
3396 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 7, JULY 2022

Feedback Control Over Noisy Channels:
Characterization of a General Equilibrium

Touraj Soleymani , Member, IEEE, John S. Baras , Life Fellow, IEEE, Sandra Hirche , Fellow, IEEE,
and Karl H. Johansson , Fellow, IEEE

Abstract—In this article, we study an energy-regulation
tradeoff that delineates the fundamental performance
bound of a feedback control system over a noisy chan-
nel in an unreliable communication regime. The channel
and the process are modeled by an additive white Gaus-
sian noise channel with fading and a partially observable
Gauss–Markov process, respectively. Moreover, the feed-
back control loop is constructed by designing an encoder
with a scheduler and a decoder with a controller. The sched-
uler and the controller are the decision makers deciding
about the transmit power and the control input at each
time, respectively. Associated with the energy-regulation
tradeoff, we characterize an equilibrium at which neither
the scheduler nor the controller has a unilateral incentive
to deviate from its policy. We argue that this equilibrium
is a general one as it attains global optimality without any
restrictions on the information structure or the policy struc-
ture, despite the presence of signaling and dual effects.

Index Terms—Communication channels, energy-
regulation tradeoff, feedback control, global optimality,
packet loss, power adaptation, stochastic processes.

I. INTRODUCTION

W IRELESS communication can provide an effective so-
lution for feedback control systems [1]. Exploiting the

unique characteristics of wireless communication, one can re-
alize unprecedented wireless control systems in which sen-
sors are connected to actuators via wireless channels. Such
control systems are envisioned to have abundant applications
in automotive, automation, healthcare, and space exploration.
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Nevertheless, wireless channels, which are to close the feedback
control loops in these systems, are highly subject to noise.
A direct consequence of the channel noise in real-time tasks1

is packet loss,2 which severely degrades the performance of
the underlying control system or even yields instability. To
decrease the packet error rate, for any fixed rate, bandwidth,
and modulation, the transmit power needs to increase. This in
turn raises the energy consumption of the transmitter, which
is often afflicted with a constrained energy budget. Therefore,
minimizing the cost of communication and minimizing the
cost of control become conflicting objectives. Such a dilemma
motivates us in the present article to study an energy-regulation
tradeoff that delineates the fundamental performance bound of
a feedback control system over a noisy channel in an unreliable
communication regime.

A. Related Work

Previous research has already recognized the severe effects
of packet loss on stability. Majority of works have considered
independent and identically distributed (i.i.d.) erasure chan-
nels [2]–[7]. In a seminal work, Sinopoli et al. [2] studied
mean-square stability of Kalman filtering over an i.i.d. erasure
channel, and proved that there exists a critical point for the packet
error rate above which the expected estimation error covariance
is unbounded. Later, Schenato et al. [3] extended this work
to optimal control, and showed that there exists a separation
between estimation and control when packet acknowledgment
is available. Moreover, several works have employed Gilbert-
Elliott channels to capture the temporal correlation of wireless
channels [8]–[11]. Notably, Wu et al. [8] addressed stability of
Kalman filtering over a Gilbert-Elliott channel, and proved that
there exists a critical region defined by the recovery and failure
rates outside which the expected prediction error covariance is
unbounded. The corresponding optimal control problem was
addressed by Mo et al. [9], where they showed that the separation
principle still holds when packet acknowledgment is available.
Eventually, a number of works have employed fading channels
in order to take into account the time variation of the strengths

1This implies that block codes or message retransmissions that cause delays
more than a threshold are prohibited. Note that reliable communication in the
capacity limit is normally attained when delay can be arbitrarily large.

2In the context of our article, a packet (or equivalently a message) is defined as
a unit of bits corresponding to sensory information about the state of the process
under control at each time. Moreover, packet loss refers to the phenomenon
where one of these bits is detected erroneously.
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of wireless channels [12]–[14]. In particular, Quevedo et al. [12]
investigated stability of Kalman filtering over a fading channel
with correlated gains, and established a sufficient condition that
ensures the exponential boundedness of the expected estimation
error covariance. Besides, Elia [13] studied the stabilization
problem in the robust mean-square stability sense over a fading
channel by modeling the fading as stochastic model uncertainty,
and designed a controller with the largest stability margin.

Power adaptation for energy efficient transmission of sensory
information over noisy channels in estimation and control tasks
has also been addressed in literature, and various schedulers have
been designed3 [15]–[21]. In particular, Leong et al. [15] studied
the estimation of a Gauss–Markov process over a fading channel,
and derived the optimal scheduling policy that minimizes the es-
timation outage probability subject to a constraint on the average
total power. Quevedo et al. [16] investigated the estimation of
a Gauss–Markov process over a fading channel, and derived
the optimal scheduling policy that minimizes the average total
power subject to a stability condition ensuring that the expected
estimation error covariance is exponentially bounded. Later,
Nourian et al. [17] and Li et al. [18] extended the above works,
and obtained the optimal scheduling policy that minimizes the
trace of the average expected estimation error covariance subject
to an energy harvesting constraint. The fact is that the adopted
scheduling policies in [15]–[18] depend on the estimation error
covariances, and not on the outputs of the process. In contrast,
scheduling policies that depend on the outputs of the process can
obviously take advantage of all available sensory information.
These policies, which are of interest to our article, have been
considered in [19]–[21]. More specifically, Ren et al. [19] stud-
ied the estimation of a first-order Gauss–Markov process over
a fading channel based on the common information approach,
and proved that the optimal scheduling policy is deterministic
symmetric and the optimal estimator is linear. Chakravorty and
Mahajan [20] found a similar structural result for the estimation
of a first-order autoregressive process with symmetric noise
over a channel modeled by a finite-state Markov chain. In
addition, Gatsis et al. [21] addressed the control of a first-order
Gauss–Markov process over a fading channel by restricting the
information structure, such that a separation between estimation
and control is achieved, and showed that the optimal scheduling
policy is deterministic and the optimal control policy is certainty
equivalent.

B. Contributions and Outline

In this article, we study the energy-regulation tradeoff without
restricting the information structure or the policy structure.
We model the channel and the process by an additive white
Gaussian noise channel with fading and a partially observable
Gauss–Markov process, respectively. The goal we seek in the
energy-regulation tradeoff, which is in general an intractable
problem, is to find an optimal policy profile consisting of a
scheduling policy and a control policy. Our study is different

3Throughout our article, schedulers and controllers refer to the entities that
decide about transmit powers and control inputs, respectively. The former are
also known as transmission power controllers in the literature.

from that in [21], where the information structure is restricted,
or from those in [15]–[18], where the policy structure is confined.
It is also unlike the studies in [19] and [20], where the results
are restricted to first-order processes with no feedback control.
In our article, the outputs of the process are subject to noise,
and both the scheduler and the controller need to infer the
state of the process. This model generalizes the model used
in [19]–[21], where the scheduler observes the exact value of the
state of the process. As a result, in contrast to the above studies,
three types of estimation discrepancies can be considered here:
The discrepancy between the state of the process and the state
estimate at the scheduler, the discrepancy between the state of the
process and the state estimate at the controller, and that between
the state estimates at the scheduler and the controller.

Our main contributions, in summary, are as follows. We
characterize an equilibrium in the energy-regulation tradeoff at
which neither the scheduler nor the controller has a unilateral
incentive to deviate from its policy. We argue that this equilib-
rium is a general one as it attains global optimality without any
restrictions on the information structure or the policy structure,
despite the presence of signaling4 and dual effects. We show
that at our equilibrium the scheduling policy is a deterministic
symmetric policy and the control policy is a certainty-equivalent
policy. As we will see, such structural attributes dramatically
reduce the complexity of the design. Finally, we discuss the
computational aspects of our equilibrium, and propose an ap-
proximation procedure for synthesizing a suboptimal scheduling
policy with a probabilistic upper bound on its performance.
Our analysis in this article is based on backward induction for
dynamic games with asymmetric information (see, e.g., [22]),
and on the symmetric decreasing rearrangement of asymmetric
measurable functions (see, e.g., [23]).

The remainder of the article is organized in the following way.
We introduce the models of the channel and the process, and
formulate the energy-regulation tradeoff in Section II. Then, we
characterize an equilibrium in Section III, and prove its global
optimality in Section IV. We discuss the computational aspects
of the equilibrium and propose an approximation procedure in
Section V, and provide a numerical example in Section VI.
Finally, Section VII concludes this article.

C. Preliminaries

In the sequel, the sets of real numbers and nonnegative integers
are denoted by R and N, respectively. For x, y ∈ N and x ≤ y,
the set N[x,y] denotes {z ∈ N|x ≤ z ≤ y}. The sequence of vec-
tors x0, . . . , xk is represented by xk. The symmetric decreasing
rearrangement of a Borel measurable function f(x) vanishing at
infinity is represented by f ∗(x). The tail function of the standard
Gaussian distribution is defined as Q(x) = 1√

2π

∫∞
x e−y2/2 dy.

The indicator function of a subset A of a set X is denoted by
1A : X → {0, 1}. The probability measure of a random variable
x is concisely represented by P(x), its probability density or
probability mass function by p(x), and its expected value and
covariance by E[x] and cov[x], respectively.

4Signaling here refers to the process of exchanging implicit information via
actions.
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Let (Ω,F ,P) be a probability space, and x be an integrable
random variable defined on this space. We will use conditional
expectations of the form E[x|y, γ], where y and γ are random
variables, such that the latter takes on values in {0, 1} and that
σ(y, γ) ⊆ F . By the Radon–Nikodym theorem and the Doob–
Dynkin lemma, z = E[x|y, γ] satisfying E[(x− z)1G ] = 0 for
every G ∈ σ(y, γ) exists, and can be represented by a measur-
able function φ(y, γ). Accordingly, given a realization of γ,
conditional expectations E[x|y, γ = 0] and E[x|y, γ = 1] also
exist, and can be represented by φ(y, γ = 0) and φ(y, γ = 1),
respectively.

We will adopt stochastic kernels to represent decision policies.
Let (X ,BX ) and (Y,BY) be two measurable spaces. A Borel
measurable stochastic kernel P : BY × X → [0, 1] is a mapping,
such that A *→ P(A|x) is a probability measure on (Y,BY) for
any x ∈ X , and x *→ P(A|x) is a Borel measurable function for
any A ∈ BY .

Besides, we will use two different notions of optimality. For a
given team game with two decision makers, letγ1 ∈ G1 andγ2 ∈
G2 be the decision policies of the decision makers, where G1

and G2 are the sets of admissible policies, and L(γ1, γ2) be the
associated loss function. A policy profile (γ1", γ2") represents
a Nash equilibrium if

L
(
γ1", γ2"

)
≤ L

(
γ1, γ2"

)
, for all γ1 ∈ G1

L
(
γ1", γ2"

)
≤ L

(
γ1", γ2

)
, for all γ2 ∈ G2.

However, a policy profile (γ1", γ2") is a globally optimal solu-
tion if

L
(
γ1", γ2"

)
≤ L

(
γ1, γ2

)
, for all γ1 ∈ G1, γ2 ∈ G2.

Clearly, a globally optimal solution is necessarily a Nash equi-
librium, but the converse need not hold.

II. ENERGY-REGULATION TRADEOFF

Consider an additive white Gaussian noise (AWGN) channel
with fading with the discrete-time input–output relation

rk =
√
gksk + nk (1)

for k ∈ N[0,N ], where rk is the channel output, gk ≥ 0 is the
channel gain, sk is the channel input, nk is a white Gaussian
noise with zero mean and power spectral density N0, and N is
a finite time horizon. The channel gain gk is a random variable
representing the effects of path loss, shadowing, and multipath,
which can change at each time with or without correlation over
time according to any probability distribution satisfying the
Markov property. The bit sequence corresponding to a message
ak is modulated by the encoder into the carrier signal, and is
transmitted over the channel. The signal is then detected by
the decoder, and the message bk is reconstructed after one step
delay (see Fig. 1). It is assumed that the channel is block
fading, that the channel gain gk is known at both the decoder
and the encoder before transmission at time k given a feedback
channel, and that the quantization error is negligible. For our

Fig. 1. Communication over an additive white Gaussian noise channel
with fading. The input ak is transmitted over the channel, and the output
bk is reconstructed.

Fig. 2. Control of a partially observable Gauss–Markov process. The
output yk is observed, and the input uk is applied to the process.

purpose, we focus on uncoded square M-ary quadrature ampli-
tude modulation (MQAM) signaling5 withM ∈ {4, 16, 64, . . . }
for which the packet error rate at time k is determined
exactly as

perk = 1−
(
1− c0Q

(√
c1Ek/N0

))2L/b
(2)

with parameters c0 = 2(1− 2−b/2), c1 = 3b/(2b − 1), and b =
log2 M , where perk ∈ C = [0, 1− 2−L] is the packet error rate,
Ek is the received average energy per bit, and L is the packet
length in bits. The MQAM signaling is desirable for its high
spectral efficiency. However, given a mapping between the
packet error rate and the received average energy per bit, any
other signaling with or without coding can be adopted. Then,
from (1) and (2), we can obtain the required transmit power at
time k for a given packet error rate as

pk = N0R
c1gk

(
Q−1

(
1
c0

− 1
c0
(1− perk)

b/2L
))2

(3)

where pk is the transmit power, R is the communication rate,
and we used the fact that Ek = gkpk/R. Note that the function
in (3) is decreasing in terms of perk, and that there exists a
transmit power prk at each time k for which perk = ε, where ε is
a negligible probability. In addition, from the definition of perk,

5Signaling here refers to the process of mapping digital sequences to analog
signals.
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Fig. 3. Feedback control over a noisy channel. The channel is additive
white Gaussian noise with fading, and the process is partially observable
Gauss–Markov. The encoder consists of a filter, a scheduler, and a
channel encoder. The decoder consists of a channel decoder, a filter,
and a controller.

we can model packet loss according to a random variable γk,
such that γk = 1 if the message ak is successfully received after
one time step and γk = 0 otherwise, and that the probability of
γk = 0 is perk. Therefore, we have

bk+1 =

{
ak, if γk = 1
∅, otherwise

(4)

for k ∈ N[0,N ] with b0 = ∅. Note that γk for all k ∈ N[0,N ]

are conditionally independent given all the previous and current
channel gains and transmit powers. It is assumed that the ac-
knowledgment of a message that is successfully received at time
k is available at the encoder at the same time via the feedback
channel.

Now, consider a partially observable Gauss–Markov (POGM)
process with the discrete-time state and output equations

xk+1 = Akxk +Bkuk + wk (5)

yk = Ckxk + vk (6)

for k ∈ N[0,N ] with initial condition x0, where xk ∈ Rn is the
state of the process,Ak ∈ Rn×n is the state matrix,Bk ∈ Rn×m

is the input matrix, uk ∈ Rm is the control input, wk ∈ Rn is a
Gaussian white noise with zero mean and covariance Wk , 0,
yk ∈ Rp is the output of the process, Ck ∈ Rp×n is the output
matrix, and vk ∈ Rp is a Gaussian white noise with zero mean
and covariance Vk , 0. The output yk is observed by a sensor,
and the input uk is applied to the process by an actuator (see
Fig. 2). It is assumed that x0 is a Gaussian vector with mean
m0 and covariance M0, and that x0, wk, and vk are mutually
independent for all k ∈ N[0,N ].

The sensor is connected to the actuator via the channel. Fig. 3
illustrates a schematic view of the system of interest in which the
encoder consists of a filter, a scheduler, and a channel encoder,
and the decoder consists of a channel decoder, a filter, and a
controller. In this system, the scheduler and the controller are
the decision makers deciding about the transmit power and the
control input at each time, respectively. The filters should be re-
quired since the process is partially observable. The message that
is transmitted to the controller at time k, i.e., ak, is the minimum
mean-square-error (MMSE) state estimate at the scheduler at

time k. This state estimate condenses all the previous and current
outputs of the process into a single message. This implies that
from the MMSE perspective the controller is able to develop a
state estimate upon the receipt of a message that would be the
same if it had all the previous outputs of the process, which is in
fact the best possible case. Finally, the location of the controller
in the system is nominal. The case in which the controller and
the actuator are connected via another channel can essentially
be converted to the case in which those are collocated [24].
The reason is that the information that would be transmitted
from the controller to the actuator should be processed again
at the actuator, and from the data-processing inequality (see,
e.g., [25]), it is always better to process the transmitted MMSE
state estimate directly at the actuator. Hence, the two channels
can in effect be modeled by a single channel.

The decision variables of the scheduler and the controller
at time k are perk

6 and uk, respectively. These decisions are
decided based on the causal information sets of the scheduler
and the controller, which are expressed by

Is
k =

{
yt, bt, gt, pert′ , γt′ , ut′

∣∣∣ t ∈ N[0,k], t
′ ∈ N[0,k−1]

}

Ic
k =

{
bt, gt, γt′ , ut′

∣∣∣ t ∈ N[0,k], t
′ ∈ N[0,k−1]

}

respectively. Clearly, Ic
k ⊂ Is

k . We say that a policy profile
(π, µ) consisting of a scheduling policy π and a control policy µ
is admissible if π = {P(γk|Is

k)}Nk=0 and µ = {P(uk|Ic
k)}Nk=0,

where P(γk|Is
k) and P(uk|Ic

k) are Borel measurable stochastic
kernels. We represent the set of admissible policy profiles by
P ×M, where P and M are the sets of admissible schedul-
ing policies and admissible control policies, respectively. For
the system described above, we are interested in an energy-
regulation tradeoff that is cast as an optimization problem with
the loss function

χ(π, µ) := (1− λ)E(π, µ) + λJ(π, µ) (7)

over the space of admissible policy profiles (π, µ) ∈ P ×M,
given a tradeoff multiplier λ ∈ (0, 1), and for

E(π, µ) := 1
N+1 E

[
N∑

k=0

'kpk

]
(8)

J(π, µ) := 1
N+1 E

[
N+1∑

k=0

xT
kQkxk +

N∑

k=0

uT
kRkuk

]
(9)

where 'k ≥ 0 is a weighting coefficient, andQk / 0 andRk , 0
are weighting matrices.

Remark 1: The energy-regulation tradeoff, which is formu-
lated based on the weighted sum approach (see, e.g., [26]),
is a tradeoff between two objective functions. The objective
function in (8) penalizes the transmit power per packet, while
the objective function in (9) penalizes the state deviation and
the control effort. Note that the associated optimization prob-
lem is in general an intractable problem due to a nonclassical
information structure, a signaling effect, and a dual effect. These
issues prohibit the direct application of the traditional methods

6Note that according to (3), given gk and perk , one can find pk .
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in stochastic optimal control. Despite these difficulties, in the
subsequent sections, we develop a new method for the charac-
terization of a solution (π", µ") to this problem. Although the
problem we study is over a finite time horizon, the extension of
our results to an infinite time horizon is straightforward provided
the channel gain has a stationary distribution and the process is
time-invariant, controllable, and observable.

III. EXISTENCE OF AN EQUILIBRIUM

Certainly, the main technical obstacle to the characterization
of any solution in the energy-regulation tradeoff is that the design
of the stochastic kernels P(γk|Is

k) and P(uk|Ic
k) is in general

intertwined with the structures of the conditional distributions
P(xk|Is

k) and P(xk|Ic
k). Our goal in the following is to over-

come this obstacle by investigating a separation in the design
of these stochastic kernels. Let x̌k and x̂k, unless otherwise
stated, denote the MMSE state estimates7 at the scheduler and
the controller, respectively. Accordingly, we define

ěk := xk − x̌k (10)

êk := xk − x̂k (11)

ẽk := x̌k − x̂k (12)

where ěk is the estimation error from the perspective of the
scheduler, êk is the estimation error from the perspective of the
controller, and ẽk is the estimation mismatch. The main result
of this section is given by the next theorem, which characterizes
a Nash equilibrium in the energy-regulation tradeoff at which
a separation in the design is guaranteed. The proof relies on
backward induction for dynamic games with asymmetric infor-
mation. For the statement of the theorem, we need the following
lemma related to the dynamics of the conditional means and the
conditional covariances, and the subsequent definition of two
value functions with respect to the information sets.

Lemma 1: The conditional mean x̌k = E[xk|Is
k] and the con-

ditional covariance Yk = cov[xk|Is
k] satisfy

x̌k+1 = mk+1 +Kk+1 (yk+1 − Ck+1mk+1) (13)

mk+1 = Akx̌k +Bkuk (14)

Yk+1 =
(
M−1

k+1 + CT
k+1V

−1
k+1Ck+1

)−1
(15)

Mk+1 = AkYkA
T
k +Wk (16)

for k ∈ N[0,N ] with initial conditions x̌0 = m0 +K0(y0 −
C0m0) and Y0 = (M−1

0 + CT
0 V

−1
0 C0)−1, where Kk =

YkCT
k V

−1
k , mk = E[xk|Is

k−1], and Mk = cov[xk|Is
k−1].

In addition, the conditional mean x̂k = E[xk|Ic
k] and the

conditional covariance Pk = cov[xk|Ic
k] satisfy

x̂k+1 = Akx̂k +Bkuk + γkAkẽk + (1− γk)ık (17)

Pk+1 = AkPkA
T
k +Wk

− γkAk(Pk − Yk)A
T
k − (1− γk)Ξk (18)

7We recall that given an information set Ik at timek, the MMSE state estimate
at time k is achieved by E[xk|Ik].

for k ∈ N[0,N ] with initial conditions x̂0 = m0 and P0 =
M0, where ık = Ak E[êk|Ic

k, γk = 0] and Ξk = Ak(Pk −
cov[xk|Ic

k, γk = 0])AT
k .

The proof of Lemma 1 is in Appendix A.
Definition 1 (Value functions): Let Sk / 0 be a matrix satis-

fying the algebraic Riccati equation

Sk = Qk +AT
k Sk+1Ak −AT

k Sk+1Bk

× (BT
k Sk+1Bk +Rk)

−1BT
k Sk+1Ak (19)

for k ∈ N[0,N ] with initial condition SN+1 = QN+1 and with
the exception of Sk = 0 for k /∈ N[0,N+1]. The value functions
V s
k (Is

k) and V c
k (Ic

k) are defined as

V s
k (Is

k) := min
π∈P:µ=µ!

E

[
N∑

t=k

θtpt + ςt+1

∣∣∣Is
k

]
(20)

V c
k (Ic

k) := min
µ∈M:π=π!

E

[
N∑

t=k

θt−1pt−1 + ςt
∣∣∣Ic

k

]
(21)

for k ∈ N[0,N ] given a policy profile (π", µ"), where

θk := 'k(1− λ)/λ

ςk :=
(
uk + (BT

k Sk+1Bk +Rk)
−1BT

k Sk+1Akxk

)T

× (BT
k Sk+1Bk +Rk)

×
(
uk + (BT

k Sk+1Bk +Rk)
−1BT

k Sk+1Akxk

)

for k ∈ N[0,N ] with the exception of θk := 0 and ςk := 0 for
k /∈ N[0,N ].

Theorem 1: There exists at least one Nash equilibrium
(π", µ") in the energy-regulation tradeoff, such that the schedul-
ing policy π" is a deterministic symmetric policy with respect to
ẽk determined by

per"k = argmin
perk∈C

{
perk

(
ẽTkA

T
k Γk+1Akẽk + *k

)

+ θkN0R
c1gk

(
Q−1

(
1
c0

− 1
c0
(1− perk)

b/2L
))2

}
(22)

where Γk=AT
k Sk+1Bk(BT

k Sk+1Bk+Rk)−1BT
k Sk+1Ak and

*k = E[V s
k+1(Is

k+1)|Is
k, γk = 0]− E[V s

k+1(Is
k+1)|Is

k, γk =1],
and the control policy µ" is a certainty-equivalent policy
determined by

u"
k = −(BT

k Sk+1Bk +Rk)
−1BT

k Sk+1Akx̂k (23)

where x̂k is the MMSE state estimate at the controller satisfying
x̂k+1 = Akx̂k +Bkuk + γkAkẽk for k ∈ N[0,N ] with initial
condition x̂0 = m0.

The proof of Theorem 1 is in Appendix B.
Remark 2: Note that contrary to the conditional distribu-

tion P(xk|Is
k), the conditional distribution P(xk|Ic

k) is non-
Gaussian and is influenced by the signaling effect. According to
Lemma 1, the existence of the signaling residuals ık and Ξk in
(17) and (18) implies that the controller might be able to decrease
its uncertainty even when a packet loss occurs. However, the
fact that at the equilibrium (π", µ") characterized in Theorem 1
the MMSE state estimate x̂k satisfies (17) with ık = 0 asserts
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that the controller’s inference about the state of the process
when a packet loss occurs has no contribution from the MMSE
perspective. This is an important property as it consequently
leads to a linear structure for the filter at the controller, to a
separation in the design of the scheduler and the controller, and to
the neutrality of the control (see, e.g., [27]). It is also interesting
to note that at the equilibrium (π", µ") the transmission of the
MMSE state estimate x̌k is equivalent to the transmission of the
estimation mismatch ẽk.

IV. GLOBAL OPTIMALITY OF THE EQUILIBRIUM

Although Theorem 1 proves the existence of a Nash equilib-
rium, due to nonconvexity, there might exist other Nash equi-
libria with better performance in the energy-regulation tradeoff.
Unfortunately, there is no direct way to the characterization of
all these equilibria (if any). However, this is not required for
our purpose if we could show that the equilibrium (π", µ") was
globally optimal. The main result of this section is provided
by the next theorem, which in fact proves that this equilibrium
is dominant in the set of admissible policy profiles. The proof
relies on the symmetric decreasing rearrangement of asymmetric
measurable functions.

Theorem 2: The Nash equilibrium (π", µ") characterized in
Theorem 1 associated with the energy-regulation tradeoff is
globally optimal.

The proof of Theorem 2 is in Appendix C.
Remark 3: The global optimality result in Theorem 2 is im-

portant as it guarantees that there exist no other equilibria in the
energy-regulation tradeoff that can outperform the equilibrium
(π", µ") for any given λ. Note that the result does not rule out
the possibility of existence of other equilibria with equal perfor-
mance. However, even in that case, the equilibrium (π", µ") is
preferable because as mentioned above it possesses unique struc-
tural attributes that dramatically reduce the complexity of the
design. We should emphasize that the energy-regulation tradeoff
studied in this article can be reduced to a rate-regulation tradeoff
when perk is restricted to take values only in {0, 1}. In such a
problem, which we have studied in [28] and [29], instead of the
energy the packet rate is penalized, and the scheduler’s decision
at each time is to transmit a message or not to transmit. Hence,
our result here generalizes the result in [28] and [29], where
we found an optimal policy profile consisting of a symmetric
threshold triggering policy and a certainty-equivalent control
policy.

V. COMPUTATION AND APPROXIMATION

In this section, we look at the computational aspects of the
equilibrium (π", µ"). From Theorem 1, we see that there are
some variables in the design of the optimal policies that can
be computed offline, and some that must be computed online
at the scheduler and/or the controller. In particular, the optimal
control policyµ" can readily be computed based on the algebraic
Riccati equation (19) and on the following linear recursive

equation:

x̂k+1 = Akx̂k +Bkuk + γkAkẽk

for k ∈ N[0,N ] with initial condition x̂0 = m0. In addition, the
optimal scheduling policy π" can be computed with arbitrary
accuracy by solving recursively and backward in time the fol-
lowing optimality equation:

V s
k (ẽk, gk) = min

perk∈C

{
θkpk(perk, gk) + perk ẽ

T
kA

T
k Γk+1Akẽk

+ tr(AT
k Γk+1AkYk + Γk+1Wk)

+ perk E
[
V s
k+1(ẽk+1, gk+1)

∣∣ẽk, gk, γk = 0
]

+(1−perk)E
[
V s
k+1(ẽk+1, gk+1)

∣∣ẽk, gk, γk=1
]}

for k ∈ N[0,N ] with initial condition V s
N+1(ẽN+1, gN+1) = 0

in conjunction with the probability distribution of the channel
gain, and with the following linear recursive equation:

ẽk+1 = (1− γk)Akẽk +Kk+1νk+1

for k ∈ N[0,N ] with initial condition ẽ0 = K0ν0, where νk is
a Gaussian white noise with zero mean and covariance Nk =
CkMkCT

k + Vk. Let (ẽk, gk) and perk be discretized in grids
with dn+1

1 and d2 points, respectively, and the associated ex-
pected value be obtained based on a weighted sum of d3 samples.
The complexity of this computation is then O(Ndn+1

1 d2d3).
Note that the associated computational requirements can be
overwhelming especially when n increases. In practice, one
might be interested in a suboptimal scheduling policy with
cheaper computation. The following proposition synthesizes
such a policy with a probabilistic upper bound on its perfor-
mance.

Proposition 1: Let π+ be a scheduling policy given by

per+k = argmin
perk∈C

{
perk ẽ

T
kA

T
k Γk+1Akẽk

+ θkN0R
c1gk

(
Q−1

(
1
c0

− 1
c0
(1− perk)

b/2L
))2

}
.

(24)

Then, the loss χ(π+, µ") is upper bounded by

χ̆ := 1−λ
N+1

N−1∑

k=0

'kp
r
k + λ

N+1

{
mT

0 S0m0

+ tr(SN+1MN+1) +
N∑

k=0

tr (QkYk)

+
N∑

k=0

tr
(
Sk+1Kk(CkMkC

T
k + Vk)K

T
k

)}
(25)

with probability (1− ε)N .
The proof of Proposition 1 is in Appendix D.
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Fig. 4. Energy-regulation tradeoff curve in feedback control over a
noisy channel. The area above the tradeoff curve represents the achiev-
able region.

VI. NUMERICAL EXAMPLE

In this section, we provide a simple example to demonstrate
the energy-regulation tradeoff curve. In our example, we choose
the parameters of the channel, the process, and the loss function
as follows: The data rate R = 4 Kbps, noise power spectral den-
sityN0 = −120 dB, modulation orderM = 16, packet sizeL =
128 bits, state coefficient Ak = 1.1, input coefficient Bk = 1,
output coefficient Ck = 1, process noise variance Wk = 3, out-
put noise variance Vk = 1 for k ∈ N[0,N ], mean and variance of
the initial conditionm0 = 0 andM0 = 1, weighting coefficients
QN+1 = 1, 'k = 1, Qk = 1, and Rk = 0.1 for k ∈ N[0,N ], and
time horizon N = 100. In addition, we express the fading by the
combined path loss and shadowing model

gk =
(

4πfd0

c

)−2 (
d
d0

)−β
10αk/10

for k ∈ N[0,N ], where f = 2.4 GHz is the carrier frequency,
d0 = 1m is the reference distance, c = 3× 105 km/s is the speed
of light, d = 20 m is the transmitter-receiver relative distance,
β = 3 is the path loss exponent, andαk is a Gaussian shadowing
variable with zero mean and variance 5 dB. For this system,
the energy-regulation tradeoff curve was computed numerically
using different values of the tradeoff multiplier λ ∈ (0, 1), and is
depicted in Fig. 4 . As specified, the area above the tradeoff curve
represents the achievable region. Note that the performance of
any policy profile should be assessed with respect to the tradeoff
curve, and that there exists no policy profile with performance
outside the achievable region.

VII. CONCLUSION

In this article, we have studied an energy-regulation trade-
off that can express the fundamental performance bound of a
feedback control system over a noisy channel in an unreliable
communication regime. The central focus was on the charac-
terization of an equilibrium at which the filter at the controller

becomes linear, the design of the scheduler and the controller
becomes separated, and the control becomes neutral. We proved
that this equilibrium, which is composed of a deterministic
symmetric scheduling policy and a certainty-equivalent control
policy, cannot be outperformed by any other equilibria. This
result can be interpreted as another manifestation of symmetry
and certainty equivalence in the design of a class of stochastic
systems with components that are widely used for modeling of
physical phenomena in communication and control. We propose
that future research should be undertaken on the extension of
our article to wireless control systems with other models of the
channel and the process. It would of course be interesting to see
if any equilibria resemble to the one characterized here exist in
other classes of systems.

APPENDIX A
PROOF OF LEMMA 1

Proof: For the first part of the claim, it is easy to verify that,
given the information set of the scheduler Is

k , the conditional
mean x̌k and the conditional covariance Yk satisfy the standard
Kalman filter equations (see, e.g., [30]).

Moreover, for the second part of the claim, given the infor-
mation set of the controller Ic

k and from the state equation (5),
we can obtain the propagation equations as

x̂k+1 = Ak E[xk|Ic
k+1] +Bkuk (26)

Pk+1 = Ak cov[xk|Ic
k+1]A

T
k +Wk. (27)

By definition,γk at each time can be either one or zero. Ifγk = 1,
the controller receives x̌k at time k + 1. In this case, we have

p(xk|Ic
k+1) = p(xk|Ic

k, bk+1 = x̌k, gk+1, γk = 1, uk)

= p(xk|x̌k, Yk)

= p(xk|Is
k)

where we used the fact that {x̌k, Yk} is statistically equivalent
to Is

k . Hence, we obtain E[xk|Ic
k+1] = x̌k and cov[xk|Ic

k+1] =
Yk. However, if γk = 0, the controller receives nothing at time
k + 1. In this case, we have

p(xk|Ic
k+1) = p(xk|Ic

k, bk+1 = ∅, gk+1, γk = 0, uk)

= p(xk|Ic
k, γk = 0)

=
p(γk = 0|Ic

k, xk)p(xk|Ic
k)

p(γk = 0|Ic
k)

.

Note that for any admissible scheduling policy π, it is
possible to calculate p(γk = 0|Ic

k, xk) and p(γk = 0|Ic
k).

Let us define x̂′
k := E[xk|Ic

k, γk = 0]− x̂k and P ′
k := Pk −

cov[xk|Ic
k, γk = 0]. As a result, for any value of γk, we can

obtain the update equations as

E[xk|Ic
k+1] = x̂k + γk(x̌k − x̂k) + (1− γk)x̂

′
k (28)

cov[xk|Ic
k+1] = Pk − γk(Pk − Yk)− (1− γk)P

′
k. (29)

Finally, we obtain the result by substituting (28) and (29) in (26)
and (27), respectively, and by defining the signaling residuals
ık := Akx̂′

k and Ξk := AkP ′
kA

T
k . !
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APPENDIX B
PROOF OF THEOREM 1

Proof: Applying few operations on the state equation (5) and
the algebraic Riccati equation (19), we see that

xT
k+1Sk+1xk+1 = (Akxk +Bkuk + wk)

T

× Sk+1(Akxk +Bkuk + wk)

xT
k Skxk = xT

k

(
Qk +AT

k Sk+1Ak

− LT
k (B

T
k Sk+1Bk +Rk)Lk

)
xk

xT
N+1SN+1xN+1 − xT

0 S0x0

=
N∑

k=0

xT
k+1Sk+1xk+1 −

N∑

k=0

xT
k Skxk.

Let us now define the loss function χ′(π, µ) as

χ′(π, µ) := E
[ N∑

k=0

{
θkpk(perk, gk)

+
(
uk + (BT

k Sk+1Bk +Rk)
−1BT

k Sk+1Akxk

)T

×
(
BT

k Sk+1Bk +Rk

)

×
(
uk+(BT

k Sk+1Bk+Rk)
−1BT

k Sk+1Akxk

)}]
.

Using the above identities, it is easy to see that χ′(π, µ) is
equivalent to χ(π, µ) in the sense that it yields the same optimal
policies. Hence, it suffices to show that the policy profile (π", µ")
satisfies

χ′(π", µ") ≤ χ′(π, µ"), for all π ∈ P

χ′(π", µ") ≤ χ′(π", µ), for all µ ∈ M.

Incorporating the control policy µ" in the loss function χ′(π, µ)
when x̂k satisfies x̂k+1 = Akx̂k +Bkuk + γkAkẽk for k ∈
N[0,N ] with initial condition x̂0 = m0, we find

χ′(π, µ") = E
[ N∑

k=0

{
θkpk(perk, gk)

+ êTk L
T
k (B

T
k Sk+1Bk +Rk)Lkêk

}]

where Lk = (BT
k Sk+1Bk +Rk)−1BT

k Sk+1Ak. Pertaining to
χ′(π, µ"), we can write the value function V s

k (Is
k) as

V s
k (Is

k) = min
P(γk |Is

k)
E
[
θkpk(perk, gk)

+ êTk+1Γk+1êk+1 + V s
k+1(Is

k+1)
∣∣∣Is

k

]

for k ∈ N[0,N ] with initial condition V s
N+1(Is

N+1) = 0. We
need to check that the solution of the above minimization is
the scheduling policy π". Moreover, incorporating the schedul-
ing policy π" in the loss function χ′(π, µ) when x̂k satisfies

x̂k+1 = Akx̂k +Bkuk + γkAkẽk + (1− γk)ık for k ∈ N[0,N ]

with initial condition x̂0 = m0, we find

χ′(π", µ) = E
[ N∑

k=0

{
θkpk(ẽk, gk)

+ (uk + Lkxk)
TΛk(uk + Lkxk)

}]

where Λk = BT
k Sk+1Bk +Rk. Pertaining to χ′(π", µ), we can

write the value function V c
k (Ic

k) as

V c
k (Ic

k) = min
P(uk |Ic

k)
E
[
θk−1pk−1(ẽk−1, gk−1)

+(uk+Lkxk)
TΛk(uk + Lkxk)+V c

k+1(Ic
k+1)

∣∣∣Ic
k

]

fork ∈ N[0,N ] with initial conditionV c
N+1(Ic

N+1) = 0. We need
to check that the solution of the above minimization is the control
policy µ".

First, we prove by induction that V s
k (Is

k) depends on ẽk and
gk, and is symmetric with respect to ẽk. The claim is satisfied
for time N + 1. We assume that the claim holds at time k + 1.
Given the dynamics of x̂k in this case, we observe that êk and
ẽk should satisfy

êk+1 = Akêk − γkAkẽk + wk (30)

ẽk+1 = (1− γk)Akẽk +Kk+1νk+1 (31)

for k ∈ N[0,N ] with initial conditions ê0 = x0 −m0 and ẽ0 =
K0ν0, where νk is a Gaussian white noise with zero mean and
covariance Nk = CkMkCT

k + Vk. It follows that

E
[
êTk+1Γk+1êk+1

∣∣∣Is
k

]
= E

perk

[
perk ẽ

T
kA

T
k Γk+1Akẽk

+ tr(AT
k Γk+1AkYk + Γk+1Wk)

]

where we used (30) and the facts that E[êk|Is
k] = ẽk,

cov[êk|Is
k] = Yk, and wk is independent of êk. Moreover, ap-

plying the law of total expectation, we find

E
[
V s
k+1(Is

k+1)
∣∣∣Is

k

]
= E

perk

[
perk E[V s

k+1(Is
k+1)|Is

k, γk = 0]

+(1−perk)E[V s
k+1(Is

k+1)|Is
k, γk=1]

]
.

Note that E[V s
k+1|Is

k, γk = 0] and E[V s
k+1|Is

k, γk = 1] are inde-
pendent of perk. Accordingly, we deduce that

V s
k (Is

k) = min
perk∈C

{
θkpk(perk, gk) + perk ẽ

T
kA

T
k Γk+1Akẽk

+ tr(AT
k Γk+1AkYk + Γk+1Wk)

+ perk E[V s
k+1(Is

k+1)|Is
k, γk = 0]

+ (1− perk)E[V s
k+1(Is

k+1)|Is
k, γk = 1]

}
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for k ∈ N[0,N ], where Yk and Wk are independent of perk.
Hence, the minimizer is obtained as

per"k = argmin
perk∈C

{
θkpk(perk, gk)

+ perk
(
ẽTkA

T
k Γk+1Akẽk + *k

)}

where *k = E[V s
k+1(Is

k+1)|Is
k, γk = 0]− E[V s

k+1(Is
k+1)|Is

k,
γk = 1]. In addition, we can write

E
[
V s
k+1(ẽk+1, gk+1)

∣∣∣Is
k, γk

]

= E
[
V s
k+1

(
(1− γk)Akẽk +Kk+1νk+1, gk+1

)∣∣∣Is
k, γk

]

= E
[
V s
k+1

(
− (1− γk)Akẽk −Kk+1νk+1, gk+1

)∣∣∣Is
k, γk

]

= E
[
V s
k+1

(
− (1− γk)Akẽk +Kk+1νk+1, gk+1

)∣∣∣Is
k, γk

]

where the first equality comes from (31), the second equality
from the hypothesis assumption, and the last equality from the
properties of νk. Therefore, E[V s

k+1(Is
k+1)|Is

k, γk] is symmetric
with respect to ẽk. This implies that per"k is also symmetric with
respect to ẽk. In addition, note that gk+1 depends only on gk.
Hence, we conclude that V s

k (Is
k) depends on ẽk and gk, and is

symmetric with respect to ẽk. This completes the first part of the
proof.

Now, we prove by induction that V c
k (Ic

k) is independent of
uk−1. The claim is satisfied for time N + 1. We assume that the
claim holds at time k + 1. Given the dynamics of x̂k in this case,
we observe that êk and ẽk should satisfy

êk+1 = Akêk − γkAkẽk + wk − (1− γk)ık (32)

ẽk+1 = (1− γk)Akẽk +Kk+1νk+1 − (1− γk)ık (33)

for k ∈ N[0,N ] with initial conditions ê0 = x0 −m0 and ẽ0 =
K0ν0, where ık = E[êk|Ic

k, γk = 0]. Since γk under π" is a
function of ẽk, we recursively infer from (32) and (33) that êk
and ẽk are independent of the control inputs. Moreover, using
the identity xk = x̂k + êk, we find

E
[
(uk + Lkxk)

TΛk(uk + Lkxk)
∣∣∣Ic

k

]

= E
uk

[
tr(ΓkPk) + (uk + Lkx̂k)

TΛk(uk + Lkx̂k)

]

where we used the facts that E[x̂k|Ic
k] = x̂k and E[êk|Ic

k] = 0.
Accordingly, we deduce that

V c
k (Ic

k) = min
uk∈Rm

{
θk−1 E[pk−1(ẽk−1, gk−1)|Ic

k]

+ tr(ΓkPk) + (uk + Lkx̂k)
TΛk

× (uk + Lkx̂k) + E[V c
k+1(Ic

k+1)|Ic
k]

}

for k ∈ N[0,N ], where pk−1(ẽk−1, gk−1) and Pk = cov[êk|Ic
k]

are independent of the control inputs because ẽk−1 and êk
are independent of the control inputs, respectively. Hence, the
minimizer is obtained as u"

k = −Lkx̂k, and we conclude that
V c
k (Ic

k) is independent of uk−1. We now proceed with the proof
by showing that the signaling residual ık = 0 for all k ∈ N[0,N ].
Note that ê0 and ẽ0 are Gaussian vectors with zero mean. We
assume that ıt = 0 for all t ∈ N[0,k−1]. For any value of ık, we
have

p(ẽk|Ic
k, γk = 0) ∝ p(γk = 0|ẽk, Ic

k)p(ẽk|Ic
k). (34)

By the hypothesis assumption and using the scheduling policy
π", we see that p(ẽk|Ic

k) and p(γk = 0|ẽk, Ic
k) are symmetric

with respect to ẽk. Hence, p(ẽk|Ic
k, γk = 0) is also symmetric

with respect to ẽk. This implies that E[ẽk|Ic
k, γk = 0] = 0. Note

that we can write

E
[
êk
∣∣∣Ic

k, γk

]
= E

[
E[êk|Is

k, γk]
∣∣∣Ic

k, γk

]

= E
[

E[êk|Is
k]
∣∣∣Ic

k, γk

]

= E
[
ẽk
∣∣∣Ic

k, γk

]

where the first equality comes from the tower property of the
conditional expectations and the second equality from the fact
that γk is a function of Is

k . Therefore

ık = Ak E
[
êk
∣∣∣Ic

k, γk = 0

]
= 0.

This completes the second part of the proof, and establishes that
(π", µ") is a Nash equilibrium. !

APPENDIX C
PROOF OF THEOREM 2

We shall need the following technical lemmas for the proof.
For the proofs of these lemmas, see, e.g., [31] and [32].

Lemma 2 (Hardy–Littlewood inequality): Let f and g be
nonnegative functions defined on Rn that vanish at infinity. Then

∫

Rn

f(x)g(x)dx ≤
∫

Rn

f ∗(x)g∗(x)dx. (35)

Lemma 3: Let B(r) ⊆ Rn be a ball of radius r centered at
the origin, and f and g be nonnegative functions defined on Rn

that vanish at infinity and satisfy
∫

B(r)
f ∗(x)dx ≤

∫

B(r)
g∗(x)dx (36)

for all r ≥ 0. Then
∫

B(r)
h(x)f ∗(x)dx ≤

∫

B(r)
h(x)g∗(x)dx (37)

for all r ≥ 0 and any symmetric nonincreasing function h.
We now present the proof of Theorem 2.
Proof: Without loss of generality, assume that m0 = 0. For

m0 1= 0, one can use a simple transformation, and find the same
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result. To prove global optimality of the equilibrium (π", µ"),
we need to show that

χ(π", µ") ≤ χ(π, µ) for all π ∈ P, µ ∈ M.

Let (πo, µo) denote a globally optimal policy profile. In light of
Theorem 1, this policy profile indeed exists.

First, we will show that, given the control policy µo, we can
find an innovation-based scheduling policy σ that is equivalent
to πo. From the definition of νk, we have yk = νk + Ekx̌k−1 +
Fkuk−1, whereEk andFk are matrices of proper dimensions. By
Lemma 1, we have x̌k = Gkνk +Hkuk−1, where Gk and Hk

are matrices of proper dimensions. Besides, from (4), we know
that bk depends on x̌k−1 and γk−1. As a result, it is possible to
write

pπo(γk|Is
k) = pπo(γk|νk,γk−1,uk−1,gk)

pµo(uk|Ic
k) = pµo(uk|νk−1,γk−1,uk−1,gk).

Accordingly, any realizations of γk and uk can be
expressed as γk = γk(ηk;νk,γk−1,uk−1,gk) and uk =
uk(ζk;νk−1,γk−1,uk−1,gk), where ηk and ζk represent ran-
dom variables, independent of any other variables, that are
used in the generation of the realizations of γk and uk,
respectively. Therefore, it is possible to recursively con-
struct pσ(γk|νk,γk−1, ζk−1,gk), such that it is equivalent to
pπo(γk|Is

k). This establishes that χ(σ, µo) = χ(πo, µo). Note
that although the scheduling policy σ is constructed associated
with the control policy µo, it depends only on νk, γk−1, ζk−1,
and gk at each time k ∈ N[0,N ].

Now, given the scheduling policy σ, we will find an optimal
control policy ξ, and prove that ξ is certainty equivalent. Recall
that, by Lemma 1, êk and ẽk in general satisfy

êk+1 = Akêk − γkAkẽk + wk − (1− γk)ık

ẽk+1 = (1− γk)Akẽk +Kk+1νk+1 − (1− γk)ık

for k ∈ N[0,N ] with initial conditions ê0 = x0 and ẽ0 = K0ν0,
where ık = Ak E[êk|Ic

k, γk = 0]. It is easy to see that êk and ẽk
are independent of the control inputs under σ. Then, by a similar
argument used in the proof of Theorem 1, one can show that the
value function V c

k (Ic
k) under σ should satisfy

V c
k (Ic

k) = min
uk∈Rm

{
θk−1 E[pk−1(perk−1, gk−1)|Ic

k]

+ tr(ΓkPk) + (uk + Lkx̂k)
TΛk

× (uk + Lkx̂k) + E[V c
k+1(Ic

k+1)|Ic
k]

}

for k ∈ N[0,N ] with initial condition V c
N+1(Ic

N+1) = 0, where
pk−1(perk−1, gk−1) and Pk = cov[êk|Ic

k] are independent of
the control inputs, and that the minimizer is obtained as u"

k =
−Lkx̂k. This establishes that χ(σ, ξ) ≤ χ(σ, µo).

Next, we will show that χ(ω, ξ) ≤ χ(σ, ξ), where ω is a
special type of σ that is symmetric with respect to νk at time k.
Let N be the set on which νk is defined, B(r) be a ball of radius
r centered at the origin and of proper dimension, and ν̄k ∈ N be
a variable obtained by the transformation Tkνk for a given Tk.

For any fixed ζk−1 and gk
8, we constructω with pω(ν̄k|γk = 0)

as a radially symmetric function of ν̄k such that the following
conditions are satisfied:

∫

Nk+1

pω(γk = 0|νk,γk−1 = 0) sk(νk)dνk

=

∫

Nk+1

pσ(γk=0|νk,γk−1=0)qk(νk)dνk (38)

∫

Nk+1

pk (pω(γk = 0|νk,γk−1 = 0)) sk(νk)dνk

≤
∫

Nk+1

pk (pσ(γk = 0|νk,γk−1 = 0)) qk(νk)dνk (39)

∫

B(r)

(
pω(γk = 0|ν̄k,γk−1 = 0) sk(ν̄k)

)∗
dν̄k

≥
∫
B(r)

(
pσ(γk = 0|ν̄k,γk−1 = 0) qk(ν̄k)

)∗
dν̄k (40)

for k ∈ N[0,N ] and all r ≥ 0, where sk( . ) := pω( . |γk−1 = 0)
and qk( . ) := pσ( . |γk−1 = 0). Observe that

sk+1(νk+1) =
1
cω

p(νk+1)

× pω(γk = 0|νk,γk−1 = 0) sk(νk)

qk+1(νk+1) =
1
cσ

p(νk+1)

× pσ(γk = 0|νk,γk−1 = 0) qk(νk)

for k ∈ N[0,N ] with initial conditions s0(ν0) = q0(ν0) =
p(ν0), where cω = pω(γk = 0|γk−1 = 0) and cσ = pσ(γk =
0|γk−1 = 0). We can write

pσ(γk = 0|γk−1 = 0)

=

∫

Nk+1

pσ(γk = 0|νk,γk−1 = 0) pσ(νk|γk−1 = 0)dνk

=

∫

Nk+1

pω(γk = 0|νk,γk−1 = 0) pω(νk|γk−1 = 0)dνk

= pω(γk = 0|γk−1 = 0)

where the second equality is by (38). Hence, cσ = cω. In ad-
dition, note that sk(ν̄k) and pσ(γk = 0|ν̄k,γk−1 = 0)qk(ν̄k)
can be obtained based on sk(νk) and qk+1(νk+1)/p(νk+1),
respectively.

To make use of the above construction, we shall introduce an
equivalent loss function. It is possible to write

χ′(σ, ξ) =
N∑

k=0

E
[
θkpk(perk) + êTk Γkêk

]

=
N∑

k=0

E
[
θkpk(perk) + E[êTk Γkêk|Is

k]

]

=
N∑

k=0

E
[
θkpk(perk) + ẽTk Γkẽk + tr(ΓkYk)

]

8For brevity, hereafter we omit the dependency on ζk−1 and gk .
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where in the second equality we used the tower property of
conditional expectations. As stated in the proof of Theorem 1,
χ′(σ, ξ) is equivalent to χ(σ, ξ). Let us define the loss function
ΥM

σ (ẽ0) as

ΥM
σ (ẽ0) :=

M∑

k=0

Eσ

[
θkpk(perk) + ẽTk Γkẽk

]

for M ∈ N[0,N ]. Since Yk is independent of σ, it is enough to
prove thatΥM

ω (ẽ0) ≤ ΥM
σ (ẽ0) for anyM ∈ {0, . . . , N} and for

any Gaussian vector ẽ0.
Note that ẽ0 = K0ν0 under both σ and ω. Moreover, we have

Eσ

[
p0(per0)

]
=

∫

N
p0 (pσ(γ0 = 0|ν0)) p(ν0)dν0

≥
∫

N
p0 (pω(γ0 = 0|ν0)) p(ν0)dν0

= Eω

[
p0(per0)

]

where the inequality is by (39). Hence, the claim holds for the
time horizon 0. We assume that it also holds for all the time
horizons from 1 toM − 1. Applying the law of total probability,
we see that

pσ(γ0 = 1) + pσ(γt = 0)

+
t∑

k=1

pσ(γk−1 = 0, γk = 1) = 1

for any t ∈ N[0,N ]. Using the above identities, we can obtain

ΥM
σ (ẽ0) =

M∑

k=0

{
θk pσ(γk−1 = 0)Eσ[pk(perk)|γk−1 = 0]

+ pσ(γk−1 = 0)Eσ[ẽ
T
k Γkẽk|γk−1 = 0]

+ pσ(γk−1 = 0, γk = 1)

× Eσ[Υ
k+1,M
σ (ẽk+1)|γk−1 = 0, γk = 1]

}

where the cost to go is given by

Υk,M
σ (ẽk) =

M∑

t=k

Eσ

[
θtpt(pert) + ẽTt Γtẽt

]

for M ∈ N[0,N ]. In the following, we will compare the prob-
ability coefficients, the transmit power terms, the estimation
mismatch terms, and the cost-to-go terms in the above loss
function, which are under σ, with those under ω.

Since cσ = cω , we have pσ(γk−1 = 0) = pω(γk−1 = 0)
and pσ(γk−1 = 0, γk = 1) = pω(γk−1 = 0, γk = 1). Hence,
all the probability coefficients remain the same under ω. More-
over, for the transmit power terms, we get

Eσ

[
pk(perk)

∣∣∣γk−1 = 0

]

=

∫

Nk+1

pk (pσ(γk = 0|νk,γk−1 = 0)) qk(νk)dνk

≥
∫

Nk+1

pk (pω(γk = 0|νk,γk−1 = 0)) sk(νk)dνk

= Eω

[
pk(perk)

∣∣∣γk−1 = 0

]

where the inequality is by (39). We proceed with the proof for the
estimation mismatch terms by first showing that the signaling
residual ık = 0 for all k ∈ N[0,N ] under ω. We assume that ıt =
0 for all t ∈ N[0,k−1]. Let τk denote the time elapsed since the
last successful delivery when we are at time k. By Lemma 1, we
can express ık as

ık = Ak Eω

[
τk∑

t=0

Dk−tνk−t

∣∣∣∣∣γk−τk = 0, . . . , γk = 0

]

= Ak

τk∑

t=0

Dk−t Eω

[
νk−t

∣∣∣∣∣γk−τk = 0, . . . , γk = 0

]

where Dk−t is a matrix depending on At′ for t′ ∈ N[k−t,k−1]

and Kk−t. As pω(νk|γk = 0) has zero mean, we deduce that
pω(νk−τk , . . . , νk|γk−τk = 0, . . . , γk = 0) has also zero mean.
This implies that ık = 0 for all k ∈ N[0,N ] under ω. Hence,
given γk−1 = 0, we find that ẽk = Zkνk−1 +Kkνk + ck
under σ, and that ẽk = Zkνk−1 +Kkνk under ω, for a suitable
matrix Zk and a suitable vector ck both independent of
νk. Let us now use the decomposition Γk = LT

k UkUT
k Lk,

choose Tk−1 = UT
k LkZk, and define fσ(ν̄k−1, νk) :=

(ν̄k−1 + UT
k Lkck)T (ν̄k−1 + UT

k Lkck) + νTk K
T
k ΓkKkνk,

fω(ν̄k−1, νk) := ν̄Tk−1ν̄k−1 + νTk K
T
k ΓkKkνk, gσ( . ) :=

z −minz{z, fσ( . )}, and gω( . ) := z −minz{z, fω( . )}.
Clearly, for any fixed z, gσ(ν̄k−1, νk) and gω(ν̄k−1, νk) vanish
at infinity. It follows that

Eσ

[
ẽTk Γkẽk

∣∣∣γk−1 = 0

]
=

∫

N 2

fσ(ν̄k−1, νk)

× pσ(ν̄k−1|γk−1 = 0) p(νk)dν̄k−1dνk.

In addition, we can write
∫

N
gσ(ν̄k−1, νk)

× pσ(γk−1 = 0|ν̄k−1,γk−2 = 0) qk−1(ν̄k−1)dν̄k−1

≤
∫

N
g∗σ(ν̄k−1, νk)

×
(

pσ(γk−1 = 0|ν̄k−1,γk−2 = 0) qk−1(ν̄k−1)
)∗
dν̄k−1

=

∫

N
gω(ν̄k−1, νk)

×
(

pσ(γk−1 = 0|ν̄k−1,γk−2 = 0) qk−1(ν̄k−1)
)∗
dν̄k−1

≤
∫

N
gω(ν̄k−1, νk)

× pω(γk−1 = 0|ν̄k−1,γk−2 = 0) sk−1(ν̄k−1)dν̄k−1

where in the first inequality we used the Hardy–Littlewood
inequality with respect to ν̄k−1, in the equality the fact that
g∗σ(ν̄k−1, νk) = gω(ν̄k−1, νk), and in the second inequality
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Lemma 3 and (40). This implies that
∫

N
minz{z, fσ(ν̄k−1, νk)}pσ(ν̄k−1|γk−1 = 0)dν̄k−1

≥
∫

N
minz{z, fω(ν̄k−1, νk)}pω(ν̄k−1|γk−1 = 0)dν̄k−1.

Taking z to infinity, we conclude that
∫

N
fσ(ν̄k−1, νk)pσ(ν̄k−1|γk−1 = 0)dν̄k−1

≥
∫

N
fω(ν̄k−1, νk)pω(ν̄k−1|γk−1 = 0)dν̄k−1.

Furthermore, for the cost-to-go terms, we find

Eσ

[
Υk+1,M

σ (ẽk+1)
∣∣∣γk−1 = 0, γk = 1

]

=

∫

Nk+2

Υk+1,M
σ (ẽk+1)

× pσ(νk+1|γk−1 = 0, γk = 1)dνk+1.

Note that ẽk+1 = Kk+1νk+1 under both σ and ω when γk = 1.
Let ῩM

σ (ẽ0) denote a loss function that is structurally simi-
lar to ΥM

σ (ẽ0) but with different parameter values. Clearly, if
ΥM

σ (ẽ0) ≥ ΥM
ω (ẽ0), then ῩM

σ (ẽ0) ≥ ῩM
ω (ẽ0). We can write

∫

Nk+2

Υk+1,M
σ (Kk+1νk+1)

× pσ(νk+1|γk−1 = 0, γk = 1)dνk+1

=

∫

N
ῩM−k−1

σ (Kk+1νk+1)p(νk+1)dνk+1

≥
∫

N
ῩM−k−1

ω (Kk+1νk+1)p(νk+1)dνk+1

=

∫

Nk+2

Υk+1,M
ω (Kk+1νk+1)

× pω(νk+1|γk−1 = 0, γk = 1)dνk+1

where in the equalities we used the facts that ῩM−k−1
σ (ẽ) can

be defined such that it is equal to Υk+1,M
σ (ẽ) for any Gaus-

sian vector ẽ, and that νk+1 is independent of γk, and the
Fubini’s theorem; and in the inequality we used the hypothesis
ΥM−k−1

σ (ẽ) ≥ ΥM−k−1
ω (ẽ) for any Gaussian vector ẽ. This

establishes that ΥM
ω (ẽ0) ≤ ΥM

σ (ẽ0) and χ(ω, ξ) ≤ χ(σ, ξ).
Finally, we will conclude that the equilibrium χ(π", µ") is

globally optimal. Note that by a similar argument used in the
proof of Theorem 1, one can show that the value functionV s

k (Is
k)

under ξ in conjunction with ık = 0 for k ∈ N[0,N ] should satisfy

V s
k (Is

k) = min
perk∈C

{
θkpk(perk, gk) + perk ẽ

T
kA

T
k Γk+1Akẽk

+ tr(AT
k Γk+1AkYk + Γk+1Wk)

+ perk E[V s
k+1(Is

k+1)|Is
k, γk = 0]

+ (1− perk)E[V s
k+1(Is

k+1)|Is
k, γk = 1]

}

for k ∈ N[0,N ] with initial condition V s
N+1(Is

N+1) =
0, and that the minimizer is obtained as per"k =

argminperk∈C{θkpk(perk, gk) + perk(ẽ
T
kA

T
k Γk+1Akẽk +

*k)}. This establishes that χ(π", µ") ≤ χ(ω, ξ), and hence
completes the proof. !

APPENDIX D
PROOF OF PROPOSITION 1

Proof: Let π̆ be a scheduling policy with pk = prk for k ∈
N[0,N−1], for which perk = ε, and with pN = 0. In addition,
let π+ be a scheduling policy that is obtained according to
(22) in Theorem 1 except that *k is now substituted with a
new function based on π̆, i.e., *̆k = E[V π̆

k+1(Is
k+1)|Is

k, γk =
0]− E[V π̆

k+1(Is
k+1)|Is

k, γk = 1], where V π̆
k (Is

k) is the cost to
go associated with χ(π̆, µ"). We shall prove that

χ(π+, µ") ≤ χ(π̆, µ").

To do so, it suffices to show V π+

k (Is
k) ≤ V π̆

k (Is
k), where

V π+

k (Is
k) is the cost to go associated with χ(π+, µ"). Note that

V π+

N+1(Is
N+1) = V π̆

N+1(Is
N+1) = 0. We assume that the claim

holds for k + 1. We can write

E
[
θkpk (pπ+(γk = 0|Is

k), gk)

+ êTk+1Γk+1êk+1 + V π+

k+1(Is
k+1)

∣∣∣Is
k

]

≤ E
[
θkpk (pπ+(γk = 0|Is

k), gk)

+ êTk+1Γk+1êk+1 + V π̆
k+1(Is

k+1)
∣∣∣Is

k

]

≤ E
[
θkpk (pπ̆(γk = 0|Is

k), gk)

+ êTk+1Γk+1êk+1 + V π̆
k+1(Is

k+1)
∣∣∣Is

k

]

where the first inequality comes from the induction hypothesis
and the second inequality from the definition of the suboptimal
policy π+. This implies that V π+

k (Is
k) ≤ V π̆

k (Is
k).

Note that, under π̆, γk = 1 for all k ∈ N[0,N−1] with prob-
ability (1− ε)N . In that condition, it is easy to verify that
χ(π̆, µ") = χ̆ (see, e.g., [33]), and that êt satisfies

êt+1 = Atět + wt

for t ∈ N[k+1,N−1]. The latter implies that êt for all t ∈
N[k+2,N ] are independent of γk. Hence, we get *̆k = 0, and
this completes the proof. !
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