
  

Abstract—  Soft robots require a complimentary control 
architecture to support their inherent compliance and 
versatility. This work presents a framework to control soft-
robotic systems systematically and effectively. The data-driven 
model-based approach developed here makes use of Dynamic 
Mode Decomposition with control (DMDc) and standard 
controller synthesis techniques. These methods are implemented 
on a robotic arm driven by an antagonist pair of Hydraulically 
Amplified Self-Healing Electrostatic (HASEL) actuators. The 
results demonstrate excellent tracking performance and 
disturbance rejection, achieving a steady state error under 
0.25% in response to step inputs and maintaining a reference 
orientation within 0.5 degrees during loading and unloading. 
The procedure presented in this work can be extended to develop 
effective and robust controllers for other soft-actuated systems 
without knowledge of their dynamics a priori. 

I. INTRODUCTION 

 Biological systems exploit soft structures to interact 
effectively with unpredictable complex environments and 
perform delicate operations [1], [2]. Inspired by nature’s 
compliant behavior, soft technologies can be used to 
accomplish tasks that are not ideal for rigid mechanical 
solutions, such as human-machine interaction, 
manufacturing, manipulation, gripping, and locomotion [1]-
[3]. Therefore, soft robots can benefit technologies in 
applications ranging from industrial automation to 
biomedical devices [1]-[3]. However, unlike their rigid 
mechanical competitors, soft robots were not designed to 
perform precise and repetitive motions and cannot adopt the 
same standard methods for control design [1], [2]. Due to 
their nearly infinite-dimensional nonlinear bodies [2], soft 
systems cannot be deterministically manipulated and thus, 
integrating them into the aforementioned industries remains 
a challenge. This paper develops and experimentally 
validates a systematic approach that can be used to 
synthesize feedback controllers to achieve prescribed 
performance requirements for soft robotic systems. 
Hydraulically Amplified Self-Healing Electrostatic 
(HASEL) actuators were selected as the soft actuator of 
choice for this work due to their high-performance and high-
speed characteristics [4]. As a nascent technology, there is 
limited information on the dynamics of these actuators and 
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their accompanying subsystems. Rothemund performs an 
analysis on the dynamics of HASEL actuators in [5]. 
However, this is only valid for a particular set of actuator 
materials, geometry, and operating conditions. To 
circumvent the paucity of information on HASEL dynamics, 
this paper exploits a controller design method that does not 
require any knowledge of the system a priori.  
 The five-step framework presented and demonstrated in 
this work combines the advantages of data-driven modelling 
techniques with model-based controller synthesis methods. 
Empirically determining the system dynamics allows us to 
repeat the procedure for various configurations of arbitrary 
soft robots without fully understanding the underlying 
dynamics of the system or deriving the governing equations 
of the system, while the model-based method allows us to 
exploit standard available linear controller synthesis 
strategies. Specifically, we use a method, known as Dynamic 
Mode Decomposition with control (DMDc), to determine an 
appropriate linear model for the system [6], [7]. After 
establishing an approximation of the system dynamics, we 
can employ standard linear controller synthesis techniques, 
including loop-shaping methods, Linear Quadratic Regulator 
(LQR)-based techniques, and robust 𝜇	(‘mu’)-synthesis 
approaches [8]-[11].  
 Implementing this framework, we demonstrate effective 
control of a robotic arm driven by an antagonist muscle pair 
of highly compliant, high-speed soft actuators known as 
Peano-HASEL actuators [12]. This paper is the first to 
illustrate how HASEL actuators can be built and controlled 
to mimic musculoskeletal systems; the actuators in this 
robotic system mimic the structure of the biceps-triceps 
muscles of the upper arm of humans. The two muscles 
exhibit co-contraction to vary the stiffness of the joint in the 
robotic arm. We transform an open-loop soft-actuated 
biceps-triceps apparatus into a closed-loop system that 
achieves user-specified orientations repeatedly in the 
presence of uncertainty.  
 We exploit the empirical nature of this framework on two 
separate cases: a single input single output (SISO) and a 
multiple input single output (MISO) version of the HASEL-
driven robotic arm to achieve excellent tracking performance 
and disturbance rejection. The closed-loop MISO system
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was successful in response to step inputs, loading, and 
sudden perturbations.  Importantly, this generic controller 
synthesis architecture can be extended to adapt to various 
HASEL morphologies with higher complexity, as well as 
other soft-robotic platforms. 
 The remainder of the paper is organized as follows. 
Section II presents a brief overview of HASEL actuators. 
Section III details the DMDc approach used in modelling 
the system. Section IV describes the five-step framework, as 
well as the experimental setup and methods used to model 
and control the HASEL-driven system. Section V highlights 
the results from the closed-loop systems. Finally, discussion 
of the research and ideas for future work are presented in 
Section VI.  

II. BACKGROUND OF HASEL ACTUATORS 

 Hydraulically Amplified Self-Healing ELectrostatic 
(HASEL) actuators combine the advantages of electrostatic 
stimulus with principles of hydraulic scaling to result in a 
versatile, compliant, and high-performance soft actuator [4]. 
HASEL actuators consist of a pair of opposing electrical 
conductors printed on a thin polymer shell that is filled with 
a dielectric fluid [4]. When a potential difference is applied 
across the opposing electrodes, an electrostatic force 
develops that causes the electrodes to “zip” or pull together 
and force the dielectric fluid to the region of the shell that is 
not covered in electrodes, thereby morphing the overall 3D 
shape of the actuator [4]. 
 HASEL actuators can be designed and fabricated in a 
variety of geometries and sizes and assembled into various 
configurations [13]. Moreover, HASEL actuators can 
achieve all three basic modes of actuation (contraction, 
expansion, and rotation) [4], [12], [13]. The HASEL 
variation used in this work is a 15-unit Peano-HASEL (Part 
#: C-5020-15-01-C-BAAC-50-140, Artimus Robotics). 
These actuators were stacked in parallel to scale the 
contractile force under the same applied voltage. In addition 
to their customizability, HASEL actuators exhibit many 
other desirable traits that set them apart from other soft 
actuators. Most notably, HASEL actuators have a high 
bandwidth and precise operation. Quick response times and 
precise actuation of HASEL actuators have been 
demonstrated in the works of [12], [14]. HASEL actuators 
have been shown to actuate and perform upwards of 40 Hz 
[12], [14]. They also can be reproduced from affordable 
materials and accessible fabrication techniques. By locally 
displacing fluid within a soft structure, HASEL actuators do 
not require an external source of compressed fluid, and 
therefore, are not limited in portability and speed [12]. 
Additionally, they are fault tolerant having shown the 
capability to recover from dielectric breakdown, since the 
dielectric fluid can reflow to restore insulating conditions 
[4]. 
 This work is the first to demonstrate precise closed-loop 
control of multiple channels of HASEL actuators to result in 
a single desired system response. Initial demonstrations of 
HASEL actuators, like those shown in [4], [12] use open 
loop control which is tuned to the repeatable task in a 
controlled environment. If HASEL actuators are to be used 

in real-world applications, they need excellent tracking 
performance and disturbance rejection characteristics, which 
cannot be offered by open-loop control methods. The work 
of Johnson et al. demonstrated effective closed-loop control 
of a single foldable HASEL actuator utilizing linear 
frequency response tests [14]. Additionally, work was 
conducted in [15] to model and control the soft actuators 
with a mass-spring-damper modelling strategy. However, to 
promote the customizability of HASEL actuators for their 
use in a wide range of applications, there needs to be a 
complimentary framework for systematically modelling and 
synthesizing controllers for the various morphologies, 
configurations, and assemblies of HASEL actuators. 

III. BACKGROUND OF DYNAMIC MODE DECOMPOSITION 
WITH CONTROL 

 Dynamic Mode Decomposition with control (DMDc) is a 
useful tool that can be used to model the complex and 
nonlinear dynamics of soft robots [7]. Dynamic Mode 
Decomposition (DMD) is a model reduction method that 
uses empirical snapshots of a system and its inputs to 
approximate the underlying dynamics of systems with a 
linear representation [6]. DMD with control (DMDc) is an 
extension of DMD and disambiguates the system’s intrinsic 
dynamics from its response to actuation [7].  The following 
equation shows how a system’s current state, 𝒙, and control 
inputs, 𝒖,  are linearly mapped through a dynamic matrix, 𝐴 
and a control input matrix, 𝐵, respectively, to result in the 
change in state, 𝒙̇. 

𝒙̇ = 𝐴𝒙 + 𝐵𝒖        (1) 

 Like DMD, DMDc is an approach that uses pairs of data 
vectors to extract the underlying low-dimensional dynamic 
characteristics of nonlinear systems. DMDc is also closely 
tied to the Koopman operator theory, as DMD approximates 
a linear operator to describe the dynamics of a nonlinear 
system [6], [7], [16]. As defined in [17], for any finite-
dimensional Lipschitz continuous nonlinear system, there is 
an equivalent infinite dimensional linear representation (the 
Koopman operator) in the space of all scalar-valued 
functions of the system’s state. Given that the Koopman 
operator is infinite dimensional, it is not practical in real-
world applications. However, we can approximate the 
infinite dimensional operator as an n-dimensional matrix. As 
n approaches infinity, we approach the exact dynamics of the 
nonlinear system with a linear operator. One extension of 
DMD that bridges the relation between Koopman and 
DMDc is extended DMD (eDMD), in which the user can 
choose the dictionary of observables to better approximate 
their nonlinear system with an expanded state space. [16]  
 Employing DMDc to model our system exploits the 
advantages of data-driven methods with model-based 
controller synthesis techniques. DMDc bypasses the time-
consuming and demanding effort to derive the system’s 
equations of motion since it only requires empirical 
snapshots of the system state and external inputs. Since the 
nonlinearities and highly complex intrinsic dynamics of the 
HASEL actuators make it difficult to obtain a model through 
first principles and since we aim to synthesize controllers for 
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various HASEL types and configurations, the data-driven 
approach is ideal. Thus, through this empirically driven 
method, we can readily reformulate the estimated dynamics 
of the system with each variation of HASEL morphology.  
 Many data-driven learning methods result in ‘black-box’ 
dynamics which do not lend themselves to standard 
controller synthesis methods. However, DMDc results in a 
linearized model of the system, and thus enables available 
model-based controller synthesis techniques.  
 DMDc can also reduce the order of high dimensional 
models by projecting them onto lower dimensional 
subspaces [6], [7]. However, the system controlled in this 
paper did not use a high dimensional state, and therefore the 
model reduction part of DMDc was not used. 
 The algorithm for DMDc can be described with the 
following steps as it was introduced in [7]. First, the 
experimentalist selects the observables and external inputs to 
describe the state of the system and actuation, respectively. 
The observables of the system are stacked into a snapshot 
vector, 𝒙!, and are recorded at each time step, 𝑘Δ𝑡 with 
𝑘	𝜖	[0, 1, 2, … 	𝑚 − 1]. The state snapshot matrix is built by 
concatenating multiple snapshot vectors:  

Χ = [𝒙"	𝒙#…𝒙$%"] 

Similar to the state snapshot matrix, the control snapshot 
matrix consists of vectors that are stacked actuation inputs to 
the system, 𝒖!: 

Υ =	 [𝒖"	𝒖#…𝒖$%"] 

Lastly, the state snapshot matrix is copied and shifted by Δ𝑡. 
The time-shifted snapshot matrix is denoted 

Χ& = [𝒙#	𝒙'…	𝒙$] 

We then concatenate Χ and Υ:  

Ω =	 @ΧΥA 

We also concatenate the dynamic and control input 
matrices: 

𝐺 = [	𝐴		𝐵	] 

Then, we formulate the discrete dynamics equation: 

Χ& = 𝐴Χ + 𝐵Υ         (2) 

and we rewrite (2) in terms of stacked matrices:  

Χ& = 𝐺Ω          (3) 

We perform a pseudoinverse on Ω via a singular value 
decomposition (SVD): 

Ω ≈ UΣV∗ 

so that we can solve: 

G = 	Χ&Ω	*         (4) 

where 		*  represents the pseudoinverse and p defines the 
truncation value of the SVD.  Plugging in the pseudoinverse 
of Ω into (4), we can evaluate G: 

G =	Χ&VΣ%"𝑈∗        (5) 

and equate an approximation for the dynamic and input 
matrices: 

[	A		B	] ≈ [	Χ&VΣ%"U"∗, 			Χ&VΣ%"U#∗ 	]    (6) 

where 

𝑈∗ = [U"∗, 		U#∗] 

for which  U"∗	𝜖	ℝ+×- and U#∗ 	𝜖	ℝ.×-. Reduction methods can 
be used at this point following the algorithm outlined in [7].  
However, due to the limited number of observables selected 
to describe the state of the robotic system in this work, 
reduction methods were not used. 

Figure 1: Experimental setup for both data collection and controller validation (left) and a detailed view of the HASEL arm 
apparatus (right).  
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IV. METHODS 

 The experimental setup is depicted in Fig. 1. The robotic 
arm was comprised of a carbon fiber lever arm connected 
with a pin to a stationary wooden column secured to a 
wooden base. The lever arm was free to rotate about the pin 
joint with one main degree of freedom. The actuators 
attached to the shorter side of the lever arm and those 
attached to the opposite side of the lever arm will be referred 
to as the triceps and the biceps of the robotic system, 
respectively. These antagonist muscle-like actuators both 
consisted of five 15-unit contracting Peano-HASELs secured 
at the top with a nut and bolt and at the lever arm with a 
carabiner. Brass weights of varying masses were used as 
loads on the arm and were anchored to the end of the lever 
arm at 32.3 cm from the fulcrum. The biceps actuator was 
anchored 6.6 cm from the fulcrum and operated as a third-
class lever with a mechanical advantage of 0.204, while the 
triceps actuator was anchored 5.7 cm from the fulcrum and 
operated as a first-class lever with a mechanical advantage 
of 0.176. Four OptiTrack Prime13W motion capture cameras 
were placed around the system to capture the change in 
angle of the lever arm with a frame rate of 240 Hz. Five 
motion capture retroreflective markers were adhered along 
the length of the rigid lever arm for tracking purposes. The 
electronics package used to drive the actuators can be 
purchased off-the-shelf from Artimus Robotics Inc. (Part #: 
HVPS-10-30-02-A-00). It consists of a microcontroller 
connected to proprietary circuitry which allows the Peano-
HASEL actuators to charge (contract) and discharge (relax). 
Each actuator was controlled independently via pulse-width 
modulated (PWM) signals that ranged in duty cycle from 0-
100% (an 8-bit value of 0-255), which corresponds to the 
charging rate of the actuator. The input power to the 
electronics was 24VDC. Lastly, the XBOX controller, was 
connected to the Linux machine via a wired USB to allow 
the user to command PWM signals to the system during data 
extraction and reference angles to the system during 
controller validation. 
 We used Robotic Operating System (ROS) on the Linux 
machine to record data and communicate between the 
motion capture system, microcontroller, and XBOX 
controller. ROS offers a platform that aids in communicating 
between various electronic devices, as those described 
above, in real time. ROS communicated with the 
microcontroller and the XBOX controller over USB serial 
and with the OptiTrack motion capture system over a 
wireless network connection.  
 The five-step framework used to develop the closed loop 
control laws for the soft actuator system is outlined as 
follows: 

1. A physical system with unknown dynamics is acquired. 
The plant must be equipped with a device to manipulate 
its inputs and a sensor to interpret its response. 

2. After the plant is set up with a means for actuation and 
sensing, arbitrary commands are sent to all actuators 

within the system and inputs and observables are 
recorded. 

3. Next, the recorded snapshots get pushed into the DMDc 
architecture described in Section III to approximate the 
system’s dynamics.  

4. After the dynamic model is established, standard model-
based controller synthesis techniques are determined, 
and the controller is designed. 

5. Lastly, the synthesized controller is integrated into the 
physical plant. 

 The framework was tested on two variations of the soft 
actuator driven robotic arm. The initial test consisted of 
actuation of a single channel (charge PWM signal to the 
biceps), while the second validation of the framework used 
two control actuation channels, (independent charge PWM 
signal to the biceps and triceps).  

 

Figure 2: Data collected from system to be used in DMDc 
algorithm for approximating linear model of the dynamics of the 
system. The axis on the left shows values for the angle of the lever 
arm (black) in degrees. The right axis shows the percentage of the 
duty cycle of the PWM signal sent to the biceps channel (blue) and 
the triceps channel (green). The top plot (a) displays the data used 
to approximate the model of the single input single output system, 
and the bottom plot (b) shows the data used to approximate the 
model of the multiple input single output system. 
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A. Control of SISO System 
 Initially, arbitrary PWM signals were sent to the biceps to 
actuate and affect the state of the system. The PWM values 
and angles were recorded with a timestamp in ROS. An 
interval of 12 seconds of data, shown in Fig. 2a, was selected 
and interpolated with a timestep of 0.01 seconds to be used 
in the DMDc algorithm. In addition to the recorded angle, 
the angular velocity was calculated at every time step and 
added as an observable to the state of the system such that 
the snapshot matrix had two rows: 

Χ = 	 @𝜃𝜃̇A 

The state snapshot matrix at each timestep was stacked up 
and pushed into the DMDc architecture. The DMDc matrix 
calculations described in section III were performed in 
MathWorks’ MATLAB offline and resulted in the following 
continuous dynamic and control input matrices: 

𝐴 =	 @ 0.53 1.12
−102.14 −23.28A 											𝐵 = 	 @

−0.30
5.61 A 

The following proportional, integral, and derivative gains 
(𝑘-, 𝑘/ , 𝑘0 respectively) were selected for the PID controller 
architecture depicted in Fig. 3: 

𝑘- = 40						𝑘/ = 200						𝑘0 = 0 

Loop shaping methods, as depicted in Fig. 4, were used to 
determine these gains following the procedure described in 
[8]. Addition of a derivative term was avoided due to noise 
in the system. The shaped frequency responses can be 

visualized in Fig. 4 along with estimated performance 
values. The performance measurements described here are 
not guaranteed on the physical system as the model used is 
only an approximation of the true system dynamics. The 
SISO controller was simulated in MathWorks’ Simulink 
following the block diagram shown in Fig. 3 to understand 
the effects of saturating the PWM control signal with upper 
and lower bounds [0-255]. Finally, the control law was 
implemented in ROS using the motion capture orientation 
information as feedback.   

B. Control of MISO System 
 Following the framework presented, first, PWM signals 
were sent to both the biceps and triceps channels to actuate 
and affect the state of the system. The PWM values and 
lever arm angles were recorded in ROS with their 
corresponding timestamp. Again, an interval of 12 seconds 
of data (Fig. 2b) was selected and interpolated with a 
timestep of 0.01 seconds to be used in the DMDc algorithm. 

Figure 4: A frequency response plot that uses open loop shaping 
methods and the estimated plant model to indicate the estimated 
performance of our system without a controller, G (grey), and 
with the added PID controller GK (teal). These bode plots helped 
us find a PID controller that balanced the following performance 
specifications: minimal steady state errors and tracking errors at 
low frequencies, high closed-loop bandwidth, maximal 
disturbance rejection at high frequencies and minimal percent 
overshoot. Åström and Murray describe this loop shaping 
controller synthesis technique and the useful calculations [8]. The 
red lines indicate estimates of the performance of our closed loop 
system. The bode plot suggests that the closed-loop system will 
have a steady state value less than 3%, a tracking error less than 
20% up to 2 rad/s, a bandwidth of 10 rad/s, a disturbance 
rejection of 10 times over 50 rad/s, and a maximum overshoot of 
30%. Due to the linear approximation of the true system and 
saturation functions that were not accounted for in this loop 
shaping tool, these performance guarantees are only estimates of 
the final closed loop physical system. 

Figure 3: A representation of the block diagram of the PID 
control law made in simulation with the linearized model of the 
system, G. This block diagram represents the control law as it 
was implemented into the single input single output system. The 
saturation function was required in simulation to limit the PWM 
signals [0-255] sent to the actuators. The outputs of our system, 
𝜃 and 𝜃̇, represent the lever arm’s current angular position and 
velocity, respectively. The PID controller takes an input of the 
difference between user-defined reference angle, 𝜃!"# and the 
current lever arm angle and sums together the proportional, 
integral, and derivative terms. The proportional, integral, and 
derivative gains, (𝑘$, 𝑘% , 𝑘&) are multiplied by their 
corresponding functions, where the derivative and integral in the 
Laplace domain are represented by s and 1/s, respectively. 
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 In addition to the angle, the angular velocity, angular 
acceleration, and biceps charge information were included as 
additional observables to describe the state of the system: 

Χ = 	 T

𝜃
𝜃
𝜃

PWM123456

̈
̇

Y 

These data vectors were stacked up and pushed into the 
DMDc architecture again using MATLAB. DMDc resulted 
in the following continuous dynamic and control input 
matrices: 

𝐴	 = T

−1.53 0.85 0.22 −0.13
−894.58 −120.65 13.98 −68.29
3.75 0.0279 −70.53 6.03
~0 ~0 ~0 ~0

Y				 

 

𝐵 =	T

−0.13 −0.02
36.09 −15.93
68.84 −0.94
~0 ~0

Y 

 The step responses of these matrices were plotted to 
understand the relationship between rows and states. From 
the step responses, it is evident that the first three states 
represent angular position, angular velocity, and biceps 
charge, respectively, and thus, the state corresponding to the 
row of near zeros is angular acceleration and can be omitted 
with negligible effect. The step responses also show that the 
first and second column in the input matrix represent the 

biceps and triceps input signal, respectively. Following an 
attempt of solely using LQR synthesis, integral action was 
determined to be critical in effectively controlling the 
system. 
 Hence, we used an LQR + Integral action (LQR+I) 
controller to close the loop of the MISO system [9] using the 
matrices 𝑄 = 𝑑𝑖𝑎𝑔(100, 0.01, 0, 800) and 𝑅 =
𝑑𝑖𝑎𝑔(0.01, 0.01). Matrix Q represents a penalty on the error 
in state, where the last value corresponds to the penalty on 
the integrator error, while matrix R determines a penalty on 
actuator efforts. The gain matrices were calculated following 
the procedure in [9] and the values corresponding to the 
angular position and velocity were used in the control 
architecture depicted in Fig. 6, as the biceps error signal was 
zero. 

𝐾- =	 @
82.509 0.909
−34.149 −0.376A											𝐾/ =	@

261.346
−108.158A       

 Again, results of the system with feedback were simulated 
in MathWorks’ Simulink with added saturation to ensure 
that the controller accounted for the limited range of 
allowable PWM signals. Finally, the control law was 
implemented in ROS following the architecture depicted in 
Fig. 5. 

V. RESULTS 

 To validate the controllers developed, the user generated 
desired reference angles of the lever arm with discrete step 
size inputs using the XBOX controller. Upon generating a 
reference orientation, the system was demonstrated to track 
the desired angle and maintain the desired angle while 
experiencing disturbances, such as loading, unloading, and 
sudden perturbations.  

Figure 5: A high level representation of the block diagram of the 
LQR + Integral action control law made in simulation with the 
linearized model of the system. The block diagram provides context 
for the proportional and integral gain matrices (𝐾$, 𝐾%) calculated 
in the methods section and represents the control law as it was 
implemented into the multiple input single output system. The user-
defined values include the angular position, 𝜃!"#, and velocity, 
𝜃̇!"#, of the system. These values are compared to the true state of 
the system, 𝜃 and 𝜃̇, and the difference is sent to the LQR+I 
controller gain matrices calculated in the methods section. 
Multiplying by C reduces the total states to the angular position. As 
with the SISO system, a saturation function is applied to the 
command signal to limit the PWM output from the controller. These 
values are sent to the linearized plant model, G.  

Figure 6: The left axis provides the value of the true orientation 
(black) of the single input single output system in response to the 
user-defined reference angle (orange) which step up and down by 
2-degree increments. The right axis displays the percentage of 
duty cycle of PWM signal to the biceps channel that was 
commanded by the controller.  
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A. Results from PID Controller for SISO System 
 Fig. 6 illustrates how the SISO system with closed-loop 
PID control responded to 2-degree incremental step inputs. 
The step responses varied, due to the varying conditions of 
the HASEL actuators in different operating ranges of 
actuation. Analyzing the step from 4 to 6 degrees, the SISO 
system attained a rise time of 0.05 seconds, a settling time of 
1.9 seconds, an overshoot of 65% and a steady state error of 
2%.  

B. Results from LQR+I Controller for MISO System 
 Fig. 7a illustrates how the multivariable system with 
LQR+I control responded to 2-degree incremental step 
inputs. Again, the step responses varied as the conditions of 
the HASEL actuators changed throughout the operating 
ranges of actuation. Again, inspecting the step response from 
4 to 6 degrees, the antagonist muscle apparatus integrated 
with an LQR+I control law achieved a rise time of 0.02 
seconds, a settling time of 0.8 seconds, an overshoot of 80%, 

and a steady state error of 0.25%. The figure shows that the 
PWM signals from the antagonist muscle pair oscillate 180 
degrees out of phase from each other. In addition to tracking 
a reference input, the system was tested under external 
disturbances as depicted in Fig. 7b from loading and 
unloading conditions. We demonstrated that closed loop 
control maintained an angle within 0.5 degrees of the 
reference angle up to a 150-gram weight and returned to 
within 0.1 degrees of the reference angle in under one 
second each time. Note that at 200 grams the actuators are 
unable to maintain the reference angle and the biceps 
attempt to contract more and the charge input to the triceps 
drops to zero. Responses of the closed-loop multivariable 
system, including the system’s response to sudden human-
induced perturbations, can be found in the supplementary 
video. 

Figure 7: Results of the multivariable controller demonstrating the responses of the multiple input multiple output system to step 
inputs (a) and under conditions of loading and unloading (b). The left axis describes the orientation prescribed to the system by 
the user (orange) and the true orientation of the system (black). The right axis provides the percentage of duty cycle of PWM 
signals to the biceps (blue) and triceps (green) channels. In the top plot (a) 2-degree incremental step inputs are commanded to 
the system by the user. In the bottom plot (b), the system is commanded to maintain an angle of 3 degrees by the user, and 
weights (50 - 200 grams) are added to the lever arm (downward-facing arrow) and removed from the lever arm (upward-facing 
arrow) by the user. 
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VI. DISCUSSION AND FUTURE WORK 

 Through the controller design procedure presented in this 
paper, we have demonstrated that we can synthesize and 
implement an effective controller for a HASEL-driven 
robotic arm. Both the PID and multivariable controllers 
proved satisfactory when tracking a reference input. The 
multivariable system was advantageous in comparison to the 
SISO system as the antagonist muscle pair worked together 
to dampen the system and help attain the desired position 
more quickly. The multivariable controller proved to be 
effective against sudden disturbances and loading and 
unloading conditions, as well.  
 Work needs to be done to determine the best choice of 
time interval, 𝛥𝑡, for the DMDc algorithm. Minimal changes 
in the time intervals severely hindered the model and 
resulted in unrealistic step responses. Further investigation 
also needs to be conducted on expanding the observable 
space and understanding when a model contains an adequate 
number of states to describe the nonlinearities of the system 
properly. Since the controllers proved to be effective, 
expanding the dictionary of observables was not explored in 
this research. The controllers integrated into the biceps-
triceps mechanism were deemed effective, but to optimize 
the overall performance of the closed-loop system, 
modifications should be made in the following three areas: 
mechanical design, modelling, and controller synthesis. 
 Since the controller synthesis framework developed 
during this project does not require any information about 
the system a priori, it can be expanded and adapted to future 
morphologies of HASEL-driven robots, including those with 
more degrees of freedom or alternative actuator geometries. 
More complex soft-robotic system designs should be 
explored in future work to validate this, including those with 
extensive state measurements so that the reduction aspect of 
DMDc can be exploited. 
 Future work can use extensions of DMD, such as eDMD, 
to better capture the intricate nonlinear dynamics of the 
HASEL actuator systems and thus, optimize the controller. 
Attaining a more accurate linear model of the nonlinear 
physical plant will promote the use of the standard controller 
synthesis methods used in this work, so that the performance 
estimates are representative of the closed-loop system. 
 Furthermore, future work should utilize other model-
based controller design methods, such as h-infinity synthesis 
and 𝜇-analysis that will provide added measures of 
robustness. The innate compliance of the soft materials that 
make up HASEL actuators require robust control laws that 
can compensate for any inconsistencies in the performance 
of the actuators over time or from system to system.  
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