o Uk~ w N =

0

10
11
12
13
14
15
16
17
18
19
20
21

22
23

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

Full Wave Simulation of Arterial Response
under Acoustic Radiation Force

Tuhin Roy and Murthy N Guddati”
North Carolina State University, Raleigh, NC
*Corresponding author, email: mnguddat@ncsu.edu

ABSTRACT

With the ultimate goal of estimating arterial viscoelasticity using shear wave elastography, this paper
presents a practical methodology to simulate the response of a human carotid artery under acoustic
radiation force (ARF). The artery is idealized as a nearly incompressible viscoelastic hollow cylinder
submerged in incompressible, inviscid fluid. For this idealization, we develop a multi-step methodology
for efficient computation of three-dimensional response under complex ARF excitation, while capturing
the fluid-structure interaction between the arterial wall and the surrounding fluid. The specific steps
include (a) performing dimensional reduction through semi-analytical finite element formulation, (b)
efficient finite element discretization using traditional and recent techniques. The computational
efficiency is further enhanced by utilizing (c) modal superposition, followed by, where appropriate, (d)
impulse response function. In addition to developing the methodology, convergence analysis is performed
for a typical arterial geometry, leading to recommendations on various discretization parameters. At the
end, the computational effort is shown to be several orders of magnitude less than the traditional, fully
three-dimensional analysis using finite element methods, leading to a practical yet accurate simulation of
arterial response under ARF excitations.

Keywords: Arterial stiffness; Guided waves; Semi-analytical finite element method; Shear wave
elastography; Viscoelasticity

INTRODUCTION

Arterial stiffness is one of the important biomarkers for many cardiovascular diseases [1-5]. Among
various non-invasive approaches, Shear Wave Elastography (SWE, [6]) is one of the effective techniques
to characterize arterial stiffness. Specifically, the arterial wall motion data is processed to obtain the
dispersion curve (phase velocity variation as a function of frequency), which is then used to invert for
arterial wall modulus. While this approach works well for estimating the elasticity part of the arterial wall
modulus, it fails to quantify viscosity, as the phase velocities are not much sensitive to arterial viscosity
[7]. One way to quantify full viscoelasticity is by matching the measured and simulated arterial wall
motions (this is because spatial distribution and history of wall motion are sensitive not only to elasticity
but also to viscosity, see e.g. [8]). Towards the end goal of viscoelastic inversion, the focus of the paper is
the computation of tube wall motion distribution and history under acoustic radiation force (ARF)
excitation. While such simulation can certainly be performed using 3D finite elements, it would be
computationally very expensive, making practical inversion prohibitive. Thus, to facilitate practical
viscoelastic inversion from the space-time data, we develop a methodology that is orders of magnitude
more efficient than 3D finite element simulation.
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Several analytical formulations [9-15] are available for elastic and acoustoelastic waveguides (elastic
waveguides immersed in acoustic fluid) but they are limited to simple geometries. Computational
simulation is often necessary when the geometry, boundary conditions or material properties are more
complicated. Among the several variants of the finite element methods, we consider the Semi-Analytical
Finite Element method (SAFE, see e.g. [16-22]). The idea of SAFE method is to utilize analytical
formulation in a few direction(s) while the finite element discretization in the remaining direction(s). SAFE
method can be utilized effectively to model wave propagation in a carotid artery, where the material
properties along the axial and azimuthal directions can be assumed to be homogeneous. Essentially, we
employ Fourier expansion in axial and azimuthal directions, and finite element discretization is used only
in the radial direction. This makes the SAFE model extremely efficient compared to the traditional 3D finite
element models.

For the finite element discretization in the radial discretization, we adapt (1) high-order finite elements
for the arterial wall and the inner fluid, given the smoothness of the response, (2) Perfectly Matched
Discrete Layers (PMDL) for efficiently simulating the large region containing the exterior fluid. The
resulting discrete dynamical system is solved using modal superposition where a few eigenmodes are
shown to be sufficient to capture the dynamics of the system, leading to a further reduction in the
computational cost. For the simpler Voigt model, we can solve the resulting single-degree-of-freedom
(SDOF) problem using convolution with impulse response function (Green’s function in the time domain),
resulting in an extremely efficient simulation methodology. For more complicated fractional viscoelastic
models, we solve the problem using frequency domain computation followed by inverse Fourier
transform, which tends to be more expensive but still practical.

The outline of the remainder of the paper is as follows. We first present the governing differential
equations, interface and boundary conditions that represent the physics of the problem. Next, the
proposed methodology is described in detail. In the following section, numerical experiments are utilized
to examine the convergence of the methodology, leading to recommended discretization parameters for
the carotid artery problem. In the final section, we summarize the proposed methodology and future
work.

PROBLEM STATEMENT

The carotid artery is made of biological tissue where the pressure wave velocity is two orders of magnitude
larger than the shear wave velocity. The contrast is higher for the surrounding tissue and blood, where
the shear wave velocity and viscosity are much smaller than that of the arterial wall. Given these
observations, the artery can be approximated as a nearly incompressible viscoelastic cylindrical
waveguide filled with and immersed in incompressible inviscid fluids. The schematic of the model is shown
in Figure 1. The governing differential equation for the solid medium is the Elastodynamic equation,
written here in the frequency domain as,

LTO,G—pa)zu =f,in Qg , (1)

where the primary variable in the solid domain (€2 ) is the displacement vector, u = u(r, 0, z, ) with

three components, i.e., u = {ur,ug,uz}T. P is the density of the solid medium. f =f(r,0, z, w) is the
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spatially and temporally varying acoustic radiation force, which can be computed e.g., using software such
as Field 11 [23,24]. o = Atr(0)] + 2G0 is the stress tensor, where, ¢ is the strain tensor (written in vector

form), and 6 =Lu={9,,0,,0_,0,.,0_,0,}" . For the materials considered here, 2 >> G, and can be

assumed to be constant and given by A~ ,OCp, where c, is the acoustic (pressure) wave velocity and

taken as 1540 m/s. In the time domain, the shear modulus is in general integro-differential operator but
takes the simple form of frequency-dependent complex modulus when transformed into the frequency
domain. For the Voigt model, the modulus can be written as,

G(w)=G,(1+iwT) , (2)

where G, is the elastic modulus and 7 is the relaxation time (representing viscosity). For fractional model

such as the spring-pot model, the frequency-dependent shear modulus can be written as,

G(w) =G, [Ej =G, (QJ (cos(a zj + isin[a ZD , (3)
@, @, 2 2

where « is the fractional order, @, is the normalization frequency, and G0 is the modulus (note that the

G, in Equation (2) and (3) are different). While the approach proposed in this paper works for any

viscoelastic model, we choose the above two models as representative examples since they are the
building blocks for the higher order models that are frequently used for modeling soft tissues [25]. The

L_ and L, are 6x3 gradient operators given by,

(o2

L, La() 91@+ 8() L—
or r 00 oz r

Loop Lo g o1e0 00 1
r or r 86? 0z r
LLY=L(53)=L(62)=1, (4)

LH (25 2) = LH (45 3) = L&' (65 1) = 1,
L(3.3)=L(42)=L(51)=1,
L(2,1)=-L,(6,2)=1.
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Figure 1. (a): schematic of the idealized artery. (b): longitudinal view with the acoustic radiation force

(ARF). (c): cross-sectional view with ARF.

For the fluid domain, in the limit of incompressibility, the acoustic wave equation becomes the Laplace
equation,

Vip=0inQ,, (5)

where the primary variable in the fluid domain (£, ) is the pressure, p = p(r,0,z,w). The Laplace
operator in cylindrical coordinate systems is, V>(-)=7"'0(r0(-)/ 0r)/ Or +r>0°(")/ 06> + (") / 0z”.

The conditions at the solid-fluid interfaces 'y are the traction continuity:

on—pn,.=0,onl,, (6)

and the continuity of the normal displacement, equivalently acceleration:

—a)zu-ns—ia—pzo, onTl,. (7)

Pr On
n; and N, =—Ng are the unit vectors for solid and fluid domains respectively. o, is the fluid density.

Given the tube geometry, applied loading, and material properties of the tube, inside and outside fluids,
our objective is to compute the wall velocity in the spatiotemporal domain. The proposed approach is
detailed in the following section.

METHODOLOGY
We solve the Equations (1) and (5) to (7) along with radiation condition in four steps: (1) model reduction
and discretization using the Semi-Analytical Finite Element (SAFE) method and Perfectly Matched Discrete
Layers (PMDL), (2) further decoupling into single-degree-of-freedom systems through modal analysis, (3)
finding the temporal response for each mode, and (4) computing the final response in space-time by
superimposing all the modal responses. The details of each step are presented in the following
subsections.
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Spatial Discretization through SAFE and PMDL

Owing to the invariant geometry and material properties along the axial and azimuthal direction of the
tube, we utilize Fourier expansion in these two directions and employ finite element discretization in the
radial direction. This falls in the realm of the Semi-Analytical Finite Element (SAFE) method [16,26,27]. For
the surrounding unbounded fluid, we consider Perfectly Matched Discrete Layers (PMDL, [28,29]).

Facilitated by the Fourier expansions in the axial and azimuthal directions, the discretized displacement is
written as,

WO=+00 k=40 ;y—cp Ur (ma ka a)) COS(mH)

u(r,0,z,00= [ | YN)| U,(mk 0)sin(md) |e ™" dkdw, (8)
=0 k=—oo =0 U_ (m,k,w)cos(mb)

where m is the circumferential Fourier number, k is the wavenumber along the axial direction (z) . Note
that the sine variation of u, and cosine variation in other components are driven by the fact that the load

and thus the response is symmetric about & =0. In the fluid medium, the discretized pressure variable
becomes,

W=+0 k=40 1—q,
p(r,0,z2,1) = j j > N, (r)P(m,k,w)cos(mb)e ™™ dk dw, 9)

w=—00 k=—o0 M=0

where N and N, are the finite element shape function matrices in the solid and fluid domain,

respectively. For the fluid domain, we employ regular finite elements for the inner region and PMDL for
the outer region (which naturally incorporates the radiation condition, see [28,29]). The response is
expected to vary smoothly inside the wall, leading us to choose higher order finite elements (their
effectiveness is illustrated in convergence analysis presented in a subsequent section). For the solid
medium, the discretized form of Equation (1) becomes,

(FK* +ik K" +K*°)U, +(-«Cy, )P, —,M°U, =F, , (10)
where,
T
K" =[ (B,+B,) DB.rdrd6 - B!D(B, +B,)rdrdo, a
T
K* = (B,+B,)'D(B, +B,)rdrdd, K =| BIDB. rdrdo,
In the above, D is the constitutive matrix, i.e., 6 =Do. B, B,,B_are given by,
ON N N
B =L —% B,=¥2 —S+L,—, B, =-LN,, (12)
or r r

where,
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—sin(m@) 0 0
B=L,m o0 cos(mb) 0o | (13)
0 0 —sin(md)

K in Equation (10) is the scaling factor introduced to better condition the matrix by maintaining the
similar numerical orders of the solid and fluid domain contributions. The solid-fluid interaction matrix is,

Cy = | Nin N,rdrd6 . (14)
The discretized force vector on the right side of Equation (10) is,
F, =IQNSTﬁ,1rdrd9, (15)

where f is the forcing function corresponding to the m™ circumferential mode. The discretized form

of Equation (5) after incorporating the interface condition is,
k(KK -K™)P, -0,C,U, =0, (16)

where,

K" = | N[N, rdrd6, K" =m’ jrrizNﬁNFrdrdm jr(aNrF

ST ———

or

Note that the scaling factor x is used here again to better condition the final coefficient matrix. After
assembling, the final discretized system takes the form,

2 Um K
(K—me){P }:{J} (18)

KK +ik K*' +K*° —xCy,. ™m0
0 K(PK”?-K™)" | 0f

where,

K= (19)

Modal Decomposition

Given the expected smoothness of the response within the thickness of the wall, we hypothesize modal
superposition approach would lead to computation with only a few modes, leading to computational
savings (this is confirmed using convergence analysis in a later section). The modes are computed from
the associated eigenvalue problem:

(K—o’M)®(k,m) =0, (20)
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where @ is the matrix containing mode shapes. The resulting discretized deformation U can be
computed through superimposing all the modal responses:

U N
Pm — Z%(a))é(k, m), (21)
m i=1
where N is the total number of modes. Substituting Equation (21) into the Equation (20) and utilizing
orthogonality property of the modes, we obtain the governing equation for the i" modal participation

factor y;:

k. — a)2mi7/i =/ (22)
where, k. =¢' K¢, m, =¢"Mg,and f, =¢'F are the modal stiffness, mass, and force respectively.

Temporal Response
To get the temporal response, we apply inverse Fourier transformation on the vector computed from
Equation (21) to transform back to the time domain:

U(k,m,t) = J : Uk, m,w)e”™ " dw . (23)

Numerically, we achieve this through utilizing the Fast Fourier transform. While this approach works for
any viscoelastic model, for the Voigt model, we can utilize the more efficient Green’s function (Impulse
Response Function, IRF) approach directly in the time domain. To this end, we consider the time domain

representation of Equation (22), for the Voigt model, where the (frequency dependent) stiffness term £,
transforms to l;l +c, d/dt, resulting in,
oy 627/,.
= fl ,

ky +c—L+m
e o

(24)

where, the modal stiffness is, l;[ corresponds to IBTGOBrdrdH part of the stiffness matrix, while modal

damping ¢, corresponds to IBTGOTBrdrdH part of the stiffness matrix. The impulse response function

is then given by,

| I -
IRF, (t) = —sin(wt)e ", (25)
' mao,;

1

where @, and ,3[ are the (damped) natural frequency and decay rate respectively, and are given by,

Jam k — ¢ A
ml i Cl , ﬂ, — Cl . (26)
2m.

2m.

1 1

). =

1
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The final time domain mode participation factor is the convolution of the impulse response function with
the forcing function:

7/0)= [, £(DIRF, (¢ ~T)dT . (27)

, the time derivative of the modal participation factor would be useful for computing velocity

,
/

response, and can be computed similarly by replacing the IRF with its time derivative:

[RE;,i (t) = L(COS(C{)}) —ﬂl Sil'l(a)it))e_ﬁ"’,
" (28)
(O)IRF, (t—t)dt.

Final Response in Space-time
The wavenumber-time (k-t) representation of the wall response is first obtained by superposition of the
temporal response of all the modes:

U(k,t) = i ﬁ: V(D) (@,,)[cOs(mB),sin(mb), cos(m@)]T . (29)

m=0 i=1

Applying inverse Fourier transform in space results in the final displacement U(z,?). The velocity

response can similarly be obtained by replacing 7, ,,(¢) by ;

CONVERGENCE STUDY AND RECOMMENDED DISCRETIZATION
In addition to developing the general methodology presented in the previous section, we attempt to
provide general recommendation for various discretization parameters. To this end, given that the arterial
geometry does not have large variation, we consider a typical geometry of rubber tubes considered in
recent studies [6,30], with the expectation that the recommended parameters would be applicable for
various human carotid arteries, undergoing SWE investigation with typical ARF excitation and data
acquisition.

To mimic typical ARF excitation that is sharp in the axial direction and somewhat spread out in the
azimuthal direction ([31]), we consider the excitation force to vary in (z,68) as Gaussian, which is plotted

in Figure 2. Examining the Fourier coefficients in (b) and (d), we note that the forcing is limited to a narrow
band in the Fourier domain, indicating that our framework based on Fourier basis functions would be
efficient. The temporal variation of the forcing function is assumed to be rectangular with a pulse width
of 400 microseconds, as shown in Figure 3, which is fairly consistent with the way acoustic radiation is
applied (sudden illumination followed by sudden shutoff). Given that the focus area is typically much
larger than the entire wall thickness, the variation of the force within the wall in the radial direction is
assumed to be uniform.
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Figure 2. Applied excitation force (normal pressure on the wall): (a) variation in the axial direction (z); (b)
corresponding Fourier transform; (c) variation in the circumferential @ direction; (d) corresponding

Fourier coefficients.

1

0.8
@
=]
2

'€ 0.6
o
(5]
£

o 0.4
2
Q
[T

0.2

0

0 0.5 1 1.5
Time (sec) %1072

Figure 3. Acoustic radiation force variation in time.

To obtain discretization parameters that can be routinely used for simulating human carotid arteries, we
consider a typical geometry of a cylindrical tube with a wall thickness of 1 mm, and an inner radius of 3
mm. The density is assumed to be 1,000 kg/m? for both solid and fluid media. The two viscoelastic models

are considered for the wall material: (a) Voigt model with an elastic modulus (G, ) of 200 kPa and a

relaxation time (7 ) of 0.055 ms and (b) spring-pot model with a fractional order (&) of 0.15, and a
modulus (G,) of 344 kPa at 600 Hz (the parameter values are in the range of the artery mimicking

phantom material [30]). The frequency-dependent shear moduli are presented in Figure 4.

The convergence analysis is performed by first obtaining the reference solution (v

reference

) with the highest-

refined parameters (defined below) and then performing analysis by successive refinement with respect
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to the discretization parameter of interest. The highest-refined parameters are: maximum number of

14; maximum wavenumber ( k ) =30,000 m~"; minimum wavenumber

m

circumferential modes (m

‘max ) -

increment ( Ak

i) =10 m™"; maximum finite element order ( P, ) for solid-domain =14; p  forinside
fluid = 5; maximum PMDL elements for outside fluid = 11. For the eigenmode expansion, we take all the

modes i.e., there is no modal truncation in computing the reference solution. The error is defined in terms

of the maximum velocity (vma"), which is more stringent than, e.g., least-squares error (specific

expressions for error measures are provided later). We perform the convergence analysis for each of the
parameters, with the objective of obtaining the response with a practically acceptable error of 1%
(consistent with the expected variability and noise levels). As detailed below, the convergence analysis is
performed for circumferential and longitudinal wavenumbers, finite element discretization for solid, the
inner and outer fluid domains separately, followed by convergence analysis of radial eigenmode
expansion.

400 400
———Storage modulus
—Loss modulus

w
o
o
w
o
o

———Storage modulus
—Loss modulus

-
o
o

Shear modulus (kPa)
g

Shear modulus (kPa)
g 8

0 0/—;

0 500 1000 1500 0 500 1000 1500
(a) Frequency (Hz) (b) Frequency (Hz)

Figure 4. Input shear moduli corresponding to the Voigt model (a) and the spring-pot model (b).

Circumferential mode convergence. The normalized error from the circumferential mode convergence
study is presented in Figure 5 (a). Here the normalized error is computed as,

max max
I eV
_ reference m 2 ( 3 0)
m max ’
|| Vreference ||2

where we consider the lowest m circumferential modes to compute the maximum velocity v . As

shown in Figure 5 (a), with the lowest 8 circumferential modes, we achieve a normalized error of 1%.

Longitudinal wavenumber convergence. We now study the convergence with respect to the longitudinal
wavenumber, k. The analysis is performed in two steps: (1) convergence with the maximum

wavenumber, k and (2) the wavenumber increment, Ak . The results are shown in Figure 5 (b) and

max’

(c). The normalized error shown in the figure is computed as,

| m;x _ v]:nw( | |2
reference max
Ekma:( = || vmax || ’ (31)
2

reference
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|| vmwc _ Vmax ||
— )efere;c; Ak 2 ) (32)
|| vre/érence ||2

Ak

where, E, and E,, are the normalized error associated with &, ,_and Ak respectively. After examining

Figure 5 (b) and (c), for an error of 1%, k, , =10,000 m™" and Ak=40m™" appear to be conservative

choices.

Normalized error
Normalized error

0z 4 6 8 10 12 0 05 s 2 0 50 100 150 200
(a) Number of circumferential modes (b) Knax (M) *10 (C) Ak(m™)

Figure 5. Convergence results of circumferential Fourier number (a), maximum longitudinal wavenumber
(b), and the step size associated with longitudinal wavenumber (c).

Solid domain mesh convergence. The convergence of the response due to increasing the polynomial order
of the shape function in the solid medium is considered. The normalized error is in the context is taken
as,

| max . max H
= re/éret:nc; vp 2 , (33)
H Vrejérence |2

where p is the polynomial order. The convergence result is presented in Figure 6 (a), which indicates

that 9 noded finite element (p=8) is sufficient for an engineering accuracy of 1%.

Inner fluid mesh convergence. The mesh convergence study is also performed for the interior fluid domain
by examining the relative error,

|| v:;exrence - v;’)mx ||2
= . , (34)
|| Vrejference ||2

where p is the polynomial order for the finite element shape function in the interior fluid domain. The

convergence result is presented in Figure 6 (b), indicating that 3 noded (quadratic) finite elements are
sufficient for the interior fluid domain, to achieve an accuracy of 1%.

Outer fluid (PMDL) mesh convergence. In this section, the mesh convergence is performed only for the
outside fluid domain (PMDL). Although the geometric progression ratio affects PMDL accuracy, we kept a
smaller progression ratio of 1.5, which is shown to result in a negligible error of less than 107~ [32]. The
convergence study is performed only for the number of PMDL elements. The normalized error is defined
as,
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, (35)

where d is the number of PMDL elements. The convergence result is presented in Figure 6 (c), indicating
that 7 PMDL elements are sufficient to achieve the engineering accuracy of 1%.

107 107

Normalized error
Normalized error
Normalized error

2 4 6 8 10 12 1 2 3 4 4 5 6 7 8 9 10
(a) Finite element order (solid domain) (b) Finite element order (fluid domain) (C) PMDL element numbers

Figure 6. Convergence results of polynomial order of the finite element shape function for the solid
domain (a), and the inside fluid domain (b). PMDL mesh convergence results for the outside fluid domain

(c).

Radial eigenmode convergence. In this section, we study the convergence of the number of eigenmodes.
The normalized error is computed as,

| max max | |
2

_ reference vn
E = , (36)

n max
v |
reference 112

where n is the number of eigenmodes considered. The convergence result is presented in Figure 7. As
observed, the first 17 modes are sufficient to achieve an engineering accuracy of 1%.

Normalized error

0 5 10 15 20 25
Number of eigen modes

Figure 7 Convergence results of radial eigenmode expansion

Recommended Discretization. To summarize, based on the above convergence analyses, to compute the
wall motion with an engineering accuracy of 1%, it appears sufficient to use 0" to 7™ circumferential

modes, longitudinal wavenumbers up to &, =10,000 m™" with Ak =40 m™", single 8" order (9-noded)

finite element for the arterial wall, single quadratic (3-noded) finite element in the fluid domain, and 7
PMDL elements for the exterior fluid. To further reduce the computational cost, one can limit the
computation to the first 17 eigenmodes.
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Computational Cost. With seven 3.4 GHz cores on a standard desktop computer, a single simulation takes
less than 5 seconds for the Voigt model (for the spring-pot model, it takes less than 84 seconds). The 3D
finite element approach for the Voigt model takes about 361 seconds with 48 3.1 GHz processors, as
mentioned in [33]. Assuming 80% parallel efficiency, the proposed approach with the Voigt model is
approximately 400 times faster than the 3D finite element approach. Moreover, note that the 3D finite
element model is likely more approximate than the proposed model due to, e.g., higher discretization
errors and spurious reflections from primitive absorbing boundary conditions. It is likely that the efficiency
gain would be even more for comparable accuracy.

Representative Results. With the recommended parameters, the full wave velocity response
corresponding to the front wall is presented in Figure 8. These results are qualitatively similar to the
responses observed in SWE experiments (see e.g. [34]).

0.03 0.06 0.03 0.06
0.025 0.025
0.04 0.04
0.02 0.02
Eo.015 0.02 E o1 0.02
N N
0.01 0.01
0 0
0.005 0.005
0 -0.02 ( -0.02
0 2 4 6 0 2 4 6

(a) Time (sec) %1072 (b) Time (sec) %107

Figure 8. x-t representation of the top wall velocity from the proposed approach.
(a): Voigt model. (b): spring-pot model.

CONCLUSIONS
With the ultimate goal of estimating arterial viscoelasticity by matching measured and simulated motion
data, we present a computationally efficient framework to simulate arterial wall motion under acoustic
radiation push. After idealizing the artery as an incompressible viscoelastic cylinder immersed in inviscid
fluid, we combine multiple computational techniques to perform fully three-dimensional simulation in a
very short time (5 seconds when a Voigt model is used, and 84 seconds for a more complicated spring-pot
model). The steps involved are: (a) Fourier series expansion in the azimuthal direction, (b) Fourier
transform in the axial direction, (c) high-order finite element discretization for the wall and interior fluid
and special finite elements (PMDL) for exterior fluid, (d) modal truncation to further reduce the
computational cost, and (e) impulse-response or frequency-response approach to solve the final set of
single-degree of freedom vibration problems. At the end, the full three-dimensional response is captured,
at a tiny fraction of the computational cost of e.g., the three-dimensional finite element method. With
such computational cost savings, inversion of shear-wave elastography data can be performed with
reasonable computational effort, eventually making the process practical on clinical scanners (inversion
using the proposed computational model is performed in [8]).
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While the proposed model simulates artery mimicking phantoms (see [34]), several future improvements
can be considered. Some of the potential areas of expansion include: (a) viscoelasticity of the surrounding
tissue, (b) viscosity of blood, (c) anisotropy of the arterial wall, (d) heterogeneity of the arterial wall, e.g.,
differentiation of intima, media, and adventitia, and (e) modeling plaque formation or thrombosis. ltem
(e) may require expansion to 2D finite element modeling of cross-section (see e.g. [35]) or necessitate a
full 3D model. On the other hand, aspects (a) to (d) could be tackled with the proposed approach and can
be subjects of future research.
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