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Abstract: Throughout the past three decades, various versions of the the cell-transmission
model (CTM) has been proposed. In spite of the increased attention to freeway traffic modelling
via the CTM, an analysis of the currently available versions of the CTM has been missing. This
study has the aim of filling this gap by comparing the performance of the popular versions of
this model. To achieve this goal, four finite horizon optimal control problems with different
underlying CTMs and cost functions are proposed. The traffic management control in all
problems is the ramp metering control. The performance assessment is performed via simulation
for a hypothetical network of highways, with different demand profiles along with the analysis
of the equilibrium state in each case. The simulation results will provide a thorough comparison
of the performance of these problems on different performance measures of the network and will
highlight the advantages and disadvantages of each problem.
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1. INTRODUCTION

Traffic flow models have been developed over the years and
it is still an ongoing research topic in this field. Traffic flow
models can be categorized into first order and second order
models. The most frequently used models are first order
models, such as the LWR model offered by Lighthill and
Whitham (1955), which is a continuous model, and the
cell-transmission model (CTM) offered by Daganzo (1993,
1994) which is a discretized version of the LWR model. The
focus of this study is on first order models as the obvious
disadvantage to second order models is that they lead to
more complex optimization problems.

The CTM was first developed by Daganzo (1993) and
then, through out the following years, many extensions
of the original CTM have been proposed in the literature
based on the applications and the purposes of researchers.
The CTM for a freeway network (Daganzo (1995)), the
lagged CTM (Daganzo (1999); Szeto (2008)), the switched
interpretation of the CTM (Munoz et al. (2003)), the
asymmetric CTM (Gomes and Horowitz (2006)), the link-
node CTM (Muralidharan et al. (2009)), the CTM includ-
ing capacity drop phenomena (Srivastava and Gerolimi-
nis (2013); Roncoli et al. (2015)), the graph constrained
CTM (Morbidi et al. (2014)), the CTM in a mixed-
integer linear form (Ferrara et al. (2015)), the variable-
length CTM (Canudas-de Wit and Ferrara (2016)), width-
based CTM for heterogeneous and undisciplined traffic
streams (Ahmed et al. (2019)), CTM for mixed traffic
flow with connected and autonomous vehicles (Qin and
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Wang (2019)), the CTM for heterogeneous disordered traf-
fic (Mayakuntla and Verma (2019)), and multi-class CTM
different traffic flow parameters (Chen et al. (2020)) are
some of these extended versions. Although these models
have been proposed in different years and are suitable for
different networks and applications, but still the original
CTM Daganzo (1993), and most specifically the Asym-
metric CTM (ACTM) Gomes and Horowitz (2006) is the
underlying model in all of them. This study aims at the
comparison of the most commonly-used versions of the
CTM.

The paper is organized as follows: In Section 2, the differ-
ent versions of the CTM considered here are introduced. In
Section 3, the RM control strategy used as the underlying
traffic control strategy for the finite horizon optimal con-
trol problems (FHOCPS) of this study is briefly explained.
The formulation of the FHOCPs are explained in Section
4 and in Section 5 the simulation results are reported and
analysed in detail. Finally, some conclusive remarks are
drawn in Section 6.

2. THE CTM AND ITS EXTENSIONS

In this section, first, a famous variant of the CTM, called
the Asymmetric CTM (ACTM) will be presented which
was offered by Gomes and Horowitz (2006). Then, two
of the most commonly-used extensions of the ACTM will
be introduced which are called the linear relaxation of
ACTM (Gomes and Horowitz (2006)) and the extended
ACTM (Ferrara et al. (2018)). As ACTM is the core of the
other extensions, it won’t be evaluated separately and the
focus of this study, from now on, will be on performance
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assessment of the two latter versions of the ACTM. Fig. 1
shows a stretch of a freeway with queue length dynamics
borrowed from Ferrara et al. (2015). The variables and
parameters of cell ¢ during time interval [T, (k+1)T) are
described in table 1.

Cell i — 1 Cell 4 Cell i +1
@;,1@} ®;(h) Pi(h) @;(»h)} ¢i+1<h>{ ﬁ;l(h)
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Fig. 1. Sketch of a freeway stretch in the CTM (Ferrara
et al. (2015))

Table 1. Model Variables and Parameters

Symbol Description/Unit (Range)

N Number of cells / int

7 Cell index / ¢ ={1,...,N}

T Sampling period / (h)

K Time Horizon / int

k Time index / k = {0, ..., K — 1}

L, Length of each cell / (mi)

v; Free-flow speed of cell ¢ / (mi/h)

w; Congestion wave speed / (mi/h)

qrer Cell capacity / (veh/h)

Ai Lane numbers / int

per Jam density / (veh/mi)

psT Critical density / (veh/mi)

1w Maximum on-ramp queue length / (veh/h)
Z.C’mam Maximum metering rate / (veh/h)

pi(k) Traffic density / (veh/mi)

<I>3' (k) Total flow entering cell ¢ / (veh/h)

o (k) Total flow exiting cell ¢/ (veh/h)

¢i(k) Mainstream flow / (veh/h)

ri (k) Flow entering from the on-ramp / (veh/mi)
si (k) Flow exiting through the off-ramp / (veh/mi)

Bi(k) Split ratio / € [0, 1]

li(k) Queue length in the on-ramp /(veh)

di(k) Flow accessing the on-ramp / (veh/h)

r& (k) Ramp metering control variable / (veh/h)

rt Ramp metering set point / (veh/h)

Kgr Integral regulator gain

Kp Proportional regulator gain

Version 1: The Asymmetric CTM (ACTM) The ACTM
proposed in Gomes and Horowitz (2006), is a modification
of the standard CTM proposed by Daganzo (1993, 1994,
1995). Based on Gomes and Horowitz (2006), the relevant
difference between the two models is the treatment of
traffic merges. More specifically, merges in the ACTM
are considered as asymmetric connections, such as the
junctions of the on-ramps into the mainstream. According
to the logic of the standard CTM, the merge is oriented
to move as much of the demand as possible from the two
merging cells into the receiving cell. The ACTM, instead,
makes separate allocations of supply for each merging
flow. The flows can then be computed separately as the
minimum among the demand, the allocated supply, and
the capacity. Moreover, it is proved that the ACTM, as
the CTM, ensures not to predict unrealistic behaviours
such as backward moving traffic, negative densities and
densities exceeding the jam density.

The ACTM is characterised by the following equations:

pill+1) = pulh) + T @F () 27 (R) ()

(k) = ¢i(k) + ri(k) (2)

O, (k) = dir1(k) + si(k) (3)

i) = T2 g ora () ()

Li(k +1) = 1;(k) + T(di(k) — r:i(k)) (5)

¢i(k) = min{(1 — Bi—1(k))vi—1(pi—1(k) + ri—1(k)), (6)

wi o™ = pull) = (k).
For uncontrolled on-ramps:

ri(k) = min{l;(k) + di(k), pi"** — pi(k)} (7
For controlled on-ramps:

ri(k) = min{ly(k) + di(k), p"*" — pi(k), 7™} (8)
0 < pi(k) < p"e* (k) )

0 < ¢s(k) < "™ (k) (10)

0 < ri(k) <r&mee (11)

0 < l;(k) < Imoe (12)

Equations (1) through (12) describe the ACTM. Any
optimization formulation based on this model will be non-
concave and non-convex due to the min function in the
mainline and on-ramp flow equations in (6)-(8).

Version 2: Linear Relaxation of ACTM  Gomes and
Horowitz (2006) offered this linear relaxed version of
ACTM where (6)-(8) are replaced with linear equality and
inequality equations and also upper bounds.

Equation (6) is replaced with:

pi(k) < (1= Bi—1(k))vi—1(pi1(k) +rica(k)  (13)

di(k) < wi(p"**" — pi(k) — ri(k)) (14)
oi(k) < ¢ (15)
For uncontrolled on-ramps, (7) is replaced with:
ri(k) =di(k), 0 <ri(k) (16)
And, for controlled on-ramps, (8) is replaced with::
ri(k) < (k) +di(k), 0 <ri(k) <romes (17)

In summary, (1)-(5), and (9)—(17) describe the second
version of ACTM.

Version 3: The Extended ACTM  The difference between
this version presented in Ferrara et al. (2018) and the
original ACTM version presented in (Gomes and Horowitz
(2006)), named version 1 here, is how this version handles
the merge between the on-ramp and mainstream cells. This
version distinguishes between the flow rate equations of the
free flow and congested case when on-ramp flow is merging
to the mainstream flow. To do so, let’s first introduce
the demand and supply functions. The mainstream cell
demand D;_1(k) is the flow that cell i — 1 could send to
the next cell ¢ and the mainstream cell supply S;(k) is the
flow that cell ¢ could receive from cell 7 — 1.

Di—1(k) = min{(1 — B;—1(k))vi—1pi-1(k), ¢} (18)

Si(k) = min{w; (""" — pi(k)), """} (19)

Also, the on-ramp demand D;“""(k) is the flow that can
be sent from the on-ramp into cell 7.
For uncontrolled on-ramps:

DI (k) = minfdi(h) + U ey (a0)
For controlled on-ramps:
D (k) = min{d, () + " 1€ ) ey 1)




116 Fatemeh Alimardani et al. / [FAC PapersOnLine 54-2 (2021) 114—-120

The merge between the on-ramp and the mainstream is
analogous to the merge of two generic cells. Two cases must
be distinguished, corresponding, respectively, to free-flow
and congested conditions:
If D;—1(k) + D" (k) < S;(k) (free-flow case), then
¢i(k) = Di—1(k)
(k) = D" (k)
If D;_1(k) + D;*""(k) > S;(k) (congested Case), then
91(k) = mid{D;_(k), Si(K) — D™ (k) piS;(k)}
’f’i(k) = mld{Dl p(k), Sz(k) - D'L—l(k)ypi pSZ(k)}
(23)
where the function mid returns the middle value. The
parameters p; and p;“""” model, respectively, the priority
of the mainstream flow and the on-ramp flow in the merge
and p; """ +p; = 1.

In summary, (1)-(5), (9)-(12), and (18)-(23) describe the
third version of the ACTM. Note that, the split ratios,
i.e. Bi(k), the demand in the cell before the first one, i.e.
Dy(k), and the supply of the cell after the last one, i.e.
Sn+1(k), and the flows accessing the on-ramp queues, i.e.
d;(k) are the boundary conditions in this version.

(22)

It should be added here that all the three versions ex-
plained up to this point represent the necessary equations
to model a freeway stretch. In order to model a freeway
network, it is necessary to also add the merge and diverge
models. Detailed explanations can be found in Ferrara
et al. (2018). Since, these models are the same for all the
versions stated above, and having them here would not
affect the goal of this study, their details are not provided
and interested readers are motivated to study the main
reference.

3. RAMP METERING CONTROL

Ramp metering is achieved by placing traffic signals at
on-ramps to control the flow rate at which vehicles enter
the freeway. The ramp metering controller computes the
metering rate to be applied. This paper applies the feed-
back local RM strategy PI-ALINEA proposed by Wang
et al. (2014) which is an extension of ALINEA developed
by Papageorgiou et al. (1991). According to the stability
analysis of the closed-loop RM system reported by Wang
et al. (2014), it can be stated that PI-ALINEA is able
to guarantee a better control performance than ALINEA.
PI-ALINEA is basically a PI-type controller in which the
metering rate is given by

rf (k) = r{ (k=1)+ Kglp; — pi(k)] = Kplpi(k) — pi(k —(214);
where the flow that can enter section i of a freeway from
the on-ramp of cell ¢ during time interval [kT, (k + 1)T) is
shown by r¢ (k). In case, the main objective of the traffic
controller is to reduce congestion and to maximize the
throughput, a good choice for the set-point is p; = p§".

4. FINITE HORIZON OPTIMAL CONTROL
PROBLEMS (FHOCPS)

The main objective of traffic control is to improve the
network performance. However, network performance can
be interpreted in many ways, and for every interpretation
a different optimization problem can be formulated. To

achieve the goal of this study, four FHOCPs will be
proposed in this section and the above-mentioned ACTM
versions will play the role of the underlying model in these
optimization control problems. In section 4.1, the cost
functions considered for these problems will be explained
and in section 4.2, the formulation of these FHOCPs will
be presented in a compact form.

4.1 Cost functions

In this section, the definitions of several cost functions will
be provided. In the formulation of FHOCPs presented in
this section, a linear combination of these cost functions
will make the final objective of each problem.

The most frequently used objective is to minimize the total
time that all vehicles spend in the network (i.e., the Total
Time Spent or TT'S). Another advantage of the TTS is
that it can easily be calculated for macroscopic models.
Basically, the T7T'S is the time spent by all vehicles in the
network (i.e., the total travel time or TTT), including the
waiting time experienced at origins (i.e., the total waiting
time or TWT). In other words, TTS =TTT +TWT.

K-1 N N
Jo=Jrrs =T Y Y pi(k)Lihi+ > LK) (25)
k=0 i=1 =1

The second objective function applied here is to maximize
the sum of the traffic flows going through all sections
and on-ramps. This objective function is also called the
Total Travel Distance (TTD) since it is the total distance
(veh mi) covered by all the vehicles in the considered time
horizon.

Jo=Jrrp =T Z_: D dik)Li+> (k)L (26)
k=0 i—1 i=1

Another term that is often used in the objective function
of traffic management problems is a term that penalizes
control signal variations. This terms helps to suppress
the high-frequency oscillations of the control trajectories.
Since here RM provides the control variable, the following
term is penalizing the RM control variable:
K-1 N
Js=Jye =T > [rf (k) —r{ (k= 1)
' k=0 i=1
Also, the maximum ramp queue constraints may be taken
into account via the introduction of a penalty term in the
cost criterion penalizing queue lengths larger than I,,q.,
the maximum admissible queue for origin i.
K—1 N
Jo=J, =T > Y [max{0,1;(k) — lmaz}]*
k=0 i=1

Optimizing TT'S and TTD are the main objective of this
study and the contribution of the two penalty terms to the
total cost criterion is very small as these two only penalize
control signal variations. Therefore, they are not used as
separate costs functions. For a traffic problem, a trade-
off has to be made between the partial objective functions
Ji(k),i={1,2,3,4}, which can be expressed by combining
the objective functions into one objective function:

Jrotar = ¥ i Ji(k)

(27)

(28)

(29)
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where «; are appropriately chosen weights to express the
trade-off between the several partial objective functions
and in each problem ), a; = 1.

4.2 Problem Formulation of FHOCPs

In this section, four FHOCPs will be presented where the
control strategy in all of them is the PI-ALINEA RM
control. The difference between these problems is on the
cost function and the version of the ACTM used as the
model. For two of the problems a linear combination of
TTS and TTD is used and for the other two problems,
the two penalty terms are also considered. Regarding the
ACTM version used, version 1 of the ACTM has the
underlying equations used in the other two versions. As
a result, it will not be used as a separate model for the
simulation phase of this study. For FHOPC 1 and 2, the
extended ACTM and for FHOPC 3 and 4, the linear
approximation of ACTM described in section 2 is used.
The formulation of the four FHOCPs proposed in this
study is provided in a compact form as follows:

FHOCP 1:

Cost function:

mén ar1J1 — agds (30)
Subject to:
Equations (1)-(5), (9)-(12), and (18)-(24).
FHOCP 2:
Cost function:
mén ar1J1 — asdy + azds + agdy (31)
T
Subject to:
Equations (1)-(5), (9)-(12), and (18)-(24).
FHOCP 3:
Cost function:
mén a1J1 — agds (32)
Subject to:
Equations (1)-(5), (9)-(12), (13)-(17), and (24).
FHOCP 4:
Cost function:
micn a1J) — agds + asds + aydy (33)
T

Subject to: Z
Equations (1)-(5), (9)-(12), (13)-(17), and (24).

In the total cost function of each problem, every partial
function with a positive sign will be minimized and every
other one with a negative sign will be maximized.

5. SIMULATION RESULTS AND ANALYSIS
5.1 Case study and model parameters

Simulation is performed for the network shown in Fig. 2
with two origins (ol and 02), two controlled on-ramps
(03 and o04), 12 mainline links (m1l through m12) and
two destinations (d1 and d2). One assumption about the
network is that the proportion of turns at every junction,
i.e. the split ratios B;(k), are fixed and known in advance.

No3
N
o1 mi 4 m2 _n3 m3 nd  ma
®
n5
m10 mll mi12
n‘6 n‘7 nll
02 m5 mé 3 m7 o m8 nl0 m9

74

/.
//04

Fig. 2. The hypothetical network

Also, it is assumed that the behavior of all the links can be
described by a pre-known fundamental diagram with the
parameters shown in table 2 adopted from Gomes et al.
(2008):

Table 2. Model Parameters

Symbol Value Unit/Range
Period T' 0.5 min

Length L; 1 mi

v; 0.5 length /period
w; 0.16 length /period
i 160 veh/length

ng 40 veh/length

fi 20 veh/period

5.2 The Demand Profiles

The simulation horizon of 5 hours is considered by choos-
ing the time horizon of K = 600 time steps and the
simulation period of T' = 0.5 minute (K *7 = 300 minute).
For the origin links, two different types of demand profiles
are applied: 1) the stationary, and 2) the time varying.
Also, in order to approximate an empty final condition
(Gomes and Horowitz (2006)), a imaginary ”cool down”
period is considered at K = 450 till the end of the time
horizon, in which all demands are set to zero. The demand
profiles are shown in Fig. 3. It is important to notice that
although the time-varying demand is changing at different
time steps, however, the max values for each of the four
demand functions are chosen to be fixed to the values of
demand in the stationary demand profile. For example,
the demand of origin 2 is equal to 9 veh/0.5 min in the
stationary demand case between k = 0 to k = 450. On the
other hand, in the time-varying case, this function also
has the max value of 9 veh/0.5 min between k& = 100 to
k = 400. Also, all demand values has the min value of
zero in the cool-down period. This holds true for all the
four demand functions. The reason behind these choices
are due to the fact that similar max and min values makes
it easier to compare and analyze the solutions based on
these two different demand patterns.

5.8 Equilibrium State of the Network

According to Gomes et al. (2008), for each stationary
demand vector d(k) = (dO, ...,dps), there exists a unique
equilibrium flow rate ¢(k) = (qo,...,qn) and density
vector p(k) = (po,...,pn). Detailed explanation on the
calculation of these vectors is concisely explained in Gomes
et al. (2008). Table 3 shows the theoretical equilibrium flow
vector for the mainline links of this network based on the
stationary demand vector shown in Fig. 3. Knowing this
theoretical flow vector provides an insight on what should
be expected to be seen in the simulation results.
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Fig. 3. The demand profiles (Left: The stationary demand
profile, Right: The time-varying demand profile)

Although based on Gomes et al. (2008), the equilibrium
state of the network can only be computed for the case
of having stationary demand profiles, however, this infor-
mation, if available, will help to analyze the behavior of
models even for the case of applying time-varying demand
profile. It can be assumed that at each time step, the values
of the demand functions are kept constant between the
time interval [kT, (k4 1)T). Based on this assumption, the
equilibrium flow vector for the time-varying case was also
computed with the same method applied before. However,
in this case, this vector cannot be simply showed in a table
like table 3 as the flow values are time-varying through the
whole simulation horizon. Still, this information could help
to analyze the performance of the FHOCPs in the time
varying case. Further explanations are provided in section
5.4.

Table 3. Theoretical equilibrium flow rate
(veh/0.5 min) vector

Link Number 1 2 3 4 5 6

Flow rate 4.8 11.8 15.46  9.27 9 12.2
Link Number 7 8 9 10 11 12
Flow rate 8.54 11.54 17.72 3.2 3.66 6.18

5.4 Simulation Results

The results of the simulation for the demand profiles of
section 5.2 and the FHOCPs of section 4.2 are provided in
this section. The FHOCPs were solved with Yalmip, the
modeling and optimization language offered by Lofberg
(2004), and the GURUBI non-commercial optimization
solver via the interface of MATLAB. The simulations were
performed on a device with 2.9 GHz Dual-core Intel Core
i5 CPU with 8GB RAM.

Figures 4 and 5 show the boxplot of the mainline link flow
rates (veh/0.5 min) with the stationary and time-varying
demand profiles, respectively. With a general glance, it can
be seen that in both figures, all four problems are showing
similar behaviors for the evaluation of the mainline flow
rates. In Fig. 4, the top edge and the central mark of each
box are in the same position and it is fixed at the value
equal to theoretical flow of that link based on table 3.

In other words, all four FHOCPs are able to reach the
equilibrium state of the network in case of the stationary
demand. In Fig. 5, the top edge is at the same position
as the top edge in Fig. 4, however, the central mark is at
a lower level. This matches the expectations in the sense
that as the demand is changing, the flow rate values can
not converge to a constant value. However, the top and
bottom edge of each box are at the same position between
these two figures for all the links.
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Fig. 4. Boxplot of the mainline link flow rates (veh/0.5
min) with the stationary demand profile
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Fig. 5. Boxplot of the mainline link flow rates (veh/0.5
min) with the time-varying demand profile

A method to compare the evolution of flow rates in
these optimal problems, under the two defined demand
profiles, is to compute the root-mean-square error (RMSE)
of the flow rate values comparing to their theoretical
equilibrium values. Basically, RMSE is a frequently used
measure of the differences between values (sample or
population values) predicted by a model and the values
observed. Table 4 summarizes the RMSE values for each
problem with the two demand profiles applied. As it can be
seen, overall, the FHOCPs show less error if the demand
pattern is stationary, indicating that the optimal control
problems demonstrated higher accuracy in converging to
the equilibrium state of the network. However, the mean
value of the RMSE of the second case has also a fairly low
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value, proving that even with the time-varying demand
profiles applied, the FHOCPs can provide an acceptable
performance. Also comparing performance of FHOCPs
with different underlying ACTM versions, on average, the
problems with the extended ACTM version are showing
slightly better efficiencies.

Table 4. Comparison of the RMSE of the flow
rate values

Problem RMSE
Stationary  Time-varying
FHOCP 1 1.7224 2.5344
FHOCP 2 2.3112 2.2070
FHOCP 3 2.2949 2.9585
FHOCP 4 2.0179 2.8940

The analysis continues by providing the evolution of flow
rate values of the network by simply adding the flow rate
of all the mainline links, as shown in Fig. 6. Based on table
3, the total sum of the link flow rates at the steady state is
expected to be equal to 113.37 veh/0.5 min. This matches
perfectly with the experimental maximum value of the
network flow rate as seen in Fig. 6 in both cases. A very
considerable point to mention is the difference between the
fluctuations of the flow rate in each problem. FHOCP 1
(blue color) is showing much more fluctuations comparing
to FHOCP 2 (red color) as the cost function of FHOCP 2
has the two penalty terms explained in section 4.1 and they
are successfully suppressing the high-frequency oscillations
of the control trajectories. Same can be seen between the
performance of FHOCP 3 and 4 where less oscillations are
seen in the performance of FHOCP 4 due to the presence
of the penalty terms in its cost function.

250 250

—— FHOCP1 ——FHOCP1

—— FHOCP2 ——FHOCP2

FHOCP3 FHOCP3

200 —— FHOCP4 200 ——FHOCP4
£ £
£ £
n wn
o 150 S
3 3
& &
[} [T}
2 2
Q [
L= L=
T 100 o
3 3
k) k)
|8 '8

50

0 200 400 600 0 200 400 600
Time step (0.5 min) Time step (0.5 min)

Fig. 6. Network flow rates (veh/0.5 min) (Left: The sta-
tionary demand profile, Right: The time-varying de-
mand profile)

The evolution of the ramp metering variables are also
investigated here. Basically, the expectation is that the
control applied to the on-ramps can satisfy the require-
ments of the network while considering the external de-
mand of the on-ramps by not imposing too much waiting
time to the vehicles on the on-ramps. As a result, a propor
RM variable basically should replicate the overall demand
pattern of that on-ramp. As an example, Fig. 7 and 8

show the RM variable of on-ramp o4. It can be easily
seen that in both figures, all four problems are showing
a behavior similar to the demand function of this on-ramp
as seen in Fig. 3 (in green color with triangle marker). The
interesting point is the reduction of oscillations between
FHOCP 1 and 2 and also between FHOCP 3 and 4 which
clearly represent the impacts of the RM penalty terms in
the cost function of FHOCP 2 and 4.
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Fig. 7. Metering rate of on-ramp o4 (veh/0.5 min) with
the stationary demand profile
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Fig. 8. Metering rate of on-ramp o4 (veh/0.5 min) with
the time-varying demand profile

5.5 Analysis of the Computation Times

To complete the analysis, computation time was also
considered as an additional performance index. Table 5
provides the computation time of all problems under
the two demand patterns applied. FHOCPs 1 and 2
had considerable higher computation times comparing to
FHOCPs 3 and 4 with respect to both demand patterns.
The reason is the complexity of extended ACTM, and
to be more precise, due to the presence of min function
in its equations. Also, FHOCPs 2 and 4 also had higher
computation times in comparison with FHOCPs 1 and 3
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because of the presence of the two penalty terms in their
cost functions. To summarize, the extended CTM and the
cost functions with penalty terms can significantly increase
the computation times.

Table 5. Comparison of the computation times

Problem Computation Time (sec)

Stationary Time-varying
FHOCP 1 165.3497 78.6285
FHOCP 2 324.0605 89.8481
FHOCP 3 11.4909 12.9580
FHOCP 4 28.0055 34.4486

6. CONCLUSION

This paper provides a thorough analysis over the per-
formance of different ACTM versions used as the un-
derlying traffic flow models for the proposed FHOCPs.
The FHOCPs had different cost functions, but for all of
them, the PI-ALINEA RM metering control was applied.
All 4 FHOCPs had promising performances regarding the
convergence of flow rates to the theoretical equilibrium
flow vector, and the metering rate of on-ramps and how
they can follow the changes of origin demands. Simulation
results have shown that using the linear relaxed version of
the ACTM is motivated by computational consequences.
The extended ACTM can show better capabilities in mod-
eling the traffic flow variables and responding to the traffic
control applied. However, it is complicated, and therefore
it decreases the computational efficiency of the optimiza-
tion scheme.
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