OPEN ACCESS

Evolution of the Gas Density in a Simulated Star-forming Cloud with Stellar Feedback

Amanda Lue¹, Dávid Guszejnov², Stella S. R. Offner², and Michael Y. Grudić^{3,4} Published October 2021 • © 2021. The Author(s). Published by the American Astronomical Society. Research Notes of the AAS, Volume 5, Number 10

Citation Amanda Lue et al 2021 Res. Notes AAS 5 225

Referendesth Jax Share this article

B67thotals downloads

Abstract

2. Methods

3. Results and Discussion

IOP

Hide article information

Author e-mails

alue@colgate.edu

Author affiliations

¹ Department of Physics and Astronomy, Colgate University, Hamilton, NY 13346, USA; alue@colgate.edu

² Department of Astronomy, UT Austin, Austin, TX 78712, USA ³ CIERA and Department of Physics and Astronomy, Northwestern University, 1800 Sherman Ave, Evanston, IL

60201, USA ⁴ Carnegie Observatories, 813 Santa Barbara St, Pasadena, CA 91101, USA

ORCID iDs

Amanda Lue https://orcid.org/0000-0002-4533-2581

Dávid Guszejnov https://orcid.org/0000-0001-5541-3150

Stella S. R. Offner https://orcid.org/0000-0003-1252-9916

Michael Y. Grudić https://orcid.org/0000-0002-1655-5604 **Dates**

1. Received October 2021 2. Accepted October 2021

3. Published October 2021

DOI

https://doi.org/10.3847/2515-5172/ac2d37 Keywords

a Journal RSS

Computational astronomy; Star formation; Interstellar medium; Interstellar clouds

Create or edit your corridor alerts

Create citation alert

Star formation involves gravity, turbulence, magnetic fields, and feedback from new stars through jets,

Abstract

the star formation rate (SFR), forming the basis of several star formation models. We utilize two runs from the STARFORGE simulation suite that follow the evolution of molecular clouds, while resolving individual stars and including all gas and feedback physics. The two runs have different initial conditions, one is a periodic box with driven turbulence (Box), while the other is an isolated cloud without turbulent driving (Sphere). We find that the ρ -PDF for both runs is initially well-fit by a log-normal (LN) plus a power-law (PL) function. However, as the SFR peaks, the PDF for the Sphere run becomes well-fit by just a wide LN. Conversely, the Box run PDF remains well-fit by a LN+PL function for the entirety of the run. Export citation and abstract RIS BibTeX

Next article in issue **>**

Sphere

8

Log density (cm⁻³)

-2

Log PDF

radiation and winds. The evolution of the density probability distribution function (ρ -PDF) is directly related to

◆ Previous article in issue

+ Related links

title of the work, journal citation and DOI.

Studies predict that in a turbulent supersonic medium, i.e., in a star-forming cloud, the density probability

Original content from this work may be used under the terms of the Creative Commons Attribution

4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the

distribution function (ρ -PDF) has a lognormal (LN) shape (Vazquez-Semadeni 1994). This can be understood by invoking the Central Limit Theorem which establishes that when random variables are added, the shape of

1. Introduction

their distribution tends toward a normal distribution. In a turbulent supersonic medium, shocks cause random, multiplicative changes in density, so in log-space, the density PDF is a normal distribution (Molina et al. 2012). However, these clouds also experience gravity, which has been shown to lead to the development of a powerlaw (PL) tail at high densities in both observations (Kainulainen et al. 2009) and simulations (Federrath & Klessen 2013). In this work, we analyze two runs from the STARFORGE simulation suite that follows the evolution of star-forming clouds, while resolving individual stars and including all relevant stellar feedback physics (i.e., jets, radiation, winds, supernovae, see Grudić et al. 2021). Both runs initially contain $2 \times 10^4 M_{\odot}$ gas but start out from different initial conditions (IC). The first starts as a uniform density sphere with velocities following a Gaussian random field, embedded in pressure equilibrium within diffuse gas (Sphere IC). The second starts as a "stirred" periodic box (Box IC) with continuous turbulent driving through its evolution (similar to Federrath et al. 2014). The simulations follow the evolution of the clouds until stellar feedback destroys the clouds. In this work we focus on the evolution of the shape of the volume ρ -PDF and its relation to the star formation rate (SFR). 2. Methods We fit the shape of the ρ -PDF with a piece-wise function, $p(\rho)$, using least squares fitting. $p(\rho)$ consists of two

components, a LN part below the ρ_t transition density, and a PL part above ρ_t , specifically

2.9Myr

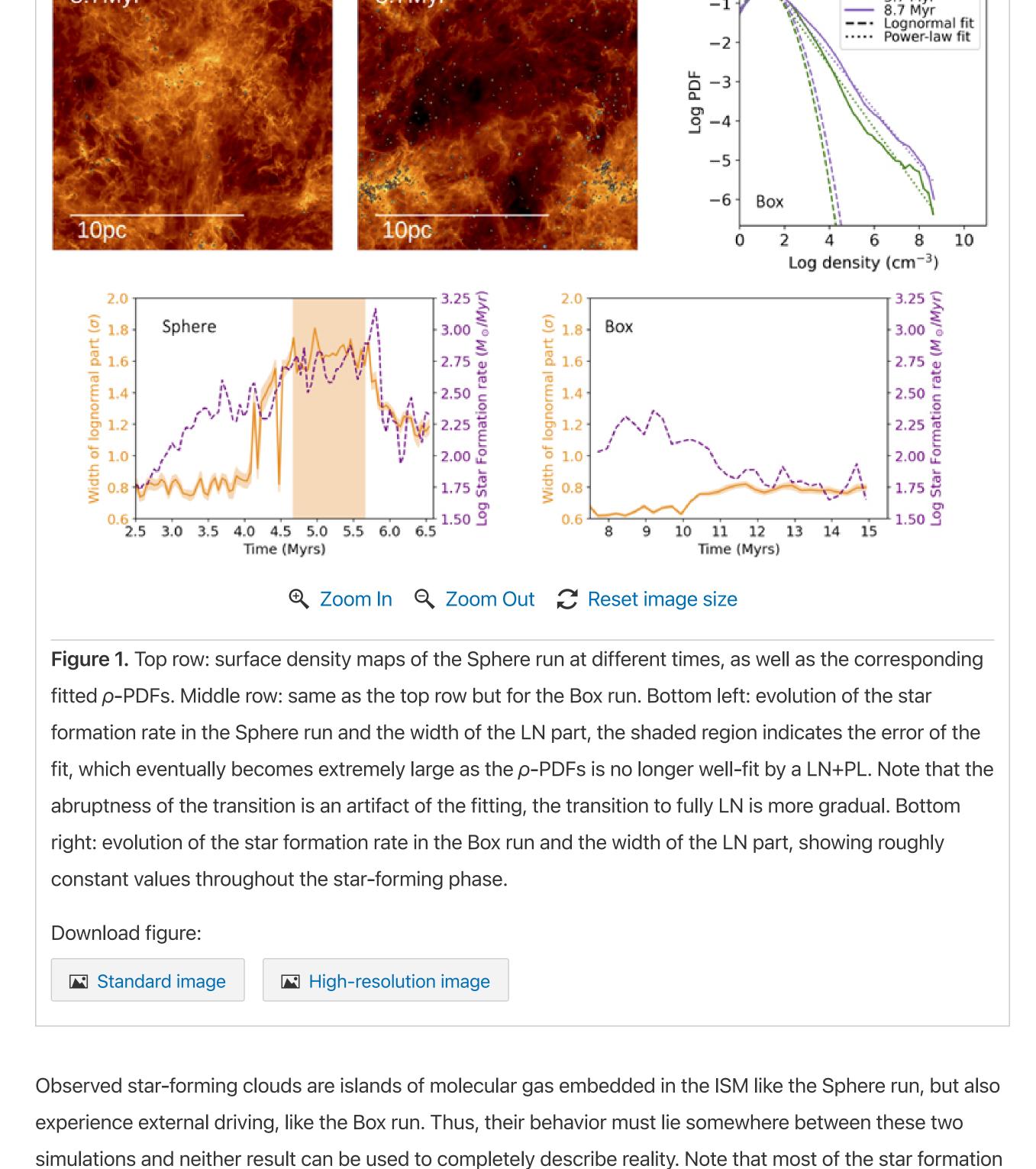
10pc

3.7Myr

 $\frac{dV}{d\ln\rho} \sim p(\rho) \equiv \begin{cases} \frac{C}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(\ln\rho/\bar{\rho} - s_0)^2}{2\sigma^2}\right) & \rho < \rho_t \\ \mathcal{N}C\rho^{-\beta} & \rho \geqslant \rho. \end{cases}$ (1) where ρ is the density of gas with $\bar{\rho}$ being the mean value, σ is the width of the LN, C is the normalization

constant and β is the slope of the PL. Note that s_0 can be expressed with σ and that the constants ρ_t and N

are chosen so that
$$p(\rho)$$
 is continuously differentiable, see Equations (19)–(21) in Burkhart (2018). This leaves σ and β as the only free parameters (apart from normalization). Note that when fitting the ρ -PDF of the Sphere runs we only fit above the density of the diffuse medium the sphere is embedded in.


3. Results and Discussion

We find in both cases that the ρ -PDF is well-fit by a LN+PL shape in the early phases of star formation, with a roughly constant σ width. During this early phase, the slope of the PL tail is also roughly constant at around 0.7 and close to the analytically predicted value of 0.54 (Girichidis et al. 2014). However, for the Sphere run, as feedback becomes dominant (coinciding with the SFR peak), σ increases and the entire ρ -PDF becomes well-fit by a single, wide LN without a PL tail (see Figure 1). Meanwhile, the Box run is well-described by a LN+PL shape with roughly constant parameters throughout the simulation.

5.7Myr

10pc

8.7Myr

scenarios. Footnotes http://www.starforge.space - Hide References Burkhart B. 2018 *ApJ* **863** 118

Google Scholar

Journals Books About IOPscience Contact us Developing countries access IOP Publishing open access policy

This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.

Crossref

Crossref

occurs in the Sphere run when the PDF is not well-fit by a LN+PL, so the scope of analytic theories relying on

a PDF of that shape (e.g., Burkhart 2018; Jaupart & Chabrier 2020) do not apply to all possible star formation

2199

Federrath C. and Klessen R. S. 2013 ApJ 763 51 Go to reference in article **ADS**

Go to reference in article

Go to reference in article

Go to reference in article

↑ Federrath C., Schrön M., Banerjee R. and Klessen R. S. 2014 *ApJ* **790** 128 Go to reference in article **ADS** Crossref

<u>ADS</u>

Girichidis P., Konstandin L., Whitworth A. P. and Klessen R. S. 2014 ApJ 781 91 Google Scholar Go to reference in article <u>ADS</u> **Crossref**

Crossref

Molina F. Z., Glover S. C. O., Federrath C. and Klessen R. S. 2012 MNRAS 423 2680

Crossref

Grudić M. Y., Guszejnov D., Hopkins P. F., Offner S. S. R. and Faucher-Giguère C.-A. 2021 MNRAS 506

Jaupart E. and Chabrier G. 2020 ApJL 903 L2 Go to reference in article Crossref

Kainulainen J., Beuther H., Henning T. and Plume R. 2009 A&A 508 L35

<u>ADS</u>

<u>ADS</u>

<u>ADS</u>

Go to reference in article Google Scholar **ADS** <u>Crossref</u>

Go to reference in article <u>ADS</u> **Crossref** Export references:

Vazquez-Semadeni E. 1994 ApJ 423 681

RIS BibTeX

IOPscience

IOP Publishing

↑ Back to top