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Abstract—We propose a random adaptation variant of
time-varying distributed averaging dynamics in discrete
time. We show that this leads to novel interpretations of
fundamental concepts in distributed averaging, opinion
dynamics, and distributed learning. Namely, we show that
the ergodicity of a stochastic chain is equivalent to the
almost sure (a.s.) finite-time agreement attainment in the
proposed random adaptation dynamics. Using this result,
we provide a new interpretation for the absolute proba-
bility sequence of an ergodic chain. We then modify the
base-case dynamics into a time-reversed inhomogeneous
Markov chain, and we show that in this case ergodicity
is equivalent to the uniqueness of the limiting distribu-
tions of the Markov chain. Finally, we introduce and study
a time-varying random adaptation version of the Friedkin-
Johnsen model and a rank-one perturbation of the base-
case dynamics.

Index Terms—Network analysis and control, networked
control systems.

I. INTRODUCTION

D ISTRIBUTED averaging is a central mechanism to
information mixing in distributed optimization [1], dis-

tributed parameter estimation and signal processing [2],
decentralized control of robotic networks [3], and opinion
dynamics [4]. Hence, a variety of distributed averaging dynam-
ics have been studied till date within different mathematical
frameworks [5]–[7].

In particular, distributed averaging algorithms over time-
varying networks are often analyzed using chains/sequences of
stochastic matrices (a class of non-negative matrices). Several
properties of such chains, such as ergodicity and reciprocity,
have been studied in detail [8]–[14]. Despite this abundance
of literature, interpretations of some key concepts in this area,
such as Kolmogorov’s absolute probability sequences, have
remained elusive.
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On the other hand, stochastic matrices can be interpreted by
noting that every row of such matrices gives the probability
mass function of a discrete random variable. Thus motivated,
we introduce a random adaptation framework in which each
entry of a stochastic matrix denotes the probability that a node
i adapts to the state of a node j, rather than the weight assigned
by i to j. That is, we propose random adaptation variants of
some classical discrete-time distributed averaging dynamics.
We then study the proposed dynamics to interpret in a new
light certain concepts that are central to the study of stochas-
tic chains and averaging dynamics. Our contributions are as
follows:

1) An Interpretation of Ergodicity: We show that the clas-
sical notion of ergodicity is equivalent to an intuitive
condition of agreement in finite time in the random
adaptation dynamics.

2) An Interpretation of Absolute Probability Sequence:
Using the above characterization of ergodicity, we
interpret the absolute probability sequence of an ergodic
chain as the limiting probability distribution of the com-
mon value attained by all the nodes in the proposed
dynamics.

3) Ergodicity vis-a-vis Uniqueness of the Limiting
Distribution: We propose a time-reversed, transposed
variant of the aforementioned dynamics and use it to
show that the limiting distribution of the state vector
is unique if and only if the given stochastic chain is
ergodic. This leads to a new insight: absolute proba-
bility sequences are to ergodic chains what stationary
distributions are to regular stochastic matrices.

4) Asymptotic Behaviors of Variants: Finally, we discuss
the random adaptation interpretation of the well-known
Friedkin-Johnsen model of opinion dynamics [15] as
well as rank-one perturbations of the base-case dynam-
ics. In both the cases, we study the limiting probability
distributions of the agents’ states/opinions.

In the extended version of our paper [16], we also include
simulations to illustrate some of our results numerically.

Related works: This letter is closely related to the voter
model [17], [18] and its many extensions (e.g., [19]–[24]),
which apply to social networks and describe the processes
of individuals randomly adapting to their neighbors’ political
preferences. However, our work differs from these prior works
in at least two fundamental ways. First, the voter model and
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most of its variants assume a limit on the number of agents
that update their opinions synchronously, whereas our model
does not make any assumptions on the level of synchrony
among the agents’ updates (note that our update rules can
be used to prevent an arbitrary set of agents from updating
their opinions by simply setting the corresponding diagonal
entries of the associated stochastic matrices to 1). For instance,
the voter model with zealots [25] differs from our random
adaptation variant of the Friedkin-Johnsen model in that, in the
former, at most one agent updates its state in any given update
period. Second, in our paper we provide a bridge between the
study of ergodicity of averaging dynamics and the convergence
properties of random adaptation dynamics, a correspondence
that has not been established in the past.

Besides, some of our results may be related to the well-
studied duality between coalescing random walks and voter
dynamics [26], [27].

Notation: In this letter N := {1, 2, . . .}, N0 := N ∪ {0},
R denotes the set of real numbers, Rn denotes the set of n-
dimensional real-valued column vectors, and Rn×n denotes
the set of n × n real-valued matrices. For n ∈ N, we let
[n] := {1, 2, . . . , n}. For a vector v ∈ Rn, vi denotes its ith
entry, and bij denotes the (i, j)th entry of a matrix B ∈ Rn×n.
All matrix inequalities hold entry-wise.

For a given n ∈ N whose value is clear from the context,
let O, I denote the n × n matrix with all zero entries and the
identity matrix, respectively. We denote the column vectors
with all zero entries and all one entries in Rn by 0 and 1,
respectively. e(i) ∈ Rn denotes the ith canonical basis vector.

For a matrix A ∈ Rn×n and a set S ⊆ [n], let AS be the prin-
cipal sub-matrix of A corresponding to the rows and columns
indexed by S. Let S̄ := [n] \ S be the complement of S with
respect to [n], and for sets S, T ⊆ [n], let AST denote the sub-
matrix of A corresponding to the rows indexed by S and the
columns indexed by T .

We say v ∈ Rn is stochastic if v ≥ 0 and 1Tv = 1, where
the superscript T denotes transposition. A matrix A ∈ Rn×n is
called row-stochastic or simply stochastic if each row of A is
stochastic. We let Pn (respectively, Pn×n) denote the set of all
stochastic vectors (respectively, matrices) in Rn (respectively,
Rn×n). For a sequence {A(t)}∞t=0 and indices t1 < t2, we let
A(t2 : t1) := A(t2 − 1)A(t2 − 2) · · · A(t1) with the convention
that A(t : t) := I for all t ∈ N0.

All random objects in this letter are defined with respect
to an underlying probability space (!,B, Pr). With an abuse
of terminology, by z(t) ∈ Rn for a random process {z(t)} we
mean z(t,ω) ∈ Rn for all t ∈ N0 and ω ∈ !. We use E[ · ] to
denote the expectation operator with respect to this probability
space. We use the hat notation Ẑ to denote the expectation of
a random variable/matrix/vector Z.

II. RANDOM ADAPTATION DYNAMICS

In distributed averaging dynamics, we are given a sequence
of stochastic matrices {Q(t)}∞t=0, and we are interested in
studying the dynamics

x(t + 1) = Q(t)x(t), (1)

for some initial time t0 ∈ N0 and initial state x(t0) ∈ Rn.
As mentioned in the introduction, each row of Q(t) is a
stochastic vector that can be viewed as the probability mass
function of a certain random variable taking n values. Our ran-
dom adaptation viewpoint formulates a very natural sequence
of random variables that exhibits this behavior. Consider n
agents assuming a random state xi(t) ∈ R (more precisely,
xi(t,ω) ∈ R where ω ∈ !) evolving over discrete time
t ∈ N0. Let the starting time t0 ∈ N0 and the initial states
x(t0) ∈ Rn be an arbitrary deterministic vector. For a given
sequence {Q(t)} of stochastic matrices, the random adaptation
scheme is defined as follows: At time t ≥ t0, agent i adopts
agent j’s state with probability qij(t) independently of other
agents as well as every agent’s past choices and states, i.e.,
Pr(xi(t + 1) = xj(t) | x(t), . . . , x(t0)) = qij(t) for all i, j ∈ [n].
Therefore, we can write

x(t + 1) = A(t)x(t), (2)

where x(t) ∈ Rn is the random state vector (whose i-th entry is
xi(t)) and A(t) ∈ Rn×n is a binary random stochastic matrix,
i.e., {aij(t) : i, j ∈ [n]} are Bernoulli random variables with
parameters âij(t) = qij(t) for all i, j ∈ [n].

We now observe a few important properties of (2): (i) The
random process {x(t)}∞t=0 is a non-homogeneous Markov chain
with state space size at most nn as the state of each agent at
every time instant is in {xi(t0) | i ∈ [n]}. (ii) For each t ∈ N0,
the rows of A(t) are independent random vectors. (iii) The
random matrices {A(t)}∞t=0 are independent and hence, for each
t ∈ N, A(t) is independent of x(t).

III. MAIN RESULTS

We first define two properties that will be shown to be
closely related. The first property relates to stochastic chains.

Definition 1 (Ergodicity [9], [11]): A deterministic (non-
random) stochastic chain {Q(t)}∞t=0 is said to be ergodic if,
for every t0 ∈ N0, there exists a vector ψ(t0) ∈ Pn such that
limt→∞ Q(t : t0) = 1ψT(t0).

Put differently, a stochastic chain {Q(t)}∞t=0 is called ergodic
if every backward matrix product Q(t : t0) converges to a
rank-one matrix that has identical rows.

The second property relates to the random adaptation
dynamics (2).

Definition 2 (Finite Agreement): We say that the dynam-
ics (2) has an a.s. finite agreement property if, for all initial
times t0 ∈ N0 and initial states x(t0) ∈ Rn, there exist a random
scalar y = y(t0, x(t0)) and a random (stopping) time T ≥ t0
such that x(t) = y1 a.s. for all t ≥ T .

In other words, the random adaptation dynamics (2) has the
finite agreement property if at some time after the initiation
of the dynamics, all the agents adopt the same state.

Note that the ergodicity of {Q(t)} does not imply finite
agreement for the deterministic dynamics (1). For example,
suppose n = 2, let x(0) = e(1), and consider the static chain

defined by Q(t) =
(

p 1 − p
1 − q q

)
for all t ∈ N0, where

p, q ∈ (0, 1). Then it can be verified that {Q(t)}∞t=0 is ergodic.
However, we also have x1(t) − x2(t) = (p + q − 1)t for all
t ∈ N, which implies that no agreement is reached in finite
time unless p + q = 1.
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On the contrary, if x(t0) ∈ {e(1), e(2)} the ran-
dom adaptation variation (2) of the same static chain
ensures that the two agents reach an agreement at time
T := inf{t ≥ t0 : x1(t) ⊕ x2(t) = 0}, where ⊕ denotes the
exclusive OR operation. Since T is a geometric random vari-
able with the parameter p(1 − p) + q(1 − q) > 0, it is finite
a.s. In fact, even for n += 2, every ergodic chain guarantees
finite agreement for all initial conditions, as we now show.

Theorem 1: The random adaptation dynamics (2) has the
finite agreement property if and only if {̂A(t)}∞t=0 = {Q(t)}∞t=0
is an ergodic chain.

Proof: We establish ergodicity first as a sufficient condition
and then as a necessary condition for a.s. finite agreement with
an arbitrary initial condition (t0, x(t0)).

Proof of Sufficiency: It suffices to show that an agreement
occurs in the network infinitely often a.s., because once an
agreement is reached, the state vector stops evolving in time.

We first note that by Definition 1, there exists a ψ(t0) ∈ Pn
such that limt→∞ Q(t : t0) = 1ψT(t0) a.s. As ψT(t0)1 = 1,
there exists an index #(t0) ∈ [n] such that ψ#(t0)(t0) ≥ 1

n ,
which implies that limt→∞ Qi#(t0)(t : t0) ≥ 1

n for all i ∈
[n]. Consequently, there exists a time t1 ≥ t0 such that
Qi#(t0)(t1 : t0) ≥ 1

2n for all i ∈ [n]. By induction on
δ := t1 − t0 and by exploiting the fact that every matrix in
the chain {A(t)}∞t=0 has independent rows, we can now show
that Pr(A[n]{#(t0)}(t1 : t0) = 1) ≥ ( 1

2n )n (see [16, Lemma 1] for
more details). Since A(t1 : t0) ∈ Pn×n is binary, it follows that
Pr(A(t1 : t0) = 1(e(#(t0)))T) ≥ ( 1

2n )n.
As t0 is arbitrary, we can repeat the above analysis with

different starting times and obtain an increasing sequence of
times {tk}∞k=0 such that Pr(A(tk+1 : tk) = 1(e(#(tk)))T) ≥ ( 1

2n )n.
Since x(tk+1) = A(tk+1 : tk)x(tk), this further implies that
Pr(x(tk+1) = x#(tk)1) ≥ ( 1

2n )n. As a result, letting Ck denote
the event that an agreement exists in the network at time
tk ≥ t0, we have

∑∞
k=0 Pr(Ck) = ∞. Now, {Ck}∞k=0 are

independent events because {A(t)}∞t=0 are independent and
{[tk, tk+1−1] : k ∈ N0} are disjoint intervals. Therefore, by the
Second Borel-Cantelli Lemma [28, Th. 2.3.6], infinitely many
events among {Ck}∞k=0 occur a.s., which proves the assertion.

Proof of Necessity: Suppose there exist
T = T(t0, x(t0)) < ∞ and y = y(t0, x(t0)) ∈ R such
that x(t) = y1 a.s. for all t ≥ T . Then x(t) = A(t : t0)x(t0)
implies that limt→∞ A(t : t0)x(t0) = y1 a.s.

Besides, we know that ‖x(t)‖∞ ≤ ‖x(t0)‖∞ for all
t ≥ t0. Therefore, by the Dominated Convergence Theorem
[28, Th. 1.6.7], we have

E
[
y
]
1 = E

[
lim

t→∞ A(t:t0)x(t0)
]

= lim
t→∞E[A(t:t0)x(t0)] = lim

t→∞ Â(t:t0)x(t0), (3)

where the last equality follows from the independence of
{A(t)}∞t=0. As a result, limt→∞ Q(t : t0)x(t0) = ŷ1. For the
initial condition x(t0) = e(i), this implies that the i-th col-
umn of Q(t : t0) converges to ψi1 for some scalar ψi ∈ R
and hence, limt→∞ Q(t : t0) = 1ψT for some vector ψ =
ψ(t0) ∈ Pn. The latter step follows from the fact that the set
of row-stochastic matrices is a closed semigroup (under matrix
multiplication).

Remark 1: Theorem 1 enables us to comment further on
ergodic chains. To elaborate, we can repeat some of the
arguments used in the proof above to show that if {Q(t)}∞t=0
is ergodic, then for all (t0, x(t0)) ∈ N0 × Rn, there a.s. exists
a π(t0) ∈ Pn such that limt→∞ A(t : t0) = 1πT(t0) for all
t0 ∈ N0. Moreover, {A(t)}∞t=0 ∈ Pn×n being binary implies
that π(t0) is binary, i.e., π(t0) ∈ {e(i) : i ∈ [n]}. Finally, taking
expectations on both sides yields limt→∞ Â(t : t0) = 1π̂T(t0),
i.e., limt→∞ Q(t : t0) = 1π̂T(t0) where π̂T(t0) ∈ Pn.
Interestingly, for the chain {Q(t)}∞t=0, one can verify
that {π̂(t)}∞t=0 forms what we call an absolute probabil-
ity sequence, a concept defined below and introduced by
Kolmogorov in [29].

Definition 3 (Absolute Probability Sequence): For a deter-
ministic stochastic chain {Q(t)}∞t=0, a sequence of stochastic
vectors {ψ(t)}∞t=0 is said to be an absolute probability sequence
if ψT(t + 1)Q(t) = ψT(t) for all t ≥ 0.

We now connect this novel concept with the dynamics (2).
Theorem 2: Suppose that {Q(t)}∞t=0 = {̂A(t)}∞t=0 is ergodic

for the dynamics (2), with an absolute probability sequence
{ψ(t)}∞t=0 = {π̂(t)}∞t=0, where {π(t)}∞t=0 is an absolute proba-
bility sequence for {A(t)}∞t=0. Let y = y(t0, x(t0)) be the agreed
value of all the agents, i.e., limt→∞ x(t) = y1 a.s for ini-
tial conditions (t0, x(t0)) ∈ N0 × Rn such that {xi(t0)}n

i=1 are
all distinct. Then the probability distribution of y is given by
pi(t0) := Pr(y = xi(t0)) = ψi(t0) for all i ∈ [n].

Proof: By Remark 1, we almost surely have
limt→∞ x(t) = limt→∞ A(t : t0)x(t0) = 1πT(t0)x(t0). Thus,
y = πT(t0)x(t0), which implies that ŷ = π̂T(t0)x(t0) =∑n

i=1 ψi(t0)xi(t0).
On the other hand, the definition of expectation implies that

ŷ = ∑n
i=1 pi(t0)xi(t0).

Hence,
∑n

i=1 ψi(t0)xi(t0) = ∑n
i=1 pi(t0)xi(t0). Since this

holds for all x(t0) ∈ Rn, we must have pi(t0) = ψi(t0) for
all i ∈ [n].

IV. VARIANTS AND EXTENSIONS

A. Time-Reversed Non-Homogeneous Markov Chains
Let {A(t)}∞t=0 be a random sequence of independent binary

matrices, and let {e(i) : i ∈ [n]} be the state space of a time-
reversed Markov chain whose probability transition matrix is
Q(t) := Â(t) at time t. To be precise, the Markov chain is a
random process {z(t)} that starts at an arbitrary time instant
t∞ ∈ N with an arbitrary probability distribution given by
p∞ ∈ Pn (where (p∞)i := Pr(z(t∞) = e(i)) and evolves back-
wards in time with Pr(z(t) = e(j) | z(t + 1) = e(i)) = qij(t) for
all t < t∞. Equivalently,

zT(t) = zT(t + 1)A(t) (4)

for all t ∈ {t∞ − 1, t∞ − 2, . . . , 0}. Note that (4) is nothing
but a time-reversed, transposed variant of (2).

To relate these dynamics to time-homogeneous chains,
recall that the limiting probability distribution of a regular
Markov chain is a stationary distribution independent of the
initial distribution [30]. Analogously, we ask, is the limiting
distribution of a time-reversed inhomogeneous Markov chain
an absolute probability sequence of the associated stochastic
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chain that is independent of p∞? As we show, the answer is
yes if and only if the stochastic chain is ergodic.

Theorem 3: Consider the dynamics (4) with a variable
starting time t∞. Let {ψ(t)}∞t=0 be an absolute probability
sequence for {Q(t)}∞t=0. Then the limiting distribution p(t) :=∑n

i=1 pi(t)e(i) ∈ Pn with pi(t) := limt∞→∞ Pr(z(t) = e(i))
exists and is invariant w.r.t. the initial distribution p∞ for all
t ∈ N0 if and only if {Q(t)}∞t=0 is ergodic, in which case
p(t) = ψ(t) for all t ∈ N0.

Proof: We first note that for all t ≤ t∞, we have Pr(z(t) =
e(i)) = E[zi(t)] = ẑi(t) for all i ∈ [n], which means that p∞ =
ẑ(t∞) and more generally that the probability distribution of
z(t) is determined by ẑT(t) = ẑT(t∞)̂A(t∞ : t) = pT

∞Q(t∞ : t)
for all t ≤ t∞. Thus, pT(t) = pT

∞ limt∞→∞ Q(t∞ : t) (if the
limit exists). Using this, we first establish the sufficiency of
ergodicity and then its necessity for the invariance assertion
to hold.

If {Q(t)}∞t=0 is ergodic, then pT(t) is given by

pT
∞ limt∞→∞ Q(t∞ : t)

(a)= pT
∞1ψT(t)

(b)= ψT(t), where
(a) follows from Remark 1 and (b) holds because p∞ ∈ Pn.
Since {ψ(t)}∞t=0 are unique (see [8, Th. 1]), it follows that
p(t) = ψ(t) a.s. does not vary with p∞.

On the other hand, if {Q(t)}∞t=0 is not ergodic, then there
exists a t0 ∈ N0 such that either limt∞→∞ Q(t∞ : t0) does
not exist (in which case there is nothing to prove), or
there exists an index # ∈ [n] such that the column vector
v := limt∞→∞ Q[n] {#}(t∞ : t0) satisfies v += α1 for all α ∈ R.
Therefore, we can write v = α1 + βw for some α,β > 0 and
some w with wT1 = 0. Note that wTv += 0. Note also that for
small enough β̃ > 0, w̃ = 1

n 1 + β̃w ∈ Pn. Now, for p∞ = 1
n 1

and p∞ = w̃, the value of p#(t0) = (pT
∞ limt∞→∞ A(t∞ : t0))#

would be 1
n 1Tv and 1

n 1Tv + β̃wTv, respectively, which along
with wTv += 0 violates the invariance condition.

Theorem 3 also shows that, just as stationary distributions
are the limiting probability distributions of Markov chains
defined by regular matrices, absolute probability sequences
can be interpreted as the limiting distributions of time-reversed
Markov chains defined by ergodic stochastic chains.

B. Random Adaptation Approach to Friedkin-Johnsen
Model

The dynamics (1) can be viewed as a time-varying ver-
sion of the French-Degroot opinion dynamics model where
agent opinions move towards convex combinations of other
agents’ opinions. The Friedkin-Johnsen model, in addition to
being partly influenced by neighbors, introduces a prejudice
that affects the agents’ opinions. Mathematically,

x(t + 1) = (W(t)x(t) + (I −()u, (5)

where x(t) ∈ Rn denotes the vector of opinions, u ∈ Rn is
the vector of the agents’ prejudices, W(t) ∈ Rn×n denotes the
influence matrix, which describes how the agents influence
each other, and ( ∈ Rn×n is a diagonal matrix whose ith
diagonal entry, λi ∈ [0, 1], denotes the susceptibility of agent
i to social influence and 1 − λi denotes the susceptibility of
agent i to her prejudice ui.

Similar to (5), we can provide a random adaptation vari-
ation of the Friedkin-Johnsen model as follows. In the t-th

time period, agent i decides between adapting to her neigh-
bor’s opinion versus adapting to her prejudice. Her choice is
independent of other agents’ choices and her own past choices.
With a probability γ (t) ∈ (0, 1), she follows the adaptation
scheme described earlier, and with probability 1 − γ (t), she
resets her opinion to her prejudice ui ∈ R. As before, we
assume the initial state vector x(0) ∈ Rn to be arbitrary. This
results in the update rule

x(t + 1) = ((t)A(t)x(t) + (I −((t))u, (6)

where x(t) and A(t) have their usual meanings, u ∈ Rn

is a vector of external influences/prejudices, and {((t)}∞t=0
is a sequence of diagonal matrices whose diagonal entries
{λi(t) : i ∈ [n]} are Bernoulli random variables with Pr(λi(t) =
1) = γi(t).

Remark 2: Observe that (6) is a special case of (2) by
letting yT(t) := [xT(t) uT ] and by noting that

y(t + 1) = B(t)y(t), (7)

where B(t) :=
(
((t)A(t) I −((t)

On×n In×n

)
. As a result, for any

t, t0 ∈ N0 with t ≥ t0, we have y(t) = B(t : t0)y(t0) with
B[n](t : t0) = P(t : t0), where P(t) := ((t)A(t). Note also that
P(t) ≤ A(t) because ((t) ≤ I.

We now define two terms: dominance in expectation
and simultaneously malleable agents, and we show that, if
{Q(t)}∞t=0 is an ergodic chain with simultaneously malleable
agents that dominate in expectation, then all the agents’ opin-
ions will almost surely enter the prejudice set (the set of
external influences) U := {ui:i ∈ [n]} in finite time.

Definition 4 (Dominance in Expectation): The agents of
a set S ⊆ [n] are said to dominate in expectation if∑∞

t=0 1TQS̄S(t)1 = ∞ and
∑∞

t=0 1TQSS̄(t)1 < ∞.
In the average-case scenario, if a set of agents S ⊆ [n] domi-
nate in expectation, then the agents of S significantly influence
the rest of the agents S̄ without themselves being significantly
influenced by S̄ in the long run.

Definition 5 (Simultaneously Malleable Agents): The
agents of a set S ⊆ [n] are said to be simultaneously
malleable if

∑∞
t=0

∏
i∈S(1 − γi(t)) = ∞.

Essentially, simultaneously malleable agents are those
whose probability of simultaneously adapting to their respec-
tive external influences does not vanish too fast with time.

Theorem 4: For the dynamics (6), suppose
{Q(t)}∞t=0 = {̂A(t)}∞t=0 is ergodic, and suppose there exists a
set S ⊆ [n] of simultaneously malleable agents that dominate
in expectation. Then there a.s. exists a time T < ∞ such that
{xi(T)}n

i=1 ⊆ U .
Proof: First, note that the decisions taken in the network

at time t are independent across agents. As a result,
Pr(

⋂
i∈S{λi(t) = 0}) = ∏

i∈S(1−γi(t)). In light of Definition 5
and the Second Borel-Cantelli Lemma, this further implies that
there exists an increasing sequence of random times {Tk}∞k=1
such that λi(Tk − 1) = 0 a.s. for all i ∈ S and all k ∈ N.
This means that xi(Tk) = ui a.s. for all i ∈ S and all
k ∈ N.

On the other hand, we can use the union bound
to show that Pr(

⋃
i∈S

⋃
i∈S̄{aij(t) = 1}) is at most∑

i∈S
∑

j∈S̄ qij(t) = 1TQSS̄(t)1. Since
∑∞

t=0 1TQSS̄(t)1 < ∞,
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it follows from the First Borel-Cantelli Lemma [28, Th. 2.3.1]
that there exists a random time T∗ < ∞ such that aij(t) = 0
a.s. for all i ∈ S, j ∈ S̄, and t ≥ T∗. This means that there
a.s. exists a point of time T∗ after which the agents in S are
never influenced by those in S̄.

Let K := inf{k ∈ N0 : Tk > T∗}. Then, TK >
T∗ and xi(TK) = ui a.s. for all i ∈ S. Hence,
{xi(t) : i ∈ S} ⊆ U

⋃{xi(TK) : i ∈ S} ⊆ U for all t ≥ TK .
It remains to show the existence of a time T ≥ TK such

that {xi(t) : i ∈ S̄} ⊆ U for all t ≥ T . By the definition of
ergodicity, the truncated chain {Q(t)}∞t=τ is ergodic for all τ ∈
N0. It follows from Remark 1 that there exists a random vector
π(τ ) ∈ {e(i) : i ∈ [n]} such that limt→∞ A(t : τ ) = 1πT(τ ) a.s.
Thus, limt→∞ A(t : TK) = 1πT(TK) a.s. On the other hand,
for t ≥ TK ≥ T∗, we have aij(t) = 0 a.s. for all i ∈ S and
j ∈ S̄. Hence, ASS̄(t : TK) = O a.s. for all t ≥ TK . It follows
that limt→∞ ASS̄(t : TK) = O a.s., which means that πT(TK) /∈
{e(i) : i ∈ S̄} a.s. Since 1πT(TK) has identical rows, this further
implies that the columns of limt→∞ A(t : TK) indexed by S̄ are
all zero a.s. It now follows from Remark 2 that

lim sup
t→∞

B[n]S̄(t : TK) = lim sup
t→∞

P[n]S̄(t : TK)

≤ lim sup
t→∞

A[n]S̄(t : TK) = O a.s.

Equivalently, for all sufficiently large t, the entries of
y(t) = B(t : TK)y(TK) are binary convex combinations of
{xi(TK) : i ∈ S} ⋃

U = U . This completes the proof.
We now consider a special case of (6) in which the proba-

bility distributions of the agents’ opinions converge to limits
that can be computed using closed-form expressions.

Theorem 5: Suppose the matrix pairs {(((t), A(t))}∞t=0 are
independent and identically distributed. Also, suppose , < I,
where , := (̂(t) and Q := Â(t) for all t ∈ N0. Finally, suppose
that |U | = n and that {xi(0)} ⋂

U = ∅. Then the following
assertions hold.

1) We have limt→∞ Pr(xi(t) = uj) = vij for all i, j ∈ [n],
where {vij : i, j ∈ [n]} are the entries of

V := (I − ,Q)−1(I − ,). (8)

2) There a.s. exists a random time T < ∞ such that
xi(t) ∈ U for all t ≥ T .

Proof: We first recall from Remark 2 that
y(t) = B(t : 0)y(0) for all t ∈ N0. Since U has n dis-
tinct elements and since {xi(0)} ⋂

U = ∅, this implies
that

Pr(xi(t) = uj) = Pr
(
Bi n+j(t : 0) = 1

)
= E

[
Bi n+j(t : 0)

]

(a)= B̂i n+j(t : 0)
(b)=

((̂
B(0)

)t
)

i n+j
, (9)

where (a) and (b) hold because {(((t), A(t))}∞t=0 are i.i.d.
Thus, it suffices to evaluate limt→∞(̂B(0))t. Observe that

for the expected dynamics x̂(t + 1) = ,Q̂x(t) + (I − ,)u, we
have ŷ(t) = (̂B(0))ty(0) as a consequence of Remark 2. On
the other hand, we know from [4, Th. 21, Corollary 22] that
limt→∞ x̂(t) = Vu, which implies that

lim
t→∞ ŷ(t) =

(
On×n V
On×n I

)(
x(0)

u

)
=

(
On×n V
On×n I

)
y(0).

That is, limt→∞(̂B(0))ty(0) =
(

On×n V
On×n I

)
y(0). As y(0)

(which stacks the initial states and the external influences)
is arbitrary, it follows that (limt→∞(̂B(0))t)i n+j = vij for all
i, j ∈ [n]. In light of (9), this proves 1.

To prove 2, note that
∏

i∈[n](1 − γi(t)) is positive and time-
invariant because ,(t) = , < I for all t ∈ N0. Hence, all the
agents in the network are simultaneously malleable. Since they
also dominate in expectation trivially, 2 follows immediately
from Theorem 4.

C. Rank-One Perturbation of the Friedkin-Johnsen
Variant

Another random adaptation-based variant of the Friedkin-
Johnsen model can be obtained by letting the opinion of each
agent ‘mutate’ to any external influence with a fixed probabil-
ity distribution, i.e., in the tth time period, agent i either adapts
to a neighbor’s opinion or adapts to one of the prejudices inde-
pendently of her past choices. With probability γi(t) ∈ (0, 1),
the agent follows the adaptation scheme described earlier
(in (2)), and with probability 1 − γi(t), however, instead of
adapting to one fixed prejudice, she chooses an opinion from
the set U = {ui : i ∈ [n]}, according to a stochastic vector q
on U . That is,

x(t + 1) = ((t)A(t)x(t) + (I −((t))C(t)u, (10)

where x(t) and A(t) are as before, u ∈ Rn is the vector of
external influences, {((t)}∞t=0 is a sequence of random binary
diagonal matrices with Pr(λi(t) = 1) = γi(t), and {C(t)}∞t=0
is a sequence of i.i.d. binary stochastic random matrices. For
any i ∈ [n], Pr(Cij(t) = 1) = qj for all j ∈ [n], independent of
the other rows. Here Ĉ(t) = 1qT , for all t ∈ N0, which is a
rank-one matrix for all t ∈ N0.

Theorem 6: Consider the dynamics (10) where |U | = n,
{xi(0) : i ∈ [n]} ⋂

U = ∅, and the matrix pairs
{(((t), A(t))}∞t=0 are i.i.d. with Q := Â(t) and , := (̂(t) for
all t ∈ N0. Also, suppose that , < I. Then the following hold
true.

1) We have limt→∞ Pr(xi(t) = uj) = vij for all i, j ∈ [n],
where {vij : i, j ∈ [n]} are the entries of

V := (I − ,Q)−1(I − ,)1qT .

2) There a.s. exists a random time T < ∞ such that
xi(t) ∈ U for all t ≥ T .

Proof: We can rewrite the dynamics as y(t + 1) = D(t)y(t),
where yT(t) =

[
xT(t) uT]

and

D(t) =
[
((t)A(t) (I −((t))C(t)

On×n In×n

]
. (11)

So, we have y(t) = D(t : 0)y(0), for all t ∈ N0. Since the
elements of U are distinct and {xi(0) | i ∈ [n]} ⋂

U = ∅,
similar to (9), we have Pr(xi(t) = uj) = ((D̂(0))t)i n+j. To
compute the limiting marginal probability note that

(
D̂(0)

)t =
[
,Q (I − ,)Ĉ(0)

On×n In×n

]t

=
[
(,Q)t R(t)
On×n In×n

]
, (12)

where R(t) = ∑t−1
k=0(,Q)k(I − ,)1qT . Since Q ∈ Pn×n, we

know that the maximum absolute value of eigenvalues of ,Q
is less than 1 since ,Q ≤ γmaxQ, where γmax = maxi∈[n] γi ∈
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(0, 1). Using a result on Neumann Series [31, eq. 7.10.11],
we have limt→∞ R(t) = (I − ,Q)−1(I − ,)1qT = V , and
limt→∞(,Q)t = On×n.

For 2, note that the probability that all the agents adapt to
an external influence at any time is

∏n
i=1(1 − γi) > 0. Since

{((t)}∞t=0 are independent, it follows from the Second Borel-
Cantelli Lemma that there exists an increasing sequence of
random times {Tk}∞k=1 such that ((Tk) = 1. This implies that
xi(T1 + 1) ∈ U for all i ∈ [n]. Therefore, for all (t0, x(t0)) ∈
N0 × Rn, there a.s. exists a random time T < ∞ such that
xi(t) ∈ U for all t ≥ T .

Remark 3: Suppose, in addition to the assumptions in
Theorem 6, all the agents have identical susceptibility, i.e.,
, = γ I for some γ ∈ (0, 1). Then, since Q ∈ Pn×n, we
have R(t) = ∑∞

k=0 γ
k(1 − γ )1qT , and since γ ∈ (0, 1), we

have V = 1pT . Furthermore, for this case, the result extends
to all stochastic chains {Q(t)}∞t=0 and not just to identically
distributed chains, as R(t) = ∑t

k=0 γ
k(1 − γ )Q(k + 1 : 0)1qT

with Q(t + 1 : 0)1 = 1, for all t ∈ N0, which implies that
V = limt→∞ R(t) = 1qT . Therefore, in this case, the limiting
marginal distribution is independent of susceptibility.

Remark 4: The dynamics studied in Sections IV-B
and IV-C are special cases of the generalized model studied
in [32]. While the results of [32] imply convergence in distri-
bution and provide the expected values of the steady states, we
characterize the distributions of these steady states and show
the a.s. convergence of the opinions to the prejudice set.

V. CONCLUSION

We proposed and studied a random adaptation variant of
time-varying distributed averaging dynamics in discrete time.
We have shown that our models give rise to novel interpreta-
tions for the concepts of ergodicity and absolute probability
sequences, both of which are pivotal to the study of stochas-
tic chains. We have also proposed a time-varying, stochastic
analog of the well-known Friedkin-Johnsen opinion dynamics
and analyzed the asymptotic behavior of the probability dis-
tributions of the agents’ opinions. Finally, we have considered
a rank-one perturbation of our base-case stochastic dynamics
and studied its asymptotic behavior.

Our random adaptation perspective opens up many avenues
for further research, including the (time-varying) controlled
variation of Friedkin-Johnsen dynamics through the lens of
random adaptation dynamics, and the connection of mutation-
adaptation learning dynamics (in game-theoretic settings) with
our proposed random adaptation schemes.
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