

A Single-Clock-Phase Sense Amplifier Architecture with 9x Smaller Clock-to-Q Delay Compared to the StrongARM & 6.3dB Lower Noise Compared to Double-Tail

Xiaohui Lin, Mohamed Megahed, and Tejasvi Anand

Oregon State University, Corvallis, OR 97331, USA, email: linxiao@oregonstate.edu

Abstract

A single-clock-phase sense amplifier architecture with a strong regeneration is proposed. Designed in 22nm FinFET, the proposed architecture has a 9x smaller t_{CQ} delay compared to the conventional StrongARM latch and 6.3dB lower input referred noise compared to the Double-Tail architecture for similar input transistor size and power consumption.

Keywords: Sense amplifier, slicer, clocked comparator.

Introduction

Fast decision-making sense amplifier (SA) is a critical component in high-speed wireline links and high-speed analog-to-digital converters. The speed of decision-making is defined as the delay between the clock triggering edge to the valid output, namely clock-to-Q delay or t_{CQ} . Conventional StrongARM latch architecture (Fig. 1) suffers from large t_{CQ} delay due to (a) it requires two phases of common-mode (CM) discharge before entering regeneration phase [1], and (b) the input pair causes the degeneration on the cross-coupled NMOS pair [2], which thus prolongs the regeneration time. The improved two-stage sense amplifier architectures such as Double-Tail comparator [3] and Elzakker latch [4] can reduce t_{CQ} . However, this t_{CQ} reduction comes at the cost of using two clock phases instead of one, which requires a stricter timing of the clock phases. Moreover, as discussed in [5], the Double-Tail latch suffers from higher input referred noise. In view of these limitations, we propose a single-stage, single-clock-phase sense amplifier architecture (Fig. 1), with averaged t_{CQ} 9x smaller compared to the StrongARM latch (across 5 chips), similar and even smaller t_{CQ} compared to the double-clock-phase architectures [3][4]. The measured input referred noise of the proposed architecture is comparable to StrongARM and 6.3dB lower than Double-Tail architecture.

Comparison with the Conventional StrongARM Latch

Fig. 2 shows a visual comparison of the operation between the proposed sense amplifier and the StrongARM. The input voltages to the sense amplifiers are VIP and VIN such that VIP > VIN. During the precharge phase (CLK=0), the nodes A_S , B_S , VOP_P and VON_P in the StrongARM are reset to V_{DD} . Once CLK goes high at time $t=0s$, the output node voltages VOP_P and VON_P experience an immediate discharge towards $V_{DD}/2$, enabling the proposed latch to enter the regeneration phase earlier than StrongARM latch. The second reason for the smaller t_{CQ} in the proposed latch is more active cross-coupled pairs during regeneration, with no degeneration in the NMOS cross-coupled transistors ($M4/M4'$), and a fewer stack of transistors from V_{DD} to ground as compared to the StrongARM. Since VOP_P and VON_P reach $V_{DD}/2$ faster due to charge sharing, the proposed latch enters the regeneration region with all three cross-coupled pairs strongly turned on, which gives stronger positive feedback.

The Operation of the Proposed Latch

Fig. 3 shows the detailed operation of the proposed architecture in three phases. Phase I is the precharge phase (CLK=0), with nodes X and Y discharged to the ground, VOP_P , VON_P

precharged to V_{DD} . Once CLK switches to high it enters Phase II, charge-share dominant regeneration phase. The voltage on nodes VOP_P , VON_P starts to drop from V_{DD} due to (a) charge sharing between the parasitic capacitors C_{ON} , C_{OP} , C_X , and C_Y , (b) the strong discharge path given by transistors $M4$, $M4'$, and (c) another discharge path provided by the input pair $M1$ and $M1'$, which is modeled by their common-mode current (I_{CM}). When VOP_P and VON_P reach $V_{DD}-V_{TH}$, $M5$ and $M5'$ are activated, and thus the latch enters the strong regeneration phase, which can be divided into two separate time regions t_2 and t_3 . During time t_2 , the output capacitors C_{ON} , C_{OP} are discharged by currents ID_{N_L} and ID_{N_R} through $M2$, $M4$, $M2'$ and $M4'$, respectively. As a result, voltages on nodes VOP_P , VON_P keep reducing till they reach the trip point $V_{DD}/2$. During time duration t_3 , VOP_P and VON_P start to go in an opposite direction until reaching V_{DD} and GND respectively. Once the proposed sense amplifier enters t_3 , the strong regeneration pushes VON_P and VON_N in the opposite direction.

Measurement Results

Four sense amplifier architectures were designed for apple-to-apple comparison in 22nmFinFET and sized to consume similar power with the same input transistor size. Delay line consisting of M inverters and N sense amplifiers was designed to measure t_{CQ} delay (Fig. 4). Output of the delay line (ϕ_{OUT}) is a narrow pulse, shown in the measured output (Fig 4), whose width is equal to $N \times t_{CQ} + M \times t_{INV}$, where t_{INV} is one inverter delay. Two such delay lines with different number of inverters (M) and sense amplifiers (N) were used to measure two different pulse widths. By solving the two linear equations with two unknowns t_{CQ} and t_{INV} , t_{CQ} can be estimated. Operating at 0.95V and measured across 5 chips, for input difference ΔV_{IN} of 10mV, energy efficiency of 14.2 fJ/decision, the proposed sense amplifier architecture has an averaged t_{CQ} of 99.3ps for input common mode $V_{CM} = 0.35V$, which is 9x smaller t_{CQ} as compared to the StrongARM latch and 3.3x smaller t_{CQ} compared to Elzakker SA[4] (Fig. 5). Measured t_{CQ} versus V_{CM} change at input difference ΔV_{IN} of 50mV and its sensitivity towards ΔV_{IN} change at various V_{CM} shows that the proposed architecture has only 11.6ps change of t_{CQ} toward 100mV input difference ΔV_{IN} change (10mV-110mV) at $V_{CM}=0.35V$, which is smallest sensitivity compared to the prior architectures implemented on the same chip. The noise measurement was done by measuring 20,000 samples for each measurement point at $F_{CLK}=40MHz$ (Fig. 6). The proposed architecture achieves 6.3dB lower input referred noise compared to the Double-Tail architecture and similar noise compared to the StrongARM at $V_{CM}=0.35V$. Die micrograph is shown in Fig. 4. The proposed architecture achieves the smallest energy delay product of 1241.1 fJ·ps compared to the prior published architectures (Table I).

Acknowledgements This work was supported by NSF grant number 2006571. We thank Intel for 22nm FinFET tape-out support.

References

- [1] A. Abidi, CICC, 2014.
- [2] B. Razavi, SSC Magazine, Spring 2015.
- [3] D. Schinkel, ISSCC, 2007.
- [4] M. Van Elzakker, ISSCC, 2008.
- [5] H. Xu, TCAS-I, Aug. 2019.

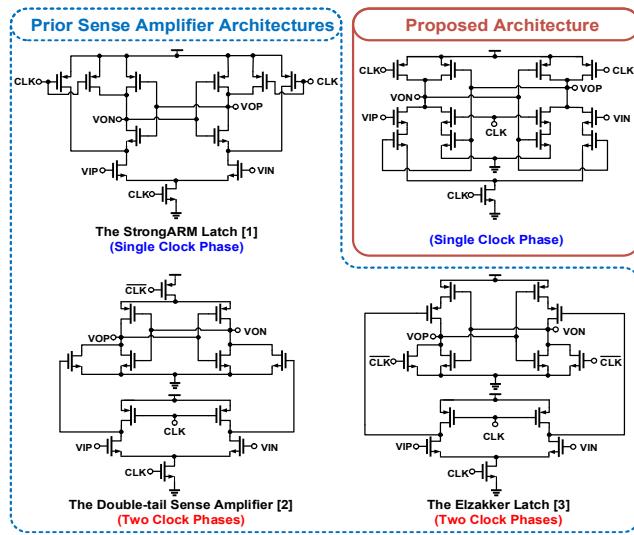


Fig. 1: Conventional sense amplifier architectures and the proposed sense amplifier architecture with single clock phase and one stage.

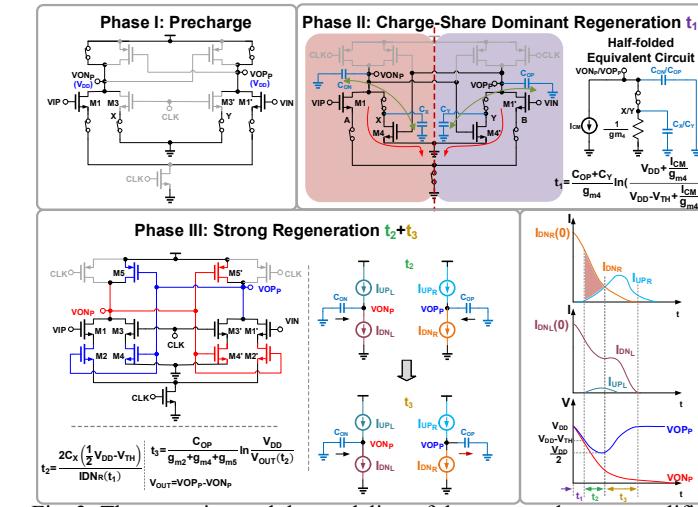


Fig. 3: The operation and the modeling of the proposed sense amplifier architecture.

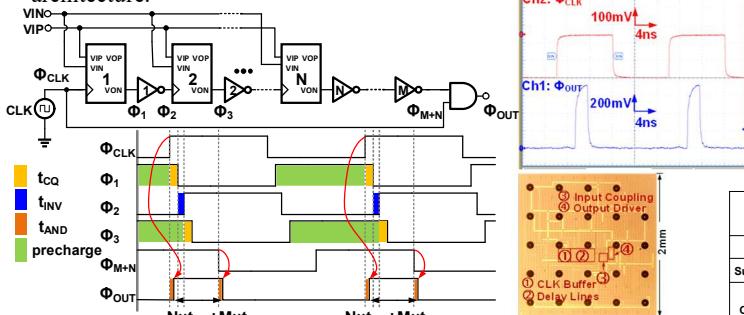


Fig. 4: Block diagram of the proposed delay line structure when VIP>VIN for t_{CQ} measurement and its measured output waveform. Die micrograph.

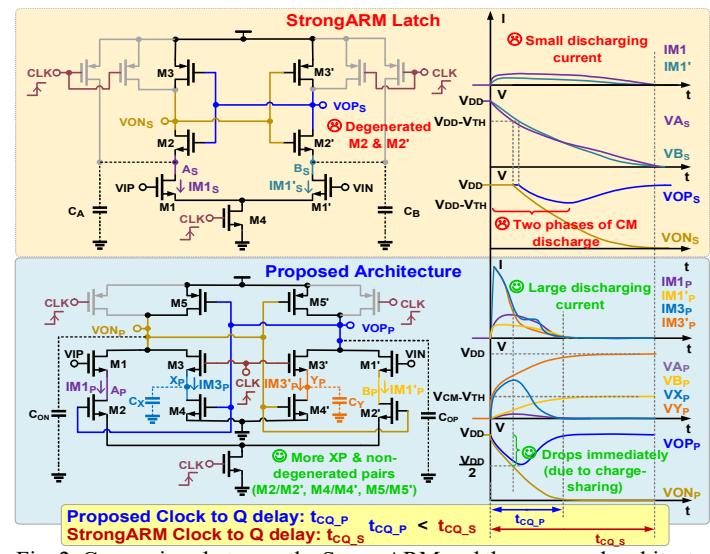


Fig. 2: Comparison between the StrongARM and the proposed architecture when VIP>VIN and CLK goes high with the associated timing diagram.

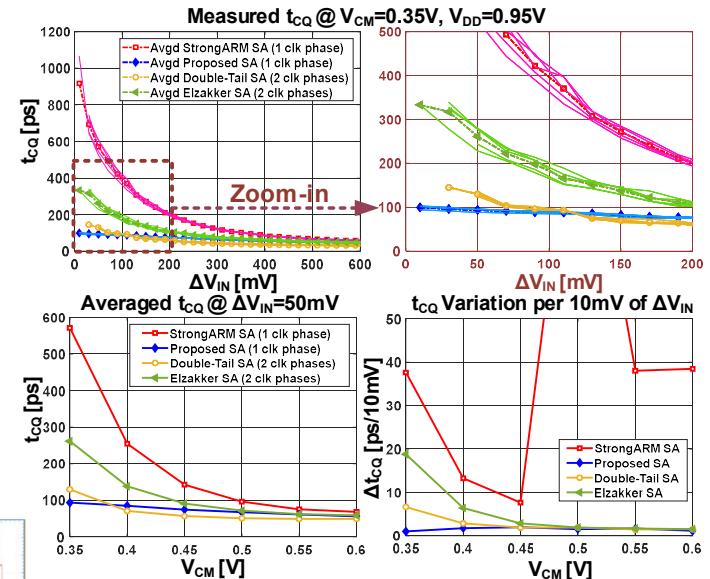


Fig. 5: Measured t_{CQ} delay of 5 chips vs. input amplitude ΔV_{IN} of four architectures and its zoom-in view (top). Measured t_{CQ} delay vs. input V_{CM} (bottom left), and t_{CQ} variation per 10mV of ΔV_{IN} vs. input V_{CM} of four architectures (bottom right).

Table I: Measured performance & comparison with the prior-art.

Technology	This Work				Prior Art		
	Proposed Architecture	StrongARM [2]	Double-Tail Latch [3]	Elzakker Latch [4]	Schinkel, ISSCC'07 [3]	Goll, ISSCC'09	Bindra, JSSC'18
Supply Voltage [V]	0.95	0.95	0.95	0.95	1.2	1.2	1.2
Circuit Topology	Charge-Sharing Strong Regeneration	Cross Coupled Pairs	Double-Tail	Modified-Latch	Double-Tail	Modified-Latch	Dynamic-Bias
Number of Stages	1	1	2	2	2	2	2
CLK Phases Required	1	1	2	2	2	2	2
V _{CM} [V]	0.35 0.45	0.35 0.45	0.35+ 0.45+	0.35 0.45	0.6	0.6	0.6
ΔV _{IN} [mV]	10	10	30	10	10	18.6	10
t _{CQ} Delay [ps]	99.3 87.4	917.5 687.5	144.9+ -	333.1 No Output	35° (relative delay)	64	92° (relative delay)
t _{CQ} variation vs. ΔV _{IN} variation [ps/10mV]	1.00 1.97	37.60 7.66	6.64 -	18.80 2.86	8.10*	6.67*	38.38*
# of chips measured							
Clock Frequency (F _{CLK})	1.2 GHz	1.2 GHz	1.2 GHz	1.2 GHz	1 GHz	7 GHz	25 MHz
Energy per Decision (fJ)	14.2	15.7	14.2	17.7	113.0	185.7	34.0
Input Referred RMS Noise (mV)	1.096	1.223	2.260	1.880	1.5	-	0.4
Input Pair Size (W/L)					-	-	-
Energy Delay Product (fJ·ps)	1410.1 1241.1	14404.8 10793.8	20576.7+ -	5895.9 -	3955	11884.8	31280
Area (μm ²)	10.8 μm ²	8.6 μm ²	11.1 μm ²	12.4 μm ²	82.5 μm ²	319.48 μm ²	125 μm ²

*: Values read from the graphs

+: Not functioning @ ΔV_{IN}=10mV, measurement result taken @ ΔV_{IN}=30mV

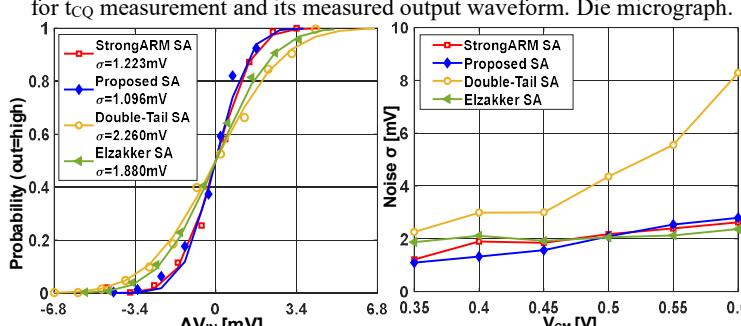


Fig. 6: Measured input referred cumulative noise distribution (marker) and fitting to Gaussian distribution of four architectures (line) at V_{CM} = 0.35V. Measured input referred noise vs. input V_{CM} of four architectures.