2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits) | 978-1-6654-9772-5/22/$31.00 ©2022 IEEE | DOI: 10.1109/VLSITechnologyandCir46769.2022.9830355

A Single-Clock-Phase Sense Amplifier Architecture with 9x Smaller Clock-to-Q

Delay Compared to the StrongARM & 6.3dB Lower Noise Compared to Double-Tail

Xiaohui Lin, Mohamed Megahed, and Tejasvi Anand
Oregon State University, Corvallis, OR 97331, USA, email: linxiao@oregonstate.edu

Abstract

A single-clock-phase sense amplifier architecture with a
strong regeneration is proposed. Designed in 22nm FinFET,
the proposed architecture has a 9x smaller tcq delay compared
to the conventional StrongARM latch and 6.3dB lower input
referred noise compared to the Double-Tail architecture for
similar input transistor size and power consumption.
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Introduction

Fast decision-making sense amplifier (SA)is a critical
component in high-speed wireline links and high-speed
analog-to-digital converters. The speed of decision-making is
defined as the delay between the clock triggering edge to the
valid output, namely clock-to-Q delay or tcq. Conventional
StrongARM latch architecture (Fig. 1) suffers from large tco
delay due to (a) it requires two phases of common-mode (CM)
discharge before entering regeneration phase [1], and (b) the
input pair causes the degeneration on the cross-coupled NMOS
pair [2], which thus prolongs the regeneration time. The
improved two-stage sense amplifier architectures such as
Double-Tail comparator [3] and Elzakker latch [4] can reduce
tcq. However, this tcq reduction comes at the cost of using two
clock phases instead of one, which requires a stricter timing of
the clock phases. Moreover, as discussed in [5], the Double-
Tail latch suffers from higher input referred noise. In view of
these limitations, we propose a single-stage, single-clock-
phase sense amplifier architecture (Fig. 1), with averaged tcq
9x smaller compared to the StrongARM latch (across 5 chips),
similar and even smaller tcq compared to the double-clock-
phase architectures [3][4]. The measured input referred noise
of the proposed architecture is comparable to StrongARM and
6.3dB lower than Double-Tail architecture.

Comparison with the Conventional StrongARM Latch
Fig. 2 shows a visual comparison of the operation between the
proposed sense amplifier and the StrongARM. The input
voltages to the sense amplifiers are VIP and VIN such that VIP
> VIN. During the precharge phase (CLK=0), the nodes As, Bs,
VOPs and VONg in the StrongARM are reset to Vpp. Once
CLK goes high at time t=0s, the output node voltages VOPs
and VON; remain at Vpp, as M2 and M2’ stay off until As, Bs
are discharged to Vpp-Vtu. By comparison, in the proposed
latch the output node voltages VOPp and VONp experience an
immediate discharge towards Vpp/2, enabling the proposed
latch to enter the regeneration phase earlier than StrongARM
latch. The second reason for the smaller tcq in the proposed
latch is more active cross-coupled pairs during regeneration,
with no degeneration in the NMOS cross-coupled transistors
(M4/M4°), and a fewer stack of transistors from Vpp to ground
as compared to the StrongARM. Since VOPp and VONp reach
Vpp/2 faster due to charge sharing, the proposed latch enters
the regeneration region with all three cross-coupled pairs
strongly turned on, which gives stronger positive feedback.

The Operation of the Proposed Latch
Fig. 3 shows the detailed operation of the proposed architecture
in three phases. Phase I is the precharge phase (CLK=0), with
nodes X and Y discharged to the ground, VOPp, VONp
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precharged to Vpp. Once CLK switches to high it enters Phase
II, charge-share dominant regeneration phase. The voltage on
nodes VOPp, VONp starts to drop from Vpp due to (a) charge
sharing between the parasitic capacitors Con, Copr, Cx, and Cy,
(b) the strong discharge path given by transistors M4, M4’, and
(c) another discharge path provided by the input pair M1 and
M1’, which is modeled by their common-mode current (Icwm).
When VOPp and VONp reach Vpp-Vry, M5 and M5’ are
activated, and thus the latch enters the strong regeneration
phase, which can be divided into two separate time regions t,
and t3. During time t, the output capacitors Con, Cop are
discharged by currents IDNL and IDNR through M2, M4, M2’
and M4’, respectively. As a result, voltages on nodes VOPp,
VONp keep reducing till they reach the trip point Vpp/2.
During time duration t3, VOPp and VONp start to go in an
opposite direction until reaching Vpp and GND respectively.
Once the proposed sense amplifier enters ts;, the strong
regeneration pushes VONpand VONy in the opposite direction.
Measurement Results

Four sense amplifier architectures were designed for apple-to-
apple comparison in 22nmFinFET and sized to consume
similar power with the same input transistor size. Delay line
consisting of M inverters and N sense amplifiers was designed
to measure tcq delay (Fig. 4). Output of the delay line (¢our) is
a narrow pulse, shown in the measured output (Fig 4), whose
width is equal to Nxtcq + Mxtivy, where tivy is one inverter
delay. Two such delay lines with different number of inverters
(M) and sense amplifiers (N) were used to measure two
different pulse widths. By solving the two linear equations
with two unknowns tcq and tivy, tco can be estimated.
Operating at 0.95V and measured across 5 chips, for input
difference AViy of 10mV, energy efficiency of 14.2 fJ/decision,
the proposed sense amplifier architecture has an averaged tco
of 99.3ps for input common mode Vem = 0.35V, which is 9x
smaller tco as compared to the StrongARM latch and 3.3x
smaller tcq compared to Elzakker SA[4] (Fig. 5). Measured tcq
versus Vem change at input difference AVin of 50mV and its
sensitivity towards AV change at various Vewm shows that the
proposed architecture has only 11.6ps change of tcq toward
100mV input difference AVin change (10mV-110mV) at
Vem=0.35V, which is smallest sensitivity compared to the prior
architectures implemented on the same chip. The noise
measurement was done by measuring 20,000 samples for each
measurement point at Fcrxk=40MHz (Fig. 6). The proposed
architecture achieves 6.3dB lower input referred noise
compared to the Double-Tail architecture and similar noise
compared to the StrongARM at Veu=0.35V. Die micrograph
is shown in Fig. 4. The proposed architecture achieves the
smallest energy delay product of 1241.1 fJ-ps compared to the
prior published architectures (Table I).
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F1g 1: Conventional sense amplifier architectures and the proposed
sense amplifier architecture with single clock phase and one stage.
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