of generality suppose \{ i, v\} is missing
as an edge in G. This implies that F \prime = V \setminus \{ i, v\} is a facet of \Delta . But F \subsetneq F \prime and
v /\in F \prime , which is a contradiction to the fact that F is a facet of del\Delta (v).

Next note that del\Delta (v) is a pure d-dimensional complex (since v is a shedding
vertex) on d + 2 vertices. Hence by Lemma 4.3 we have that del\Delta (v) is vertex de-
composable. Finally we have from Lemma 2.3 that the link \ell k\Delta (v) is a shellable
(d  - 1)-dimensional complex on at most d + 2 vertices. By induction on d we then
have that \ell k\Delta (v) is vertex decomposable. The result follows.

Hence for a d-dimensional simplicial complex on at most d+3 vertices the concepts
of shellable, extendably shellable, shelling completable, and vertex decomposable are
all equivalent. We remark that Theorem 4.1 is tight in the sense that there exist
2-dimensional complexes on 6 vertices that are shellable but not vertex decomposable
[17].

5. Completing \bfitk -decomposable complexes and further thoughts. Recall
that Simon's conjecture posits that all shellable complexes are shelling completable,
and in this paper we have shown the conjecture holds for the particular class of vertex
decomposable complexes. As alluded to in section 1, we can ask the same question for
complexes that properly sit in between these two classes. We first recall the relevant
definitions.

Definition 5.1. A pure d-dimensional simplicial complex \Delta is said to be k-
decomposable if \Delta is a simplex, or \Delta contains a face F such that

1. dim(F ) \leq k
2. both del\Delta (F ) and \ell k\Delta (F ) are k-decomposable, and
3. del\Delta (F ) is pure (and the dimensions stays same as that of \Delta ).

A face F which satisfies the third condition is called a shedding face of \Delta .

The notion of k-decomposable interpolates between the notion of vertex decom-
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posable (which is equivalent to 0-decomposable in this language) and shellable (which
can be seen to coincide with d-decomposable).

Example 5.2. Let \Delta be the 2-dimensional complex with facets

\{ 123, 124, 125, 134, 136, 245, 256, 346, 356, 456\} ,

(Example V6F10-6 from [17]). In [17] it is shown that \Delta is not vertex decomposable,
but one can check that it is 1-decomposable using 15 as a shedding face.

The results in this paper imply that a 0-decomposable complex is shelling com-
pletable, and Simon's conjecture posits that a k-decomposable complex is shelling
completable. As far we know it is an open question whether a 1-decomposable com-
plex is shelling completable.

To establish that a 1-decomposable complex is shelling completable, one could
try to generalize the argument given in the proof of Theorem 2.9, where the case
of 0-decomposable complexes was considered. Recall that our strategy was to use
induction on the number of vertices (and dimension), with the base case given by
complexes that are full (that is, are full skeleta of a simplex on their vertex set). It is
not clear what the analogue for these complexes would be, even in the 1-decomposable
case. We leave this as a future project.
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