Time-Optimal Qubit Mapping

Chi Zhang® Ari B. Hayes Longfei Qiu
chz54@pitt.edu arihayes@gmail.com lg56 @scarletmail.rutgers.edu
University of Pittsburgh Rutgers University Rutgers University
USA USA USA
Yuwei Jin Yanhao Chen Eddy Z. Zhang
yj243@scarletmail. rutgers.edu chenyh64@gmail.com eddy.zhengzhang@gmail.com
Rutgers University Rutgers University Rutgers University
USA USA USA

ABSTRACT

Rapid progress in the physical implementation of quantum comput-
ers gave birth to multiple recent quantum machines implemented
with superconducting technology. In these NISQ machines, each
qubit is physically connected to a bounded number of neighbors.
This limitation prevents most quantum programs from being di-
rectly executed on quantum devices. A compiler is required for
converting a quantum program to a hardware-compliant circuit, in
particular, making each two-qubit gate executable by mapping the
two logical qubits to two physical qubits with a link between them.
To solve this problem, existing studies focus on inserting SWAP
gates to dynamically remap logical qubits to physical qubits. How-
ever, most of the schemes lack the consideration of time-optimality
of generated quantum circuits, or are achieving time-optimality
with certain constraints. In this work, we propose a theoretically
time-optimal SWAP insertion scheme for the qubit mapping prob-
lem. Our model can also be extended to practical heuristic algo-
rithms. We present exact analysis results by using our model for
quantum programs with recurring execution patterns. We have
for the first time discovered an optimal qubit mapping pattern for
quantum fourier transformation (QFT) on 2D nearest neighbor ar-
chitecture. We also present a scalable extension of our theoretical
model that can be used to solve large quantum circuits.

CCS CONCEPTS

« Software and its engineering — Compilers; - Hardware —
Quantum computation.

KEYWORDS

Quantum Computing, Qubit Mapping, Noisy Intermediate Quan-
tum Computers, NISQ, Quantum Fourier Transformation, QFT

“This work was done when Chi was visiting Rutgers University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASPLOS 21, April 19-23, 2021, Virtual, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8317-2/21/04...$15.00
https://doi.org/10.1145/3445814.3446706

360

ACM Reference Format:

Chi Zhang, Ari B. Hayes, Longfei Qiu, Yuwei Jin, Yanhao Chen, and Eddy Z.
Zhang. 2021. Time-Optimal Qubit Mapping. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS °21), April 19-23, 2021, Virtual, USA. ACM,
New York, NY, USA, 15 pages. https://doi.org/10.1145/3445814.3446706

1 INTRODUCTION

Quantum computing is a promising method to speed up important
applications. These applications include factoring large numbers
[14], searching a database [5], and simulating quantum systems [12].
With around 100 reliable qubits, quantum computers can already
solve useful problems that are out of reach for classical computers.
Recently quantum systems with 49-72 qubits have been an-
nounced by IBM, Google and Intel. A number of quantum computers
with around or less than 20 qubits are available to the public [2]
through IBM Q experience. Programmers can run programs on
these quantum computers. Despite the existence of certain tools
such as IBM Qiskit [1], code must be written with respect to low-
level specifications. A complete quantum compiler tool-chain needs
to be built such that programmers can develop quantum algorithms
that take full advantage of the potentially disruptive computing
paradigm without having to worry about low level machine details.
The compilation of a quantum program is decomposed into two
levels of translation. First, it converts an algorithm into a logical
circuit composed of universal gates. These circuits are formulated
independently of the hardware implementation. Second, it converts
a logical circuit into a physical circuit with respect to hardware
constraints. The problems in the first abstraction layer have been
extensively [5, 12, 14] studied by theoreticians. However, less atten-
tion has been paid to the second abstraction layer, which is critical
to the efficient execution of programs on real quantum computers.
Our paper addresses the second level of translation: from a logical
circuit to a hardware-compliant physical circuit. In particular, we
tackle the qubit mapping problem. In realistic architecture, it is
not possible to establish direct interactions between every pair of
qubits. In the superconducting quantum computers, qubits operate
in the nearest neighbor manner, in which direct interactions form
a bounded degree graph. An example is shown in Fig. 1 (a).
However, a logical circuit independent of hardware implementa-
tion assumes an unrestricted architecture, where every two qubits
are connected. A logical circuit must be modified to account for the
coupling constraints in quantum hardware. The common practice
is to dynamically remap logical qubits to physical qubits via SWAP

https://doi.org/10.1145/3445814.3446706
https://doi.org/10.1145/3445814.3446706

ASPLOS 21, April 19-23, 2021, Virtual, USA

gates such that each two-qubit gate is applied to two physically
connected qubits. An example is shown in Fig. 1. If two logical
interacting qubits g1 and g4 are respectively mapped to Q1 and Q4,
one of them has to be “moved" closer to the other. For instance, by
swapping g2 with g4, we can move g4 closer to g1.

Most previous studies on the qubit mapping problem [8, 16, 17,
20, 22, 23] have focused on gate-optimal solutions. They minimize
the number of inserted SWAP gates. Some [8, 23] enhance the par-
allelism among the inserted SWAP gates while aiming to minimize
the gate count. Zulehner et al. [23] proposed an algorithm using
the A-star paradigm to minimize the number of swap gates for
a local layer of concurrent CNOT gates. Li et al. [8] formulate a
multi-objective function for exploiting the trade-off between dif-
ferent swap insertion strategies. The study by Siraichi et al. [16]
models the swap-insertion problem as a subgraph isomorphism
problem. Wille et al. [20] propose a model for global gate-optimal
mapping using the SAT solver. A number of studies [10, 19] note
the variability of qubit error rates in the IBM quantum computers
and develop variability-aware qubit mapping strategies.

There are very few studies focusing on time-optimal qubit map-
ping. A time-optimal solution minimizes the depth of the entire
transformed circuit rather than the depth or the number of the in-
serted SWAPs. OLSQ [18] is the only study that solves for optimal
depth of the entire circuit. It is based on a constraint solver and
its mapping overhead depends on the how far the optimal depth
is from the ideal depth assuming every two qubits are connected.
The work by Childs et al. [3] forms the foundation of IBM Qiskit’s
qubit mapper, however, it uses a heuristic approach to minimize the
depth of the inserted SWAPs rather than that of the entire circuit.
Lao et al. [7] introduces a framework that considers gate selection,
qubit mapping, and classical control constraints. Their qubit map-
ping heuristic aims to improve the depth of the entire circuit by
overlapping swaps with original gates in the circuit. But it does not
guarantee an optimal mapping solution.

@) -
@@

(a)

q1(@1)—{H}

2(02)

q3(Q3)

ase)——H—— a¥0) ———@D—
(b) ()

quonﬂ[mz)—— a1@)JH——ap—
q2(Q2) (@)—— q2(Q2)

3(Q3)

a3(Q3)

A4(Q4)—k— (02 —-P—

(d)

Figure 1: (a) Hardware coupling graph, (b) the logical circuit
which cannot run due to qubit coupling constraints, (c) one
possible way to make the circuit executable by swapping Q1
with Q2, and (d) another possible way to make the circuit
executable by swapping Q2 with Q4. Upper case Q represents
a physical qubit while lower case g represents a logical qubit.

Gate Optimality v.s. Time Optimality. To see why it is impor-
tant to consider the interaction between inserted swap operations
and the original circuit, we use an example in Fig. 1. The original
circuit in Fig. 1 (b) is not executable. The transformed circuits in (c)
and (d) are both gate optimal. However, only one of them is time
optimal. That is because the solution in Fig. 1 (c) inserts a swap
involving the slowest qubit, and as a result delays the execution of
the entire circuit, while the solution in Fig. 1 (d) does not.

A time-optimal solution not only reduces the execution time, but
also improves the reliability of the transformed circuit. It mitigates

361

Chi Zhang, Ari B. Hayes, Longfei Qiu, Yuwei Jin, Yanhao Chen, and Eddy Z. Zhang

the decoherence effect. Qubits are error prone. A qubit decoheres
over time. It gradually lose its state information. The longer a qubit
operates, the less reliable it is. A time-optimal solution minimizes
the impact of decoherence for the qubits in the circuit, and results
in higher fidelity of the circuit as a whole.

Time-optimal qubit mapping is in general challenging. There
are many possible permutations of SWAPs to achieve the same
desired qubit mapping and there are many possible qubit mappings
that can satisfy two-qubit gates in a given circuit. Even properly
modeling the problem is a challenge.

In this paper, we tackle the time-optimal qubit mapping problem.
We first present a simple and effective model for representing the
complete search space. The search space is constructed with respect
to an input logical circuit and a bounded degree hardware coupling
graph. We then propose a search algorithm that is complete and
optimal. Our contributions are summarized as follows:

e We present the first theoretical model for time-optimal qubit
mapping without any implicit constraints. The theoretical
model can be flexibly extended to practical algorithms.

e We present a search framework based on our time-optimal
model. It consists of space pruning, redundancy elimination,
and comparative filtering. It significantly reduces the time
complexity and makes time-optimal search feasible.

e We discovered time-optimal solutions for quantum fourier
transformation (QFT) on both 1D and 2D nearest neighbor
architecture (using our search framework). Our solution for
1D nearest neighbor architecture is the same as a manual
solution reported by Maslov [9]. But our optimal solution
for 2D architecture is for the first time reported. Interested
readers for QFT solutions can refer to Section 6.1.1.

e We present a practical extension of our theoretical model.
It prunes the branches in the search space unlikely to yield
effective mapping solutions. Our practical implementation is
not guaranteed to be optimal, however, it still outperforms
state-of-the-art qubit mappers with speedups ranging from
0.99X to 1.36X, and on average 1.21x, over representative
benchmarks from RevLib, IBM Qiskit, and ScaffCC.

o We implemented our search framework for both optimal and
practical solutions. We open sourced the code at GitHub!.

The remainder of the paper is organized as follows. We start by
introducing the background for quantum computing in Section 2.
Section 3 presents a motivating example. Section 4 and 5 provide
our modeling and implementation details. We present experiment
results in Section 6 including both optimal and heuristic results.
Related work is in Section 7. Concluding remarks are in Section 8.
Appendix includes a detailed optimality proof and a discussion on
how to find all optimal solutions when more than one exist.

2 BACKGROUND

2.1 Quantum Gates

There are two types of elementary quantum gates. One is single-
qubit gate, an unitary quantum operation that can be abstracted as

!Our implementation is made publicly available at the GitHub repository:
https://github.com/time-optimal-qmapper/TOQM.

https://github.com/time-optimal-qmapper/TOQM

Time-Optimal Qubit Mapping

the rotations around the axes of the Bloch sphere [11]. The other
type of elementary gate is two-qubit gate.

The controlled-NOT (CNOT) is a very important two-qubit gate
in quantum computation. A CNOT gate operates on a control qubit
and a target qubit. If the control qubit is 0, it leaves the target qubit
unchanged; If it is 1, it applies a NOT gate to the target qubit. The
CNOT gate entangles qubits and enables communication. There
are other types of two-qubit gates, for instance, the iSWAP gate,
the cross resonance (CR) gate, the bMap gate, and etc. All of them
require the two operand qubits to have direct links.

2.2 Qubit Mapping Problem

To execute a quantum circuit on a real machine, logical qubits
must be mapped to physical qubit on the target hardware. When
applying a two-qubit gate, the two participating logical qubits must
be mapped to physically connected qubits. Due to the bounded
degree connectivity of physical qubits on current devices, it is
generally considered impossible to find an initial qubit mapping
that satisfies all two-qubit gates in the entire circuit.

A common practice is to dynamically map the logical qubits by
inserting SWAP gates. A swap gate exchanges the states of the two
operand qubits. There are different ways to implement a SWAP. A
typical way to implement a SWAP is to use 3 CNOT gates if the
links between physical qubits are bidirectional. Our model does not
impose constraints on how a SWAP is implemented. Rather, we set
the latency of a SWAP as a parameter in our model. We use various
SWAP latencies according to the architectures we are evaluating.

The qubit mapping problem takes a logical circuit and a hard-
ware coupling graph as input, outputs a transformed circuit. Only
swap operations are allowed to be added into the transformed cir-
cuit. After transformation, all two-qubit gates must be hardware
compliant. If a two-qubit gate g is performed on logical qubits g1
and g2, when running g, q1 and g2 must be physically connected.

One logical qubit can be mapped to different physical qubits
at different points of circuit execution. Once a two-qubit gate is
completed, both of its logical qubits can be remapped to some other
physical qubits in the future. An example of qubit mapping is shown
in Fig. 1 (c) and (d).

3 MOTIVATION

It is non-trivial to achieve time optimality for the qubit mapping
solution. As there are many possible permutations of circuit gates
and inserted swaps, the search space is large even for small in-
put. We use quantum fourier transform (QFT) to demonstrate the
challenges in finding a time-optimal solution.

QFT is at the heart of integer factorization [15]. It serves as
the basis for many important quantum algorithms. QFT is also
one of the most challenging benchmarks for qubit mapping. It is
because QFT requires all-to-all qubit connection. Each qubit needs
to interact with every other qubit in the program.

The QFT circuit has a regular pattern. It has n qubits and n(n —
1)/2 generic two-qubit gates. We follow the convention by Maslov
et al. [9] for describing a QFT skeleton circuit. A concrete QFT
circuit includes Hadamard (H) gates and controlled phase gates.
Following this convention, a single-qubit is absorbed into a nearby
two-qubit gate to form a generic two-qubit gate. Any two-qubit gate

362

ASPLOS 21, April 19-23, 2021, Virtual, USA

can be efficiently implemented and we assume they have the same
latency as in [9]. Hence the entire circuit is described using generic
two-qubit gates of the same latency. We denote the original two-
qubit computation gate as GT gates for the simplicity of discussion.

Each logical qubit g; interacts with every other logical qubit g;,
denoted as GT(q;, q;) where j # i. The logical QFT circuit with 6
qubits is shown in Fig. 2 (b).

LNN. Let’s look at the simple linear nearest neighbor (LNN)
architecture as shown in Fig. 2 (a), where the capital case Q repre-
sents physical qubits. In this architecture, the physical qubits are
arranged on a straight line. Each physical qubit only communicates
with the qubit on its left or right. However, the logical QFT circuit
requires each qubit to interact with every other qubit. The logical
circuit in Fig. 2 (b) cannot directly run on Fig. 2 (a) no matter which
initial qubit mapping is used.

Due to the all-to-all qubit interaction pattern in QFT, it is hard
to obtain an effective qubit mapping on LNN, let alone an optimal
solution. Using our search algorithm described in the next section,
we find an optimally transformed QFT-6 circuit. The solution is
shown in Fig. 2 (c). Although the circuit size is small, it is not difficult
to see a butterfly pattern in the transformed circuit represented
using physical qubits. With further analysis in Section 6, this pattern
can generalize to larger QFT circuits and ensure linear depths.

We note that our solution for QFT in LNN is the same as the
manual solution by Maslov [9]. However Maslov [9] cannot find an
optimal solution manually for 2D architecture due to the complexity
of the architecture, while our mapper can, as described below.

2D Grid. Another prototypical hardware architecture is a struc-
tured two-dimensional lattice. Each qubit has up to 4 neighbors. For
instance, IBM Melbourne architecture has a 2xN grid like topology,
as shown in Fig. 3. Maslov [9] did not provide a manual solution for
the 2D architecture. But the paper predicts a lower bound depth of
3n+ O(1). Using our algorithm, we found a generalizable pattern
for arbitrary size QFT. Our generalized solution has 3n+O(1) depth
which matches the lower bound depth provided by Maslov [9]. The
asymptotic term is only at the constant component. Hence our
solution is not only confirmed to be optimal for small inputs but
also for arbitrary size inputs. Our solution is presented in Section 6.

Time-optimal solutions, even for small size circuit, could be very
useful. If an optimal solution for a logical circuit has recurring
pattern, we can obtain the optimal solution for small-size inputs,
and use that to deduce the generalized solution. The solutions
to the QFT program on two types of architectures demonstrate
the effectiveness of our algorithm in discovering such patterns for
circuit families. For finding a solution to QFT-6 on LNN, our mapper
takes less than 1 second. For finding a solution to QFT-8 on 2D
architecture, it takes less than 30 seconds. In the following, we will
describe our model and search algorithm in details.

4 TIME-OPTIMAL MAPPING FRAMEWORK

In this section, we define a time-optimal model for the qubit map-
ping problem. We first define the search space. Then we present a
guided search framework. We prove the optimality of the frame-
work in Section 5 and Appendix A.

ASPLOS 21, April 19-23, 2021, Virtual, USA

Chi Zhang, Ari B. Hayes, Longfei Qiu, Yuwei Jin, Yanhao Chen, and Eddy Z. Zhang

O —&

q1—$

—@

AT
TTiTiTiTI

Q2 SWAP

2 —=<>

—@

OuOatadadad

Q3

q3
q4

q0 ql q2 q3 q4 q5

q5

T

(a) (b)

Q4
Q5

Two-qubit
ate

Figure 2: Adapting QFT logical circuit to LNN architecture: (a) 6-qubit LNN and initial mapping, (b) logical qft-6 circuit where
each line represents a logical qubit g;, and (c) physical qft-6 circuit where each line represents a physical qubit Q;. The last
swap gate in red in (c) is added for showing the symmetric pattern. Our solver does not have the swap in its returned solution.

Figure 3: 2xXN Qubit Coupling Graph

4.1 Search Space

We discover that any valid execution of a circuit can be partitioned
into a sequence of states. We refer to cycle as a unit of time. A circuit
is decomposed with respect to its state at each cycle. A state of the
circuit represents a qubit mapping and the specific busy/idle status
of each qubit. The status of a qubit is represented as which gate it
is executing if the qubit is busy, or which gate it has just completed
if the qubit is idle. An example is shown in Fig. 4 (a).

1 2 3 4 5

ql g2

g1 g6
q2 93| g4 | g5
q3 swap(3,5)
q4
a5 swap(3,5) |95I

A B Cc D E
(a)

(b)

Figure 4: (a) Cycle-by-cycle partition of a 5-cycle circuit, (b)
the search path representing the execution in (a). R is the
root node. E is a terminal node.

We define our search graph. Each node in the search graph

represents a state of the circuit (which also includes a cycle number).

A node expands into one or multiple children nodes. Each child
node represents a possible state the circuit will be in at the next

cycle. A child node’s cycle number is its parent’s cycle number + 1.

The executing gate(s) of a child node in its own cycle must satisfy
the constraints of the qubit coupling and gate dependence.
By enumerating all possible combinations of gates and swaps in

next cycle, a node can determine its complete set of child node(s).

The circuit makes progress when a gate in the original circuit
executes. The circuit updates its qubit mapping when an inserted
SWAP finishes its execution.

363

Equivalent Snodes
A.mapping = B.mapping

Snode A

Comparative Snodes
A.mapping = B.mapping

Snode B Snode A Snode B

Cycle = 15 Cycle =15 Cycle =16 Cycle=10

Snode A = Snode B
(a)

B is better than A
(b)

V/////] - SWAP gate
: regular gate

Figure 5: Filtering example (a) Two equivalent search nodes.
Both A and B will finish the same number of original gates.
They also have achieved the same mapping assuming all ac-
tive swaps immediately take effect. But the order of the gates
is different. (b) The two state nodes will have to take dif-
ferent number of cycles to achieve the same state. But B is
faster, A can be safely pruned without affecting optimality.

Root Node and Terminal Node. We let the root node be the initial
state of the circuit at cycle 0 where all qubits are idle and no gate
in the original circuit has been scheduled.

We say a node is terminal, if all logical qubits have completed
their gates in the original circuit, and the last gate of all just finished
at the cycle of this node.

The goal is to find a terminal node such that its path to the root
node is the shortest. There is only one root node but there could be
more than one terminal node. An optimal solution corresponds to
an optimal terminal node. The path from the root node to a terminal
node represents a transformed circuit.

Fig. 4 (b) shows a valid path from the root node to a terminal node.
It corresponds to the example circuit in Fig. 7 and the execution in
Fig. 4 (a). The node E is a terminal node, and R is the root node.

4.2 Guided Search Framework

Since there is a finite number of gates and physical qubits, there
is only a finite number of combinations of gates and swaps that
can be executed simultaneously at any given moment. Thus each
node in the search graph has only a finite number of child nodes.
An exhaustive breadth-first search (BFS) algorithm is guaranteed to
find the optimal terminal node in finite time. However, BFS search
is not realistic as it is brute-force and search space is large even
when the input is small.

Time-Optimal Qubit Mapping

ASPLOS 21, April 19-23, 2021, Virtual, USA

Initialize Expanding i | Filtering ! Compute
Priority Queue ' I H
ve ! Counli . PN I : Cost
. pling Dep y dundancy .+ Comparative !
¢ iConstraint Constraint Elimination : Apajysis .
Not A E : '
Extract | Terminal®; T
from PQ - b Push into PQ
=i : Equivalence
A terminal? * 1 Node Expander i 1 Checking

Figure 6: Our Optimal Search Framework

Overview of Our Framework. We present a guided search frame-
work. It uses a priority queue to keep track of the nodes that need
to be expanded. We show our framework in Fig. 6. It first initializes
the priority queue to be empty and then inserts the root node into
the priority queue.

Next it extracts a node from the priority queue, expands it, and
push new nodes into the queue. The three steps repeat until a
terminal node is for the first time popped out of the priority queue.
Itis based on A* search. Each node is associated with a priority (cost).
We set the priority (cost) function to be admissible to ensure the
the A* search returns an optimal solution. The detailed definition
of the priority function and the proof for optimality is shown in
Section 5 and Appendix A.

Using A" guarantees optimality. We also ensure efficiency by
space pruning techniques. It is often possible that the circuit reaches
the same state using different combinations of gates and swaps. If
the only difference between two nodes is their timestamps, then
the slower one of the two nodes can be dismissed without affecting
optimality. We prune these nodes in the Expanding component and
the Filtering component in Fig. 6.

Expander. The node expander is responsible for expanding the
node extracted from the priority queue. After expansion, the chil-
dren nodes of the expanded nodes will be collected. We apply several
restrictions on top of these children nodes. Below are the criteria
that we want these children nodes to meet:

e Coupling One node needs to satisfy the current qubit cou-
pling constraints. Thus we first filter out the nodes that
cannot satisfy coupling constraint.

Dependency The gates scheduled in a child node should
also have their dependency resolved. This means all parent
gates of any newly added active gate should be finished prior
to the child node’s cycle.

Redundancy Check We check two kinds of redundancy.
First we check that whether at least one active gate of the
child node depend on some gate in the parent node’s active
gates (except that the active gate is the first gate on a qubit).
This criteria is based on the fact that any non-depending
gate in the child node could have been placed earlier in the
parent’s sibling nodes.

Second we check if there are cyclic swaps, which means
identical swaps applied consecutively to the same two qubits.
It does nothing but cancel out the previous swap effect.

364

Filter. We have a filtering pass on the expanded nodes that meet
the criteria we listed above. In this filtering pass, every expanded
node has its hash value calculated based on its current qubit map-
ping (assuming all active swaps have taken effect). For each node,
we look at its hash value and compare it to all the previous nodes (in
the priority queue) that have the same hash value. When comparing
one expanded node with all the previous nodes that have the same
hash value, we check for equivalence and relative goodness.

e Equivalence Check We check if this expanded node is
equivalent to any previous node. Equivalence means the
two nodes will have finished the same set of gates assuming
all active gates have taken effect. The active gates on same
qubits will finish in the same exact cycle. The current cycle
must be the same. If we find this equivalence, we filter out
this expanded node. An example is shown in Fig. 5 (a).
Comparative Analysis If there’s no equivalence found, we
then switch to comparative analysis between the expanded
node and the previous node with same hash value. We look
at the projected finish cycle on each qubit (if the qubit is
busy). If, for all qubits, the expanded node has fewer finished
gates but longer projected finishing time, we know that this
expanded node is less desirable than this previous node. We
then filter out this expanded node as itself and its sub-tree
will not lead to a better solution than one previous node. An
example is shown in Fig. 5 (b).

5 OPTIMALITY GUARANTEE

5.1 Admissible Cost Function

We assign each search node v in the search graph a cost f(v). The
cost f(v) consists of two parts g(v), h(v) such that

f(v) =g(v) +h(o) (1)

g(v) represents the length of the path from the root node to v, which
is the number of cycles already executed. h(v) is a heuristic cost
function as a lower bound on the number of cycles from v to any
terminal node.

The circuit now contains two parts with respect to a search node
v: (1) the part that has been scheduled due to v and v’s ancestor
nodes, and (2) the remaining circuit that hasn’t been scheduled. The
cost g(v) is for part (1), and cost h(v) is for part (2). An example is
shown in Fig. 7.

The cost for part (1) is trivial as a search node contains a time
stamp. The cost h(v) for part (2) is more complex.

ASPLOS 21, April 19-23, 2021, Virtual, USA

Chi Zhang, Ari B. Hayes, Longfei Qiu, Yuwei Jin, Yanhao Chen, and Eddy Z. Zhang

112 3 4 5
gl g5 g6 £
ql m ql |
2 —@ s} e—4 a|®
q3 q3
a4 a4
as & a5
Induced Dependence Graph
(a) Circuit (b) State S (c) Entire Dependence graph

Figure 7: Two components of a circuit with respect to a search node: (a) logical circuit, (b) a search node S for cycle 1 indicating
already scheduled gates by cycle 1, and (c) the dependence graph, where the part after the dashed line is remaining circuit to

be executed.

Our heuristic function h(v) is defined with respect to the depen-
dency graph Gyep, and the qubit mapping 7y, of the remaining
circuit. If the node v contain any active swap that hasn’t been com-
pleted, we assume swap has taken effect for calculating 7,ep,. As it
is not difficult to obtain remaining dependence graph from search
node v and v’s ancestor nodes, we omit the details here.

Let Grem = (Vrem, Erem) be the dependency graph of the gates in
the remaining circuit. Thus V;.¢;, consists of the gates that haven’t
been scheduled or have been scheduled but executed in part, and
Grem is a directed acyclic graph. We define the heuristic function
h(v) via induction on Gyep,.

Let g1, 92, - - , gn be a topological ordering on the vertices (gates)
in Gyrem. For each gate g,let len(g) be the number of cycles that g
needs to execute (if len(g) is partially executed, len(g) is equal to
the length of the unexecuted part). We will define t,i,(g), which
is a lower bound on the time when g begins to execute.

Base case: If g; is a single-qubit gate that has no predecessors
in Grem, then tin(g9;) = 0, meaning, g; may begin to execute
immediately.

Inductive case: Suppose gate g; depends on gate h1, ho, - - -, then
gi can only begin after these gates have finished. First let u =
max; tmin(hi) + len(h;). We must have tpin(g;) > u. If g; is a
single-qubit gate, then we simply take t,,in(g;) = u.

If g; involves two qubits, then we also have to consider the delay
caused by inserting SWAP gates. Suppose that gate g; involves
qubits g4 and qp,. Let Hy be the set of gates (in Gyep) that involve
qq and are direct or indirect predecessors of g;. Similarly we may
define the set Hy,. Let T; be the sum of the number of cycles needed
by the gates in H,. Then u — T, represents the “slack” space that
may be used by qubit g, to perform SWAPs. Similarly we define T,.

Now, in the current qubit mapping 7yem, let d(a, b) be the short-
est distance between qubit qg4, q;. Then we need at least d(a,b) — 1
SWAPs in total on qubit g, with some other qubit, and on ¢; with
some other qubit. We are only concerned with the delay on g, and
qp but not the delay on the qubit which they have SWAP with. Sup-
pose we place r SWAPs on g, and s SWAPs on gy, then the delay
on qq is max{r - len(SWAP) — (u — T,), 0}, and the delay on gy, is
max{s - len(SWAP) — (u—Tp),0}. We have r +s > d(a,b) — 1. We
letr+s = d(a,b) — 1 as it will not increase the cost, and enumerate
all possible combinations of (r,s) withr = 0...d(a, b) — 1. We take
the pair (r, s) that minimizes the larger of the two delays. Let u” be
the minimized delay, then we take tin(g;) = u +u’.

365

DEFINITION 5.1.1. (Heuristic cost function h(v)) Having computed
tmin(g) for each gate g, we define the heuristic cost h(v) to be
h(v) = n%/ax tmin(g) + len(g)

g&€Vrem

Cost Calculation Example. An example of calculating the cost
function with respect to a CNOT gate is shown in Fig. 8. The state
node F we focus on is in Fig. 8 (a), where it has already scheduled
the g1 and started SWAP Qy4, Q5. We assume each single original
gate in the circuit takes 1 cycle and each swap takes 3 cycles.

The remaining dependency graph of the circuit is shown in Fig.
8 (c). Since g7 is completed, s45 has executed in part, G,ep consists
of the remaining gates and part of sy5. First we set tmin(g2) =
tmin(g3) = 0 as they have no predecessors. tpin(s45) is also 0.
Then tmin(ga) = 1 as it depends on the single-cycle gate g3.

The qubit mapping 7rem after gate s45 is shown in Fig. 8 (b). g5
is not immediately executable, as g2 and g5 are not adjacent to each
other. The shortest path between them is Q2 — Q3 — Q4 witha
distance of d = 2. Now at least d — 1 = 1 total SWAP needs to be
inserted in total on g2 with some other qubit, and on g5 with some
other qubit.

Suppose g5 could be executed immediately, then it would have
got start time as u = 2. On the part of qubit g2, gate g5 depends on
g3 and g4, 2 — 2 = 0, so there’s no slack space on ga2. On the part of
qubit g5 the predecessor is part of s45, which is 2 cycles. Therefore,
the slack space on qubit g5 is 0 cycle too. Hence tpin(gs) =2 + 3 =
5, as inserting SWAP on either g2 or g5 introduces a delay of 3.

Finally, tin(g6) = 6 since q1, g2 are adjacent, and the cost for
search node F is 8.

Another example is for the search node A in Fig. 8 (e) where g1
and swap(3, 5) is scheduled in cycle 1. The induced qubit mapping
is in Fig. 8 (f). Since each CNOT in remaining circuit can be imme-
diately executed, the cost of A is the critical path of the remaining
circuit plus 1, which is 5. Therefore search node A is better than
search node F as its cost is lower.

Common Fallacy. It is tempting to assume that, since two
qubits can move towards each other by performing SWAPs simulta-
neously, the optimal position for two qubits to meet is always at ex-
actly the middle of the shortest path between them. Hence one may
simply need to insert dummy gates of length (d—1) - len(SWAP) /2.
This is not true as it is oblivious to the slack in the original cir-
cuit that can potentially absorb SWAP overhead. An example is
demonstrated in Fig. 9. Here we assume that, in the initial mapping,

Time-Optimal Qubit Mapping

ql
q2

q3 @ a3 H
w{ 7N :
a5 sw:ap(4, 5) @) @ '

g5 q4

(a) Search node F (b) T for node F

(c) Remaining circuit marked with tmin

ASPLOS 21, April 19-23, 2021, Virtual, USA

1(Q1) 9 g2 95 g6 P E 2 3 4 5 at 92
q

a Q—@
a2 —D-{g3}eA] —é— a]? /
43 (Q3) — a3 { swap, 5) (0 a5
a4(Q4) :I:os—— @y
45 (Q5) u—PH— a5 | SWAP(s,5)] @)—

' . ' q4 q3

(d) Circuit Representation (e) Search node A (f) T for node A

Figure 8: Cost calculation (a) Search node F, (b) qubit mapping for remaining circuit induced by F, (c) remaining dependency
graph marked with t.,;,, and (d) circuit representation; (e) search node A, (f) qubit mapping for remaining circuit induced by

A.

e
&
(@
R R e R R

(e

[swp |+[swp o[swe |

(b)

Figure 9: An example circuit, demonstrating a common fal-
lacy in reasoning about the heuristic function. (a) Logical
circuit, assuming that the distance between the two qubits
is 5. (b) The dependency graph of the circuit, if we choose to
place 1 SWAP on the first qubit, and 3 SWAPs on the second.
(c) The dependency graph of the circuit, if we choose to in-
sert two swaps on each qubit. Assuming each SWAP takes 2
cycles and each original gate takes 1 cycle in this example.

the distance between the two qubits is 5, so at least 4 SWAPs are
needed. Suppose we let the two qubits meet in the middle. Assume
a SWAP takes 2 cycles. Then we need to insert a 4-cycle delay for
each qubit. The length of the critical path is 8 cycles. However, sup-
pose we let the first qubit do 1 SWAP, and let the second qubit do 3
SWAPs. Then the length of the critical path becomes 6 cycles. This
demonstrates the necessity of trying all possibilities of splitting
delay to two participating qubits when calculating the cost.

5.2 Optimality

Our heuristic cost function h(v), in effect, computes a lower bound
on the time needed by the remaining circuit through two differ-
ent ways, and takes the larger of the two bounds. The first way
considers the immediate predecessors of each gate. The second
way considers the indirect predecessors and potential SWAPs. We
prove rigorously it is a lower bound time of the remaining circuit
in Appendix through Lemma A.1. We relegate the details to the
Appendix.

LEMMA 5.1. The cost function defined in Eq. 1, f(v) = g(v) + h(v)
is admissible.

Proor. We’ve shown in Lemma A.1 that the heuristic function
h(v) never overestimates the execution time of the remaining circuit.
And also g(v) is the number of cycles already executed till node v.
Therefore the cost function f(P) is admissible. O

366

THEOREM 5.2. The A-star search algorithm we proposed here is
complete and optimal.

Proor. It has been shown that A-star search will find an optimal
solution if the problem satisfies the following conditions:

(1) Each node in the search graph only branches into a finite
number of child nodes. This is true, because the set of gates
that can possibly execute at any given moment is finite.

(2) Each transition increases the cost of the path. This is true
for our problem, because each gate takes at least one cycle
to execute, and so increases the cost by at least 1.

(3) The heuristic cost function is admissible. This is proven in
the lemma above.

Thus our algorithm satisfies all conditions for optimality. O

5.3 Initial Mapping

Our optimal mapper works in two different modes: (1) It finds an
optimal solution given an input initial mapping, and (2) It finds
both optimal initial mapping and the transformed circuit.

For (1), it is trivial. Our previous technical description already
addressed how to find the solution after initial mapping is given.
For (2), we start with a random initial mapping. Then we allow at
most d consecutive cycles of pure swaps before any original gate
is scheduled, which represents a search for initial mapping. In the
meantime, we modified our cost function such that the pure swap
cycles at the beginning are not counted, as if the circuit starts at
some initial mapping resulted from these consecutive pure swap
cycles. The parameter d is defined as the maximum of the longest
path (without going through any node twice) between any two
qubits in the physical architecture. It is because one mapping layout
could be transformed into another mapping layout with at most the
number of cycles equivalent to the maximum longest path length
in the graph, assuming swaps on disjoint qubits run in parallel.

For the pure swap cycles, our hash filter is also applied, ensuring
that no unique initial mapping will appear twice in the priority
queue. It is because one initial mapping can be achieved through
different ways of swap combinations.

6 ANALYSIS
6.1 Exact Analysis

When the number of qubits is small, our algorithm can find (a set
of) exact optimal solution(s). This is helpful in the applications

ASPLOS 21, April 19-23, 2021, Virtual, USA

pat

i Loop representation:
fork=1to2n-3

foralli=0to Mk/21-1

if(0<i<n&& i<k-i<n)
GT(q[i], q[k - 1]);

(b)

Figure 10: (a) QFT-6 circuit rearranged to exploit parallelism;
(b) Affine loop representation of re-arranged n-qubit circuit.

where optimal solution has a recurring pattern. We use a two-step
approach. We first find optimal solution(s) for small inputs. Then
we generalize the solution(s) to larger inputs. We demonstrate it
using QFT program in Section 6.1.1. We also show the optimal
results for small logical reversible circuits in Section 6.1.2.

6.1.1 Optimal QFT Mapping. Recall that QFT has a regular struc-
ture, with n qubits and n(n — 1) /2 generic two-qubit gates (Section
3). QFT has an all-to-all qubit interaction pattern. Every two qubits
need to interact. The QFT circuit with 6 qubits is shown in Fig. 2.

We present a different representation of the QFT circuit in Fig. 10
(a) to facilitate discussion. As gates that operate on non-intersecting
qubits commute, a QFT program can run in linear depth if the
underlying architecture is fully connected. Fig. 10 (a) is equivalent
to the circuit in Fig. 2 (b) except that it is organized into parallel
layers such that each layer consists of concurrent two-qubit gates,
and the affine loop representation is shown in Fig. 10 (b).

LNN Architecture. Recall that in LNN, the physical qubits are
arranged on a (conceptual) straight line, and each qubit may only
interact with the qubit on its left or right. For QFT, the logical qubits
are initially mapped according to its natural order such that logical
qubit gg is mapped to the leftmost physical qubit and g5 is mapped
to the rightmost physical qubit as shown in Fig. 11 (step 0).

The LNN architecture is often considered as a good approxima-
tion to what a scalable quantum architecture may be. If a circuit
can be adapted well to LNN, it typically can be adapted to other
architectures represented by a bounded degree graph [9].

Our search algorithm finds an optimal solution® for QFT with
6 qubits, visualized in Fig. 11. We next show that the discovered
pattern for 6-qubit QFT can be generalized to n-qubit QFT.

The qubit mapping changes every two consecutive steps (from
step 0). In every two consecutive cycles, a set of GT gate(s) first
operate on some qubits, then a set of swaps on exactly the same
qubits. At the end of these steps, the layout of the logical qubits
are reversed such that g5 is placed at the left end of the LNN, and
qo is placed at the right end of the LNN. Each qubit first shifts to
left until it hits the left end of the LNN, and then to right until it
reaches its destination.

To generalize this, we assume a sequence of logical qubits on
the chain at a cycle m where m is even and m/2 is also even, and

2There might be multiple optimal solutions, but not all of them have a recurring
pattern. However, our algorithm can be adapted to find all optimal solutions such that
the solution with recurring pattern can be easily obtained. On the other hand, even
some solutions do not have a strict recurring pattern, but the pattern can be inferred
by performing some transformation based on gate commutativity or cancel-able swaps.
We demonstrate this in Appendix B.

367

Chi Zhang, Ari B. Hayes, Longfei Qiu, Yuwei Jin, Yanhao Chen, and Eddy Z. Zhang

'

@ q1 g2 93 g4 g5 :93 92 g4 ql g5 q0

o— | O—@—— ——@
step(0) B step(10)

@ ql 92 93 g4 g5 :93 92 g4 ql g5 g0
@<—> 1 0—@ *—O
step(1) ' step(11)

'

'
gl q0 q2 g3 g4 g5 !93 a4 g2 g5 gl q0

*—O ' @
step(2) : step(12)
'
gl q0 92 q3 g4 o5 :23 g4 92 g5 q1 qO0
*—0<—> | @<>
step(3) H step(13)
'
0 3 1 a4 q3 5 2 1 q0
21 92 q q q4 g5 1 g q q q
step(4) B step(14)
ql 92 q0 g3 g4 g5 :q4 g3 g5 g2 (gt q0
0<>0—0<>0—0—0 , 0—0
step(5) : step(15)
'
q2 ql q3 q0 q4 g5 :q.4 g5 a3 q2 qi q0
* —o—0—0—0—0 ® P P ® Py
step(6) : step(16)
'
'
q2 ql g3 q0 g4 g5 ‘g4 g5 a3 g2 qi qo0
1 90— 0—0—0—0
step(7) H step(17)
92 g3 g1 g4 q0 g5 .
@ o ! i
step(8) 1 Two-qubit gate: —
' SWAP: <>
92 g3 q1 g4 q0 g5 ,
O<>0—0<>0—0<>0
step(9) :
'

Figure 11: QFT-6 on LNN. Step (17) is not necessary. We are
adding it to show the pattern.

we let i = m/2, the qubit placement from left to right is
CI%‘, q%'+1, q%_l, q%+2, -+ 4i5 405 9i+15 9i+25 9i+35 Gi+4 ---» dn-1

At the step m, it is a parallel computation stage of two-qubit
gates. We have GT(qo, gi+1), GT(q1, qi), .-, GT(q i, q i) scheduled.
Then at the step m + 1, we have SWAP(qo, qi+12), S\2NAP(q1, qi); -oes
SWAP(qi,q:) For each pair of qubits, their subscript adds up to
i+1, whzichzis m/2+ 1.

At the step m + 2 where m is even and now (m +2)/2 is odd, we
still let i = m/2. The qubit placement from left to right is:

qé+13 Qé’, q%+2, ‘15’71’ o 4i+15 905 9i+25 Qi+3> i+4s - dn—1

At step m + 2, the operations are GT(qo, gi+2), GT(q1, gi+1), -
GT(q% , qé-+2). At step m + 3, it performs parallel swaps: SWAP(qo,
qi+2), SWAP(q1, qi+1), - SWAP(qé-, q%+2). For each pair of qubits,
their subscript adds up to i + 2, which is (m+2)/2+ 1 or [(m +
3)/2] + 1.

Now the pattern is clear from Fig. 11. It repeats the two above sets
of operations, and each pair of qubits that perform GT or swap their
subscripts sum up to |m/2] + 1 if m is the iteration number. The
generalized strategy can be applied to QFT with arbitrary number
of qubits. We describe it using an affine loop in Fig. 13 (a).

Note that the swap gate(s) in the last step is not necessary. But
we add it because it fits into the pattern, and also that after the
last swap, the physical connectivity graph of the logical qubits is
isomorphic to the one right before step 0.

Time-Optimal Qubit Mapping

Our generalized solution for QFT on LNN is the same as that
found by Maslov [9]. However, that solution is found manually and
the author proved the solution is at most a constant factor away
from the optimal solution. Our qubit mapper at least confirmed
that this solution is optimal for small input size of QFT.

2D Architecture. Now we describe our generalized solution for
QFT on 2 X N architecture (where N = n/2). Maslov [9] does not
report a generalized solution for this, but predicts a lower bound of
3n+0(1) circuit depth. Our solution is 3n+O(1), which is the same
(asymptotically at the constant component). This is discovered for
the first time as far as we can tell for QFT on a 2D architecture.

We visualize the solution of QFT-8 on a 2x4 architecture in Fig.
12. We denote the physical qubit on the j-th column and the i-th
row as Q; ;. Initial placement is a column major order such that
q2j+i — Qi,j as shown in step (1) of Fig. 12.

With column major order, it takes 17 cycles, and the pattern is
generalizable. We also tried the row major order, it takes 21 cycles,
and the pattern is not generalizable. We only present the result of
column-major initial qubit placement here. It is worth mentioning
that we also tried the version which does not allow concurrent swap
and computation gates to run. It takes 19 cycles and is generizable
too. The generalized solution is shown later in this section.

With some analysis, it can be shown that the 2 X N solution
is a non-trivial extended version of 1 X n. If we look at the qubit
layout at steps (2), (5), (8), (11), (14), and (17) in Fig. 12, placement
of pairs of qubits on (Qo,;, Q1,;) resembles placement of qubits on
Q; in LNN as the circuit makes progresses.

We let every three steps starting from step (2) in Fig. 12 form
one iteration (iteration is indexed from 0). Let iteration number be
i. If i is even, at the first step of iteration i and at the top row of the
qubit layout, the placement of qubits is as follows:

92(1) 92(L+1) 92(L-1)> 92(L+2)> -» 90- 92(i+1)> 92(i+2)> -» 42(N-1)

We present it on purpose such that the subscript is a multiply of
2 and a number (the number need not to be integer).

The placement of logical qubits on the bottom of row is similar
except that g’s subscript increases by 1.

At the first step of the iteration i, swap and GT are performed
simultaneously such that GT is on top row, and swap on the bottom
row. GT is on even-index qubits, and swap on odd-index qubits.

For GTs, they are on {qz(é)’ q2(é+1)}, {qz(%_w q2(5+2)}, -
{q0, 92(i+1) }- And for swaps, they are on {q2(%>+1, q2(§i+1)+1},
{q2(571)+1s q2(é+2)+1}’ s {25041, q2(i+1)+1}~

At the second step of iteration i, the placement of logical qubits
on bottom row changes to the following:

qi+35 4i+1s 4i+5> Gi—15 - 42 (i+1)+1> 91> 92 (i+2)+1> -» 42(N-1)+1

GT gates are performed between two qubits at the same column
on {qi, qi+3 }, { gi+2, gi+1}, - {90, 92i+3 }.

In the third step of the iteration i, swaps and GT are performed
in parallel on top row and bottom row separately. This time, top
row performs swaps and bottom row performs GT. Swaps are
on {qi, gi+2}, {qi-2, qi+a}, ---{q0, g2+ (i+1) }- GTs are on {qi+3, gi+1},
{gi+5.9i-1}, - {q2i+3. 91}

With these steps, the even iteration completes. It will go to an
odd iteration i + 1. Before operations at iteration i + 1 start, the

368

ASPLOS 21, April 19-23, 2021, Virtual, USA

qubit layout at the top row now becomes

qi+2> 9i> 9i+4> 9i-25 - 42(i+1)> 905 92(i+2)> -» 2(N-1)

The steps in the even iteration complete a part of GTs such for
which the subscript summation of each pair of qubits is 2i + 2, and
all GTs such that the subscript summation 2i + 3, and a part of GTs
for which each pair’s subscripts sum to 2i + 4.

The odd iterations are similar. It is just that the pairs of qubits
should start from the second column from the left end of the grid
when doing GT or SWAP for the step 1 and step 3 in the iteration,
which we will not discuss in details here.

By repeating this pattern, all GT gates can be performed with
respect to the loop in Fig. 10 (b). It is just that one parallel iteration
in that loop might be split into two parts to be distributed into an
even iteration and an odd iteration.

Asymptotically, every two parallel layers in Fig. 10 (b) take 3
cycles using the transformation pattern in Fig. 12. The total number
of layers is 2n — 3 when the number of qubits is n. Our generalized
solution then takes 3n + O(1) cycles.

Our generalized solution is presented in Fig. 13 (b).

A constrained optimal solution for QFT on 2xN arch. In
some scenarios, it does not allow concurrent swaps and two-qubit
gates. Hence, we added the constraint that either GT gates or swap
gates in each cycle (but not both). Under this constraint, we solve
for an optimal solution. And we visualize such a solution of QFT-8
on a 2x4 architecture in Fig. 14.

Initial placement is column major as shown in Fig. 14 step (1).

Now a more elegant pattern shows and the depth is still 3n+0(1).
We still form every three steps as one iteration (starting from step
1). We let iteration index be i, starting from 0. For each iteration,
the first step only perform GTs and all GTs applied to qubits on
the same column. The number of GT performed increases by 1
at each iteration until about half way of the iterations and then
decreases by 1 at each iteration. The second step of each iteration
only performs swap gates. All swaps only happen to qubits on the
same row. The third step of each iteration performs GT gates only.

It is worth noting that the layout of these logical qubits form a
graph that is isomorphic to that at the beginning (as if the layout is
mirrored, similar to the case in LNN). This is a nice property of the
structured QFT transformation methods we discovered.

We show the pseudocode of this solution in Fig. 13 (c).

6.1.2 Building Block Circuits. We show results for the building
block circuits that include adders, modular function, and various
counters in Table 1. These are also the benchmarks used in the work
by Wille et al. [20] for gate-optimal qubit mapping. Our mapper
finds time-optimal solution very fast, usually in less than one second.
The quantum architecture is IBM’s QX2. Note that for this set
of benchmarks, both initial mapping and transformed circuit are
determined optimally, while for QFT experiments in Section 6.1.1,
we tried different initial mappings (row major and column major)
just for discovering the patterns.

In this table, ideal cycle refers to how many cycles the original
circuit would take on an ideal architecture where every two qubits
are connected; optimal cycle is the number of cycles we found for
the target architecture; mapper overhead is the time the mapper

ASPLOS 21, April 19-23, 2021, Virtual, USA

0 q2 g4 g6 : 90 g2 g4 g6 iq2 q0 g4 qb :
g1 93 o5 q7: g3 ql g5 q7 :qg3 g5 qi q7 |
Step (1) : Step (4) : Step (7) :

q0 g2 g4 g6 q2 q0 g4 g6 q2 q4 90 g6
: : I<-*I:::I<->I :

ql a3 a5 q7 + @3 gl g5 q7 i1 g3 g5 ql q7
Step (2) Step (5) Step (8)

@ q2 g4 g6 : 92 90 a4 g6 g2 g4 q0O g6 :
a3 ql g5 q7 : 9 a5 q1 a7 195 q3 q7 qi:
Step (3) ' Step (6) ' Step (9) '

Chi Zhang, Ari B. Hayes, Longfei Qiu, Yuwei Jin, Yanhao Chen, and Eddy Z. Zhang

g2 g4 q0 g6 ig4 g2 g6 q0:94 g6 g2 qO
: I:IjI:I : Im
95 93 a7 ql:g5 q7 q3 qliq7 g5 q3 Qi
Step (10) : Step (13) : Step (16)
g4 q2 g6 q0 i g4 g6 g2 q0:96 aq4¢ g2 qO
: I<—> :
a5 93 q7 ql:a5 q7 g3 ql:q7 a5 q3 ql
Step (11) ! Step (14) ! Step (17)
g4 q2 g6 q0 . g4 g6 g2 qO0.
' ' Two-qubit
: | | : gate:
| SWAP: <>
95 q7 g3 Aql: q7 g5 g3 qi:
Step (12) ' Step (15) '

Figure 12: Optimal scheme for QFT-8 with 2 X 4 qubits. Each sub-figure represents a step of the execution, which takes one
cycle. It also represents the state of the circuit at each cycle. There are in total 17 steps, and thus 17 cycles.

for m=0; m+=2; m <4n - 6 do fori=0; i++; 2*i+2<2n-1do

1
L]
1]
k= (m/2)+1; 1 forj=0;j+=2j<i do
L]
for i=0; i++; i < (k - i) do !
if i<n&&k-i<n then 1
GT(q[i], q[k - 1]); : foerO'j+:2'j<2*i+l do

! ; ; ,

fori=0;i++;i<(k-i)do !

if i<n&& k-i<n, then 1

1

SWAP(q[i], qlk - 1]); '

:

1

L]

forj=1;j+=2;j<=i,do

(a) (b)

if 2i-j) <n &&j<n, then GT(q[j], q [2i-j]);
if 2i-j + 1) <n && j+1 <n, then SWAP(q[j+1], q[2i-j+ 1]);

if 2i+1) <n && j <n, then GT(q[j], q[2i+1]);

if (2i+2-j) <n, then GT(q[jl,q[2i+2-j]);
if 2i+1-j) <n, them SWAP(q[j-1], q[2i+1-j]);

fori=0;i++;i<=n-2 do
forj=0;j++ j<i,do
if j <n && (2i-j) < n, then SWAP(q[j], q[2i-j]);
forj=0;j++;j<ido
if j<n && (2i-j) <n, then GT(q[j], q[2i-j]);
for j=0;j++;j<i+1 do
if j <n && (2i+1-j) <n, then GT(q[j], q[2i+1-]);

()

Figure 13: Generalized solution for optimal schemes of QFT: (a) n-qubit QFT on LNN; (b) n-qubit QFT on 2XxN architecture
where N = n/2; (c) n-qubit QFT on 2xN architecture where swaps and CNOT cannot be mixed in one cycle.

takes to find the optimal solution. We implemented the mapper
using C++ and it was running on Intel Xeon E5-2620v2 CPU.

6.1.3 Comparison with OLSQ. In Table 2 we show our results com-
pared against OLSQ’s depth-optimal results [18] on the benchmarks
used in that paper. We correctly find the same optimal depths, but
are able to do so around 9 to 1500 times faster depending on the
benchmark. For this experiment, swaps were treated as having a
latency of 3 cycles, and all other gates as having a latency of 1 cycle.
When using our program we first tried to find an initial mapping
that could satisfy all CNOTs in the circuit without swaps — if that
failed, then we reran our mapper program with pure initial swaps
allowed, and added together the times in our overhead column of
Table 2. Our output circuit includes both a selected initial mapping
and inserted swaps using the approach defined in Section 5.3.

6.2 Approximate Analysis

We relax our model to solve for large benchmarks. We aim to find
a good solution within reasonable amount of time while not sacri-
ficing the search quality too much.

369

We approximate it in the following ways. When an original
gate is ready to execute with respect to dependence and coupling
constraints, we immediately schedule it. Thus we eliminate the
expanded nodes which do not schedule all ready original gates
implied by their parent node (the state node).

We also reduce the number of expanded nodes by not allowing
swaps that cause the executable gates on the CNOT frontier not
executable. By executable we meant the coupling and dependence
constraints are resolved. We rank the expanded nodes and only
push the top-k into the priority queue. When the priority queue
size reaches a threshold g, we cut it by a fixed number v through
deleting the nodes that made the least progress in the circuit. If
we need a tie breaker, we just rank them by the cost function. We
choose the parameters k, g, and v as 10, 2000, and 1000.

We handle initial mapping on-the-fly in a greedy manner. Before
calculating the cost of a node, we look at the qubits in each of
its CNOT gates that are executable with respect to dependence
constraints: if one or both of its qubits are not yet mapped, then
we pick an assignment that minimizes their physical distance. If
at the end of the program there are any qubits that were never

Time-Optimal Qubit Mapping

q0 g2 q4 g6 q2 q0 q4 g6 g2 g4 q0 g6 q4

ql g3 a5 q7 ql g3 q5 q7 q3 qi q5 q7 q3
Step (1) Step 4) Step (7)

q0 g2 q4 g6 g2 q0 g4 g6 g2 g4 q0 g6 g4

qgl g3 g5 q7 gl a3 g5 q7 q3 gt q5 q7 q3
Step (2) Step (5) Step (8)

q2 q0 qgq4 g6 qg2 g4 q0 g6 g4 g2 g6 g0 g4

q1 q3 a5 q7 q3 qi g5 q7 Q3 g5 qi q7 q5
Step (3) Step (6) Step (9)

ASPLOS 21, April 19-23, 2021, Virtual, USA

g2 g6 q0 g4 q6 g2 qo0 95 g4 g2 g0 96 g4 g2 qO
95 g1 q7 95 93 q7 g1 a5 q7 g3 gl 47 a5 g3 qi
Step (10) Step (13) Step (16) Step (19)
qg2 g6 q0 g4 g6 g2 g0 q6 g4 g2 qO Two-qubit __
gate:
SWAP: <>
5 q1 q7 g5 93 q7 q1 95 q7 g3 qi
Step (11) Step (14) Step (17)
6 g2 qo0 q6 q4 q2 q0 96 g4 g2 qO
Q3 q7 qi 5 q7 93 ql g7 95 q3 qi
Step (12) Step (15) Step (18)

Figure 14: An alternative optimal scheme for QFT-8 with 2 x4 qubits. Each sub-figure represents a step of the execution, which
takes one cycle. It also represents the state of the circuit at each cycle. There are in total 19 steps, and thus 19 cycles.

Table 1: Summary of optimal analysis on Wille’s [20] bench-
marks for IBM QX2 architecture, with swap latency of 6 cy-
cles and CX latency of 2 cycles; n denotes the number of
qubits; Mapper Overhead, measured in seconds, is how long
it took to generate the mapping.

Name n Gate Ideal Optimal Mapper
Count | Cycle Cycle Overhead (s)
3_17_13 3 36 39 39 0.012
4gtl1_82 5 27 38 40 0.044
4gtll_84 5 18 19 19 0.011
4gt13_92 5 66 64 64 0.014
4mod5-v0_19 5 35 37 45 0.075
4mod5-v0_20 5 20 21 27 0.052
4mod5-v1_22 5 21 22 28 0.053
4mod5-v1_24 5 36 36 42 0.085
alu-v0_27 5 36 35 40 0.043
alu-v1_28 5 37 37 42 0.029
alu-v1_29 5 37 36 41 0.052
alu-v2_33 5 37 36 41 0.036
alu-v3 34 5 52 53 59 0.314
alu-v3_35 5 37 37 42 0.038
alu-v4_37 5 37 37 42 0.038
ex-1_166 3 19 21 21 0.013
ham3_102 3 20 24 24 0.013
miller_11 3 50 52 52 0.016
mod5d1_63 5 22 24 34 0.076
mod5mils_65 5 35 37 46 0.115
qft_4 4 6 10 16 0.035
rd32-v0_66 4 34 36 41 0.045
rd32-v1_68 4 36 36 41 0.042

mapped (due to never being used in CNOT gates), then we assign
them arbitrarily.

This method scales better than the optimal search method. It is
non-optimal, but in practice it performs well.

6.2.1 Experiment Results. We evaluate our non-optimal mapper
with benchmarks selected from RevLib [21], IBM Qiskit [1], and
ScaffCC [6]. We also provide the ideal time of the circuit, which

370

Table 2: Comparison of our results against OLSQ’s depth-
optimal results; We let each gate take 1 cycle as the setup of
OLSQ [18]. Mapper overhead is measured in seconds. OLSQ
is using a different CPU for qubit mapper implementation
which is Intel Xeon E5-2699v3.

OLS! Ours
Name Arch Ideal Cycle Cycle Oerrhead Cycle | Overhead
4gt13_92 ibmgx2 38 38 145.74 38 0.01
4mod5-v1_22 | grid2by3 12 20 90.20 20 0.64
4mod5-vl_22 | grid2by4 12 20 151.28 20 17.35
4mod5-v1_22 ibmgx2 12 15 21.60 15 0.03
adder grid2by3 11 11 10.95 11 0.03
adder grid2by4 11 11 13.45 11 0.01
adder ibmgx2 11 15 39.71 15 0.06
mod5mils_65 | ibmqx2 21 24 87.76 24 0.05
or ibmgx2 8 8 3.55 8 0.01
qaoas ibmgx2 14 14 10.41 14 0.01
queko_05_0 aspen-4 5 5 68.89 5 0.01
queko_10_3 aspen-4 10 10 592.91 10 1.02
queko_15_1 aspen-4 15 15 4912.35 15 26.70

assumes an all-to-all qubit connection in the hardware. The infor-
mation of these benchmarks is provided in Table 3.

We compare our work with two best known qubit mapping
solutions [23] (denoted as Zulehner) and the Sabre qubit mapper
from [8] (denoted as Sabre). It is worth mentioning that our ap-
proach can take any gate latency as input parameters and generate
transformed circuits based on the input. To make evaluation results
as close to real machines as possible. We use the results from the
study by [4], where different types of quantum architecture are
investigated, and the study reveals that two-qubit gate usually takes
twice as much time as single-qubit gate. Hence we let single-qubit
gate take 1 cycle and two-qubit CNOT gate take 2 cycles in our
experiments. We also let a SWAP take 6 cycles as the IBM architec-
ture uses bidirectional link and 3 CNOTs to implement one SWAP.
The time is reported as the total number of executed cycles. We
use IBM’s 20-qubit Q20 Tokyo architecture [8] as the underlying
quantum hardware.

ASPLOS 21, April 19-23, 2021, Virtual, USA

Our approach is scalable up to hundreds of thousands of gates.
Results are shown in Table 3. The results are not optimal, but still
show significant advantages over the state-of-the-art qubit mappers.
It reduces the execution time of the transformed quantum circuits.
Speedup ranges from 0.99X to 1.36X and the average is 1.21X. The
average speedup of our scheme over Sabre is 1.23X and the average
speedup of our scheme over Zulehner is 1.18X.

Table 3: Summary results of approximate analysis on large
benchmarks; n denotes the number of qubits; Circuit time
is calculated in the unit of cycles.

Benchmark Cycle
Name n | Gate Count | Ideal Cycle | Sabre | Zulehner | Ours
cm82a_208 8 650 571 752 1011 759
rd53_251 8 1291 1203 1961 1956 1779
urf2_277 8 20112 19698 40533 36500 31090
urfl_278 9 54766 53256 105984 95763 83226
hwb8_113 9 69380 64758 119930 115767 93357
urfl_149 9 184864 172518 335230 | 303697 | 264752
qft_10 10 200 97 226 193 181
rd73_252 10 5321 4829 9194 8431 7267
sqn_258 10 10223 9176 18055 16552 13845
74_268 11 3073 2756 5250 5117 4271
life_238 11 22445 20867 39340 37944 33366
9symml 11 34881 32084 63339 56413 48606
sqrt8_260 12 3009 2779 5645 4831 4457
cycle10_2 12 6050 5662 10972 10659 9605
rd84_253 12 13658 12176 24860 23357 18225
adr4_197 13 3439 3088 5732 6005 4704
root_255 13 17159 14799 29511 27269 23841
dist_223 13 38046 32968 66791 62879 54905
cm42a_207 | 14 1776 1574 2473 2857 2186
pml_249 14 1776 1574 2591 2857 2186
cm85a_209 | 14 11414 10630 19540 18393 16204
square_root | 15 7630 6367 12374 11922 9311
ham15_107 | 15 8763 8092 15388 13767 12341
dc2_222 15 9462 8759 16947 15266 12945
inc_237 16 10619 9790 18250 17610 14804
mlp4_245 16 18852 17258 31836 30285 27214

7 RELATED WORK

Early studies on qubit mapping problem focus on linear nearest
neighbor architectures, that is when qubits are placed in a one
dimensional grid, and one qubit has at most two neighbors. In this
type of architecture, Shafei et al. [13] have modeled the qubit map-
ping problem as constraint solving problem and use satisfiability
(SAT) solvers to solve for qubit mapping. It works well when the
number of qubits is small and the search space is small. Maslov [9]
has obtained and proved optimal qubit mapping for the quantum
fourier transform (QFT) algorithm for LNN.

As quantum computers with more complex connectivity struc-
ture are built, a larger number of studies investigate the qubit map-
ping problem. However, most of these studies [8, 16, 17, 20, 22, 23]
focus on minimizing the number of inserted swap gates and en-
hancing the parallelism among the swaps, but not the time of the
entire circuit. Zulehner et al. [23] proposes a systematic A* algo-
rithm for optimizing the number of swap gates for a fixed layer
of CNOT gates that need to run concurrently. It pre-processes the
circuit by partitioning the circuit into different layers, and solve the
mapping problem layer by layer. Li et al. [8] use a frontier to keep

371

Chi Zhang, Ari B. Hayes, Longfei Qiu, Yuwei Jin, Yanhao Chen, and Eddy Z. Zhang

track of the CNOT gates that cannot be scheduled on the fly and
formulates a multi-objective function for ranking different SWAP
insertion strategies. Li et al. [8] has briefly discussed the trade-off
between the inserted SWAP number and the depth of the circuit,
but not systematically addressed the time-optimal problem. Siraichi
et al. [16] notes the similarity between the swap insertion prob-
lem and the subgraph isomorphism problem, which is essentially
fitting a program qubit interaction graph into the physical qubit
coupling graph. But they do not provide optimal solutions. The
studies [10, 19] observed the variability of qubit error rates in IBM
quantum computer and develop variability-aware qubit mapping
strategies.

The study that is most relevant to ours is OLSQ by Tan et al. [18].
OLSQ is a constrained based solver. It solves for the time coordinate
of each gate (including swap gate) and the qubit mapping at every
time coordinate, and the objective function is the total depth. It is
optimal with respect to a depth upper-bound. It tests different upper
bounds of the circuit depth until it finds a solution. If the preset
depth upper-bound is smaller than the actual optimal depth, it will
not return a solution. They start from the the longest weighted path
T in the DAG,; since a circuit runs at least T cycles. If it does not
return a solution with depth < T, it changes the upper bound to
T+1. If with T+1, it is still unsatisfiable, it goes to T+2, T+3, and so
on until a feasible solution is found. While their method can find
optimal solutions, it may suffer from scalability issues when the
optimal circuit time is not close to T. Therefore they geometrically
increase T each time by (1 + €)x until an optimal solution is found.
Our model explicitly solves for an optimal solution and does not
impose any constraints.

The study by Childs et al. [3] aims to minimize the depth. But
it minimizes the depth of inserted swaps. Each set of co-running
swaps is modeled as a graph matching (as no two parallel swaps
share a qubit), then it tries to find a minimal sequence of matchings
to achieve the desired permutation. Their theoretical model does not
consider the parallelism between inserted swaps and original gates.
Lao et al. [7] considers the parallelism between inserted swaps ad
original gates, but their approach is not theoretically optimal.

8 CONCLUSION

The physical layout of contemporary quantum devices imposes
limitations for mapping a high level quantum program to the hard-
ware. It is critical to develop an efficient qubit mapper. Most existing
studies aim to reduce the gate count but are oblivious to the time of
the transformed circuit. This paper presents a time-optimal qubit
mapping model scheme. Experiment results show that our proposed
solution generates hardware-compliant circuits with minimal cir-
cuit time with much less overhead compared with state-of-the-art
qubit mapping approaches.

ACKNOWLEDGEMENT

We thank Ali Javadi-Abhari for being our shepherd and the anony-
mous reviewers for their constructive comments. This work is
supported by grants from Rutgers Research Council and NSF-CCF-
1628401. Any opinions, findings, conclusions, or recommendations
expressed in this material are those of the authors and do not nec-
essarily reflect the views of our sponsors.

Time-Optimal Qubit Mapping

q0 g2 g4 g6 90 g2 g4 g6 g2 q0 g4
: > : p
1 a3 a5 q7 i a3 ql g5 a7 i g3 g5 qf
Step (1) H Step (4) H Step (7)
qQ0 g2 g4 g6 : Qg2 0 g4 g6 . q2 g4 qO0
gl g3 g5 q7 : g8 gl g5 q7 i g3 g5 qi
Step (2) : Step (5) : Step (8)
q0 g2 g4 g6 q2 0 g4 qb 1g2 g4 qo
g3 ql g5 q7 : 9 a5 gl a7 ig5 q3 q7

Step (3) Step (6) Step (9)

q6

q7

qGE

q7

q6

ql

g2

Eq5

i a5

ASPLOS 21, April 19-23, 2021, Virtual, USA

g4 q0 g6 | q qo : Cf q0
a3 a7 qilig ‘a7 a5 g3 at
Step (10) H Step 113) Step (16)
g4 q2 g6 q0 g4 g6 g2 q0:q6 q4 g2 qO
I:I:.:I I 5
95 93 q7 gl iqg5 q7 g3 q1:q7 a5 q3 ql
Step (11) : Step (14) : Step (17)
g2 g6 q0 . g4 g6 g2 qO0.
' CNOT: —
: SWAP: <>
a7 g3 a1l q7 g5 q3 aql:

Step (12) Step (15)

Figure 15: One possible solution for QFT-8 on 2x4 allowing two-qubit gate and swap on one cycle.

Qo I

Q1

Q2 SWAP
Q3 g

Q4 v v

Qs I I Two-qubit

Gate

Figure 16: One possible solution for QFT-6 on LNN.

A PROOF OF OPTIMALITY

LEMMA A.1. For each state node P, the heuristic cost function h(P)
is a lower bound of the length of all paths from P to a terminal node
in the search graph.

Proor. Let Grem = (Vrem, Erem) be the dependency graph of
the remaining circuit. For each gate g € Viem, let t;, ;. (g) be the
length of the actual shortest path from P to any state node where
gate g has already been scheduled to execute. In the next few para-
graphs we will prove that tmin(g) < t, ; (g) for every gate g. Let X
be any terminal node in the search graph, and let t* be the distance
between P and X. Since each gate must finish execution at state X,
for each gate g we have t* > t. . (g) + len(g). Together, for each
gate g we have

tmin(g) +len(g) < t;;,(g) +len(g) < t*

Thus h(P) = maxg tmin(g) + len(g) < t*. This shows that A(P) is
a lower bound on the length from P to any terminal node.

Base case: If g is a single-qubit gate that has no predecessors,
then ¢ . (g) = 0, since it can be scheduled to execute immediately.
Note that our definition of Gye, includes gates which are only
partially executed, so gates which have no predecessors do not
need to wait current gates to finish.

Inductive case: Suppose gate g depends on a number of other
gates. If g is a two-qubit gate then we also have to consider potential
SWAPs before g, even if g has no apparent predecessor in Grepm.-
We will give two lower bounds on £ . (g) and show that t/in(g)
is equal to the larger of the two bounds.

The first bound is derived from the immediate predecessors of
g.If hy, ho, - - - are the immediate predecessors of g in Grem, then
g cannot be scheduled until all these gates have finished. Thus
(9) = t;;,(hi) + len(h;) for each gate h;. This gives the first

mm

372

bound

(9) = maXt (hi) + len(h;)

mtn min

The second bound comes from gates which operate on the some
same qubit as g. Suppose g involves two qubits qq, q5. Let H, be the
set of all gates on g, which are direct or indirect predecessors of
g. Since they all operate on the same qubit, they must be executed
in the order they appear in the circuit. Suppose this ordering is

hi,ho,-- -, hy. We have
mtn(h2) > tmm(hl) +len(hy)
mm(hg) > tmm(hg) +len(hg) > tmm(hl) + len(hy) + len(h2)

Byinductionwe havet; . (g) >t . (h1)+X; len(h;) > 3; len(h;).
Now suppose we place r SWAPs before gate g on qubit g4. They
also cannot execute simultaneously with any of the gates in Hy.
Thus
trin(9) = 7+ len(SWAP) + " len(h) = u;
heH,
Similarly we may define the set Hp, and if we place s SWAPs on g,

before g we have

(g9) = s-len(SWAP) + Z len(h) = uo
heH,

mln

Let d(a, b) be the distance between qubit g4, g in the qubit mapping
Trem- Then at least d(a, b) — 1 SWAPs are needed before gate g,
sor+s > d(ab) — 1. Since u1,u2 increases linearly with r,s,
we fix r + s = d(a,b) — 1 to minimize them. We choose the pair
(r, s) such that max{uy, us} is minimized. We take the minimized
max{uy, us} to be the second bound.

In the above we have derived two lower bounds on ¢, . (g).
If we compare them with the definition of tpin(g), we see that
tmin(g) is exactly equal to the larger of the two bounds. Therefore
tmin(g) < ;. (g). This finishes the proof. O

B MULTIPLE OPTIMAL SOLUTIONS

In certain benchmarks, multiple depth-optimal solutions exist. Our
tool can be easily tuned to find all of them. Our algorithm waits until
the first optimal solution is found. Typically in A, one terminate
the algorithm as long as the first solution is found. But it is not
necessary. We then record the depth of the first optimal solution,

ASPLOS 21, April 19-23, 2021, Virtual, USA

and continue to run the extract-expand-push process as shown
in Fig. 6 and report more solutions. We stop reporting solutions
whenever an extracted node from the queue suggests a solution
with a larger depth than the optimal one. At this time, our algorithm
has found all solutions.

We need multiple optimal solutions because not all optimal so-
lutions for small circuits have a recurring pattern. Hence, it is
necessary to generate all optimal solutions and discover the one
with recurring pattern to generalize to larger circuits. For instance,
for QFT-8 on 2x4 architecture (without allowing CNOT and swap at
the same cycle) only one solution among the eight optimal solutions
shows the pattern in Fig. 14.

Another issue that arises when we try to manually generalize a
solution is that the solution circuit might need slight transformation.
It is possible that an optimal solution returned by our tool has
cancelable swap gates (which usually involves multiple qubits and
cannot be automatically found like cyclic swaps). However, it is
easy to discover them when visualizing the small solution circuit.

Further, certain gates can be scheduled earlier or later without
affecting the overall mapping or depth. We show an example in Fig.
15. As can be seen in step (5), the two-qubit gate for {g2, g3} can be
moved to step (6) without affecting the overall depth. Similarly, in
step (11), the two-qubit gate or {4, g5} can be moved to step (12).
This transformation is inferred from step (3) and (9). At this point,
we are doing the generalization/inference of recurring patterns
manually, but this could potentially done automatically. We leave
it as our future work.

Last but not least, if a swap is followed by a two-qubit gate, the
two-qubit can be moved in front of the swap by reversing the control
and target, and the transformed circuit is equivalent. Similarly when
a two-qubit is followed by a swap. We show a solution for QFT-6
on LNN in Fig. 16, where if in layers L2 to L8, the order of swap
and two-qubit gate can be swapped to be consistent with L1 and
L9, the entire solution is the same as we show in Fig. 2.

REFERENCES

[1] Héctor Abraham, AduOffei, Ismail Yunus Akhalwaya, Gadi Aleksandrowicz,
Thomas Alexander, Gadi Alexandrowics, Eli Arbel, Abraham Asfaw, Carlos
Azaustre, AzizNgoueya, Panagiotis Barkoutsos, George Barron, Luciano Bello,
Yael Ben-Haim, Daniel Bevenius, Lev S. Bishop, Sorin Bolos, Samuel Bosch,
Sergey Bravyi, David Bucher, Artemiy Burov, Fran Cabrera, Padraic Calpin, Lau-
ren Capelluto, Jorge Carballo, Ginés Carrascal, Adrian Chen, Chun-Fu Chen,
Richard Chen, Jerry M. Chow, Christian Claus, Christian Clauss, Abigail J. Cross,
Andrew W. Cross, Simon Cross, Juan Cruz-Benito, Chris Culver, Antonio D.
Corcoles-Gonzales, Sean Dague, Tareq El Dandachi, Matthieu Dartiailh, Davide-
Frr, Abdon Rodriguez Davila, Anton Dekusar, Delton Ding, Jun Doi, Eric Drech-
sler, Drew, Eugene Dumitrescu, Karel Dumon, Ivan Duran, Kareem EL-Safty,
Eric Eastman, Pieter Eendebak, Daniel Egger, Mark Everitt, Paco Martin Fernan-
dez, Axel Hernandez Ferrera, Albert Frisch, Andreas Fuhrer, MELVIN GEORGE,
Julien Gacon, Gadi, Borja Godoy Gago, Claudio Gambella, Jay M. Gambetta,
Adhisha Gammanpila, Luis Garcia, Shelly Garion, Austin Gilliam, Juan Gomez-
Mosquera, Salvador de la Puente Gonzalez, Jesse Gorzinski, Ian Gould, Donny
Greenberg, Dmitry Grinko, Wen Guan, John A. Gunnels, Mikael Haglund, Is-
abel Haide, Ikko Hamamura, Vojtech Havlicek, Joe Hellmers, Lukasz Herok,
Stefan Hillmich, Hiroshi Horii, Connor Howington, Shaohan Hu, Wei Hu, Haruki
Imai, Takashi Imamichi, Kazuaki Ishizaki, Raban Iten, Toshinari Itoko, JamesSea-
ward, Ali Javadi, Ali Javadi-Abhari, Jessica, Kiran Johns, Tal Kachmann, Naoki
Kanazawa, Kang-Bae, Anton Karazeev, Paul Kassebaum, Spencer King, Knab-
berjoe, Arseny Kovyrshin, Rajiv Krishnakumar, Vivek Krishnan, Kevin Krsulich,
Gawel Kus, Ryan LaRose, Raphaél Lambert, Joe Latone, Scott Lawrence, Dennis
Liu, Peng Liu, Yunho Maeng, Aleksei Malyshev, Jakub Marecek, Manoel Marques,
Dolph Mathews, Atsushi Matsuo, Douglas T. McClure, Cameron McGarry, David
McKay, Dan McPherson, Srujan Meesala, Martin Mevissen, Antonio Mezzacapo,

373

Chi Zhang, Ari B. Hayes, Longfei Qiu, Yuwei Jin, Yanhao Chen, and Eddy Z. Zhang

Rohit Midha, Zlatko Minev, Abby Mitchell, Nikolaj Moll, Michael Duane Moor-
ing, Renier Morales, Niall Moran, MrF, Prakash Murali, Jan Miiggenburg, David
Nadlinger, Ken Nakanishi, Giacomo Nannicini, Paul Nation, Edwin Navarro,
Yehuda Naveh, Scott Wyman Neagle, Patrick Neuweiler, Pradeep Niroula, Hassi
Norlen, Lee James O’Riordan, Oluwatobi Ogunbayo, Pauline Ollitrault, Steven
Oud, Dan Padilha, Hanhee Paik, Simone Perriello, Anna Phan, Francesco Piro,
Marco Pistoia, Alejandro Pozas-iKerstjens, Viktor Prutyanov, Daniel Puzzuoli,
Jests Pérez, Quintiii, Rudy Raymond, Rafael Martin-Cuevas Redondo, Max Reuter,
Julia Rice, Diego M. Rodriguez, RohithKarur, Max Rossmannek, Mingi Ryu, Thar-
rmashastha SAPV, SamFerracin, Martin Sandberg, Hayk Sargsyan, Ninad Sathaye,
Bruno Schmitt, Chris Schnabel, Zachary Schoenfeld, Travis L. Scholten, Eddie
Schoute, Joachim Schwarm, Ismael Faro Sertage, Kanav Setia, Nathan Shammah,
Yunong Shi, Adenilton Silva, Andrea Simonetto, Nick Singstock, Yukio Siraichi,
Iskandar Sitdikov, Seyon Sivarajah, Magnus Berg Sletfjerding, John A. Smolin,
Mathias Soeken, Igor Olegovich Sokolov, SooluThomas, Dominik Steenken,
Matt Stypulkoski, Jack Suen, Shaojun Sun, Kevin J. Sung, Hitomi Takahashi,
Ivano Tavernelli, Charles Taylor, Pete Taylour, Soolu Thomas, Mathieu Tillet,
Maddy Tod, Enrique de la Torre, Kenso Trabing, Matthew Treinish, TrishaPe,
Wes Turner, Yotam Vaknin, Carmen Recio Valcarce, Francois Varchon, Almu-
dena Carrera Vazquez, Desiree Vogt-Lee, Christophe Vuillot, James Weaver, Rafal
Wieczorek, Jonathan A. Wildstrom, Robert Wille, Erick Winston, Jack J. Woehr,
Stefan Woerner, Ryan Woo, Christopher J. Wood, Ryan Wood, Stephen Wood,
Steve Wood, James Wootton, Daniyar Yeralin, Richard Young, Jessie Yu, Christo-
pher Zachow, Laura Zdanski, Christa Zoufal, Zoufalc, a matsuo, adekusar drl,
azulehner, bcamorrison, brandhsn, chlorophyll zz, danlpal, dime10, drholmie, el-
frocampeador, faisaldebouni, fanizzamarco, gadial, gruu, jliu45, kanejess, klinvill,
kurarrr, lerongil, ma5x, merav aharoni, michelle4654, ordmoj, sethmerkel, strick-
roman, sumitpuri, tigerjack, toural, vvilpas, welien, willhbang, yang luh, yelojakit,
and yotamvakninibm. 2019. Qiskit: An Open-source Framework for Quantum
Computing. https://doi.org/10.5281/zenodo.2562110

Mehdi Bozzo-Rey and Robert Loredo. 2018. Introduction to the IBM Q Experi-
ence and Quantum Computing. In Proceedings of the 28th Annual International
Conference on Computer Science and Software Engineering (Markham, Ontario,
Canada) (CASCON °18). IBM Corp., USA, 410-412.

[3] Andrew M Childs, Eddie Schoute, and Cem M Unsal. 2019. Circuit transformations
for quantum architectures. arXiv preprint arXiv:1902.09102 (2019).

Haowei Deng, Yu Zhang, and Quanxi Li. 2020. CODAR: A Contextual Duration-
Aware Qubit Mapping for Various NISQ Devices. arXiv preprint arXiv:2002.10915
(2020).

Lov K. Grover. 1996. A Fast Quantum Mechanical Algorithm for Database
Search. In Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of
Computing (Philadelphia, Pennsylvania, USA) (STOC ’96). ACM, New York, NY,
USA, 212-219. https://doi.org/10.1145/237814.237866

Ali JavadiAbhari, Shruti Patil, Daniel Kudrow, Jeff Heckey, Alexey Lvov, Frederic T
Chong, and Margaret Martonosi. 2014. ScaffCC: a framework for compilation
and analysis of quantum computing programs. In Proceedings of the 11th ACM
Conference on Computing Frontiers. ACM, 1.

Lingling Lao, Hans van Someren, Imran Ashraf, and Carmen G. Almudever. 2020.
Timing and resource-aware mapping of quantum circuits to superconducting
processors. arXiv:1908.04226 [quant-ph]

Gushu Li, Yufei Ding, and Yuan Xie. 2019. Tackling the qubit mapping problem
for NISQ-era quantum devices. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating
Systems. ACM, 1001-1014.

Dmitri Maslov. 2007. Linear depth stabilizer and quantum Fourier transforma-
tion circuits with no auxiliary qubits in finite-neighbor quantum architectures.
Physical Review A 76, 5 (Nov 2007). https://doi.org/10.1103/physreva.76.052310
Prakash Murali, Jonathan M. Baker, Ali Javadi-Abhari, Frederic T. Chong, and
Margaret Martonosi. 2019. Noise-Adaptive Compiler Mappings for Noisy
Intermediate-Scale Quantum Computers. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming Languages
and Operating Systems (Providence, RI, USA) (ASPLOS °19). ACM, New York, NY,
USA, 1015-1029. https://doi.org/10.1145/3297858.3304075

Michael A Nielsen and Isaac Chuang. 2002. Quantum computation and quantum
information.

Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou,
Peter J. Love, Alan Aspuru-Guzik, and Jeremy L. O’Brien. 2014. A variational
eigenvalue solver on a photonic quantum processor. In Nature Communications,
Vol. 5. 4213. https://doi.org/10.1145/237814.237866

Alireza Shafaei, Mehdi Saeedi, and Massoud Pedram. 2014. Qubit placement to
minimize communication overhead in 2D quantum architectures. In 2014 19th
Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE, 495-500.
Peter W Shor. 1994. Algorithms for quantum computation: Discrete logarithms
and factoring. In Proceedings 35th annual symposium on foundations of computer
science. leee, 124—-134.

Peter W. Shor. 1997. Polynomial-Time Algorithms for Prime Factorization and
Discrete Logarithms on a Quantum Computer. SIAM J. Comput. 26, 5 (Oct. 1997),
1484-1509. https://doi.org/10.1137/S0097539795293172

[7

[8

—
o)

[10

[11

[12

=
&

[14

[15

https://doi.org/10.5281/zenodo.2562110
https://doi.org/10.1145/237814.237866
https://arxiv.org/abs/1908.04226
https://doi.org/10.1103/physreva.76.052310
https://doi.org/10.1145/3297858.3304075
https://doi.org/10.1145/237814.237866
https://doi.org/10.1137/S0097539795293172

Time-Optimal Qubit Mapping

[16] Marcos Yukio Siraichi, Vinicius Fernandes dos Santos, Caroline Collange, and
Fernando Magno Quintao Pereira. 2019. Qubit Allocation as a Combination
of Subgraph Isomorphism and Token Swapping. Proc. ACM Program. Lang. 3,
OOPSLA, Article 120 (Oct. 2019), 29 pages. https://doi.org/10.1145/3360546
Marcos Yukio Siraichi, Vinicius Fernandes dos Santos, Sylvain Collange, and
Fernando Magno Quintdo Pereira. 2018. Qubit allocation. In Proceedings of
the 2018 International Symposium on Code Generation and Optimization. ACM,
113-125.

[18] Bochen Tan and Jason Cong. 2020. Optimal Layout Synthesis for Quantum
Computing. In Proceedings of the 39th International Conference on Computer-Aided
Design (Virtual Event, USA) (ICCAD °20). Association for Computing Machinery,
New York, NY, USA, Article 137, 9 pages. https://doi.org/10.1145/3400302.3415620
Swamit S. Tannu and Moinuddin K. Qureshi. 2019. Not All Qubits Are Created
Equal: A Case for Variability-Aware Policies for NISQ-Era Quantum Computers.
In Proceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems (Providence, RI, USA)

[17

=
X0

374

[20

[21

[22

[23

ASPLOS 21, April 19-23, 2021, Virtual, USA

(ASPLOS ’19). ACM, New York, NY, USA, 987-999. https://doi.org/10.1145/
3297858.3304007

Robert Wille, Lukas Burgholzer, and Alwin Zulehner. 2019. Mapping quantum
circuits to IBM QX architectures using the minimal number of SWAP and H
operations. In Proceedings of the 56th Annual Design Automation Conference 2019.
ACM, 142.

Robert Wille, Daniel Grof3e, Lisa Teuber, Gerhard W Dueck, and Rolf Drechsler.
2008. RevLib: An online resource for reversible functions and reversible circuits.
In 38th International Symposium on Multiple Valued Logic (ismvl 2008). IEEE,
220-225.

Alwin Zulehner, Stefan Gasser, and Robert Wille. 2017. Exact Global Reordering
for Nearest Neighbor Quantum Circuits Using Ax. In International Conference on
Reversible Computation. Springer, 185-201.

Alwin Zulehner, Alexandru Paler, and Robert Wille. 2018. Efficient mapping of
quantum circuits to the IBM QX architectures. In 2018 Design, Automation & Test
in Europe Conference & Exhibition (DATE). IEEE, 1135-1138.

https://doi.org/10.1145/3360546
https://doi.org/10.1145/3400302.3415620
https://doi.org/10.1145/3297858.3304007
https://doi.org/10.1145/3297858.3304007

	Abstract
	1 Introduction
	2 Background
	2.1 Quantum Gates
	2.2 Qubit Mapping Problem

	3 Motivation
	4 Time-Optimal Mapping Framework
	4.1 Search Space
	4.2 Guided Search Framework

	5 Optimality Guarantee
	5.1 Admissible Cost Function
	5.2 Optimality
	5.3 Initial Mapping

	6 Analysis
	6.1 Exact Analysis
	6.2 Approximate Analysis

	7 Related Work
	8 Conclusion
	A Proof of Optimality
	B Multiple Optimal Solutions
	References

