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On the Grothendieck-Serre conjecture about
principal bundles and its generalizations

Roman Fedorov

Let U be a regular connected affine semilocal scheme over a field k. Let G be a reductive group scheme
over U. Assuming that G has an appropriate parabolic subgroup scheme, we prove the following statement.
Given an affine k-scheme W, a principal G-bundle over W x; U is trivial if it is trivial over the generic
fiber of the projection W x; U — U.

We also simplify the proof of the Grothendieck—Serre conjecture: let U be a regular connected affine
semilocal scheme over a field k. Let G be a reductive group scheme over U. A principal G-bundle over U
is trivial if it is trivial over the generic point of U.

We generalize some other related results from the simple simply connected case to the case of arbitrary
reductive group schemes.

1. Introduction and main results

The conjecture of Grothendieck and Serre on principal bundles asserts that if G is a reductive group
scheme over a regular affine semilocal scheme U and £ is a rationally trivial principal G-bundle over U,
then £ is trivial. We refer the reader to Section 1F for the precise definitions. The conjecture has been
proved in the case, when U is a scheme over a field k (see [Fedorov and Panin 2015; Panin 2020a]).

One of the main goals of this paper is to generalize this result to families as we now explain. Let U
and G be as before and denote the generic point of U by Q. Let W be an affine k-scheme. Then a
principal G-bundle £ over W x; U is trivial, provided its restriction to W x € is trivial, G satisfies some
isotropy condition, and U is geometrically regular over k.

We note that our result is [Panin et al. 2015, Theorem 1.1] and [Panin 2019, Theorem 7.1], provided
that our group scheme is isotropic, simple, and simply connected, and U is the spectrum of a semilocal
ring of finitely many closed points on an irreducible smooth affine k-variety.

We will also give a streamlined and simplified proof of the conjecture of Grothendieck and Serre.

1A. Strongly locally isotropic semisimple group schemes. We start with formulating precisely the
isotropy condition mentioned above. Let G be a semisimple group scheme over a connected scheme U.
Let Z be the center of G and G := G/Z be the adjoint group scheme of G (see [SGA 3 1970,
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Exposé XXII, §4.3]). By [SGA 33 1970, Exposé XXIV, Proposition 5.10] there is a sequence Uy, ..., U,
of finite étale connected U -schemes such that

GY~[]G'.
i=l

where G' is the Weil restriction of a simple U;-group scheme. Note that the group schemes G' are
uniquely defined by G up to isomorphism.

Definition 1.1. We say that a semisimple U-group scheme G is strongly locally isotropic if each factor G
of G* is isotropic Zariski locally over U.

Remarks 1.2. (i) If G is a simple group scheme over U (or more generally, is the Weil restriction of
a simple group scheme via a finite étale morphism U’ — U with connected U’ and U), then it is
strongly locally isotropic if and only if Zariski locally over U it contains a proper parabolic subgroup
scheme; see [SGA 31 1970, Exposé XX VI, Corollaire 6.14].

(i1) It follows from the previous remark that if a semisimple groups scheme is strongly locally isotropic,
then it is locally isotropic.

(iii) Equivalently, one can show that a semisimple group scheme G is strongly locally isotropic if and
only if Zariski locally over U it contains a proper parabolic subgroup scheme whose image in any
nontrivial quotient of G is a proper subgroup scheme of the quotient.

1B. The Grothendieck—Serre conjecture for families. Here is our first main result.

Theorem 1. Let U be a connected affine semilocal scheme geometrically regular over a field k. Denote
by Q the generic point of U. Let G be a reductive group scheme over U such that G** is strongly locally
isotropic. Let W be an affine k-scheme. Let £ be a principal G-bundle over W x U. If the restriction
of & to W x Q is trivial, then & is trivial.

This theorem will be proved in Section 3B. It is known that the requirement that G be strongly locally
isotropic is necessary (see counterexamples in [Fedorov 2016, §2.3]). However, we conjecture that a
similar statement is true even when U is not a scheme over a field (that is, in the mixed characteristic case).

1C. A simplified proof of the Grothendieck—Serre conjecture. We will also present a simplified proof
of the Grothendieck—Serre conjecture in Section 3A. Precisely, we will reprove the following theorem.

Theorem 2 [Fedorov and Panin 2015; Panin 2020a]. Let U be a regular connected affine semilocal
scheme over a field. Let Q2 be the generic point of U. Let G be a reductive group scheme over U. Let £ be
a principal G-bundle over U. If the restriction of £ to Q2 is trivial, then £ is trivial.

Theorem 2 is derived from Theorem 4 (the “section theorem”) below using the results of [Panin 2019].
Theorem 4 was only known before for simple simply connected group schemes. Thus, to prove Theorem 2,
one had first to reduce to the simple simply connected case, using the so-called purity theorems [Panin
2010; 2020b]. We will show that Theorem 4 holds for all reductive group schemes, thus eliminating
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the difficult reduction to the simple simply connected case. We will outline the strategy of the proof of
Theorem 4 after its formulation in Section 1E.

In the case when G is a torus, the Grothendieck—Serre conjecture was settled in [Colliot-Théléene and
Sansuc 1987]. It seems that our proof is new even in this case.

1D. An application: principal bundles over affine spaces. The following theorem is a generalization of
[Panin et al. 2015, Corollary 1.7].

Theorem 3. Let U be a regular connected affine scheme over Q and let G be a reductive group scheme
over U such that G is strongly locally isotropic. Let n be a nonnegative integer, and let £ be a principal
G-bundle over the affine space A}, whose restriction to the origin U x 0 C Ay, is trivial. Then & is trivial.

Proof. The proof is by induction on n. The case n = 0 is obvious. Assume that the theorem is proved
for n — 1. Let £ be a principal G-bundle over A};,. Write A}, = Nl’]_l Xy A}J. Let H be the zero section
AZ_I x 0 so that we identify A}, = A}{. Note that H is integral. Let €2 be the generic point of H. We
have a commutative diagram

Q—— AL

|

H—— AL=A],

where the horizontal arrows are embeddings of the zero sections. By induction hypothesis the restriction
of £ to H is trivial, so its restriction to €2 is trivial as well. Since the restriction of £ to 2 is trivial, its
restriction to A}z is also trivial by Raghunathan—Ramanathan theorem (see [Raghunathan and Ramanathan
1984; Gille 2002], we are using that U has characteristic zero).

Next, let £ be any point of H and let W be the spectrum of Op ¢. The restriction of £ to Aév via
the obvious morphism is trivial by our Theorem 1, since it is trivial over As]r Further, U is normal so,
according to [Thomason 1987, Corollary 3.2], we can embed G into GL, y for some n. Thus we can
apply [Moser 2008, Korollar 3.5.2] to see that the principal G-bundle £ is trivial over Al = AL U

1E. Section theorems. The following section theorem will be used in the proof of Theorem 2 in
Section 3A.

Theorem 4. Let U be an affine semilocal scheme. Assume that either U is a scheme over an infinite field,
or U is a scheme over a finite field and the residue fields of all the closed points of U are finite. Let G be
a reductive group scheme over U. Assume that Z is a closed subscheme of A[l] Sfinite over U. Let € be a
principal G-bundle over Ab trivial over A}J — Z. Then for every section A : U — AIIJ of the projection
A}] — U the principal G-bundle A*E is trivial.

This is a generalization of [Fedorov and Panin 2015, Theorem 2] and of [Panin 2020a, Theorem 1.6]
from simple simply connected to reductive group schemes. This theorem will be proved in Section 2E.

For not necessarily semilocal U we have a weaker statement, which will be used in Section 3B to
prove Theorem 1.
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Theorem 5. Let U be an affine Noetherian connected scheme over a field. Let G be a reductive group
scheme over U such that G can be embedded into GL,, i for some n. Assume that G** is strongly locally
isotropic. Assume that Z C A}J is a closed subscheme finite over U. Let € be a principal G-bundle
over A}] trivial over A}] — Z. Then for every section A : U — A}] of the projection Allj — U the principal
G-bundle A*E is trivial.

This section theorem will be proved in Section 2F.

Remark 1.3. The condition that G can be embedded into GL,, iy for some 7 is satisfied in many cases:
e.g., if G is semisimple or if U is normal, see [Thomason 1987, Corollary 3.2].

The idea of the proofs of the section theorems above is the following: first, we extend the principal
G-bundle £ to a principal G-bundle & over [P’%]. If G is not simply connected, then the usual proof goes
through with some modifications, provided that the restrictions of £ to the closed fibers of [Iﬂ’b — U are
in the neutral connected component of the stack of principal bundles. This can always be achieved by
pulling back & via a cover I]:"}] - P b of a sufficiently divisible degree.

1F. Definitions, conventions, and notation. All rings in this paper are commutative and unital. A
semilocal ring is a Noetherian ring having only finitely many maximal ideals. An affine semilocal scheme
is a scheme isomorphic to the spectrum of a semilocal ring.

A group scheme G over a scheme U is called reductive if G is affine and smooth as a U-scheme
and, moreover, the geometric fibers of G are connected reductive algebraic groups (see [SGA 3 1970,
Exposé XIX, Définition 2.7]). A smooth group scheme over a field k is called a k-group.

A U-scheme £ with a left action act : G x £ — & is called a principal G-bundle over U if £
is faithfully flat and quasicompact over U and the action is simply transitive, that is, the morphism
(act, pp) : G xy € — &€ xy £ is an isomorphism (see [Grothendieck 1966, §6]). A principal G-bundle £
over U is trivial if £ is isomorphic to G as a U-scheme with an action of G. This is well-known to be
equivalent to the projection £ — U having a section. We will use the term “principal G-bundle over T
to mean a principal Gr-bundle over 7. We usually drop the adjective “principal”.

A subgroup scheme P C G is parabolic if P is smooth over U and for all geometric points Spec k — U
the quotient Gy / Py is proper over k (here k is an algebraically closed field). This coincides with [SGA 3,
1970, Exposé XX VI, Définition 1.1].

2. Proofs of Theorems 4 and 5

We need some preliminaries.

2A. Topologically trivial principal bundles over P!, Let G be a semisimple group scheme over a field k.
Let ¢ : G* — G be the simply connected central cover. In other words, G *° is simply connected and ¢ is
a central isogeny (in particular, ¢ is finite and flat).
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Definition 2.1. A Zariski locally trivial G-bundle E over [P’,l( is called topologically trivial if it can be
lifted to a Zariski locally trivial G*°-bundle. More precisely, this means that there is a Zariski locally
trivial G*°-bundle E*¢ over IP,l such that ¢, E% ~ E.

Remark 2.2. If k is the field of complex numbers, then a principal bundle over [P’,lc is topologically trivial
in the sense of Definition 2.1 if and only if it is topologically trivial in the usual sense, that is, it has a
continuous section (see [Sorger 2000, Corollary 4.1.2]), which justifies the name.

We need the following proposition.

Proposition 2.3. For every Zariski locally trivial G-bundle E over I]j’,i and for every finite morphism
v [P’}( — I]:",l whose degree is divisible by the degree of ¢, the G-bundle W* E is topologically trivial.

Before giving the proof of the proposition we recall the description of Zariski locally trivial G-bundles
over P}. Let T C G be a maximal split torus of G. Let E be a Zariski locally trivial G-bundle over P}. Then
by [Gille 2002, Théoréme 3.8(b)], there is a cocharacter A : G, x — T such that £ ~ 1, O(1)*. Here O(1)
is the hyperplane line bundle over [P’,lc; the Gy, x-bundle O(1)* is the complement of the zero section
in O(1). We are slightly abusing the notation, denoting the composition G,, LT G by A as well.

Proof of Proposition 2.3. Put d := deg ¢. Let T*° be a maximal split torus of G*°. By [Borel and Tits
1972, Théoréme 2.20(i1)], T := ¢ (T *°) is a maximal split torus of G. The k-group scheme 7 x g G*¢ is of
multiplicative type by [SGA 3 1970, Exposé XVII, Proposition 7.1.1(b)] and the isogeny 7' xc G** — T
also has degree d. It is clear that 7% is the toral part of T x g G*C. It is also clear that ¢|psc : T3 — T is
an isogeny whose degree divides d (indeed, we can check it over an algebraic closure of £ in which case
we may assume that 7 x g G is diagonalizable).

Denote the degree of the isogeny ¢|rs : T — T by d’. It is also the index of the cocharacter
lattice X, (T5°) in X,(T). Let E be a Zariski locally trivial G-bundle over [P’,i. As we have already
mentioned, by [Gille 2002, Théoreme 3.8(b)] there is a cocharacter A : G, x — T such that E >~ 1, O(1)*.
Let v : [P’,l( — [P’}{ be a finite morphism of degree n. Then

Y E > ,0m) = (nh) 0D,

where O(n) is the n-th tensor power of O(1). If d divides n, then d’ divides n as well, so n is a cocharacter
of X, (T*°) and it is clear that ¥ *E can be lifted to a G*-bundle. Proposition 2.3 is proved. ]

It is clear from the proof that it is enough to require that the degree of v is divisible by the exponent
of the kernel of ¢.

2B. Recollection on affine Grassmannians. We will use affine Grassmannians of group schemes defined
in [Fedorov 2016] in the proof of Theorem 6. We only consider the affine Grassmannians for semisimple
group schemes. The results below should hold in bigger generality, for example, if the group scheme
is reductive and can be embedded into the general linear group scheme. Since we are not aware of a
reference, we will restrict ourselves to the semisimple case.

For an affine scheme 7'=Spec S, put Dy :=Spec S[[t]] and Dr :=Spec S((¢)), where S((¢)):=S[[¢]1(+™ h.
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Recall the definition of affine Grassmannians from [Fedorov 2016, §5.1]. Consider a connected affine
scheme U = Spec R; let Aff/U be the (big) étale site of affine schemes over U and ét/ U be the (big)
étale site of schemes over U. Recall that a U-space is a sheaf of sets on ét/ U. We can equivalently view it
as a sheaf on Aff/ U (see [SGA 4, 1972, Exposé VII, Proposition 3.1]). Let G be a smooth affine U -group
scheme. The affine Grassmannian Grg is defined as the sheafification of the presheaf, sending an affine
U-scheme T to the set G(DT)/G(DT). (The morphism Dr — Dy induces a morphism G(Dr) — G(DT).
It is obvious that this morphism is injective and we identify G (D7) with its image.) If G is semisimple,
then Grg is an inductive limit of schemes over U (see [Fedorov 2016, Proposition 5.11]). These schemes
may be chosen projective over U, though we will not use it.

Let Y be a finite and étale over U subscheme of Ab (automatically closed). Assume also that Y # &,
then the projection Y — U is surjective (being both open and closed). Let £ be a G-bundle over [P’b. A
modification of £ at Y is a pair (F, t), where F is a G-bundle over [P’b and 7 is an isomorphism

T
]:|P}J—Y - 5|PL—Y

(see [Fedorov 2016, §7.3]). We have an obvious notion of an isomorphism of modifications of £ at Y.

Fix a G-bundle £ over IP’%] and assume that it is trivial in a Zariski neighborhood of ¥ C Ab. Fix such
a trivialization o. Let W, be the functor, sending a U-scheme T to the set of isomorphism classes of
modifications of £ |p1T at Y xy T. Recall [Fedorov 2016, Proposition 7.5]:

Proposition 2.4. The functor YV, is canonically isomorphic to the functor sending a U-scheme T to
Grg(Y xy T).

Note that this isomorphism depends on the trivialization o of £ in a neighborhood of Y. Let o’ be
another trivialization on a (possibly different) Zariski neighborhood of Y. The restrictions of o and ¢’ to
the formal neighborhood of Y differ by a jet « € LT G(Y), where the jet group scheme LG represents
the functor T+ G(Dr). Note that L™ G acts on Grg. The proof of the following lemma is clear from
the proof of [Fedorov 2016, Proposition 5.1].

Lemma 2.5. The functors Y, and W, o & are canonically isomorphic, where & stands for the auto-

morphism of Grg given by the action of a.

Remarks 2.6. To identify the modifications with sections of affine Grassmannian, it is enough to
trivialize £ on a formal neighborhood of Y. Such a trivialization exists if and only if £y is trivial
(because & is smooth over Pb). If £ is not trivial on Y, then the modifications are parametrized by a twist
of the affine Grassmannian.

The unit section of G gives rise to a unit section Idg, € Grg (Y). This section corresponds to the trivial
modification (&, Idg ||p11] _y) under the above isomorphism.

It is clear that we have a natural isomorphism Grg, «, 6, = Grg, xv Grg,.

Note that there is a canonical automorphism of [P’}] switching P}] — (U x 0) and A}]. We use this
automorphism to identify points of Grg(U) with modifications of the trivial G-bundle at U x oo, that is,
with pairs (£, t), where £ is a G-bundle over IP}], and  is a trivialization of £ over A}].
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The following is a slight generalization of [Fedorov 2016, Proposition 7.1].

Lemma 2.7. Let Y be an affine scheme; let y1, ..., y, € Y be closed points. Let H be a simple simply
connected Y -group scheme and assume that H contains a parabolic subgroup scheme that is proper on

every connected component of Y. Then the restriction morphism

n
Gry(Y) - [ [Gra ()
i=1

is surjective.

Proof. The proof is very similar to the proof of [Fedorov 2016, Proposition 7.1] but we give it for the sake
of completeness. Let P be a parabolic subgroup scheme of H proper on every connected component
of Y. Since Y is an affine scheme, by [SGA 3; 1970, Exposé XXVI, Corollaire 2.3, Théoreme 4.3.2(a)],
there is an opposite to P parabolic subgroup scheme P~ C H. Let U™ be the unipotent radical of P,
and let U™ be the unipotent radical of P~. We will write E for the functor, sending a Y-scheme 7 to the
subgroup E(T) of the group H (T) generated by the subgroups U™ (T) and U~ (T) of the group H (T)
(see [Fedorov and Panin 2015, Definition 5.23; Fedorov 2016, Definition 7.2]). As in the proof of [Fedorov
2016, Proposition 7.1], we have a diagram

E(Dy) —— [[\_, E(Dy)

| |

Gry(Y) — [1/_; Gra(y)

By [Fedorov 2016, Lemma 7.3] (whose easy proof is valid for any reductive group scheme) the top
horizontal map is surjective. Thus it is enough to show that the map

E(D,,) — Gru(y)

is surjective for each i. Set k := k(y;) and H := H,,. Consider an element of Gry (y;) = Gry(k),
represented by a pair (£, 7), where £ is an H-bundle over I]:",i, and t is a trivialization of £ over A,ﬁ. By
[Gille 2002, Théoreme 3.8(a)], £ is Zariski locally trivial. Let us trivialize £ in a formal neighborhood of
00, this trivialization and 7 differ by an element g € H (k((t))). By construction, the image of 8 under
the projection H (k((1))) — Grg (y;) is (€, 7).

Next, H is simple and simply connected and the field k((¢)) is infinite. Thus we may use [Gille 2009,
Lemme 4.5(1) and Fait 4.3(2)] to conclude that we can write 8 = 8'8” with 8’ € E(k((t))) = E(Dyl.),
B" € H(k[[t]]). Clearly, B lifts (£, ) and we are done. O

Note that, instead of using [Gille 2002, Théoréme 3.8(a)] in the proof above, one can use the
Grothendieck—Serre conjecture for discrete valuation rings [Nisnevich 1984]. The same applies to
the reference in the proof of Theorem 4.

2C. Lifting modifications to the simply connected central cover. Let, as before, ¢ : G — G be the
simply connected central cover of a semisimple k-group scheme G, where k is a field. This gives a
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morphism of ind-schemes Grgse — Grg. The goal of this section is to prove the following proposition
(cf. Lemma 2.5).

Proposition 2.8. Let K be any field containing k. The image of the set Grgs(K) in Grg(K) is
LT G(K)-invariant.

Proof. Since LTG(K) = L*Gk(K) and Grg(K) = Grg, (K), performing a base change we may assume
that K = k.

For split group schemes there is a well-known stratification of Grassmannians by L™ G-orbits; the orbits
are parametrized by the Weyl group orbits in the cocharacter lattice. If the group scheme is not an inner
form, we have a coarser stratification constructed in [Fedorov 2016]. We will recall this stratification now.

Let G*P! be the split semisimple k-group scheme of the same type as G. Let TP! € G*P' be a maximal
(split) torus. Following [Fedorov 2016, §5.4.2] put

X, := Hom(Gy, 1, T*") C T (k((1))).

For A € X, denote by t* the corresponding element of 7 *P! (k((t))). Abusing notation, we also denote
by t* the projection to Grgsp (k) of

t* e TP (k((t)) € G (k((1))).

Denote by GrkGspl the L*G*P-orbit of t*; this is a locally closed subscheme of Grg«i. We have
Gr:,,, = Gr/ s if and only if A and p are in the same W-orbit (here W is the Weyl group of G,

Gsp] -
By [Fedorov 2016, Proposition 5.7], we get a stratification (in the sense of [Fedorov 2016, §5.3])
Grgm = | ) Griu. (1)
reX, /W

Next, G is a twist of G*! by an Aut(G*P")-bundle T over Spec k, so by [Fedorov 2016, Proposition 5.4]
we get Grg =T x Aut(G*"") Grgsp. Unfortunately, the orbits Gréspl are not Aut(G*P!)-invariant, so we need
a coarser stratification. Note that Out := Aut(G*P!)/ G acts on W so we get a semidirect product
W X Out. For A € X,./(W X Out), write Orb():) for the corresponding Out-orbit on X,/ W and put

Gspl = |_| GI'GSP] .

A€0rb(h)
Note that, if A1, Ay € Orb()A\), then Gré1 is isomorphic to Gréz, so these orbits have the same dimension. It

follows that Gré cannot lie in the closure of Gréz. Thus, the above is, in fact, a disjoint union of schemes.

The locally closed subsets Gr . are Aut(GP")-invariant so we put

Gsp
Grl =T s AUt(GP) Gr}.
Now the stratification (1) gives rise to a stratification [Fedorov 2016, Proposition 5.12]

ae= |J o )
A€X./(WXOut)
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Let G5! be the simply connected central cover of G*P, T5%P! be the preimage of 7P in G*¢*P! (this is

a maximal split torus in G*¢*P"), and X*¢ be the cocharacter lattice of 7 *©*P\, Then, similarly to the above,

Grgse = U Grésc;
LeXse/(WhOut)
this decomposition is compatible with (2) and the projection 7 : Grgsc — Grg.

Now we return to the proof of Proposition 2.8. Consider a point o € Grg (k). By (2) it belongs to Gré (k)
for some A € X «/ (WX Out). We claim that « lifts to a point of Grgse (k) if and only if rex /(W X Out)
(we identify X3¢ with a sublattice of X,). The proposition follows from this statement because Gré is
manifestly L+ G-invariant.

Recall that the projection 7 : Grgse — Grg takes Gréw to Gr;\G. This proves the “only if” part of our
claim. For the converse, it suffices to prove the following lemma.

Lemma 2.9. Assume that ) € X 26/ (W Out). Then 1 induces an isomorphism of schemes GriGsc — Gré.

Proof. First of all, it is enough to prove the statement after passing to an algebraic closure of &, in which
case G is split and we have a finer stratification (1). Thus we assume that & is algebraically closed and
show that for A € X3°/ W the canonical morphism 7" : Gré;SC — Gr%; is an isomorphism.

We say that a parabolic subgroup scheme P C G is of type A if the Weyl group of a Levi factor of P is
the stabilizer of A in W. Let F, é be the scheme of parabolic subgroups of type A. In [Fedorov 2016, §5.4.3]
we constructed a morphism Gr%; — F é We have a similar morphism for G*¢ and a commutative diagram

4
Gré; o —2— Gré

F

Flw — F},

Note that the lower horizontal morphism is an isomorphism (the proof is analogous to [Conrad 2014,
Exercise 5.5.8]). Since the left projection in the diagram is G*“-equivariant and G*¢ acts transitively
on F(’\;SC, the generic flatness implies that this projection if flat. Similarly, the right projection is flat. Thus
it is enough to check that 77’ induces isomorphism of fibers.

Fix a lift of A to X¢ so that we have a point t* € Gr’éSC (k) and a point t* € Gr’é (k). Let C*° be the fiber
of the morphism Gré «—>F é « containing t*; let C*° be the fiber of the morphism GrkG — F é containing t*.
It is enough to show that 7" induces an isomorphism C* — C because diagram (3) is G *°-equivariant.

For a k-group scheme H, we denote by H! the kernel of the evaluation map LT H — H. We note
that this is just the group scheme of jets into H based at the identity. We claim that C is the G1-orbit
of t*. Indeed, we have a semidirect product decomposition L*G = GV’ X\ G. As explained in [Fedorov
2016, §5.4.3], the morphism Gré; — F (}Ji is induced by the evaluation map

L"G=GY\NG—- G- G-t"=F}L.

Let P* be the stabilizer of t* in G. We see that C = GV P* .14 = G . ¢*,
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Next, let U be a unipotent subgroup scheme of G opposite to P*. We claim that C = U - t* To
this end, it is enough to check that G = UM . P and that PV stabilizes t*. For the first statement
we note that the multiplication map U x P — G induces an isomorphism on the level of Lie algebras,
so it induces an isomorphism of jets based at the identity. Similarly, the second statement reduced to a
statement about the Lie algebras.

Let U C G*° be the preimage of U under the projection G* — G. Then U * is a unipotent subgroup
scheme opposite to the stabilizer of #* in G*°. Similarly to the above we check that C* = (U)(D . ¢4,

Note that the central isogeny ¢ : G — G induces an isomorphism U — U. Thus we have an
isomorphism (U)D — yMD | The stabilizer of t* in UWD is

vn@ LYG -+ =u0Yn¢ - LTU -t

and we have a similar formula for the stabilizer in (U*))). Thus the above isomorphism identifies
stabilizers, so it induces an isomorphism C* — C. The lemma follows. U

The lemma completes the proof of the claim. Proposition 2.8 is proved. U

Remark 2.10. If the characteristic of £ does not divide the order of 711 (G), it is known that 7 : Grgsc — Grg
induces an isomorphism between Grgse and the neutral connected component of Grg. On the other hand,
it is not difficult to derive from the above proof that in general 7 is a morphism from Grgse to the
neutral connected component of Grg inducing an isomorphism on K -points for every field K. The above
proposition follows from this fact because the neutral component is preserved under the action of the
connected group scheme L1 G. One expects that this morphism is a universal homeomorphism. We refer
the reader to [Haines and Richarz 2019, Proposition 3.5] for a similar statement.

2D. Principal bundles with topologically trivial fibers over families of affine lines. In this section we
prove an analogue of [Fedorov and Panin 2015, Theorem 3] and of [Panin 2020a, Theorem 1.8] where
the group scheme is allowed to be arbitrary reductive but the G-bundle is required to be topologically
trivial on closed fibers. Recall that a semisimple group scheme over a scheme U is called isotropic if
it contains a one-dimensional torus G, y. If U is connected affine, and semilocal, then by [SGA 3
1970, Exposé XX VI, Corollaire 6.14] this is equivalent to the group scheme containing a proper parabolic
subgroup scheme. For any scheme S we denote by Pic(S) the group of isomorphism classes of line
bundles over S. Recall that Z is the center of G and G* = G/Z.

Theorem 6. Let U be a connected affine semilocal scheme over a field. Let G be a reductive group

Gad ~ lL[ Gi,
i=1

where G' is the Weil restriction of a simple U;-group scheme G' via a finite étale morphism U; — U.
Let Z C A%] be a closed subscheme finite over U. Let G be a principal G-bundle over [P’%] such that its
restriction to I]J’b — Z is trivial and such that for all closed points u € U the Gid-bundle Glp1)/Zy is

scheme over U; write

topologically trivial.
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LetY C Ab be a closed subscheme finite and étale over U. Assume that Y N Z = &. Assume further
that for eachi =1, ..., r there is an open and closed subscheme Y' C Y xy U; satisfying two properties:

(i) the pullback of G' to each connected component of Y' is isotropic, and
(ii) for every closed point v € U; such that G’v is isotropic we have Pic([P’L —YH=0.

Finally, assume that the relative line bundle O'P’b (1) trivializes on [P’}] — Y. Then the restriction of G
fo Pb — Y is also trivial.

Remarks 2.11. (i) The condition that OP}J (1) trivializes on [P’b — Y is necessary. Indeed, if we take
G=G,y,G= Opb(l)x, Y = &, then G is not trivial over [P’IU — Y. (Note that Y satisfies the other
conditions of the theorem because r = 0.)

(ii) Note that the G;d—bundle (Glp1)/Zy is Zariski locally trivial, because G|p) is trivial over IP; —-Z,.

(iii)) Assume that the residue fields of the closed points of U are infinite. Then we may start with
Y, Z C IP%]. Indeed, applying a projective transformation of IP%, we can always achieve Y, Z C All].
The condition ¥ N Z = & is also not necessary in this case; see Remark 2 after [Fedorov and Panin
2015, Theorem 3].

(iv) The proof of this theorem is much simpler in many cases: for example, if U is local or normal.
When U is not normal, the problem is that a line bundle on IP}J — Y need not be trivial, unless it can
be extended to [P’}].

We need a proposition, which is a slight generalization of [Panin et al. 2015, Proposition 9.6].

Proposition 2.12. Let, as above, U be a connected affine semilocal scheme over a field. Let H be a
semisimple U-group scheme. Let H be an H-bundle over [P’b such that for every closed point u € U the
restriction of H to [Ij’}t is a trivial H,-bundle. Then H is isomorphic to the pullback of an H -bundle over U.

Proof. Since H is semisimple, there is an embedding H < GL,, yy for some n by [Thomason 1987, Corol-
lary 3.2]. The rest of the proof is completely analogous to that of [Panin et al. 2015, Proposition 9.6]. [J

Proof of Theorem 6. Step 1. Let G' be the simply connected central cover of the group scheme G’
(see [Conrad 2014, Exercise 6.5.2]). Then [];_, G' is the simply connected central cover of G*. We
claim that the covering homomorphism [ ];_, G — G lifts to a homomorphism []i_, G — G. Indeed,
let [G, G] be the derived subgroup scheme of G, then the morphism [G, G] — G is a central isogeny,
so the simply connected central cover of [G, G] is also the simply connected central cover of G,
Hence, [];_, G' — G™ factors through [G, G] and the statement follows. Thus we have a sequence of
homomorphisms

ﬁéi—>6—>Gad=1L[Gi.
i=1 i=1

Let G' be the simply connected central cover of G'. It is easy to see that G is the Weil restriction of G’
via U; — U.
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Step 2. Let u € U be a closed point and put G, := G|pi. By assumption (see Definition 2.1), the
Gﬁd—bundle Gu/Z, lifts to a Zariski locally trivial [];_, 5; -bundle G, over P.. This corresponds to a
sequence (G', ..., G"), where G/, is a G' -bundle. Let G be the pushforward of G, to G'.. According to
[SGA 3 1970, Exposé XXIV, Proposition 8.4], G'-bundles over any scheme 7T correspond to G'-bundles
over T xy U;. Fix i and consider the finite scheme u :=u xy U;. Let a; be the G'-bundle corresponding
to &u and let Q; be the G'-bundle corresponding to g;;.

We claim that @4 is trivial over PL — Y! for all i. Indeed, let v € u, it is enough to show that every
Zariski locally trivial G'-bundle over [P’ll) -7, l’) is trivial. If 6’1) is anisotropic, this follows immediately from
[Gille 2002, Théoreme 3.10(a)]. If (/}\ﬁj is isotropic, then G_fj is also isotropic (see [Borel and Tits 1972,
Théoreme 2.20]) so Pic(l]j’ll) — Yj;) =0, and the statement again follows from [Gille 2002, Théoréme 3.10(a)].

Fori=1,...,r choose a trivialization 7. of C7u over PL —Y!. These trivializations induce trivializations
of G!, on P, — Y. Denote these trivializations by 7.

Step 3. Let F', be the trivial Gi -bundle over P.. Then (F, 7!) is a modification of G at Y. Choose
a trivialization of G over I]:D;] — Z. Since Y N Z = @, this gives a trivialization of G, (and, in turn, of Qfl)
in a neighborhood of ¥, C . Finally, we get a trivialization of G', in a neighborhood of ¥ C PL. The
latter trivialization allows us to identify modifications with sections of the affine Grassmannian, so that
(Fi,, Ti) corresponds to &', € Grg: (Y1).

Lemma 2.13. & can be lifted to &!, € Grg: (Y}).

Proof. Consider any trivialization 6, of a’u in a Zariski neighborhood of Y;.. This induces a trivialization &,
of G, in the same neighborhood. These trivializations allow us to identify modifications with sections of
affine Grassmannians. In particular, denoting by ﬁu the trivial f}\; -bundle over P\, we get a modification
(Fi, £1) of GL, and thus a section B, € Grg: (Y}).

Let B! be the image of Bl’l under the projection Grgi (Y,) = Grgi (Y.). It follows from the construction
that &', and B, correspond to the same modification of the same G’ -bundle but with respect to different
trivializations of this bundle near Y}. According to Lemma 2.5, &, differs from i, by an action of an
element of LT G (Y, ). The lemma follows from Proposition 2.8, applied to each point of Y/, and the
fact that I lifts to fL. O

Step 4. Let @', be as in the above lemma. The group scheme (6i)yi contains a proper parabolic subgroup
scheme because (G_i )yi does (see [Conrad 2014, Exercise 5.5.8]). Thus, by Lemma 2.7, the collection (&L)
lifts to a point & € Grg: (Y"). We extend this to a point of Grg: (Y xy U;) by setting &' |y .,y _yi = Idcr.
It is easy to see that Grgi (Y xy U;) = Grgi(Y), so &' corresponds to &' € Grgi(Y). Now the collection
@ltli=1,...,r) gives rise to a section « € Grg(Y). Since we have trivialized G in a neighborhood of Y,
this gives a modification (F, t) of G at Y. By construction the G2¢-bundle (F Ip1)/Zy is trivial for every
closed point u of U. Now, by Proposition 2.12, the G*-bundle F/Z is isomorphic to the pullback of
a G*-bundle under the projection [P’b — U. On the other hand, since F is a modification of G at Y, the
GY-bundle (F/Z) |y xoo = (G/Z)|txoo is trivial. It follows that F/Z is trivial. Now, it follows from the
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exact sequence for nonabelian cohomology groups, that there is a Z-bundle Z over [P’}] such that F is
isomorphic to the pushforward of Z.

Step 5. Note that the center of a reductive group scheme is a group scheme of multiplicative type. Recall
that the relative line bundle OPIU (1) trivializes on [P’}] — Y. The following lemma is somewhat similar
to [Colliot-Thélene and Sansuc 1987, Lemma 2.4].

Lemma 2.14. Let U and Y be as before; let Z be a group scheme of multiplicative type over U. Let Z
be a Z-bundle over IP%]. Then Z |Pb _y is isomorphic to the pullback of a Z-bundle over U.

Proof. Since Z is not smooth in general, we will work in the fppf topology over U. We claim that there
is a unique cocharacter A : G,y — Z such that 2" := )\*(9[% (1)* and Z are isomorphic locally in the
fppf topology over U. Indeed, the statement is local over U, so we may assume that Z is split. Then the
question reduces to the cases Z = G, y and Z = u, y, where [, y is the group scheme of n-th roots of
unity. The first case is a statement about line bundles; we leave it to the reader. The second case reduces
to the statement that a u, y-bundle over I]I’{, is trivial fppf locally over the base, which follows easily
from the exact sequence 1 — w, v = Gu.v = G,.v — 1; the claim is proved.

We see that Z ~ 2’ ® p*2”, where p : P[, — U is the projection, Z” is a Z-bundle over U (note
that Z is a commutative group scheme so the tensor product of Z-bundles makes sense). It remains to
notice that Z’ = )‘*OP},(I)X is trivial on [P’}] — Y because OP}]_Y(I) is trivial. Lemma 2.14 is proved. [

We see that F|p [ is isomorphic to the pullback of a G-bundle over U. Since F and G are isomorphic
over U x 00 and G is trivial over U x 0o, we see that F|p) _y is trivial. Finally, G and J are isomorphic
over [P’}] — Y, and Theorem 6 is proved. U

2E. Proof of Theorem 4. We use the notation from the formulation of the theorem. We may assume
that U is connected. Applying an affine transformation to A!,, we may assume that A is the horizontal
section A(U) = U x 1. We can extend the G-bundle £ to a G-bundle € over [P’b by gluing it with the
trivial G-bundle over P }] —Z. Let ¢ : G** — G be the simply connected central cover (see [Conrad 2014,
Exercise 6.5.2]); let d be the degree of ¢. Consider the morphism P}, — P : z > z9; let ¢ : P}, — P},
be the base change of this morphism. Consider the G-bundle ¥*£ over [P’b. For a closed point u € U
write £, := |p1. Then by [Gille 2002, Théoréme 3.8(a)] the G2%-bundle &,/ Z, is Zariski locally trivial.
By Proposition 2.3 the Gfld—bundle Vv*E,/ Z, is topologically trivial. Since the morphism 1 has a section
over U x 1, it is enough to show that W*5~|Ux1 is trivial.

Case 1. U is a scheme over an infinite field k. We use notations from the formulation of Theorem 6. By
[Fedorov and Panin 2015, Proposition 4.1] fori =1, ..., r, we can find a scheme Y ! finite and étale
over U; such that (G')y: is isotropic and for every closed point v € U; such that Gﬁ) is isotropic we have
a k(v)-rational point on the fiber Y.

View Y' as a U-scheme via Y' — U; — U and consider a closed U-embedding Y’ — [P’b. Since k
is infinite and U is semilocal, we can shift the subschemes Y so that they do not intersect each other,
v~ 1(Z),and U x 1. Again, since k is infinite, we have a € k such that U x a does not intersect v H(2).



460 Roman Fedorov

Take Y = |_|f:1 YU (U x a). Note that Y’ is an open and closed subscheme of ¥ xy U;. If v is a closed
point of U; such that G' is isotropic, then Y contains a rational point, so Pic(P! — ¥/) = 0. Thus we
can apply Theorem 6 to ¥ *E.

Case 2. The residue fields of points of U are finite over k. Note that for all closed points v € [P’%]i the
group scheme G_f) is quasisplit, since k(v) is a finite field. A Borel subgroup of G_fj gives a k-rational point
on the v-fiber of the U;-scheme of Borel subgroup schemes of G'. Thus, using [Panin 2020a, Lemma 3.1],
we find a finite and étale over U; scheme Y such that (Gi)yi is quasisplit and for all closed points v € U;
the fiber Yé has a k(v)-rational point.

Now we construct inductively for i =1, ..., r finite field extensions k; and k.’ of k of coprime degrees
and a closed embedding

Yi= (' x, Speck;)u(?i xi Speck]) = A,

such that Y’ does not intersect U;_:ll Y/ U (U x 1) and for all closed points v € U; the algebras k(v) ®x k:
and k(v) @y k!’ are fields. (We identify schemes Y ! with their images in AIIJ.)

This is accomplished by applying the proof of [Panin 2020a, Lemma 2.1] (note that this lemma
requires Y’ to have a rational point on every closed fiber but this is only needed to conclude that
Pic(A}, — Y') = 0, which we do not claim).

By [Panin 2020a, Lemma 2.1] applied to the identity morphism U — U, we can find field extensions
k" Dk and k" D k of coprime degrees and a closed U-embedding

(U x; Speck’) U (U x; Speck”) < A,

such that the image Y of this embedding does not intersect 1 ~'(Z), U x 1, and any of Y'. Note that the
relative line bundle O(1) trivializes on P }] - YO

Take Y = | J/_, Y. Note that Y/ is an open and closed subscheme of ¥ x; U; and by construction G'
is quasisplit over Y’. Thus, G' is isotropic over each connected component of ¥’ by [SGA 3, 1970,
Exposé XX VI, Corollaire 6.14]. Also, for each closed point v € U;, the fiber ¥/ has two points of coprime
degree over k(v) (namely, Spec(k(v) @ k;) and Spec(k(v) ® k). Thus, Pic(A! — Yi) = 0. It remains
to apply Theorem 6 to ¥ and ¥/*&. O

2F. Proof of Theorem 5. We use the notation from the formulation of the theorem. As in the proof of
Theorem 4, we extend the G-bundle € to a G-bundle & over P}] and assume that A(U) =U x 1. Let
and £, be as in the proof of Theorem 4, then ¥*E,/Z, is topologically trivial for every closed point
u € U. Tt is enough to show that ¢*& |"3’b _(Uxo) 18 trivial. By assumption, we can embed G into GL, .
By [Moser 2008, Korollar 3.5.2] we may assume that U is local (note that IP}] — (U x0) ~ All]).

In the same way as in the proof of Theorem 4 we find a closed subscheme Y C IP}J finite and étale
over U such that *¢ is trivial over [P’}] — Y. Note that such Y may be chosen so that it does not intersect
any given closed subscheme of Ab as long as this subscheme is finite over U. In particular, we may
assume that ¥ N (U x 0) = @. Since G* is strongly locally isotropic and U is local, each G' is locally
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isotropic. Thus, we can apply Theorem 6 taking ¥ for Z and U x 0 for Y. We see that ¢ *£ is trivial over
P b — (U x 0), which completes the proof of the theorem. (]

3. Proofs of Theorems 1 and 2

In this section we derive Theorems 2 and 1 from Theorems 4 and 5 respectively. The proofs are based on
[Panin 2019, Theorem 1.5]. Note that these derivations are similar to those given in [Fedorov and Panin
2015; Panin 2020a; Panin et al. 2015]; we present them here for the sake of completeness.

3A. Proof of Theorem 2. Step 1. We may assume that U is the semilocal scheme of finitely many closed
points x1, ..., X, on a smooth irreducible k-variety X, where k is a field. Indeed, let U = Spec R and let k
be the prime field of R (or any other perfect field contained in R). Then, by Popescu’s theorem [Popescu
1986; Swan 1998; Spivakovsky 1999], we can write U = lim U,,, where U, are affine schemes smooth and
of finite type over k. Modifying the system (U, ), we may assume that U, are integral schemes. A standard
argument shows that there is an index «, a reductive group scheme G, over U, such that G, |y = G, and
a G,-bundle &, over U, trivial over the generic point of U, and such that the pullback of &, to U is
isomorphic to £. Let yy, ..., y, € U, be the images of all closed points of U. Fori =1, ..., n choose a
closed point x; € U, in the Zariski closure of y;. Let R’ be the semilocal ring of x1, ..., x, on X := U,.
Let G’ be the restriction of G, to U’ := Spec R". The morphism U — U,, factors through U’. Thus it is
enough to prove the theorem for U’, G', and £ := &, x xy, U’

Step 2. Replacing X by a Zariski neighborhood of {xi, ..., x,}, we may assume that there are a group
scheme Gy over X such that Gx|y = G, a Gx-bundle £ over X such that £'|y = £, and a nonzero
function f € H°(X, Ox) such that the restriction of &' to X £ 1s a trivial bundle.

Step 3. We keep the notation from Step 2. Multiplying f by an appropriate function, we may assume
that f vanishes at each x;. Our goal is to construct a G-bundle G over All] by étale descent such that
Gluxo == €. Then we can apply Theorem 4 to conclude that £ is trivial. The construction of this £ is
standard and is achieved by using a certain diagram. Precisely, by [Panin 2019, Theorem 1.5] there is a
monic polynomial & € HO(U, Oy)[t], a commutative diagram with an irreducible affine U-smooth Y:

1 PX‘y;k(h)
(Ay)h A— Yr*(h) —— Xf

incl incJ{ incl (4)

Ab T Y Px X

and a morphism é : U — Y satisfying the following conditions:

(i) The left square is an elementary distinguished square in the category of affine U-smooth schemes in
the sense of [Morel and Voevodsky 1999, §3.1, Definition 1.3]; this means that the vertical maps are
open embeddings, the horizontal maps are étale, and 7 induces an isomorphism

T ({h = 0D)red = {h = O}rea.
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(i) px o8 =can: U — X, where can is the canonical morphism.
(i) tod=ip:U — A}] is the zero section of the projection pry; : A}] — U.

(iv) For py :=pry ot there is a Y-group scheme isomorphism @ : p};(G) — p%(Gx) with §*(P) =idg.

Step 4. We use part (iv) of Step 3 to view p3E’ as a G-bundle. We use the left square from part (i) of
Step 3 to glue the trivial G-bundle over (A}])h with p% &’ to get a G-bundle G over A}]. We have

E=can* & =8 py& =8"1"G =i}G )

so it remains to show that ;G is trivial. But {# = 0} is a closed subscheme of Ag] and it is finite over U
because £ is monic. The residues of all closed points of U are finite extensions of k, so they are finite if &
is finite. Thus we can apply Theorem 4 and conclude that i;jG is trivial. ([

Remark 3.1. A priori, (5) is an isomorphism of U-schemes. This is enough for our purposes because a
principal bundle is trivial if and only if it has a section, so that triviality does not depend on the group
scheme action. On the other hand, using the equation §*(®) = idg, one can show that (5) is compatible
with the action of the group scheme, see [Panin 2019, §6].

3B. Proof of Theorem 1. Step 1. We may assume that W is of finite type over k. Indeed, write
W =1lim W,,, where W, are k-schemes of finite type. Since & is affine and finitely presented over W x; U,
there is an index « and a G-bundle &, over W, x; U such that £ is isomorphic to the pullback of &, to
W x; U. Next, there is an index 8 > « such that the pullback of &, to Wg x; U (call it £g) is trivial over
Wpg x i 2. We see that it is enough to prove the theorem with W and & replaced by Wy and Eg.

Step 2. Similarly to Step 1 of the proof of Theorem 2, we may assume that U is the semilocal scheme of
finitely many closed points xi, . .., x, on a smooth irreducible k-variety X. In more detail, by Popescu’s
theorem we can write U = lim U,,, where U, are affine schemes smooth and of finite type over k. We may
assume that U, are integral schemes. Then we find an index «, a reductive group scheme G, over U,
such that G is strongly locally isotropic and such that G, |y = G, and a G,-bundle &, over W x; U,
trivial over W xj €2,, where €2, is the generic point of U, and such that the pullback of &, to W x; U is
isomorphic to £. Then it is enough to prove the theorem with U replaced by an appropriate semilocal
ring of finitely many closed points of U,.

Step 3. Set U' := W x; U, X' := W x; X. Similarly to Step 2 of the proof of Theorem 2, we may
assume that there is a group scheme Gy over X such that Gx|y = G, a G x-bundle & over X’ such that
E'|yr = &, and a nonzero function f € H(X, Ox) such that the restriction of £ to X } is a trivial bundle.

Step 4. Similarly to Step 3 of the proof of Theorem 2, we find a monic polynomial 7 € H(U, Op)l[t], a
commutative diagram (4) with an irreducible affine U-smooth Y, and a morphism é : U — Y satisfying
the same conditions.
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Step 5. Set Y’ := W x; Y. The diagram (4) is a diagram over k. Thus we can multiply this diagram by W,
getting a monic polynomial 2’ € H(U’, Oy/)[t] and a commutative diagram

pX/ly/
1 / (t/)*(n) /
(AU/)]’L’ Y(r’)*(h’) Xf

incl incl incJV

All]/ T Y/ Px’ X/

We also get a morphism 8" : U’ — Y’. These data satisfy the following conditions:

(1) The left-hand side square is an elementary distinguished square in the category of affine U’-smooth
schemes in the sense of [Morel and Voevodsky 1999, §3.1, Definition 1.3].

(2) px o8 =can: U’ — X', where can is the canonical morphism.
(3) /08’ =i): U’ — A}, is the zero section of the projection pry, : Aj, — U’

Step 6. We use part (iv) of Step 4 of the proof of Theorem 2 to view p%,£" as a G-bundle. We use the left
square from part (i) of Step 5 to glue the trivial G-bundle over (A},), with Py to get a G-bundle G
over Ab,. We have

€ =can* & = ()" € = (8)*(t)G = (i))*G,

so it remains to show that (i(,)*G is trivial. But G can be embedded into GL,, y for some n because U is
regular and, in particular, normal (see [Thomason 1987, Corollary 3.2]). Thus Gy can be embedded into
GL, y'. Next, {h’ = 0} is a closed subscheme of Ab/ and it is finite over U’ because /' is monic. Thus
we can apply Theorem 5 and conclude that (i()*G is trivial. U
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