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ABSTRACT

Experiments to understand the sensorimotor neural interactions in
the human cortical speech system support the existence of a bidirec-
tional flow of interactions between the auditory and motor regions.
Their key function is to enable the brain to ‘learn’ how to control the
vocal tract for speech production. This idea is the impetus for the
recently proposed “MirrorNet”, a constrained autoencoder architec-
ture. In this paper, the MirrorNet is applied to learn, in an unsuper-
vised manner, the controls of a specific audio synthesizer (DIVA) to
produce melodies only from their auditory spectrograms. The results
demonstrate how the MirrorNet discovers the synthesizer parame-
ters to generate the melodies that closely resemble the original and
those of unseen melodies, and even determine the best set parame-
ters to approximate renditions of complex piano melodies generated
by a different synthesizer. This generalizability of the MirrorNet il-
lustrates its potential to discover from sensory data the controls of
arbitrary motor-plants.

Index Terms— Autoencoder, Audio synthesis, Music synthesis,
DIVA synthesizer, Unsupervised learning

1. INTRODUCTION

Most organisms function by coordinating and integrating sensory
signals with motor actions to survive and accomplish their desired
tasks. For instance, visual and auditory signals guide animals to
navigate their surroundings [1, 2]. Similarly, auditory and proprio-
ceptive percepts are essential in skilled tasks like playing the piano
or speaking. The difficulty of learning to perform these tasks is enor-
mous. It stems from the fact that to control such actions, one needs
harmoniously to close the loop between sensing and action. That is,
it is necessary to map the desired sensory signals to the correct com-
mands, which in turn produce exactly the desired sensory signals
when executed.

But to learn the necessary mappings and interactions between
the perception and action domains, standard Artificial Intelligence
(AI) methodology typically relies on creating large databases that
map the input sensory data to their corresponding actions, and then
train intervening Deep Neural Networks (DNN) to associate the two
domains [3, 4]. Humans and animals however never learn complex
tasks in this way. For instance, human infants learn to speak by
first going through a “babbling” stage as they learn the “feel” or the
range and limitations of their articulatory commands. They also lis-
ten carefully to the speech around them, initially implicitly learning
it without necessarily producing any of it. When infants are ready to
learn to speak, they utter incomplete malformed replica of the speech
they hear. They also sense these errors (unsupervised) or are told
about them (supervised) and proceed to adapt the articulatory com-
mands to minimize the errors and slowly converge on the desired
auditory signal. In other words, learning these complex sensorimo-

tor mappings proceeds simultaneously and often in an unsupervised
manner by listening and speaking all at once [5, 6, 7].

Motivated by such learning of complex sensorimotor tasks, a
new autoencoder architecture, referred to as the “Mirror Network”
(or MirrorNet) was recently proposed in Shamma et al. [5]. The
essence of this biologically motivated algorithm is the bidirectional
flow of interactions (‘forward’ and ‘inverse’ mappings) between the
auditory and motor responsive regions, coupled to the constraints
imposed simultaneously by the actual motor plant to be controlled.
In this paper we extend and demonstrate the efficacy of the Mirror-
Net architecture in learning audio synthesizer controls/parameters to
synthesize a melody of notes using a commercial, widely available
synthesizer (DIVA) developed by U-He1.

MirrorNet is fundamentally different from the Differentiable
Digital Signal Processing (DDSP) based models [8, 9] which effec-
tively learn a differentiable music synthesizer, whereas the goal of
the MirrorNet is to learn controls to drive a given non-differentiable,
off-the-shelf music synthesizer. Previous work with DNNs on de-
termining music and speech synthesizer controls are all based on
at least partially supervised techniques which often involve large
databases of audio and control parameter pairs (order of 1000s)
[10, 11, 12, 13]. Furthermore, previous efforts have mostly demon-
strated the ability to compute the controls for single notes or single
vowels for speech [11, 14]. In this paper we propose an alternative
approach model which is fundamentally unsupervised, in that it does
not require matched pairs of input melodies and their corresponding
control parameters. The proposed model can predict synthesizer
controls for a melody composed of several notes demonstrating the
scalability of the model for real world applications. The true poten-
tial of the MirrorNet is further validated by showing how well it can
predict synthesizer controls not only for DIVA generated melodies,
but for other off-the-shelf synthesizer-generated melodies.

2. MIRRORNET MODEL

2.1. Model Architecture
The MirrorNet was initially proposed as a model for learning to con-
trol the vocal tract and is based on an autoencoder architecture. The
structure of this network is shown in Figure 1a [5], depicting the bi-
ological structures and experiments that motivated the network. The
goal of the model is to learn two neural projections, an inverse map-
ping from auditory representation to motor parameters (Encoder)
and a forward mapping from the motor parameters to the auditory
representation (Decoder). For simplicity, we use auditory spectro-
grams [15] generated from the audio streams as the input and output
representations, but other representations may prove more versatile
(e.g., cortical representations [16]). The “motor” parameters in this
study are the parameters needed to synthesize the closest possible

1https://u-he.com/products/diva/
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audio signals matching the inputs. The primary difference between
this MirrorNet and the previously studied model in [5] is the use of
the music synthesizer (DIVA) with its unique set of parameters.

As shown in Figure 1a, the MirrorNet model is optimized simul-
taneously with two loss functions namely the ‘encoder loss’(ec) and
the ‘decoder loss’(ed). The encoder loss is the typical autoencoder
loss - the Mean Squared Error (MSE) between the input auditory
spectrogram and the reconstructed auditory spectrogram from the
decoder (forward path). The decoder loss is the MSE between the
auditory spectrograms generated by the DIVA (the motor plant path)
and the decoder (forward path). It is the ‘decoder loss’ that con-
strains the latent space to converge to the expected control parame-
ters while simultaneously reducing (ec), and this is the key feature
of the MirrorNet architecture.

Figure 1b shows the role of the ‘forward’ path in the model,
namely to back-propagate the errors computed to learn the ‘inverse’
mapping and hence the control parameters. In general, directly com-
puting a vocal-tract or an audio synthesizer inverse is difficult if not
impossible because of its complexity, nonlinearity, and our incom-
plete knowledge of its workings. The MirrorNet in Figure 1b (bot-
tom panel) solves this problem by adding the forward projection that
serves as a parallel, “neural” model of the vocal tract or the audio
synthesizer, or any motor-plant to be used. The critical importance
of this “neural” projection is that it readily provides a route for the ec
errors to back-propagate to the motor areas (latent space), enabling
the training of the inverse mapping (Encoder).

2.2. Model Implementation and Training

The MirrorNet for audio synthesizer control is implemented in Py-
Torch with 1-D convolutional (CNN) layers modeling both the en-
coder and decoder. The complete network is inspired by the multi-
layered Temporal Convolution Network (TCN) [17]. Figure 2 shows
the complete DNN model architecture with its sub-modules used for
pre/post processing and dilated TCN. The pre/post processing mod-
ules are symmetrically matched (C1≡C12, C2≡C11, C3≡C10) and
have 128, 256 and 256 filters respectively with 1×1 kernels. d1, d2
and d3 dilated CNN layers have a kernel size of 3 with 1,4 and 16
dilation rates respectively. The CNN layers in the encoder and de-
coder are also symmetrically matched and the C4, C5 and C6 layers
have 256, 128 and 7 filters respectively with 1×1 kernels. The latent
space dimensions are chosen to match with the number of parame-
ters to be learned and the number of notes in each melodic segment.
For example to learn 7 controls of the DIVA synthesizer to generate
a melodic segment of 5 notes, we use a latent space of (7×5) dimen-
sions. Average pooling is done after C4, C5 and C6 layers (window
sizes of 5, 5 and 2 respectively) while upsampling is done before
C7, C8 and C9 layers (window size of 2, 5 and 5 respectively). The
auditory spectrograms used as inputs (and outputs) of the model are
of dimension (128×250). We use auditory spectrograms which have
a logarithmic frequency scale, simply because they provide a unified
multi-resolution representation of the spectral and temporal features
likely critical in the perception of sound [15, 16].

Unlike a regular autoencoder, the MirrorNet is trained in two
alternating stages in each iteration. The decoder is trained first (to
minimize ed) for a chosen number of epochs. Then, the encoder
is trained (to minimize ec) for a given number of epochs and this
alternation of training is continued until both losses converge to a
minimum. Learning rates of 1e-2 and 1e-3 were used for the en-
coder and decoder networks, respectively. The best learning rates
were determined based on a grid search testing all the combinations
from [1e-2, 1e-3, 1e-4, 3e-4] for both the encoder and decoder which
result in the lowest training errors at convergence. The two objective

(a) MirrorNet: Autoencoder Architecture

(b) Role of the forward pass

Fig. 1: MirrorNet Model Architecture for speech and the critical role
of the forward projection (taken from Learning Speech Production
and Perception through Sensorimotor Interaction by Shamma et al.
in Cerebral Cortex Communications.)

Table 1: Set of Audio controls/parameters used. Here MIDI note
and MIDI duration are parameters set in RenderMan library to drive
the synthesizer patch.

Parameter Name DIVA preset
MIDI note (Pitch) -
MIDI duration -
Volume OSC : Volume2
Band pass filter (center frequency) VCF1: Frequency
Filter Resonance VCF1: Resonance
Envelope Attack ENV1: Attack
Envelope Decay ENV1: Decay
Vibrato Rate LFO1: Rate
Vibrato Intensity OSC : Vibrato
Vibrato Phase LFO1: Phase

functions were optimized using the ADAM optimizer with an ‘Expo-
nentialLR’ learning rate scheduler and a decay (gamma) of 0.5. All
the models were trained using NVIDIA Quadro P6000 GPUs and
on average the models converged after around 32 hours of training.
For further implementation information of the network, the PyTorch
project is publicly available in GitHub 2. Sample audio reconstruc-
tions can also be found in the supporting web page hosted in the
GitHub repository.

2.3. DIVA audio synthesizer

We use DIVA, an off-the-shelf commercial synthesizer as our audio
synthesizer for the MirrorNet model. DIVA has almost all its pa-
rameters MIDI-controlled. A python library called RenderMan 3 is
used to batch-generate audio files using a fixed set of parameters. We
built a software layer with RenderMan to drive DIVA to synthesize
a melody of notes by concatenating individual notes synthesized by
DIVA. All the melodies used in this paper are 2 seconds long and
sampled at 44.1 kHz. The parameters are all continuous and normal-
ized between [0,1]. Table 1 lists the set of parameters selected for
the learning experiments with the MirrorNet, and the corresponding
parameter labels from DIVA where applicable.

2https://github.com/Yashish92/MirrorNet-for-Audio-synthesizer-controls
3https://github.com/fedden/RenderMan
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Fig. 2: DNN architecture of the MirrorNet model. Here C1-C12 represent 1D-CNN layers where d1-d3 represent 1D dilated CNN layers.

3. EXPERIMENTS AND RESULTS

3.1. Learning DIVA parameters from melodies synthesized with
the same set of parameters (set 1)

In this first experiment, we use 400 melodies (set 1) to train the Mir-
rorNet and test with 80 melodies, all originally synthesized by DIVA.
The advantage of this set of melodies is that we have its ground-truth
parameter values, and hence we can assess how accurately the Mir-
rorNet rediscovers them and reconstructs the melodies. Each melody
contains 5 notes and is 2 seconds long. The train and test set of
melodies were synthesized by randomly sampling a total of 7 pa-
rameters (the first 7 parameters in Table 1) using a defined range
and keeping a pre-defined set of other parameters constant across all
notes and melodies. The pre-defined set of parameters used for the
experiments can be found in the GitHub repository of the project.

Figure 3 depicts auditory spectrograms of a given melody at var-
ious stages in the fully-trained MirrorNet. The spectrogram (b) sug-
gests how well the decoder has learned to generate an identical spec-
trogram to the one generated with DIVA for the exact same controls.
The spectrogram (d) suggests how well predicted DIVA controls are
from the encoder to synthesize an identical melody to the input.

We performed preliminary statistical tests to evaluate the robust-
ness of the MirrorNet in predicting the 7 parameters. Plot in Figure
5a validates that the predicted and ground truth parameters are sig-
nificantly closer together than would result from a random set of val-
ues. A second test was performed to check how well the predictions
of each parameter are compared to a random prediction. For that we
performed a Levene’s test that confirmed that all parameter predic-
tions were significantly better than chance. Plot in Figure 5b shows
the parameter difference distributions for the test set. The distribu-
tions also suggest that critical parameters like pitch, bandpass filter,
filter resonance and duration are predicted with significant accuracy
where as volume and envelope attack parameters are predicted with
comparatively lower accuracy.

3.2. Learning DIVA parameters from melodies synthesized with
extra unknown DIVA parameters (set 2)

In this experiment, we use a train set of 400 and a test set of 80,
both DIVA generated melodies (set 2) which are synthesized in sim-
ilar fashion to set 1 except for the fact that they now use all the 10
parameters in Table 1. The MirrorNet is still trained to predict 7
parameters as in previous experiment. The goal here is to demon-
strate that the MirrorNet can approximate the input melodies even if
they have additional sound/musical qualities that are impossible for
the restricted set of 7 DIVA parameters to reproduce, e.g., vibrato in
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Fig. 3: Auditory spectrograms from the model learned with DIVA
synthesized melodies (set 1). (a) Input melody (b) Decoder output
from true DIVA parameters (c) Final output from the decoder (d)
DIVA output from the learned control parameters

this case. The top panel in Figure 4 illustrates the original (vibrato)
notes and the successfully regenerated melody captured with only 7
parameters (vibrato not included).

3.3. Learning DIVA parameters to synthesize melodies gener-
ated from other synthesizers

A fundamental advantage of the MirrorNet is its ability to discover
the DIVA parameters corresponding to music generated by other
sources and synthesizers by finding parameters that allow the DIVA
output to be as close as possible, given the constraints of the number
of parameters (here 7 are used), to the original input. The experi-
ment utilized 400 5-notes long piano melodies of 2 seconds that are
synthesized by a Fender Rhodes digital imitation (Neo-Soul Keys
generated trough Kontakt 5). The network successfully reproduces
accurate renditions of the piano music from unseen samples (test set
of 80 samples) using the decoder/encoder mappings learned during
the training. The bottom panel in Figure 4 shows such an exam-
ple where the DIVA produces a melody which closely resembles the
input piano melody.

4. DISCUSSION

We described a MirrorNet model inspired by cortical sensorimotor
interactions measured when humans speak or play a musical in-
strument [5]. The first two experiments utilized DIVA generated
melodies for training, and this allowed us evaluate the effective-
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Table 2: Mean and variance of Mean Square Errors (MSE’s) across multiple model training runs
Input melody type Train/Test for Input vs DIVA(learned) Parameter-Train Parameter-Test
DIVA melodies (set 1) 2.995±.21/3.596±.15 0.0666±.003 0.0671±.002
DIVA melodies (set 2) 6.380±.34/8.101±.20 0.0832±.007 0.0857±.004
Piano melodies 4.585±.25/4.751±.22 - -

(b)(a)

(c) (d)
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Fig. 4: (Top panel) Auditory spectrograms from the model learned
with DIVA synthesized melodies (set 2) (a) Input melody (b) DIVA
output from the learned control parameters. (Bottom panel) Audi-
tory spectrograms from the model learned with piano melodies. (c)
Input melody (d) DIVA output from the learned control parameters.

ness of the MirrorNet given the ground truth parameters to compare
against, e.g., to perform preliminary tests to validate the MirrorNet
predictions of the synthesizer controls across all the training and test
sets, as shown in Table 2. The MSE values for the test set compared
to the train set in Table 2 also give an idea on how well the model
generalizes for the unseen input melodies.

Taking the MirrorNet to the next level in the last experiment, we
demonstrated how the MirrorNet could closely approximate a set of
controls for DIVA to synthesize a set of piano melodies generated by
a completely different synthesizer. This idea opens up a whole new
area of applications in music synthesis as it describes a tool to find
parameters for an arbitrary synthesizer that maximally approximate
an arbitrary sound without being necessarily capable to exactly re-
produce it (reproduce a violin using a guitar for instance). It should
also be noted that this paper only discusses results in synthesizing
fixed duration melodies with a fixed number of notes, but it is a step
in the right direction to synthesizing a piece of music which can have
a variable number of notes in a fixed frame of audio.

The inspiration of the MirrorNet also comes from the area of
computational neuroscience and especially to learning and predic-
tive processing. Our brain is able to extract strong relations between
sensory stimuli and their corresponding motor parameters that en-
able children to learn to speak by mere passive exposure to speech
without any proper external teaching. In addition, after learning to
control their own vocal tract, adults can, without any additional train-
ing, produce sounds they hear even if the acoustic target is not reach-
able by their specific vocal tract (case of the experiments 2 and 3).
However, the brain is able to find a set of motor parameters that ap-
proximate well the target sound while being produced by the specific
vocal tract. Such predictive mechanism can also be seen in music
production when humans learn how to play an instrument by map-
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Fig. 5: Evaluating statistical significance of the predicted DIVA pa-
rameters with respect to a set of random parameters on the test set
(a) Distributions for absolute parameter differences across all param-
eters (b) Distributions of parameter differences (ground truth - pre-
dicted) for 7 parameters and the distribution for a random parameter
difference (ground truth - random)

ping the auditory stimulation to the motor commands to a specific
instrument. Even music perception rely on similar predictive path-
ways where high-order cortical areas constantly predict activation in
the auditory cortices in order to modulate attention and emotions, for
instance[18, 19].

Finally, from an engineering perspective, the MirrorNet can
solve problems where it is hard to find a reasonable number of ex-
amples to train a regular feed-forward DNN network, or to learn
from examples that may not be exactly similar to the motor-plant
outputs, e.g., learning to synthesize a melody from naturally played
music. We moreover believe that the MirrorNet can be generalized to
design algorithms that can control motor-plants such as self-driving
vehicles given various sensory data.

5. CONCLUSION AND FUTURE WORK

This paper presents an autoencoder architecture inspired by sensori-
motor interactions to discover and learn audio synthesizer controls.
The work is novel in that the proposed MirrorNet can learn the nec-
essary controls to produce a melody in a completely unsupervised
way. It can also be potentially generalized to learn the controls for
any motor-plant action from the sensory data associated with them.
However, to realize all these potentials, many more advances are
needed. For example, for the audio synthesizer controls explored
here, it is necessary to scale up the current implementations to far
more parameters that capture richer aspects of the sound (e.g., vi-
brato), to deploy more advanced and richer representations of the
sound beyond the spectrograms, to devise more efficient and faster
training paradigms, and finally to target the synthesis of continuous
musical melodies which can have a variable number of notes.
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