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ABSTRACT 7 

With the ultimate goal of estimating arterial viscoelasticity using shear wave elastography, this paper 8 

presents a practical methodology to simulate the response of a human carotid artery under acoustic 9 

radiation force (ARF). The artery is idealized as a nearly incompressible viscoelastic hollow cylinder 10 

submerged in incompressible, inviscid fluid. For this idealization, we develop a multi-step methodology 11 

for efficient computation of three-dimensional response under complex ARF excitation, while capturing 12 

the fluid-structure interaction between the arterial wall and the surrounding fluid. The specific steps 13 

include (a) performing dimensional reduction through semi-analytical finite element formulation, (b) 14 

efficient finite element discretization using traditional and recent techniques. The computational 15 

efficiency is further enhanced by utilizing (c) modal superposition, followed by, where appropriate, (d) 16 

impulse response function. In addition to developing the methodology, convergence analysis is performed 17 

for a typical arterial geometry, leading to recommendations on various discretization parameters. At the 18 

end, the computational effort is shown to be several orders of magnitude less than the traditional, fully 19 

three-dimensional analysis using finite element methods, leading to a practical yet accurate simulation of 20 

arterial response under ARF excitations. 21 

Keywords: Arterial stiffness; Guided waves; Semi-analytical finite element method; Shear wave 22 

elastography; Viscoelasticity 23 

INTRODUCTION 24 

Arterial stiffness is one of the important biomarkers for many cardiovascular diseases [1–5]. Among 25 

various non-invasive approaches, Shear Wave Elastography (SWE, [6]) is one of the effective techniques 26 

to characterize arterial stiffness. Specifically, the arterial wall motion data is processed to obtain the 27 

dispersion curve (phase velocity variation as a function of frequency), which is then used to invert for 28 

arterial wall modulus. While this approach works well for estimating the elasticity part of the arterial wall 29 

modulus, it fails to quantify viscosity, as the phase velocities are not much sensitive to arterial viscosity 30 

[7]. One way to quantify full viscoelasticity is by matching the measured and simulated arterial wall 31 

motions (this is because spatial distribution and history of wall motion are sensitive not only to elasticity 32 

but also to viscosity, see e.g. [8]). Towards the end goal of viscoelastic inversion, the focus of the paper is 33 

the computation of tube wall motion distribution and history under acoustic radiation force (ARF) 34 

excitation. While such simulation can certainly be performed using 3D finite elements, it would be 35 

computationally very expensive, making practical inversion prohibitive. Thus, to facilitate practical 36 

viscoelastic inversion from the space-time data, we develop a methodology that is orders of magnitude 37 

more efficient than 3D finite element simulation. 38 
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Several analytical formulations [9–15] are available for elastic and acoustoelastic waveguides (elastic 1 

waveguides immersed in acoustic fluid) but they are limited to simple geometries. Computational 2 

simulation is often necessary when the geometry, boundary conditions or material properties are more 3 

complicated. Among the several variants of the finite element methods, we consider the Semi-Analytical 4 

Finite Element method (SAFE, see e.g. [16–22]). The idea of SAFE method is to utilize analytical 5 

formulation in a few direction(s) while the finite element discretization in the remaining direction(s). SAFE 6 

method can be utilized effectively to model wave propagation in a carotid artery, where the material 7 

properties along the axial and azimuthal directions can be assumed to be homogeneous. Essentially, we 8 

employ Fourier expansion in axial and azimuthal directions, and finite element discretization is used only 9 

in the radial direction. This makes the SAFE model extremely efficient compared to the traditional 3D finite 10 

element models. 11 

For the finite element discretization in the radial discretization, we adapt (1) high-order finite elements 12 

for the arterial wall and the inner fluid, given the smoothness of the response, (2) Perfectly Matched 13 

Discrete Layers (PMDL) for efficiently simulating the large region containing the exterior fluid. The 14 

resulting discrete dynamical system is solved using modal superposition where a few eigenmodes are 15 

shown to be sufficient to capture the dynamics of the system, leading to a further reduction in the 16 

computational cost. For the simpler Voigt model, we can solve the resulting single-degree-of-freedom 17 

(SDOF) problem using convolution with impulse response function (Green’s function in the time domain), 18 

resulting in an extremely efficient simulation methodology. For more complicated fractional viscoelastic 19 

models, we solve the problem using frequency domain computation followed by inverse Fourier 20 

transform, which tends to be more expensive but still practical.  21 

The outline of the remainder of the paper is as follows. We first present the governing differential 22 

equations, interface and boundary conditions that represent the physics of the problem. Next, the 23 

proposed methodology is described in detail. In the following section, numerical experiments are utilized 24 

to examine the convergence of the methodology, leading to recommended discretization parameters for 25 

the carotid artery problem. In the final section, we summarize the proposed methodology and future 26 

work. 27 

PROBLEM STATEMENT 28 

The carotid artery is made of biological tissue where the pressure wave velocity is two orders of magnitude 29 

larger than the shear wave velocity. The contrast is higher for the surrounding tissue and blood, where 30 

the shear wave velocity and viscosity are much smaller than that of the arterial wall. Given these 31 

observations, the artery can be approximated as a nearly incompressible viscoelastic cylindrical 32 

waveguide filled with and immersed in incompressible inviscid fluids. The schematic of the model is shown 33 

in Figure 1. The governing differential equation for the solid medium is the Elastodynamic equation, 34 

written here in the frequency domain as, 35 

 2 , in S

T

   σ u fL  , (1) 36 

where the primary variable in the solid domain ( S ) is the displacement vector, ( , , , )r z u u  with 37 

three components, i.e., { , , }Tr zu u uu .   is the density of the solid medium. ( , , , )r z f f  is the 38 
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spatially and temporally varying acoustic radiation force, which can be computed e.g., using software such 1 

as Field II [23,24]. tr( ) 2I G  ò ò  is the stress tensor, where, ò is the strain tensor (written in vector 2 

form), and { , , , , , }Trr zz z rz r   Lò ò ò ò ò ò òuò . For the materials considered here, G  , and can be 3 

assumed to be constant and given by 
2

pc  , where pc  is the acoustic (pressure) wave velocity and 4 

taken as 1540 m/s.  In the time domain, the shear modulus is in general integro-differential operator but 5 

takes the simple form of frequency-dependent complex modulus when transformed into the frequency 6 

domain. For the Voigt model, the modulus can be written as, 7 

 0( ) ( )1 iG G   , (2) 8 

where 0G  is the elastic modulus and   is the relaxation time (representing viscosity). For fractional model 9 

such as the spring-pot model, the frequency-dependent shear modulus can be written as,  10 
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where   is the fractional order, 0  is the normalization frequency, and 0G  is the modulus (note that the 12 

0G  in Equation (2) and (3) are different). While the approach proposed in this paper works for any 13 

viscoelastic model, we choose the above two models as representative examples since they are the 14 

building blocks for the higher order models that are frequently used for modeling soft tissues [25]. The 15 

L  and Lò  are 6 3  gradient operators given by, 16 
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(a) (b) (c)  1 

Figure 1. (a): schematic of the idealized artery. (b): longitudinal view with the acoustic radiation force 2 

(ARF). (c): cross-sectional view with ARF. 3 

For the fluid domain, in the limit of incompressibility, the acoustic wave equation becomes the Laplace 4 

equation,  5 

 
2 0 in Fp    , (5) 6 

where the primary variable in the fluid domain ( F ) is the pressure, ( , , , )p p r z  . The Laplace 7 

operator in cylindrical coordinate systems is, 
2 1 2 2 2 2 2( ) ( ( ) / ) / ( ) / ( ) /r r r r r z                 . 8 

The conditions at the solid-fluid interfaces SF  are the traction continuity: 9 

 0,  on s F SFp   n n  , (6) 10 

and the continuity of the normal displacement, equivalently acceleration:  11 

 2 1
0,  on s SF

F F

p





    


u n

n
. (7) 12 

sn  and SF  n n  are the unit vectors for solid and fluid domains respectively. F  is the fluid density. 13 

Given the tube geometry, applied loading, and material properties of the tube, inside and outside fluids, 14 

our objective is to compute the wall velocity in the spatiotemporal domain. The proposed approach is 15 

detailed in the following section.  16 

METHODOLOGY 17 

We solve the Equations (1) and (5) to (7) along with radiation condition in four steps: (1) model reduction 18 

and discretization using the Semi-Analytical Finite Element (SAFE) method and Perfectly Matched Discrete 19 

Layers (PMDL), (2) further decoupling into single-degree-of-freedom systems through modal analysis, (3) 20 

finding the temporal response for each mode, and (4) computing the final response in space-time by 21 

superimposing all the modal responses. The details of each step are presented in the following 22 

subsections.  23 

  24 
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Spatial Discretization through SAFE and PMDL 1 

Owing to the invariant geometry and material properties along the axial and azimuthal direction of the 2 

tube, we utilize Fourier expansion in these two directions and employ finite element discretization in the 3 

radial direction. This falls in the realm of the Semi-Analytical Finite Element (SAFE) method [16,26,27]. For 4 

the surrounding unbounded fluid, we consider Perfectly Matched Discrete Layers (PMDL, [28,29]).  5 

Facilitated by the Fourier expansions in the axial and azimuthal directions, the discretized displacement is 6 

written as,  7 
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 , (8) 8 

where m  is the circumferential Fourier number, k  is the wavenumber along the axial direction ( )z . Note 9 

that the sine variation of u  and cosine variation in other components are driven by the fact that the load 10 

and thus the response is symmetric about 0  . In the fluid medium, the discretized pressure variable 11 

becomes,  12 
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where SN  and FN  are the finite element shape function matrices in the solid and fluid domain, 14 

respectively.  For the fluid domain, we employ regular finite elements for the inner region and PMDL for 15 

the outer region (which naturally incorporates the radiation condition, see [28,29]). The response is 16 

expected to vary smoothly inside the wall, leading us to choose higher order finite elements (their 17 

effectiveness is illustrated in convergence analysis presented in a subsequent section). For the solid 18 

medium, the discretized form of Equation (1) becomes, 19 

    2 2 1 0 2S S S S

m SF m m m mk ik      U C P M UK K FK  , (10) 20 

where,  21 
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In the above, D  is the constitutive matrix, i.e., σ Dò . , ,r zB B B are given by, 23 

 0, ,S S S
r r z z S

r r r
 


 


  

N N N
B L B L L B L N%  , (12) 24 

where, 25 
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  in Equation (10) is the scaling factor introduced to better condition the matrix by maintaining the 2 

similar numerical orders of the solid and fluid domain contributions. The solid-fluid interaction matrix is, 3 

 T

SF S f Frdrd


  N n NC  . (14) 4 

The discretized force vector on the right side of Equation (10) is,  5 

 T

m mS d df r r 


  NF , (15) 6 

where mf  is the forcing function corresponding to the thm  circumferential mode. The discretized form 7 

of Equation (5) after incorporating the interface condition is, 8 

  2 2 0 2F F T

m m SF mk   CPK UK 0 , (16) 9 

where, 10 

 2 0 2

2

1
,
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Note that the scaling factor   is used here again to better condition the final coefficient matrix. After 12 

assembling, the final discretized system takes the form,  13 
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where, 15 
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Modal Decomposition 17 

Given the expected smoothness of the response within the thickness of the wall, we hypothesize modal 18 

superposition approach would lead to computation with only a few modes, leading to computational 19 

savings (this is confirmed using convergence analysis in a later section). The modes are computed from 20 

the associated eigenvalue problem:   21 

  2 ( , )k m ΦK M 0 ,  (20) 22 
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where Φ  is the matrix containing mode shapes. The resulting discretized deformation U can be 1 

computed through superimposing all the modal responses:  2 

 
1
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m
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where N  is the total number of modes. Substituting Equation (21) into the Equation (20) and utilizing 4 

orthogonality property of the modes, we obtain the governing equation for the thi  modal participation 5 

factor i : 6 

 2

i i i i ik m f     , (22) 7 

where, T

i i ik  Κ  , T

i i im  Μ  , and T

i if F    are the modal stiffness, mass, and force respectively. 8 

Temporal Response 9 

To get the temporal response, we apply inverse Fourier transformation on the vector computed from 10 

Equation (21) to transform back to the time domain: 11 

 
2( , , ) ( , , ) i tk m t k m e d  




 U U  . (23) 12 

Numerically, we achieve this through utilizing the Fast Fourier transform. While this approach works for 13 

any viscoelastic model, for the Voigt model, we can utilize the more efficient Green’s function (Impulse 14 

Response Function, IRF) approach directly in the time domain.  To this end, we consider the time domain 15 

representation of Equation (22), for the Voigt model, where the (frequency dependent) stiffness term ik  16 

transforms to i ik c d dt , resulting in, 17 

 
2

2

i i
i i i i ik c m f

t t

 


 
  

 
 , (24) 18 

where, the modal stiffness is, 
ik  corresponds to 

0

TB G Brdrd  part of the stiffness matrix, while modal 19 

damping ic  corresponds to 
0

TB G Brdrd   part of the stiffness matrix. The impulse response function 20 

is then given by,  21 
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where i  and i are the (damped) natural frequency and decay rate respectively, and are given by, 23 
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The final time domain mode participation factor is the convolution of the impulse response function with 1 

the forcing function: 2 

 
,

0
( )) ( )(

t

i ii ut IRF t dt f t t    . (27) 3 

( )i t , the time derivative of the modal participation factor would be useful for computing velocity 4 

response, and can be computed similarly by replacing the IRF with its time derivative:  5 
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  (28) 6 

Final Response in Space-time 7 

The wavenumber-time (k-t) representation of the wall response is first obtained by superposition of the 8 

temporal response of all the modes: 9 

  , ,

0 1

( , ) ( ) cos( ),sin( ),cos( ))
M N

T

i m i m

m i

k t t m m m   
 

U   . (29) 10 

Applying inverse Fourier transform in space results in the final displacement ( , )z tU . The velocity 11 

response can similarly be obtained by replacing , ( )i m t  by , ( )i m t . 12 

CONVERGENCE STUDY AND RECOMMENDED DISCRETIZATION  13 

In addition to developing the general methodology presented in the previous section, we attempt to 14 

provide general recommendation for various discretization parameters. To this end, given that the arterial 15 

geometry does not have large variation, we consider a typical geometry of rubber tubes considered in 16 

recent studies [6,30], with the expectation that the recommended parameters would be applicable for 17 

various human carotid arteries, undergoing SWE investigation with typical ARF excitation and data 18 

acquisition. 19 

To mimic typical ARF excitation that is sharp in the axial direction and somewhat spread out in the 20 

azimuthal direction ([31]), we consider the excitation force to vary in ( , )z   as Gaussian, which is plotted 21 

in Figure 2. Examining the Fourier coefficients in (b) and (d), we note that the forcing is limited to a narrow 22 

band in the Fourier domain, indicating that our framework based on Fourier basis functions would be 23 

efficient. The temporal variation of the forcing function is assumed to be rectangular with a pulse width 24 

of 400 microseconds, as shown in Figure 3, which is fairly consistent with the way acoustic radiation is 25 

applied (sudden illumination followed by sudden shutoff). Given that the focus area is typically much 26 

larger than the entire wall thickness, the variation of the force within the wall in the radial direction is 27 

assumed to be uniform. 28 
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(a) (b)  1 

(c) (d)  2 

Figure 2. Applied excitation force (normal pressure on the wall): (a) variation in the axial direction (z); (b) 3 

corresponding Fourier transform; (c) variation in the circumferential   direction; (d) corresponding 4 

Fourier coefficients. 5 

 6 

Figure 3. Acoustic radiation force variation in time. 7 

To obtain discretization parameters that can be routinely used for simulating human carotid arteries, we 8 

consider a typical geometry of a cylindrical tube with a wall thickness of 1 mm, and an inner radius of 3 9 

mm. The density is assumed to be 1,000 kg/m3 for both solid and fluid media. The two viscoelastic models 10 

are considered for the wall material: (a) Voigt model with an elastic modulus ( 0G ) of 200 kPa and a 11 

relaxation time ( ) of 0.055 ms and (b) spring-pot model with a fractional order ( ) of 0.15, and a 12 

modulus ( 0G ) of 344 kPa at 600 Hz (the parameter values are in the range of the artery mimicking 13 

phantom material [30]). The frequency-dependent shear moduli are presented in Figure 4.  14 

The convergence analysis is performed by first obtaining the reference solution ( referencev ) with the highest-15 

refined parameters (defined below) and then performing analysis by successive refinement with respect 16 
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to the discretization parameter of interest. The highest-refined parameters are: maximum number of 1 

circumferential modes ( maxm ) = 14; maximum wavenumber ( maxk ) = 30,000 1m ; minimum wavenumber 2 

increment (
mink ) = 10 1m ; maximum finite element order ( maxp ) for solid-domain = 14; maxp  for inside 3 

fluid = 5; maximum PMDL elements for outside fluid = 11. For the eigenmode expansion, we take all the 4 

modes i.e., there is no modal truncation in computing the reference solution. The error is defined in terms 5 

of the maximum velocity  maxv , which is more stringent than, e.g., least-squares error (specific 6 

expressions for error measures are provided later). We perform the convergence analysis for each of the 7 

parameters, with the objective of obtaining the response with a practically acceptable error of 1% 8 

(consistent with the expected variability and noise levels). As detailed below, the convergence analysis is 9 

performed for circumferential and longitudinal wavenumbers, finite element discretization for solid, the 10 

inner and outer fluid domains separately, followed by convergence analysis of radial eigenmode 11 

expansion. 12 

(a) (b)  13 

Figure 4. Input shear moduli corresponding to the Voigt model (a) and the spring-pot model (b). 14 

Circumferential mode convergence. The normalized error from the circumferential mode convergence 15 

study is presented in Figure 5 (a). Here the normalized error is computed as,  16 
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where we consider the lowest m  circumferential modes to compute the maximum velocity max

mv .  As 18 

shown in Figure 5 (a), with the lowest 8 circumferential modes, we achieve a normalized error of 1%. 19 

Longitudinal wavenumber convergence. We now study the convergence with respect to the longitudinal 20 

wavenumber, k . The analysis is performed in two steps: (1) convergence with the maximum 21 

wavenumber, maxk , and (2) the wavenumber increment, k . The results are shown in Figure 5 (b) and 22 

(c). The normalized error shown in the figure is computed as,  23 
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where, 
maxkE  and 

kE
 are the normalized error associated with maxk  and k  respectively. After examining 2 

Figure 5 (b) and (c), for an error of 1%, 10,000maxk 
1m

 and 40k 
1m

appear to be conservative 3 

choices. 4 

(a) (b) (c)  5 

Figure 5. Convergence results of circumferential Fourier number (a), maximum longitudinal wavenumber 6 

(b), and the step size associated with longitudinal wavenumber (c). 7 

Solid domain mesh convergence. The convergence of the response due to increasing the polynomial order 8 

of the shape function in the solid medium is considered. The normalized error is in the context is taken 9 

as, 10 
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where p  is the polynomial order. The convergence result is presented in Figure 6 (a), which indicates 12 

that 9 noded finite element (p=8) is sufficient for an engineering accuracy of 1%. 13 

Inner fluid mesh convergence. The mesh convergence study is also performed for the interior fluid domain 14 

by examining the relative error,  15 
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where p  is the polynomial order for the finite element shape function in the interior fluid domain. The 17 

convergence result is presented in Figure 6 (b), indicating that 3 noded (quadratic) finite elements are 18 

sufficient for the interior fluid domain, to achieve an accuracy of 1%. 19 

Outer fluid (PMDL) mesh convergence. In this section, the mesh convergence is performed only for the 20 

outside fluid domain (PMDL). Although the geometric progression ratio affects PMDL accuracy, we kept a 21 

smaller progression ratio of 1.5, which is shown to result in a negligible error of less than 710  [32]. The 22 

convergence study is performed only for the number of PMDL elements. The normalized error is defined 23 

as, 24 
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where d  is the number of PMDL elements. The convergence result is presented in Figure 6 (c), indicating 2 

that 7 PMDL elements are sufficient to achieve the engineering accuracy of 1%. 3 

(a) (b) (c)  4 

Figure 6. Convergence results of polynomial order of the finite element shape function for the solid 5 

domain (a), and the inside fluid domain (b). PMDL mesh convergence results for the outside fluid domain 6 

(c). 7 

Radial eigenmode convergence. In this section, we study the convergence of the number of eigenmodes. 8 

The normalized error is computed as, 9 
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where n is the number of eigenmodes considered. The convergence result is presented in Figure 7. As 11 

observed, the first 17 modes are sufficient to achieve an engineering accuracy of 1%.  12 

 13 

Figure 7 Convergence results of radial eigenmode expansion 14 

Recommended Discretization. To summarize, based on the above convergence analyses, to compute the 15 

wall motion with an engineering accuracy of 1%, it appears sufficient to use 0th to 7th circumferential 16 

modes, longitudinal wavenumbers up to 110,000maxk m  with 140mk   , single 8th order (9-noded) 17 

finite element for the arterial wall, single quadratic (3-noded) finite element in the fluid domain, and 7 18 

PMDL elements for the exterior fluid. To further reduce the computational cost, one can limit the 19 

computation to the first 17 eigenmodes. 20 
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Computational Cost. With seven 3.4 GHz cores on a standard desktop computer, a single simulation takes 1 

less than 5 seconds for the Voigt model (for the spring-pot model, it takes less than 84 seconds). The 3D 2 

finite element approach for the Voigt model takes about 361 seconds with 48 3.1 GHz processors,  as 3 

mentioned in [33]. Assuming 80% parallel efficiency, the proposed approach with the Voigt model is 4 

approximately 400 times faster than the 3D finite element approach. Moreover, note that the 3D finite 5 

element model is likely more approximate than the proposed model due to, e.g., higher discretization 6 

errors and spurious reflections from primitive absorbing boundary conditions. It is likely that the efficiency 7 

gain would be even more for comparable accuracy. 8 

Representative Results. With the recommended parameters, the full wave velocity response 9 

corresponding to the front wall is presented in Figure 8. These results are qualitatively similar to the 10 

responses observed in SWE experiments (see e.g. [34]). 11 

(a)  (b)  12 

Figure 8. x-t representation of the top wall velocity from the proposed approach.  13 

(a): Voigt model. (b): spring-pot model. 14 

CONCLUSIONS 15 

With the ultimate goal of estimating arterial viscoelasticity by matching measured and simulated motion 16 

data, we present a computationally efficient framework to simulate arterial wall motion under acoustic 17 

radiation push. After idealizing the artery as an incompressible viscoelastic cylinder immersed in inviscid 18 

fluid, we combine multiple computational techniques to perform fully three-dimensional simulation in a 19 

very short time (5 seconds when a Voigt model is used, and 84 seconds for a more complicated spring-pot 20 

model). The steps involved are: (a) Fourier series expansion in the azimuthal direction, (b) Fourier 21 

transform in the axial direction, (c) high-order finite element discretization for the wall and interior fluid 22 

and special finite elements (PMDL) for exterior fluid, (d) modal truncation to further reduce the 23 

computational cost, and (e) impulse-response or frequency-response approach to solve the final set of 24 

single-degree of freedom vibration problems. At the end, the full three-dimensional response is captured, 25 

at a tiny fraction of the computational cost of e.g., the three-dimensional finite element method. With 26 

such computational cost savings, inversion of shear-wave elastography data can be performed with 27 

reasonable computational effort, eventually making the process practical on clinical scanners (inversion 28 

using the proposed computational model is performed in [8]). 29 
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While the proposed model simulates artery mimicking phantoms (see [34]), several future improvements 1 

can be considered. Some of the potential areas of expansion include: (a) viscoelasticity of the surrounding 2 

tissue, (b) viscosity of blood, (c) anisotropy of the arterial wall, (d) heterogeneity of the arterial wall, e.g., 3 

differentiation of intima, media, and adventitia, and (e) modeling plaque formation or thrombosis. Item 4 

(e) may require expansion to 2D finite element modeling of cross-section (see e.g. [35]) or necessitate a 5 

full 3D model. On the other hand, aspects (a) to (d) could be tackled with the proposed approach and can 6 

be subjects of future research. 7 
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