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Several studies have highlighted the positive effects that active learning may have on student engagement and performance. 

However, the influence of active learning strategies is mediated by several factors, including the nature of the learning 

environment and the cognitive level of in-class tasks. These factors can affect different dimensions of student engagement 

such as the nature of social processing in student groups, how knowledge is used and elaborated upon by students during 

in-class tasks, and the amount of student participation in group activities. In this study involving four universities in the US, 

we explored the association between these different dimensions of student engagement and the cognitive level of assigned 

tasks in five distinct general chemistry learning environments where students were engaged in group activities in diverse 

ways. Our analysis revealed a significant association between task level and student engagement. Retrieval tasks often led 

to a significantly higher number of instances of no interaction between students and individualistic work, and a lower 

number of knowledge construction and collaborative episodes with full student participation. Analysis tasks, on the other 

hand, were significantly linked to more instances of knowledge construction and collaboration with full group participation. 

Tasks at the comprehension level were distinctive in their association with more instances of knowledge application and 

multiple types of social processing. The results of our study suggest that other factors such as the nature of the curriculum, 

task timing, and class setting may also affect student engagement during group work. 

 

Introduction 

A major focus of chemistry education in recent years has been on 

helping students develop a more solid and integrated understanding 

of central ideas, core practices, and ways of thinking in the chemical 

sciences (National Research Council, 2012). Several reports have 

highlighted the advantages of “active learning” strategies in 

supporting this type of learning through meaningful student 

engagement in course activities (National Research Council, 2012; 

Freeman et al., 2014; Järvelä and Renninger, 2014; Theobald et al., 

2020). However, active learning is a broad and ill-defined construct 

that means different things to different people in various domains 

(Lombardi et al., 2021). This often leads to a lack of fidelity in the 

implementation of active learning strategies (Stains and Vickrey, 

2017), resulting in differences in student engagement and 

performance. In active learning environments, student engagement 

has often been used as a metric of quality in terms of student 

participation and interactions (Kahu, 2013), and has been linked to 

positive learning outcomes (Sinatra et al., 2015). Several factors such 

as the nature of in-class tasks, student-teacher interaction, and 

organization of the learning environment have previously been 

identified as influencers of student engagement (Zepke and Leach, 

2010; Groves et al., 2015). Previous research has highlighted that 

effective activity design is critical for fostering high-quality 

engagement of students with the task as well as their peers and 

instructors in active learning environments (Chi and Wylie, 2014; 

Roberson and Franchini, 2014; Lombardi et al., 2021). However, 

designing productive tasks is challenging for teachers and instructors 

at all educational levels. More research is needed to identify critical 

features of effective task design and implementation that support 

the productive engagement of students in different contexts. Thus, 

this study was designed to explore and characterize student 

engagement in different learning environments where students 

were expected to actively engage in a variety of classroom tasks. Our 

goal was to better characterize differences in student engagement in 

diverse class settings and explore how this was affected by the 

expected cognitive level of in-class activities. Accordingly, this study 

addresses the following research questions: 

1. What patterns of student engagement characterize different 

college general chemistry learning environments?  
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2. How does the expected cognitive level of in class-activities 

affect student engagement in different college general 

chemistry learning environments? 

Looking into Classrooms 

Several calls for reforming undergraduate chemistry education 

recommend the adoption and use of active learning instructional 

techniques (National Research Council, 2012; Freeman et al., 2014; 

Theobald et al., 2020). In their highly cited meta-analysis, Freeman 

et al. (2014) found that active learning environments increased 

student performance compared to students in lecture-based 

courses. Students enrolled in traditional course environments were 

1.5 times more likely to fail than students in active-learning courses. 

In addition to improving student performance, active learning can 

help narrow achievement gaps among underrepresented student 

groups. Theobald et al. (2020) found the achievement gap between 

underrepresented groups of students and well-represented students 

was reduced by 33% when students engaged in active learning.  

 While different studies have demonstrated the benefits of so-

called active learning strategies and learning environments, the 

construct of “active learning” has been contested as being ill-defined 

(Lombardi et al., 2021). Different interpretations of what active 

learning is or how it is effectively implemented can lead to 

inconsistencies in teaching practice that have differential effects on 

student engagement and performance (Stains and Vickrey, 2017). 

For example, fidelity in the implementation of active learning 

strategies is a significant moderator in reducing achievement gaps 

among underrepresented student groups (Theobald et al., 2020).  

Several factors have been identified as mediating the effect of 

active learning environments on student outcomes. These include: 

task design and implementation, frequency of active learning 

opportunities, course structure, and fidelity of implementation 

(Theobald et al., 2020; Lombardi et al., 2021). Student engagement 

in group tasks is not only affected by course design and instruction 

but also by group composition and individual students’ background 

and beliefs about how to learn (Deslauriers et al., 2019; Hancock et 

al., 2019; Liyanage et al., 2021). Students’ buy-in for reformed 

teaching practices has a significant impact on their engagement 

(Prather et al., 2009). Students who believe that they learn best from 

lecture are less likely to participate in active learning activities 

(Deslauriers et al., 2019). Additionally, the personal and societal 

relevance of course work may also affect student engagement 

(Hancock et al., 2019). Thus, there is growing evidence that the 

creation of active learning opportunities is necessary, but often not 

sufficient for promoting productive student engagement and 

fostering meaningful learning (Stains and Vickrey, 2017).  

Student engagement 

Lampert et al. (2009) described learning as an interaction between 

individuals mediated by an intellectual or social activity. Interactions 

allow individuals to refine their understandings. From this 

perspective, learning environments must be designed to foster 

opportunities for students to socially engage with each other. This is 

often accomplished through collaborative activities in which 

students work together, typically in organized groups, to complete a 

task. In these environments, student engagement often refers to the 

degree of participation, attention, and intellectual involvement of 

students in a group while completing assigned tasks (Kuh, 2009). It is 

expected that higher levels of engagement will result in higher levels 

of learning and stronger student performance overall. 

 Student engagement has been conceptualized as a multifaceted 

and complex construct to help explain student outcomes (e.g., 

persistence, success, achievement; Kahu, 2013) and as such is often 

considered a proxy for quality of student participation (Kuh, 2009). 

Scholars have characterized student engagement through behavioral 

(e.g., collaborative participation in learning activities), emotional 

(e.g., presence of interest), cognitive (e.g., engaging in strategy use), 

and agentic (e.g., engaging in constructive contribution to the 

instruction) aspects (Fredricks et al., 2004; Reeve and Tseng, 2011). 

This body of research suggests at least three different dimensions of 

analysis in the characterization of student engagement in classroom 

activities: degree or amount of participation (Pike et al., 2011), 

knowledge use and elaboration (knowledge dynamics) (Ford, 2008; 

van Last, 2009), and the nature of the social interactions among 

students (social processing) (Kumpulainen and Kaartinen, 2003). 

Pike et al. (2011) have highlighted the contingent relationship 

between student engagement and active participation in learning 

activities. High levels of participation in classwork seem to be 

associated with higher levels of cognitive engagement and increased 

use of higher-order thinking (Pike, 1999; Zhao and Kuh, 2004). 

Increased student participation often results in and manifests 

through a larger number of student-student and student-instructor 

interactions (Pike, 1999; Inkelas et al., 2003). Thus, the analyses of 

these different types of interactions can be used as a first measure 

of student engagement in active learning environments.  

Researchers in the area of knowledge management in groups 

(Nonaka et al., 2006; Ford, 2008) conceptualize knowledge as a 

dynamic process emerging from human interaction and consider it 

important to characterize how knowledge is shared, used, and 

created during collaborative activity (knowledge dynamics). In a 

community engaged in group work, knowledge can be transmitted 

between people (knowledge sharing) to facilitate the completion of 

tasks. Knowledge sharing involves the introduction of information 

and ideas without much attention to their origin, interpretation, or 

evaluation (van Last, 2009). Group members can also engage in the 

application of shared knowledge in a rather systematic manner 

(knowledge application) to achieve task goals. Individuals or groups 

can also construct understandings as they work on an activity by 

engaging in the interpretation and evaluation of information, 

sharing, testing, and critiquing ideas, and actively seeking to make 

sense of situations and problems (knowledge construction). 

Knowledge construction is often associated with deep learning as it 

may lead to significant changes in knowledge structure and 

approaches to problem solving and decision making (Biggs, 1987).  

The nature of student-student interactions in a group may affect 

student participation and knowledge dynamic (Forman, 1989). Thus, 

Kumpulainen and Kaartinen (2003) consider it important to 

characterize the social relationships and types of participation in 

peer groups (social processing) when analyzing the complex 

dynamics of group work. These authors have identified different 

modes of social processing in groups, including collaborative 

(participants attempt to reach a common understanding of a 
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problem or situation), tutoring (some participants assist others in 

comprehending or completing a task), individualistic (participants 

work individually on an activity), domination (an individual or group 

of individuals direct the work of others), and confusion (group 

members express lack of understanding of the task or associated 

concepts). The emergence of different types of social processing is 

affected by group and task characteristics. For instance, these 

authors found that domination was a key social process exhibited in 

student groups when students did not have a shared understanding 

of a task or the solution to a problem. 

Learning environments and task design 

It is expected that the nature of the learning environment and in-

class tasks used to scaffold and foster student understanding will 

affect student engagement during group work (Lombardi et al., 

2021). Several types of pedagogies of engagement (e.g., 

collaborative group work, POGIL, project-based learning, peer-led 

team learning) have been used in undergraduate science and 

chemistry courses to create more student-centered learning 

environments (Eberlein et al., 2008). The goal of these environments 

is to promote student active engagement with the content and 

support students in constructing knowledge about central ideas 

(Järvelä and Renninger, 2014; Arthurs and Kreager, 2017).  

While didactic approaches to teaching tend to organize 

instruction around the presentation of disciplinary content, 

instructors in student-centered environments often orchestrate 

instruction around a sequence of tasks that help learners to develop 

more expert ways of reasoning and acting in a domain. Effective task 

design and implementation are thus critical for fostering meaningful 

learning in these environments (Roberson and Franchini, 2014). 

Learning tasks are the vehicle through which understanding is 

expected to develop as students analyze information, apply and 

construct ideas, make decisions, and build arguments and 

explanations (Doyle and Carter, 1984).  

Teachers and instructors at all educational levels struggle to 

design and implement tasks that engage students cognitively. Many 

of them use classroom activities based on passive modes of 

engagement in which learners receive information from diverse 

types of instructional materials (e.g., reading a text or watching a 

video without doing anything else) (Chi, 2009). Instructors who 

introduce more active elements in their classrooms often create 

tasks with low cognitive demand. Some, for example, simply ask 

students to physically manipulate different resources (e.g., copy 

solution steps or underline text in a reading). Other instructors 

engage students in answering questions, but the questions posed are 

frequently designed to test whether students can remember a 

definition, apply a formula, or reproduce a schema.   

Research has shown that students benefit more from 

participating in “constructive” activities that have two basic 

characteristics: a) lead to the production of outputs, and b) these 

outputs are not presented in the learning materials (Chi and Wylie, 

2014). Examples of these types of activities include self-explaining 

(Chi et al., 1994), drawing concept maps (Biswas et al., 2005), 

comparing and contrasting cases (Schwartz and Bransford, 1998), 

drawing analogies (Chinn and Malhorta, 2002), and making 

predictions (Klahr and Nigam, 2004). Learning benefits are enhanced 

when the construction of new outputs involves productive 

interactions with others (Chi, 2009). These types of “interactive 

activities” often involve participating in instructional dialogues with 

more knowledgeable others or in joint dialogues with peers. Within 

instructional dialogues, learners may participate in guided-

construction activities such as responding to scaffolded questions 

and revising errors from corrective feedback. Within joint dialogues, 

students could co-construct ideas through arguing and defending a 

position or building and elaborating on a partner’s contribution.  

Wang et al. (2019) found that the cognitive level of tasks (e.g., 

descriptive, relational, reasoning) can differentially affect students’ 

knowledge acquisition. The cognitive level of a task determines the 

mental operations or thinking skills that are likely to be deployed to 

complete the activity. For instance, recall or retrieval tasks require 

lower-order cognitive skills such as memorization to be completed. 

In contrast, analysis tasks require higher-order cognitive skills such 

as interpreting information and applying knowledge (Zoller, 1993; 

Crowe et al., 2008). Different frameworks have been developed to 

characterize the cognitive level of tasks, such as Bloom’s (Anderson 

et al., 2001) and Marzano’s (Marzano and Kendall, 2007) 

taxonomies. In this latter framework, the cognitive system is 

assumed to engage at four major sublevels: a) retrieval, which 

involves the activation and transfer of knowledge from permanent 

memory to working memory; b) comprehension, which requires 

integrating information and creating symbolic representations 

(linguistic or imagery); c) analysis, which may involve identifying 

differences and similarities, organizing knowledge into meaningful 

categories, analyzing errors, generalizing, and transferring, and d) 

knowledge utilization, which demands decision making, problem 

solving, experimenting, and investigating. 

Methods 

The study described in this paper is part of a larger project involving 

four research sites across the United States. The overarching goal of 

this project is to characterize the features of tasks and facilitation, 

including design and implementation, in collaborative learning 

environments that promote productive student engagement and, by 

extension, meaningful learning. In this contribution, however, we 

focus our attention on the analysis of the impact of one aspect of in-

class task design (expected cognitive level of the task) on student 

engagement across five different learning environments. 

Research settings and data collection 

Data were collected in five different learning environments across 

four different universities. Key features of each environment are 

described in the text descriptions below and summarized in Table 1. 

All data collection was approved by the Institutional Review Board 

(IRB) at each institution (approved protocol numbers are listed in 

Table 1) and written consent was obtained from all participants.  

Stony Brook University (SBU): At SBU, data were collected from 

two of eight first-semester General Chemistry I discussion sections, 

each with an enrollment of ~150 students. These discussion sections 

were a co-requisite offering to a large-lecture General Chemistry I 

course with approximately 1100 students across two sections.  

Students within this lecture course completed graded online 

homework assignments and took 3 midterm exams and one 
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cumulative final exam that included multiple choice items. Co-

requisite discussion sections met once per week for 80 minutes for 

15 weeks. The course followed a traditional curriculum, but students 

engaged in POGIL activities where they worked collaboratively on 

questions and problems related to lecture earlier in the week under 

the supervision of a graduate teaching assistant (TA). Students used 

an online platform to access and respond to activity questions and 

received immediate electronic feedback about the accuracy of their 

responses. These responses were not graded for completion or 

accuracy. Rather, students were graded on whether they actively 

worked on these activities as a group for the duration of the 80-

minute session. Six student groups with 3-4 students per group were 

selected for this study. Data were collected from three discussion 

sessions, which included 84 different tasks. Video recordings of 

whole class interactions and observational field notes were collected 

during the discussion periods. 

University of Iowa (UI): At UI, data were collected from a first-
semester introductory chemistry course with an enrollment of ~700 
students and consisting of both a discussion and lecture component. 
Students within this course completed graded online homework 
assignments and took 3 midterm exams that included multiple-
choice and free response questions, and a final exam that included 
only multiple-choice questions. Both components of this course were 
analyzed in this study. Discussion sections led by graduate teaching 
assistants (each with a typical enrolment of 20-26 students) met for 
50 minutes each week for 15 weeks in a classroom with seven square 
tables. Two groups of students from two different discussion 
sections, each composed of three students, were selected for 
investigation. During the discussion students worked in their groups 
to complete a guided inquiry activity that addressed lecture material 
for a given week through the lens of real-life phenomena. These real-
life topics were given as pre-class readings or pre-class video 
assignments to ensure everyone had some background on the topic 
before working on the activities. Activities were turned in by student 
groups, but no grading was completed. Audio data of student 
collaboration and written data of students’ work were collected and 
analyzed. The groups’ audio and written work were collected using a 
white board app on an iPad. Video recordings of whole class 
interactions were also collected. 

There were two lecture sections for this course, one with 250 

students and one with 450 students. In the lecture section, students 

attended the course three times a week for 50 minutes for 15 weeks 

in a large auditorium with stadium style seating. Two groups of 

students from the smaller lecture section, each composed of three 

students, were selected for this study. The course was team-taught 

by three instructors who rotated in the classroom across semester 

topics. Three graduate teaching assistants were present in the 

classroom to aid with answering student question during questions. 

The classroom lecture included a conventional curriculum, during 

which each instructor lectured from the front of the room using 

PowerPoint slides. Students were periodically asked to answer 

questions using a student response system after example problems 

or explanations were discussed. These questions were graded by 

completion and if students actively participated in all problems 

before an exam, they received bonus points for that exam. Data was 

collected in a similar way as the University of Iowa discussion section 

(see above) with the addition of observational field notes.  

Middle Tennessee State University (MTSU): At MTSU, data were 

collected from a first-semester General Chemistry I lecture course 

with an enrollment of 24 students that met two times a week for 90 

minutes for 15 weeks. Two student groups (4-5 students per group) 

were observed in this study. This was a conventional curriculum 

taught through POGIL activities. Each student received a hard copy 

of the POGIL activity to work on and each group had an iPad for 

reporting the answer for grading purposes. Students within this 

course completed graded online homework assignments and took 12 

weekly tests that included free response and multiple-choice 

questions. The small group discussions were video recorded and 

written work conducted on the iPad was recorded to capture 

students’ discussions and the writing of their group responses.  

University of Arizona (UA): At UA, data were collected from a 

first-semester General Chemistry I lecture course with an enrollment 

of 220 students. This class met 3 times a week for 50 minutes for 15 

weeks in a collaborative learning space with 60 tables. Students 

within the course completed online reading assignments before 

every class and weekly online homework. They took 4 midterm 

exams that included multiple-choice and free-response questions, 

and a final that only included multiple choice questions.  Eight 

learning assistants were present in the classroom to facilitate 

student learning. Ten student groups (3-4 students per group) were 

Table 1.  Key features of each of the five learning environments observed as part of this study. 

Research Site 
(IRB Protocol Number) 

Learning 
Environment 

Identifier 
Class 
Size 

Number of  
Groups 

Observed 

Number of 
Students 
Observed 

Number of  
Analyzed Tasks  

(unique questions) 

Number of  
Episodes of  

Student Engagement 

Stony Brook University  
(917004) 

Discussion 
(POGIL) 

SBU-D ~150 6 18 84 128 

University of Iowa  
(201309825) 

Discussion 
(Traditional) 

UI-D ~24 2 6 72 86 

Lecture (Traditional) UI-L 250 2 6 62 104 

Middle Tennessee State 
University  
(19-2253) 

Lecture 
(POGIL) 

MTSU-L 24 2 9 87 178 

University of Arizona 
(1905584616) 

Lecture  
(Chemical Thinking) 

UA-L 220 10 45 114 517 

TOTALS 22 84 419 1,013 
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selected to participate in the study. This course followed an 

alternative curriculum (Chemical Thinking) that actively engages 

students in constructing and applying chemical concepts and ideas 

to analyze, discuss, reflect upon, and propose reasonable 

explanations and solutions to relevant problems and phenomena 

(Talanquer and Pollard, 2010). In-class tasks were interspersed with 

mini-lectures and whole-class discussions every lecture session. In 

most activities, students were expected to work collaboratively with 

their groups but submit individual responses through a response 

system when task time was over. Data was collected from 26 class 

sessions, which included 114 different tasks. Each group was 

assigned a camera and two audio recorders and recorded for the 

whole duration of a class. 

Data Analysis 

The project team developed a codebook to characterize the 

expected cognitive level of tasks and the nature of student 

engagement across all learning environments. The codes were 

adapted from previously established frameworks, described and 

referenced in a prior section of this paper, that were refined through 

their application to several tasks and video/audio recordings of 

students working in small groups. The final codebook included four 

variables, each with several codes. One of the variables (task level) 

was associated with task characteristics, and the other three 

(knowledge dynamics, social processing, and amount of 

participation) helped us characterize student engagement. Once the 

larger project codebook had been established, the research team 

discussed issues related to specific code definitions. The research 

team worked together to apply these codes to several tasks and 

episodes of student engagement across all sites. Application of codes 

were compared until a consensus had been reached for all codes.  

Task characteristics. To characterize the tasks across the 

different learning environments, data from all sites was compiled for 

analysis. As summarized in Table 1, 419 unique tasks were analyzed 

across all learning environments. Each of these activities was 

evaluated for the expected cognitive level of the task (task level) 

using Marzano’s taxonomy (Marzano and Kendall, 2007). While 

Marzano’s taxonomy includes four cognitive levels (1: Retrieval, 2: 

Comprehension, 3: Analysis, 4: Knowledge Utilization), none of the 

tasks for which student discourse was recorded were classified as 

requiring Level 4. While a few discussion activities included questions 

at this level toward the end of the worksheet, students did not 

complete these questions during class time. See Appendix A for 

specific examples of tasks at each of these levels. 

Student engagement. To investigate patterns of student 

engagement during collaborative learning tasks, we analyzed group 

behaviors and interactions for each identified episode. We defined 

an episode as a period of time in which a small student group worked 

to complete a single task. Each episode was characterized based on 

its knowledge dynamics, social processing, and amount of student 

participation as described below. For a more complete description 

and exemplification of each code see Appendix A. 

• Knowledge dynamics: Four main codes were applied to capture 

how students use knowledge as a group to complete a task: 

knowledge sharing, knowledge application, knowledge 

construction, and not observable. Knowledge sharing was used 

when students primarily shared information and ideas to 

complete the task without much discussion of ideas among 

peers. Knowledge application was used when students applied 

formulas or concepts to answer the question and explained 

their approach. Knowledge construction was used when groups 

of students engaged in conversations that led them to answer a 

question or solve a problem by critiquing or building on each 

other’s ideas. A not observable code was applied to episodes in 

which there were no observable student interactions.  

• Social processing: The codes applied in this dimension of 

analysis included: individualistic, confusion domination, 

tutoring, and collaboration. The individualistic code was used 

when students worked independently on an activity. Confusion 

was used when students explicitly manifested doubts on how to 

proceed or about their understanding of relevant concepts. The 

domination code was used when a single group member 

answered or completed the task without significant input from 

others. Tutoring was used for instances of dialogic interaction 

between group members in which one individual mainly 

answered the questions from others. The collaboration code 

was used when students collectively worked on a task. The non-

interactive code was applied when there was no interaction or 

evidence of individual student work on a task. Multiple types of 

social processing were observed in some episodes and thus a 

“multiple social processing” code was applied to these cases.  

• Amount of participation: Each episode of student engagement 

was also coded for the fraction of students in a group that 

participated in completing the task. Three levels of participation 

were coded: minimal, partial, and full. Minimal participation 

occurred when students worked individually or only one 

student was explicitly engaged. Partial participation referred to 

groups that had two or more (but not all) students interacting 

to work on the task. Full participation referred to every group 

member engaging in the discussion.  
Out of the total number of 1,091 episodes, 1,013 episodes that 

could be coded in all areas (i.e., task level, knowledge dynamics, 
social processing, and amount of participation) were selected for 
further analysis in our study. Episodes were excluded from this study 
if they did not have audio due to technical issues (n=14) or 
researchers were not able to capture all variables of interest for an 
episode (n=64). As shown in Table 1, the number of episodes varied 
between learning environment due to differences in total number of 
tasks and groups observed. Due to the nature of the variables under 
analysis (categorical and not normally distributed) non-parametric 
statistical analyses were performed. Patterns in task characteristics 
and student engagement were identified and compared across the 
five different types of learning environments. Chi-square tests of 
independence were performed using R studio software v1.2.5033 
(RCoreTeam, 2021) to identify significant differences between these 
environments. Furthermore, we used Chi-square tests of 
independence to determine whether task level was significantly 
associated with student engagement variables. Due to the number 
of levels within each variable, a Bonferonni correction was applied 
for each comparison. Post-hoc analysis of residuals was used to 
identify major contributors to statistical significance. Items with 
standardized residuals greater than 2 occurred at frequencies higher-
than-expected, while items with values less than -2 occurred at 
frequencies lower-than-expected (Appendix B includes the results 
from these analyses). 
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Results 

In this section, we first present a descriptive analysis of differences 

in expected cognitive level of task and student engagement 

(knowledge dynamics, social processing, amount of participation), as 

well as the interaction between these variables in each of the 

learning environments observed in our study. We look at similarities 

and differences between settings to better characterize the effect of 

various factors (e.g., classroom setting, curriculum) on student 

engagement. We follow this description with a summary and 

discussion of key findings. 

Task level 

As shown in Table 2, comprehension tasks were the most common 

in each of the observed learning environments, with the exception of 

UA-L where analysis tasks comprised more than half of observed in-

class activities. No knowledge utilization tasks were enacted in any 

of the sites. A Chi-square test of independence revealed that there 

were significant differences in the relative numbers of tasks at each 

level of understanding observed in the different learning 

environments (𝝌𝟐= 108.9, df = 8, p-value < 0.001). Our analysis 

indicated (see Appendix B) that the significant difference mostly 

stemmed from the higher-than-expected number of tasks at the 

analysis level at UA-L compared to MTSU-L, where comprehension 

tasks were predominant, and the higher-than-expected number of 

retrieval tasks at both UI-D and UI-L compared to UA-L. 

 

Knowledge dynamics 

The analysis of knowledge dynamics in the different episodes 

revealed knowledge sharing to be the most common dynamic 

observed in each of the observed classes (see Table 3). Nevertheless, 

statistical analysis of these data revealed a significant dependence of 

knowledge dynamic on the learning environment (𝝌𝟐 = 402.14, df 

=12, p-value < 0.001). Our analysis showed (see Appendix B) that the 

significance mostly stemmed from higher-than-expected numbers of 

“not observable” episodes in the groups from UI-L, “knowledge 

sharing” episodes in groups from UA-L, “knowledge application 

episodes” in both SBU-D and UI-D, and “knowledge construction” 

episodes in UA-L. 

We also analyzed the knowledge dynamics in the different 

student groups in the various learning environments in relation to 

the level of the task in which they were engaged. Major trends in this 

area can be observed in Figure 1 where we represent the relative 

frequency of each type of knowledge dynamic observed when 

Table 3. Knowledge dynamics in observed discursive/interactive 
episodes across the different learning environments. 

Knowledge 
Dynamic 

SBU-D UI -D UI-L MTSU-L UA-L 

Not 
Observable 

5  
(3.9%) 

3 
(3.5%) 

42 
(40.4%) 

23  
(12.9%) 

0 
 (0%) 

Knowledge 
Sharing 

70  
(54.7%) 

55 
(64.0%) 

58 
 (55.8%) 

106  
(59.6%) 

391 
(75.6%) 

Knowledge 
Application 

52  
(40.6%) 

18  
(20.9%) 

1  
(1.0%) 

28 
(15.7%) 

19 
 (3.7%) 

Knowledge 
Construction 

1  
(0.8%) 

10  
(11.6%) 

3 
(2.9%) 

21  
(11.8%) 

107 
(20.7%) 

Total 128 86 104 178 517 

 

 
Figure 1. Distribution of knowledge dynamics by task level, Retrieval (R), Comprehension (C), and Analysis (A), in the three categories of sites: 
Discussions (D), Lecture with Conventional Curricula (LCC), and Lecture using Chemical Thinking (LCT). 

Table 2. Frequency of tasks by task level and learning environment. 

Task Level SBU-D UI-D UI-L MTSU-L UA-L 

Retrieval 
7 

(8.3%) 
22 

(30.5%) 
19 

(30.6%) 
17 

(19.5%) 
5 

(4.4%) 

Comprehension 
62 

(73.8%) 
40 

(55.6%) 
28 

(45.2%) 
70 

(80.5%) 
50 

(43.9%) 

Analysis 
15 

(17.9%) 
10 

(13.9%) 
15 

(24.2%) 
0 

(0.0%) 
59 

(51.7%) 

Total 84 72 62 87 114 
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students worked on tasks targeting different levels of understanding. 

In this graph, we have grouped the different learning environments 

into three different types: Discussions (D) including the SBU-D and 

UI-D sites, lectures using a conventional general chemistry 

curriculum (LCC), which included the classes UI-L and MTSU-L, and 

the lecture at UA-L using the alternative chemical thinking curriculum 

(LCT). Statistical analysis of these data indicated a significant 

difference in the knowledge dynamics for different level tasks that 

was distinct in each of the categories of sites. In particular, there 

were a higher-than-expected number of “knowledge application” 

episodes associated with comprehension tasks in the discussion 

classes (UI-D, SBU-D), a higher-than-expected number of “not 

observable” episodes during analysis tasks in LCC sites (particularly 

at UI-L), and a higher-than expected number of “knowledge 

construction” episodes and a lower-than-expected number of 

“knowledge application” cases for analysis tasks at UA-L. 

 

Social processing 

Analysis of social processing interactions in the different sites 

revealed diverse patterns in each of the observed learning 

environments as summarized in Table 4.   Collaboration and Multiple 

Social Processing were, however, often the most prevalent forms of 

social processing in most sites. Many episodes were characterized by 

more than one social processing interaction such as tutoring and 

confusion or tutoring and domination. Chi-square analysis of the data 

revealed a significant association between learning environment and 

social processing (𝝌𝟐 = 813.1, df = 24, p-value < 0.001). This analysis 

indicated (see Appendix B) that the significance was mostly linked to 

a) a larger-than-expected number of non-interactive episodes in 

groups from UI-L, b) a higher-than-expected number of 

individualistic episodes in groups from UI-L and MTSU-L and lower in 

SBU-D and UI-D; c) a higher-than-expected number of confusion 

episodes at UA-L and lower in UI-L and MTSU-L; d) a lower-than-

expected number of domination social processing in UA-L; e) a lower-

than-expected number of tutoring episodes in UI-D and UI-L; f) the 

larger-than-expected number of collaboration episodes in UA-L and 

lower in UI-L and MTSU-L, and g) the larger-than-expected number 

of episodes with multiple types of social processing in groups from 

SBU-D, UI-D, and MTSU-L and lower at UI-D and UA-L. 

As described in the case of knowledge dynamic, we also analyzed 

the association between task level and social processing in the 

observed groups. The results are summarized in Figure 2 where we 

show the relative frequency of each type of social processing for each 

task level for the three categories of sites (D, LCC, LCT). Our analysis 

indicated that instances of multiple social processing increased with 

task level in the discussion sites, although the effect was not 

statistically significant. In LCC sites, instances of individualistic work 

during retrieval tasks and episodes of non-interactive processing 

Table 4. Social processing in observed discursive/interactive 
episodes across the different learning environments. 

Social 
Processing 

SBU-D UI-D UI -L MTSU-L UA-L 

Non-interactive 
0 

(0.0%) 
0 

(0.0%) 
50 

(48.1%) 
0 

(0.0%) 
0 

(0.0%) 

Individualistic 
3 

(2.3%) 
5 

(5.8%) 
29 

(27.9%) 
42 

(23.6%) 
64 

(12.4%) 

Confusion 
5 

(3.9%) 
2 

(2.3%) 
0 

(0.0%) 
0 

(0.0%) 
53 

(10.3%) 

Domination 
25 

(19.5%) 
16 

(18.6%) 
10 

(9.6%) 
34 

(19.1%) 
53 

(10.3%) 

Tutoring 
17 

(13.3%) 
2 

(2.3%) 
1 

(1.0%) 
14 

(7.9%) 
63 

(12.2%) 

Collaboration 
39 

(30.5%) 
30 

(34.9%) 
14 

(13.5%) 
36 

(20.2%) 
284 

(54.9%) 

Multiple Social 
Processing 

39 
(30.5%) 

31 
(36.1%) 

0 
(0.0%) 

52 
(29.2%) 

0 
(0.0%) 

Total 128 86 104 178 517 

 

 
 
Figure 2. Distribution of social processing by task level, Retrieval (R), Comprehension (C), and Analysis (A), in the three categories of sites: Discussions 
(D), Lecture with Conventional Curricula (LCC), and Lecture using Chemical Thinking (LCT). 
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during analysis tasks were higher-than-expected. At the UA-L site, 

instances of collaborative processing increased with task level 

although this effect was not statistically significant. 

 

Amount of participation 

The analysis of amount of participation revealed that the majority of 

episodes analyzed were characterized by having student groups fully 

(SBU-D, UI-D, UA-L) or partially (UI-L, MTSU-L) participating in the 

assigned tasks. Specific results for each site are summarized in Table 

5. Further analysis of these data showed that the amount of 

participation had a statistically significant association with learning 

environment (𝝌𝟐 = 222.3, df = 8, p-value < 0.001). The significance 

mostly stemmed from a) the higher-than-expected number of 

instances of full participation at UI-D and UA-L and lower at UI-L and 

MTSU-L; b) the higher-than-expected number of episodes with 

partial student participation at MTSU-L and lower at UI-D, and c) the 

higher-than expected number of episodes of minimal participation at 

UI-L and lower at SBU-D and UA-L. 

We also explored whether the amount of student participation 

was associated with expected task level. Figure 3 shows the relative 

frequency of different amounts of participation for each task level in 

the different categories of sites. The relationship between amount of 

participation and task level was quite similar in the discussion sites 

and the UA-L. In both cases, minimal participation was higher-than-

expected when working on retrieval tasks. The relationship between 

these two variables was quite different in the LCC sites where higher-

than-expected instances of minimal participation were observed 

when working on both retrieval and analysis tasks. 

 

Summary and discussion of key findings 

Our task analysis showed that comprehension tasks were the most 

common in the majority of the observed learning environments, 

except at UA-L where an alternative general chemistry curriculum is 

followed. Students at this latter site were more frequently engaged 

in analysis tasks. Differences in task level across sites can be expected 

to reflect differences in both curriculum and instruction. For both UI-

L and UA-L, tasks were primarily in the form of single questions 

interspersed during lecture. While these two settings had similar 

deployment of tasks, the overall focus of the questions was very 

different with UI-L having significantly more retrieval questions and 

UA-L more analysis questions. In the other three environments 

(MTSU-L, SBU-D, and UI-D), students completed worksheets 

consisting of a series of questions, which were typically designed to 

start with retrieval and comprehension questions to guide students 

through thinking about a problem or concept. The high degree of 

scaffolding in these activities led to a higher proportion of lower-

level questions. No knowledge utilization tasks were enacted in any 

of the observed classrooms. These types of tasks typically demand a 

considerable amount of time to implement and often require out-

of-class preparation. They were present in some course materials 

but were never completed by students in the observed classes, often 

due to lack of time. The prevalence of lower-level tasks observed in 

most sites is similar to that identified in the analysis of end-of-

chapter questions in traditional general chemistry textbooks (Dávila 

Table 5. Amount of participation in observed discursive/interactive episodes 
across the different learning environments. 

Amount of 
Participation 

SBU-D UI-D UI-L MTSU-L UA-L 

Minimal 
Participation 

0 
(0.0%) 

2 
(2.3%) 

36 
(34.6%) 

19 
(10.7%) 

22 
(4.2%) 

Partial 
Participation 

52 
(40.6%) 

13 
(15.1%) 

43 
(41.4%) 

114 
(64.0%) 

188 
(36.4%) 

Full 
Participation 

76 
(59.4%) 

71 
(82.6%) 

25 
(24.0%) 

45 
(25.3%) 

307 
(59.4%) 

Total 128 86 104 178 517 

 

 
Figure 3. Distribution of amount of student participation by task level, Retrieval (R), Comprehension (C), and Analysis (A), in the three categories of 
sites: Discussions (D), Lecture with Conventional Curricula (LCC), and Lecture using Chemical Thinking (LCT). 
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and Talanquer, 2010). Our results thus highlight the impact that 

conventional curricula and educational resources may have on the 

opportunities students have to engage in higher-order thinking 

(Zoller, 1993). 

Our analysis revealed a significant association between task level 

and student engagement as characterized by knowledge dynamic, 

social processing, and amount of participation of students in 

observed groups in the five learning environments. Retrieval tasks, 

which require low levels of cognitive processing for completion, 

often led to a significantly higher number of instances of no 

interaction between students and individualistic work, and a lower 

number of knowledge construction and collaborative episodes with 

full or partial student participation across all sites. On the other hand, 

analysis tasks, which require higher cognitive levels, were 

significantly linked to more instances of knowledge construction and 

collaboration with full group participation at the UA-L site, although 

they were linked to higher instances of no interaction at the sites 

taught using a conventional general chemistry curriculum in 

auditorium-style classrooms. These results reinforce findings from 

previous studies that highlight the effect that different types of tasks 

have on the extent and level of cognitive processing in which 

students working in groups engage (Chi and Wylie, 2014) and the 

importance of creating educational experiences that are challenging 

to students to encourage higher levels of engagement (Zepke and 

Leach, 2010). 

Tasks at the comprehension level in our investigation were 

distinctive in their significant association with more instances of 

knowledge application and multiple types of social processing in the 

discussion sites. We also found that the frequency of knowledge 

application decreased with analysis questions across all types of 

sites. While this may seem counter-intuitive, it is likely due to the fact 

that students tended to explain the procedures used to complete 

comprehension tasks more often than when completing analysis 

tasks which demanded more than an algorithmic approach. 

Knowledge application requires students to connect the conceptual 

ideas, formulas, and methods explicitly and verbally to their task 

completion (see Appendix A). 

Given the association between task level and student 

engagement, it is not surprising that the significantly higher fraction 

of retrieval tasks at UI-L contributed to a higher number of episodes 

of non-interactive and individualistic work, with lower instances of 

knowledge construction and full student participation that 

characterized this latter site. Differences in the levels of the tasks 

implemented at the UA-L compared to other sites are likely linked to 

the use of an alternative curriculum (Chemical Thinking) that seeks 

to foster conceptual understanding over algorithmic problem solving 

and integrated versus fragmented learning (Talanquer & Pollard, 

2010). Reformed curricula in introductory science course developed 

in recent years strongly emphasize the need for implementing 

higher-order in-class activities and assessment tasks that demand 

students to integrate central ideas, scientific practices, and 

crosscutting concepts (Laverty et al., 2016). Our results support the 

positive effects on student engagement of curricula aligned with 

these ideas. 

Nevertheless, our results show major differences in all aspects of 

student engagement for tasks at the same level implemented in the 

different sites. For example, analysis tasks at UA-L were linked to a 

higher number of instances of knowledge construction, collaborative 

work, and full student participation in this setting. Tasks at the 

analysis level were associated with significantly more frequent 

instances of non-interactive processing and minimal student 

participation at the LCC sites (UI-L in particular). These results 

suggest that other differences between the observed learning 

environments, such as the layout of the classroom (e.g., lecture hall 

versus collaborative learning space), the management of class time, 

the nature of the instruction, or the scaffolding of tasks likely 

affected various aspects of student engagement in group work. For 

example, learning environments in which students worked in small 

groups on guided inquiry activities for most of the class time (SBU-D, 

UI-D, MTSU-L) had a significantly higher number of episodes in which 

students engaged in multiple types of social processing. This was 

likely due to longer periods of sustained group work and the 

scaffolded nature of the worksheets compared to the shorter in-class 

activities implemented at UI-L and UA-L. In these two cases, the class 

layout may also have been responsible for observed differences in 

student engagement. While the UA-L class was taught in a flat 

collaborative learning space designed to facilitate students working 

in groups of 3 to 4 students, the UI-L class was taught in a traditional 

auditorium where interactions between more than two students 

were difficult. This difference in classroom set up likely contributed 

to the higher number of episodes of no interaction, individualistic 

work, and minimal participation observed at UI-L. These findings 

align with those of other authors who have analyzed how the nature 

of the implementation of evidence-based teaching practices (Stains 

and Vickrey, 2017) or the type of classroom setting (Cotner et al., 

2013; Talbert and Mor-Avi, 2019) affect student engagement. 

In our study we also observed that instances of knowledge 

application were significantly higher in the two learning 

environments that corresponded to discussion sessions (SBU-D, UI-

D). In these cases, students typically worked on tasks related to 

topics already covered in the associated lectures, while in the other 

learning environments tasks tended to be completed as new 

concepts and ideas were being introduced in class. In these latter 

environments we saw an uptick in not observable (UI-L), knowledge 

sharing (MTSU-L, UA-L), and knowledge construction (UA-L) 

dynamics. This suggests that the timing of a task during the learning 

process (i.e., during or after concepts are introduced) may affect the 

type of knowledge dynamics in which students engage. 

Independent of the type of learning environment, the most 

common knowledge dynamic in the observed groups was knowledge 

sharing (see Table 3). In these types of episodes, the most common 

type of social processing was collaboration, but a majority of 

instances of knowledge sharing (>50%) involved a wide range of 

other forms of interaction (see Figure 2). Student engagement in 

knowledge construction was much less frequent but when it 

happened, it was associated with more instances of collaboration 

and fewer episodes of domination by a single student in a group. 

Although each learning environment was designed to leverage 

collaborative activity in some capacity, collaboration was observed 

in fewer than half of the analyzed episodes for all sites. There was, 

however, wide variation from one learning environment to the other. 

While the distribution of observed types of social processing was 

quite similar between the two discussion environments (SBU-D, UI-

D), the observed interactions were quite distinct in the three lecture 



ARTICLE Journal Name 

10 | J. Name., 2021, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx 

Please do not adjust margins 

Please do not adjust margins 

sites, going from primarily non-interactive and individualistic at UI-L 

to primarily collaborative and tutoring at UA-L. Social processing at 

MTSU-L was quite diverse, with no dominant form of interaction in 

the observed groups (see Table 4). 

The amount of student participation in group work was also 

similar between the discussion sites, with full participation in over 

two thirds of all episodes in both cases, and more diverse among 

lecture sites (see Table 5). The different factors already described 

and discussed likely contributed to the observed minimal, partial, 

and full participation observed at UI-L, MTSU-L, and UA-L, 

respectively. 

Limitations 

The generalization of our findings is limited by the small number of 

student groups observed at each of the participating sites. Although 

observed student groups worked on a large number of different in-

class tasks, all of the activities correspond to the first semester of 

general chemistry and thus may not be representative of all types of 

tasks students encounter in a chemistry curriculum. Our results are 

based on the analysis of students’ explicit actions and conversations 

during group work. These are only proxies for their actual level of 

intellectual engagement with the in-class activities. Additionally, the 

presence of video cameras and recorders may have affected 

students’ behaviors and expressed thoughts. Observations were 

carried out in classes taught by different instructors with varied 

approaches in the design, implementation, and monitoring of 

student work. Some of these approaches were not necessarily 

representative of best practices as described in the collaborative 

learning research literature. The relationship between the variables 

analyzed in this study can be expected to depend on the quality of a 

teacher’s planning and instruction. 

Observed differences in tasks characteristics and student 

engagement across sites are likely due to a complex combination of 

factors including institution type, student population, instructional 

style, and curricular materials to name a few. We focused on 

differences in curricular factors that we characterized as part of the 

study but acknowledge that other differences in the institutions 

(described in the research settings) may also play a role. 

Implications 

Our results indicate that in-class tasks in those learning environments 
that followed a traditional general chemistry curriculum tended to 
target the comprehension and retrieval levels, while the fraction of 
group activities at the analysis level was significantly larger in the site 
using an alternative curriculum purposefully designed to foster 
students’ conceptual understanding (Talanquer and Pollard, 2010). A 
larger number of episodes of collaborative group work and 
knowledge construction were observed in this latter site. These 
results suggest that chemistry instructors using conventional 
curricula should carefully analyze the level of cognitive processing 
that their different in-class tasks demand, and work to diversify these 
activities to include higher level tasks if their goal is to engage all 
students more actively in knowledge construction.  

Our study also elicited the effect that other factors of learning 
space, task design, and implementation, besides the curriculum, may 
have on student engagement in group work. The layout of the 

classroom, for example, seemed to have a major effect on 
differences observed between the class taught in a traditional 
auditorium-style lecture hall and the class taught in a learning space 
designed to foster student collaboration. This result points to the 
importance of creating physical conditions that support student 
active engagement. Our findings also suggest that the timing of a task 
during a learning sequence could affect how students approach it. 
Tasks completed post-lecture in discussion/recitation settings more 
often resulted in knowledge application dynamics than tasks used 
during lecture as new concepts were explored or introduced. This 
result needs to be further explored to better understand whether 
this effect is actually caused by task timing rather than other factors 
such as students’ differential perception and behavior in lecture 
versus discussion sessions. 

Despite the association between higher-level analysis tasks and 
more knowledge construction interactions in some sites, all types of 
activities across all observed learning environments were dominated 
by a knowledge sharing dynamic. Knowledge construction is often 
cited as an instructional goal for active learning settings in general 
chemistry (Chi and Wylie, 2014; Lombardi et al., 2021), but we saw 
relatively little of it across our sites. Although more frequent 
engagement in knowledge construction may be desirable, this result 
invites us to investigate what balance between knowledge sharing 
and knowledge construction dynamics might be best to foster 
meaningful learning during in-class tasks, and what ratio might be 
actually feasible to accomplish in large-enrollment courses with 
many diverse students. Given that we did not observe students 
working on knowledge utilization tasks (the highest level in 
Marzano’s taxonomy) in any of the sites, it would also be important 
to explore how working on these types of tasks affects different 
aspects of student engagement. However, knowledge utilization 
tasks are often about planning and completing activities; this is often 
difficult to accomplish in a single class period. Knowledge utilization 
tasks require significantly more time and attention for successful 
implementation. Overall, our results speak to the importance of 
designing tasks that lead students to meaningfully engage with each 
other’s ideas and of supporting them in these processes (Chi, 2009).  

Although collaborative activity was the most common type of 
social processing in the observed groups, it amounted to less than 
half of the total number of episodes with wide variation across sites. 
This result suggests that, independently of the curriculum and nature 
of in-class tasks, instructors should carefully evaluate and reflect on 
their planning and implementation of group work. While group work 
is a common instructional strategy, it is often implemented with little 
structure or feedback and students may not be aware of effective 
ways to interact. The literature on collaborative learning provides 
insights on best practices to foster active, equitable, and productive 
interactions among group members that were not always 
implemented in the different classes observed in our investigation 
(Eberlein et al., 2008). As part of our overall project, we plan to 
investigate how the implementation of these best practices with 
consistency and fidelity across different sites affects student 
engagement as characterized in this study.  

Appendix A 

The coding system used in our study is described and 

exemplified in the following tables: 

• A.1: Tasks characteristics 

• A.2: Knowledge dynamics 

• A.3: Social processing 
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 Table A.1 Coding for tasks characteristics 

Level Definition Example 

Retrieval 
Involves the simple recognition, recall, or execution of knowledge, including rote 
calculations. Tasks of this level ask a learner to reiterate or identify information in almost 
the exact way it was introduced. 

How is atomic radius defined? 

Comprehension Involves the integration and symbolic representation of knowledge, generally with a focus 
on key features and organization of information. 

Draw the Lewis structures of O3 and O2. 

Analysis 
Involves examining knowledge in detail and generating new conclusions. 

Consider substances made up of the following atoms 
and molecules: He, CH4, Ne, C2H6. Arrange the 
substances in order of increasing boiling point and 
clearly justify your rankings. 

Knowledge 

Utilization 

Requires that students apply or use knowledge in specific situations and almost always 
includes a component of justification. These tasks will include decision making between 
two or more alternatives, problem solving that includes accomplishing goals for which an 
obstacle exists, experimenting, or investigating. 

Based upon everything you have learned; do you think 
that solar geoengineering should be an option for 
combating climate change? Justify your answer.  

 
Table A.2 Coding for knowledge dynamics (“S#“ indicates student number # in a group; “I” indicates instructor); “Q” indicates the question posed). 

Category Definition Example 

Knowledge 
Sharing 

The focus of the group 
interactions is based on 
sharing information to 
answer the question 
without questioning of the 
utterances presented. 

Q: 300.00 grams of ethanol at 10.0°C is heated with 14,640 J of energy. What is the final temperature of the ethanol? 
S1: We're gonna be looking for delta T. 
S2: So why don't we just divided by fourteen thousand six hundred forty by the 300 grams of ethanol? 
S1: Delta T will be equal to 20. So if we go from 10, the heat should be equal to 30 degrees Celsius.  
S2: So just be 30 degree Celsius? 
S1: Right, so… 
S2: Cuz if you're looking for delta T, you're gonna have 300... 
S1: Times 2.44, right? 
S2: Yeah. 
S1: Times delta T is going to be equal to 14.640 
S2: And when you work that out, you get 30 or 20 degree Celsius... 
S1: you get 20. 
S2: So you add that to and you get 30 degree Celsius. 
S1: That's right. 

Knowledge 
Application 

The focus of the group 
interactions is based on 
applying a 
formula/method/ 
concept and relating that 
to a clear understanding 
of how it relates to the 
explanation or process of 
solving the problem. 

Q: How can you use the periodic table to help you determine the most stable oxidation state? 
S2: Let's see. How can we use periodic table to help you determine the most stable oxidation state. 
S2: Umm. How can...[Mumbles bits of the activity prompt]...state. We're on? 
S1: We're on C right now. 
S2: C? 
S1: Yeah. 
S2: The most stable oxidation state. Um, elements. I don't know how to say this... How can you help the periodic 
table...um... elements are trying to lose..or actually, elements are trying to.. 
S3: It goes back to the orbitals being filled. 
S2: Yeah, they're trying to get back to a core electron. They want to be like in a stable state. So just be like, the atoms 
want to be in a stable state and so they're gaining or losing electrons. 
S3: Even if you had orbitals filled with one arrow, that would still be its stable state, right? 
S2: Um...If you had one arrow, you'd have like 1s1. What do you mean by like one arrow? 
S2: Okay. 
S3: Because like, let's say you have the 3p orbital and like all the orbitals are filled with one arrow. 
S3: Like let's say all of them. 
S2: Okay. So all of them. So you've got..um.. you've got 3p3, P. What, would that be five? So you'd 
have..1,2..1,2..1,2,3,5 which would be iron. And you'd want to... I don't know, it's a transition metal. I think you'd want to 
ah.you're not stable there. So you're going to want to have to oxidize or reduce. I'm not sure exactly. I'm just as 
confused as you are pretty much. I swear they try to make this confusing during lectures so nobody understands it. 
S3: [Inaudible] 
S2: Yeah. 
S1: Okay, I think I got everything. 

Knowledge 
Construction 

The focus of group 
interactions is based on 
sharing information and 
building upon the ideas of 
others by questioning or 
critiquing the ideas 
presented. 

Q: when dry ice (solid CO2) sublimes, what forces are overcome? (select all that apply) 
A. covalent bonds between carbon atoms and oxygen atoms 
B. hydrogen bonding between carbon dioxide molecules 

C. dipole-dipole forces between carbon dioxide molecules 
D.  dispersion forces between carbon dioxide molecules  

S2: Dip dip 
S1: Yeah 
S2: [Inaudible] degrees Celsius 
S1: Yeah and then it’s gotta be at its gotta be at that specific pressure 
S2: 611.2 Pascals of mercury 
S2: [Inaudible] mmHg 
S1: 4.58 mmHg 
I: So, we want to know when dry ice or solid carbon dioxide sublimes, what kind of forces are basically broken? 
S1: Dipole dipole right? 
S4: Is it dipole dipole? There is only a change of like .3, does that count? 
S3: Its dipole dipole between the molecules not between the 
S1: Yeah 
S3: So like [Inaudible] 
S1: Yeah it doesn’t matter if the bonds are polar it just matters if the molecules are polar 
S1: Dispersion forces are between nonpolar 
S4: Dispersion forces between [Inaudible] 
S1: Yeah, but also but yeah so just 
S2: So those are also carbon 
S1: Oh yeah 
S2: No, wait, 
S1: I don’t think it's breaking the bond 
S2: No, it’s not 
S3: No, it’s not 
S1: Fight me 
S2: Cause the molecule is pol 

Not Observable 
No knowledge dynamic is 
seen due to a lack of 
student interaction. 
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Appendix B 

Tables B.1 through B.4 present the results of the post hoc 

analysis of residuals performed across different dimensions in 

our study. 

 

Table A.3 Coding for social processing (“S#” indicates student number # in a group; “Q” indicates the question posed). 
Category Definition Example 

Collaborative 

Students are co-
constructing ideas and 
generating products 
together. 

Q: How do the kinetic and potential energy of electrons change when atoms bond? 
S1: “Kinetic goes down.” 
S2: “Potential goes up” 
S1: “And attractive go up.” 
S3: “Wait, wait, wait.  Kinetic goes down and potential goes?” 
S2: “Potential attractive goes up.” 
S3: “It goes up?” 
S2: “Yea it goes up and potential repulsive goes down.” 
S3: “And then all potential goes down.” 
S1: “next, shouldn’t it go down if they are staying in the same place and everything else is moving?” 
S3: “It would have to go down because they are further away.” 
S4: “I have the potential energy of the electrons not delocalizing decreasing.” 
S1: “I think attractive is increasing because they are further apart.” 
S4: “Then I think the answer is option four.” 

Tutoring 

One or more students ask 
questions that another 
student responds to by 
guiding the students 
through the problem asking 
for the tutees ideas or just 
by explaining their 
reasoning without asking 
input from the student who 
asked the question. 

Q: Consider the bonds H-H and C-C: Which chemical bond is longer, and which is stronger? Why? 
S1: “I am just so lost right now.” 
S2: “Okay, so the first thing would be… you don’t need to know the whole electron and proton thing 
right now.  When they are far enough apart, they attract towards each other then they hit this perfect 
balance point between repulsive and attraction.  Then there is this part over here which is super 
repulsive but generally when you get a bond, like in water they stay in this perfect range between 
attraction and repulsion and that’s what the graph shows.  If the get really close they shot apart from 
each other but if they get to that valley that’s were they have the lowest potential energy and bonded.” 
S2: “So by longer do is it talking about distance?” 
S1: “Yea, so the C-C bond is going to be longer than the H-H bond.  Because they have a stronger 
pull, they also have a stronger repulsion so it will be longer.” 
S2: “So is C-C also stronger?” 
S1: “I think so, because they will have stronger forces, both repulsive and attractive. 

Individualistic 

Students are working 
independently and are not 
having conversation about 
the question products. 

Q: If two particles each have 8 protons and 8 electrons but, one is larger, which is more polarizable? 
S1: “I put A.” 
S2: “Okay.” 

Domination 

One individual construct 
the response on their own 
without significant input 
from others. 

Q: What will be observed when these substances are mixed: Cl2(aq) and Na2CO3(aq)? 
S1: “Well, one of the things is going to be copper carbonate and the other is going to be sodium 
chloride.  So you are going to see a change in the color composition as the things move around.  One 
of them would participate out, I think the copper carbonate.” 
S2: “Okay.” 
S3: “alright.” 

Confusion 

Students are too confused 
to really generate the 
expected product or make 
confident progress for a 
question. 

Q: Can you infer how many bonds C-H bonds are present in the molecule based on the IR spectrum? 
S1::“I don’t understand” 
S2: “I have no idea how to even begin.” 
S3: “Should we just guess?” 
S4: “I’m putting C then.” 
 

Non-Interactive 

Students are not having 
any conversation, but there 
is no proof of individualistic 
work. 

 

Multiple Social Processing 
Students engage in more 
than one social processing. 

 

 

 

 

Table B.1. Residuals: Task level and learning environment (Table 2 data) 

Task Level SBU-D UI-D UI-L MTSU-L UA-L 

Retrieval -1.89 -2.88 2.69 0.647 -3.22 

Comprehension 1.68 -0.452 -1.48 2.51 -2.19 

Analysis -1.09 -1.70 0.092 -4.53 6.18 

 
Table B.2. Residuals:  Knowledge dynamics and learning environment 
(Table 3 data) 

Knowledge 
Dynamic 

SBU-D UI -D UI-L MTSU-L UA-L 

Not Observable -1.39 -1.28 12.6 2.84 -6.10 

Knowledge 
Sharing 

-1.72 -0.359 -1.41 -1.23 2.36 

Knowledge 
Application 

9.61 2.52 -3.19 1.60 -5.31 

Knowledge 
Construction 

-4.00 -0.592 -3.03 -0.791 4.06 

 

Table B.3 Residuals: Social processing and learning environments (Table 
4 data) 

Social 
Processing 

SBU-D UI-D UI -L MTSU-L UA-L 

Non-interactive -2.51 -2.06 19.8 -2.96 -5.05 

Individualistic -3.55 -2.05 3.74 3.37 -1.05 

Confusion -0.938 -1.37 -2.48 -3.25 4.04 

Domination 1.81 1.25 -1.11 1.98 -2.08 

Tutoring 1.36 -2.17 -2.84 -0.737 1.92 

Collaboration -1.67 -0.720 -4.26 -4.14 5.46 

Multiple Social 
Processing 

6.01 6.41 -3.54 6.60 -7.89 

 
Table B.4. Residuals: Amount of participation and learning environment 
(Table 5 data) 

Amount of 
Participation 

SBU-D UI-D UI-L MTSU-L UA-L 

Minimal 
Participation 

-3.16 -1.82 9.79 1.37 -2.88 

Partial 
Participation 

0.027 -3.70 0.140 -4.94 -1.47 

Full  
Participation 

1.20 3.98 -3.93 -4.91 2.42 
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